US20170309878A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
US20170309878A1
US20170309878A1 US15/493,586 US201715493586A US2017309878A1 US 20170309878 A1 US20170309878 A1 US 20170309878A1 US 201715493586 A US201715493586 A US 201715493586A US 2017309878 A1 US2017309878 A1 US 2017309878A1
Authority
US
United States
Prior art keywords
housing
secondary battery
venting
outside
pathways
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/493,586
Other versions
US10644286B2 (en
Inventor
Keith KEPLER
Jackson Edwards
Andrew Larson
Benjamin Zeiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Farasis Energy Ganzhou Co Ltd
Original Assignee
Farasis Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farasis Energy Inc filed Critical Farasis Energy Inc
Priority to US15/493,586 priority Critical patent/US10644286B2/en
Assigned to FARASIS ENERGY, INC. reassignment FARASIS ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDWARDS, JACKSON, LARSON, ANDREW, ZEIGER, BENJAMIN, KEPLER, KEITH
Publication of US20170309878A1 publication Critical patent/US20170309878A1/en
Assigned to FARASIS ENERGY (GANZHOU) CO., LTD. reassignment FARASIS ENERGY (GANZHOU) CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARASIS ENERGY, INC.
Application granted granted Critical
Publication of US10644286B2 publication Critical patent/US10644286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • H01M2/1229
    • H01M2/1077
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, particularly to a secondary battery with venting mechanism.
  • the batteries are usually made of at least one battery array including several cells so as to have more capacity with less volume, which proposes higher demand with regard to the heat sinking and venting system of batteries.
  • Pouch cell batteries are increasingly used due to good safety and high energy density.
  • a pouch cell battery includes a series of Li-ion pouch cells arranged in an enclosed protecting housing.
  • pouch cells may expand. Therefore, the enclosed housing will face increased air pressure from inside so as to lead to potential safety risks.
  • a solution to eliminate or at least alleviate the above-mentioned technical problem is needed.
  • a secondary battery with a novel mechanism being able to relieve internally generated pressure inside of the internal chamber thereof, so that when the Li-ion pouch cells expands in service, the pressure inside of the said internal chamber is relieved, so as to ensure the safety of the secondary battery.
  • the present invention provides a secondary battery comprising a housing with an internal chamber; Li-ion pouch cells including electrical terminals exposed to the outside of the housing, the secondary battery further includes an venting mechanism made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, and the Li-ion pouch cells and the compressible materials all encapsulated within a potting layer and located in said internal chamber of the housing.
  • the venting mechanism includes at least one pathway connecting the inside space of said air pockets and the outside of the housing.
  • the venting mechanism includes at least one venting pathways, made of compressible material, interposed between the Li-ion pouch cells and the potting layer and connects to the outside of the housing.
  • the external ends of said venting pathways protrude from different external surfaces of the housing respectively.
  • the venting mechanism includes at least one one-way valve located at external ends of said venting pathway and allows the air inside of said air pockets to be released to the outside of the housing.
  • the air pressure inside of said air pockets is higher than that of the outside of the housing when said one-way valve is closed.
  • venting pathways include at least one main pathway which connects to the outside of the housing and several branch pathways which fluidly communicate with said main pathway.
  • the venting pathway includes two main pathways parallel arranged with each other and several branch pathways parallel arranged between said two main pathways and connect the same.
  • each Li-ion pouch cell includes a cell body having cell tabs, a plurality of the Li-ion pouch cells are arranged adjacently with their corresponding cell tabs electrically connected and spacing rooms are formed between the cell tabs, the branch pathways are correspondingly located in the spacing rooms respectively.
  • the venting mechanism is located on the top of the Li-ion pouch cells.
  • such a configuration contained within the secondary battery in accordance to the present invention has the advantage of being able to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, so that when the Li-ion pouch cells expands in service, the pressure inside of the said internal chamber relieved, so as to achieve the goal of the present invention.
  • FIG. 1 shows a perspective view of a secondary battery in accordance with an embodiment of the present invention
  • FIG. 2 shows an exploded perspective view of the secondary battery of FIG. 1 with potting layer and a part of housing omitted for clarity;
  • FIG. 3 shows the cross section of the secondary battery of FIG. 1 , wherein the secondary battery is cut along the direction of the line A-A of FIG. 1 , and for clarity, only the upper part of the secondary battery is show with potting layer omitted;
  • FIG. 4 shows a section view of the secondary battery of FIG. 1 along the direction of the line A-A of FIG. 1 ;
  • FIG. 5 shows a section view of the secondary battery of FIG. 1 along the direction of the line B-B of FIG. 1 .
  • a secondary battery which includes: a housing 1 with an internal chamber; Li-ion pouch cells 2 including electrical terminals 4 exposed to the outside of the housing 1 , the secondary battery further includes an venting mechanism 5 made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1 , and the Li-ion pouch cells 2 and the compressible materials all encapsulated within a potting layer 3 and located in said internal chamber of the housing 1 .
  • the secondary battery of the present invention not only may be used for EV, but also may be extended to all lithium ion battery pack applications, such as portable electrical devices or stationary battery backups.
  • the Li-ion pouch cells 2 may include at least one Li-ion pouch cell comprising a sealed enclosure and electrode material in liquid or slurry state enclosed therein. However more commonly, as shown in FIG. 2 , the Li-ion pouch cells 2 may include several pouch cells. The technical solution of the present invention is widely applicable for any kind of Li-ion pouch cell pack design.
  • the housing 1 provides the entire structure and outer shape of the battery with an internal chamber for mounting potting layer 3 and the air pockets encapsulated within the potting layer 3 .
  • the compressible material may be used for receiving or absorbing the expansion of the Li-ion pouch cells 2 .
  • the housing 1 is shown to be cuboid shape, the present invention is not limited to this and applicable to other shape of housing.
  • Electrical terminals 4 connect to the Li-ion pouch cells 2 and exposed to the outside of the housing 1 through the potting layer 3 and housing 1 .
  • an venting mechanism 5 which is used for relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1 is arranged, so that when the Li-ion pouch cells 2 expands in service, the pressure inside of the said internal chamber is relieved, for example, by the air inside of said internal chamber is allowed to flow to the outer environment in a controllable way, so as to achieve the goal of the present invention.
  • the air pocket venting mechanism 5 may have any variants on the basis of relieving internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1 .
  • the venting mechanism 5 includes at least one pathway connecting the inside space of said air pocket and the outside of the housing 1 , and in this way, the inside space of said air pockets is directly communicated with the outside of the housing 1 through the pathway.
  • at least one through hole passing through the housing 1 and the potting layer 3 is provided.
  • the communication between the inside space of said air pockets and the outside of the housing 1 is achieved by at least one pathway passing through the through hole and connected to the inside space of said air pocket, so that the air within the inside space of said air pockets may be vented outside.
  • the through hole may be suitably located on the housing 1 to obtain its function without affecting the mounting of the Li-ion pouch cells 2 . Further, the quantity and geometrical parameter of the through hole may be designed according to different working condition.
  • the venting mechanism 5 includes at least one venting pathway interposed between the Li-ion pouch cells 2 and the potting layer 3 , particularly, the venting tube is made of compressible material and connects to the outside of the housing 1 .
  • the venting pathway extends from the inside of the air pockets to the outside of the housing 1 , so as to relieve internally generated pressure inside of said internal chamber to the outside of the housing 1 .
  • the venting pathway includes external ends 51 protrude from different external surfaces of the housing 1 respectively.
  • the external ends 51 of the embodiment shown in FIG. 4 protrude from two opposite surfaces of the housing 1 , and certainly other surfaces may be selected as required.
  • the venting pathway may be other forms, for example, the external ends 51 of the venting pathway may be co-plane or more interior than the external surface of the housing 1 .
  • the venting pathway includes at least one main pathway 52 which connects to the outside of the housing 1 and several branch pathways 53 which fluidly communicate with said main pathway 52 .
  • the main pathway 52 may connect to the outside of the housing 1 by the external ends 51 protruding wherefrom, and in this case, the communication between the inside of the air pockets and the outside of the housing 1 is achieved to vent the air inside the air pockets to outside by passing the branch pathways 53 , main pathway 52 and the external ends 51 successively, and consequently, the internally generated pressure inside of said internal chamber is relieved.
  • the venting pathway includes two main pathways 52 parallel arranged with each other and several branch pathways 53 parallel arranged between said two main pathways 52 and connect the same.
  • the venting pathway includes two external ends 51 , two main pathways 52 and several branch pathways 53 .
  • Each of the external ends 51 connects with the corresponding main pathway 52 on the first side (the side toward the external of the secondary battery) at the middle of the corresponding main pathway 52 , the several branch pathways 53 run in parallel, and two ends of each branch pathway 53 connects with the corresponding main pathway 52 on the second side opposite to the first side in sequence along the main pathway 52 , thus different areas of the inside space of the air pockets communicate with the main pathway 52 and then the external ends 51 to the outsides.
  • the present invention dose not limit to this and the shape and features of the venting mechanism 5 may be differently designed according to different working condition, for example, the venting mechanism 5 may include curved pathway or zigzag shaped pathway, or some kind of pathway assembly connected by different pathways, and the main pathways 52 and branch pathways 53 may connected to be other shape.
  • each Li-ion pouch cell includes a cell body having cell tabs 21 , a plurality of the Li-ion pouch cells 2 are arranged adjacently with their corresponding cell tabs 21 electrically connected and spacing rooms are formed between the cell tabs 21 , the branch pathways 53 are correspondingly located in the spacing rooms respectively.
  • the corresponding cell tabs 21 of adjacent pouch cells are electrically connected in series or in parallel. Also, some of cell tabs 21 are kept apart from each other so that the spacing rooms are formed.
  • the branch pathways 53 are correspondingly located in the spacing rooms respectively as shown in FIG. 5 .
  • the venting mechanism 5 is located on the top of the Li-ion pouch cells 2 when the secondary battery is used, the cell tabs 21 are normally on the top side.
  • the internal chamber of the housing 1 may directly communicate with the outside through the venting mechanism 5 .
  • the internal chamber of the housing 1 indirectly communicate with the outside, for example, the venting mechanism 5 includes at least one one-way valve which located at external ends 51 of said venting pathway and allows the air inside of said air pockets to be released to the outside of the housing 1 .
  • the one-way valve prevents the air flow from getting into the internal chamber of the housing 1 to avoid the influence on the internal chamber of the housing 1 from the outside, while prevent foreign matters from getting into the internal chamber of the housing 1 .
  • the air pressure inside of said pocket is higher than that of the outside of the housing when said one-way valve is closed, which means the threshold air pressure to one-way open the valve is higher than the atmospheric pressure to establish the communication between the internal chamber of the housing 1 and the outside when the air pressure inside of said air pockets is higher than that of the outside of the housing 1 , and to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to outside of the housing 1 timely, thereby ensure safe working condition of the secondary battery and avoid potential safety risks to some extent.
  • the compressible materials to form the air pockets may be positioned adjacent to the face of one or more the Li-ion pouch cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention provides a secondary battery comprising a housing with an internal chamber and Li-ion pouch cells including electrical terminals exposed to the outside of the housing. The secondary battery further includes an venting mechanism made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, and the Li-ion pouch cells and the compressible materials are all encapsulated within a potting layer and located in said internal chamber of the housing.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application No. 62/326,161, which was filed Apr. 22, 2016, is entitled “Battery Expansion Vent,” and is incorporated herein by reference as if fully set forth.
  • FIELD OF THE INVENTION
  • The present invention relates to a secondary battery, particularly to a secondary battery with venting mechanism.
  • BACKGROUND
  • With the development of the need to reduce fuel consumption, more and more industrial areas require batteries to supply electricity to motors as the power source. For example, it is well known that automobiles or other vehicles are being designed to be electric vehicles instead of relying on traditional internal combustion engines. Therefore, the batteries (or battery packs) are usually made of at least one battery array including several cells so as to have more capacity with less volume, which proposes higher demand with regard to the heat sinking and venting system of batteries.
  • Pouch cell batteries are increasingly used due to good safety and high energy density. Normally, a pouch cell battery includes a series of Li-ion pouch cells arranged in an enclosed protecting housing. However, in some cases, for example over-charging or aging of Li-ion cells, pouch cells may expand. Therefore, the enclosed housing will face increased air pressure from inside so as to lead to potential safety risks. A solution to eliminate or at least alleviate the above-mentioned technical problem is needed.
  • SUMMARY
  • To solve this problem, we propose a secondary battery with a novel mechanism being able to relieve internally generated pressure inside of the internal chamber thereof, so that when the Li-ion pouch cells expands in service, the pressure inside of the said internal chamber is relieved, so as to ensure the safety of the secondary battery.
  • Therefore, the present invention provides a secondary battery comprising a housing with an internal chamber; Li-ion pouch cells including electrical terminals exposed to the outside of the housing, the secondary battery further includes an venting mechanism made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, and the Li-ion pouch cells and the compressible materials all encapsulated within a potting layer and located in said internal chamber of the housing.
  • Advantageously, the venting mechanism includes at least one pathway connecting the inside space of said air pockets and the outside of the housing.
  • Advantageously, the venting mechanism includes at least one venting pathways, made of compressible material, interposed between the Li-ion pouch cells and the potting layer and connects to the outside of the housing.
  • Advantageously, the external ends of said venting pathways protrude from different external surfaces of the housing respectively.
  • Advantageously, the venting mechanism includes at least one one-way valve located at external ends of said venting pathway and allows the air inside of said air pockets to be released to the outside of the housing.
  • Advantageously, the air pressure inside of said air pockets is higher than that of the outside of the housing when said one-way valve is closed.
  • Advantageously, the venting pathways include at least one main pathway which connects to the outside of the housing and several branch pathways which fluidly communicate with said main pathway.
  • Advantageously, the venting pathway includes two main pathways parallel arranged with each other and several branch pathways parallel arranged between said two main pathways and connect the same.
  • Advantageously, each Li-ion pouch cell includes a cell body having cell tabs, a plurality of the Li-ion pouch cells are arranged adjacently with their corresponding cell tabs electrically connected and spacing rooms are formed between the cell tabs, the branch pathways are correspondingly located in the spacing rooms respectively.
  • Advantageously, the venting mechanism is located on the top of the Li-ion pouch cells.
  • Due to the above-mentioned technical characteristics, such a configuration contained within the secondary battery in accordance to the present invention has the advantage of being able to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, so that when the Li-ion pouch cells expands in service, the pressure inside of the said internal chamber relieved, so as to achieve the goal of the present invention.
  • Other features and advantages of the present invention will be explained specifically in the following detailed description of the embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of a secondary battery in accordance with an embodiment of the present invention;
  • FIG. 2 shows an exploded perspective view of the secondary battery of FIG. 1 with potting layer and a part of housing omitted for clarity;
  • FIG. 3 shows the cross section of the secondary battery of FIG. 1, wherein the secondary battery is cut along the direction of the line A-A of FIG. 1, and for clarity, only the upper part of the secondary battery is show with potting layer omitted;
  • FIG. 4 shows a section view of the secondary battery of FIG. 1 along the direction of the line A-A of FIG. 1;
  • FIG. 5 shows a section view of the secondary battery of FIG. 1 along the direction of the line B-B of FIG. 1.
  • BRIEF DESCRIPTION OF THE REFERENCE SIGNS
  • 1: housing; 2: Li-ion pouch cells; 3: potting layer; 4: electrical terminal(s); 5: venting mechanism; 51: external end(s); 52: main pathway; 53: branch pathway(s).
  • DETAILED DESCRIPTION
  • Hereunder the embodiments of the present invention will be specified in details. It should be appreciated that the embodiments described here are only provided to describe and explain the present invention, but shall not be deemed as constituting any limitation to the present invention.
  • According to the present invention, a secondary battery is provided, which includes: a housing 1 with an internal chamber; Li-ion pouch cells 2 including electrical terminals 4 exposed to the outside of the housing 1, the secondary battery further includes an venting mechanism 5 made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1, and the Li-ion pouch cells 2 and the compressible materials all encapsulated within a potting layer 3 and located in said internal chamber of the housing 1.
  • It should be percipient that the secondary battery of the present invention not only may be used for EV, but also may be extended to all lithium ion battery pack applications, such as portable electrical devices or stationary battery backups.
  • In practice, the Li-ion pouch cells 2 may include at least one Li-ion pouch cell comprising a sealed enclosure and electrode material in liquid or slurry state enclosed therein. However more commonly, as shown in FIG. 2, the Li-ion pouch cells 2 may include several pouch cells. The technical solution of the present invention is widely applicable for any kind of Li-ion pouch cell pack design.
  • The housing 1 provides the entire structure and outer shape of the battery with an internal chamber for mounting potting layer 3 and the air pockets encapsulated within the potting layer 3. The compressible material may be used for receiving or absorbing the expansion of the Li-ion pouch cells 2. Although the housing 1 is shown to be cuboid shape, the present invention is not limited to this and applicable to other shape of housing. Electrical terminals 4 connect to the Li-ion pouch cells 2 and exposed to the outside of the housing 1 through the potting layer 3 and housing 1.
  • As stated above, it is mainly different from the traditional technical solution that, in the present technical solution, an venting mechanism 5 which is used for relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1 is arranged, so that when the Li-ion pouch cells 2 expands in service, the pressure inside of the said internal chamber is relieved, for example, by the air inside of said internal chamber is allowed to flow to the outer environment in a controllable way, so as to achieve the goal of the present invention.
  • The air pocket venting mechanism 5 may have any variants on the basis of relieving internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing 1. According to one embodiment of the present invention, the venting mechanism 5 includes at least one pathway connecting the inside space of said air pocket and the outside of the housing 1, and in this way, the inside space of said air pockets is directly communicated with the outside of the housing 1 through the pathway. For example, at least one through hole passing through the housing 1 and the potting layer 3 is provided. The communication between the inside space of said air pockets and the outside of the housing 1 is achieved by at least one pathway passing through the through hole and connected to the inside space of said air pocket, so that the air within the inside space of said air pockets may be vented outside. The through hole may be suitably located on the housing 1 to obtain its function without affecting the mounting of the Li-ion pouch cells 2. Further, the quantity and geometrical parameter of the through hole may be designed according to different working condition.
  • As clearly shown in FIG. 2 and FIG. 4, according to an embodiment of the present invention, the venting mechanism 5 includes at least one venting pathway interposed between the Li-ion pouch cells 2 and the potting layer 3, particularly, the venting tube is made of compressible material and connects to the outside of the housing 1. Specifically, the venting pathway extends from the inside of the air pockets to the outside of the housing 1, so as to relieve internally generated pressure inside of said internal chamber to the outside of the housing 1.
  • To be specific, the venting pathway includes external ends 51 protrude from different external surfaces of the housing 1 respectively. For example, the external ends 51 of the embodiment shown in FIG. 4 protrude from two opposite surfaces of the housing 1, and certainly other surfaces may be selected as required. However, it should be understand that, the present invention does not limit to this, and the venting pathway may be other forms, for example, the external ends 51 of the venting pathway may be co-plane or more interior than the external surface of the housing 1.
  • For the portion of the venting pathway inside of the housing 1, different designs can be contemplated. As for one embodiment, the venting pathway includes at least one main pathway 52 which connects to the outside of the housing 1 and several branch pathways 53 which fluidly communicate with said main pathway 52. Specifically, the main pathway 52 may connect to the outside of the housing 1 by the external ends 51 protruding wherefrom, and in this case, the communication between the inside of the air pockets and the outside of the housing 1 is achieved to vent the air inside the air pockets to outside by passing the branch pathways 53, main pathway 52 and the external ends 51 successively, and consequently, the internally generated pressure inside of said internal chamber is relieved.
  • Preferably, as shown in FIG. 2, the venting pathway includes two main pathways 52 parallel arranged with each other and several branch pathways 53 parallel arranged between said two main pathways 52 and connect the same. In the embodiment of FIG. 2, the venting pathway includes two external ends 51, two main pathways 52 and several branch pathways 53. Each of the external ends 51 connects with the corresponding main pathway 52 on the first side (the side toward the external of the secondary battery) at the middle of the corresponding main pathway 52, the several branch pathways 53 run in parallel, and two ends of each branch pathway 53 connects with the corresponding main pathway 52 on the second side opposite to the first side in sequence along the main pathway 52, thus different areas of the inside space of the air pockets communicate with the main pathway 52 and then the external ends 51 to the outsides. However, the present invention dose not limit to this and the shape and features of the venting mechanism 5 may be differently designed according to different working condition, for example, the venting mechanism 5 may include curved pathway or zigzag shaped pathway, or some kind of pathway assembly connected by different pathways, and the main pathways 52 and branch pathways 53 may connected to be other shape.
  • Further preferably, as shown in FIG. 2, FIG. 3 and FIG. 5, each Li-ion pouch cell includes a cell body having cell tabs 21, a plurality of the Li-ion pouch cells 2 are arranged adjacently with their corresponding cell tabs 21 electrically connected and spacing rooms are formed between the cell tabs 21, the branch pathways 53 are correspondingly located in the spacing rooms respectively. The corresponding cell tabs 21 of adjacent pouch cells are electrically connected in series or in parallel. Also, some of cell tabs 21 are kept apart from each other so that the spacing rooms are formed. Preferably, in order to achieve compact space layout to improve energy density, the branch pathways 53 are correspondingly located in the spacing rooms respectively as shown in FIG. 5.
  • In the preferably case, as shown in FIG. 5, the venting mechanism 5 is located on the top of the Li-ion pouch cells 2 when the secondary battery is used, the cell tabs 21 are normally on the top side.
  • As discussed above, the internal chamber of the housing 1 may directly communicate with the outside through the venting mechanism 5. However, in one preferable embodiment, the internal chamber of the housing 1 indirectly communicate with the outside, for example, the venting mechanism 5 includes at least one one-way valve which located at external ends 51 of said venting pathway and allows the air inside of said air pockets to be released to the outside of the housing 1. The one-way valve prevents the air flow from getting into the internal chamber of the housing 1 to avoid the influence on the internal chamber of the housing 1 from the outside, while prevent foreign matters from getting into the internal chamber of the housing 1.
  • Further, advantageously, the air pressure inside of said pocket is higher than that of the outside of the housing when said one-way valve is closed, which means the threshold air pressure to one-way open the valve is higher than the atmospheric pressure to establish the communication between the internal chamber of the housing 1 and the outside when the air pressure inside of said air pockets is higher than that of the outside of the housing 1, and to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to outside of the housing 1 timely, thereby ensure safe working condition of the secondary battery and avoid potential safety risks to some extent.
  • In addition, the compressible materials to form the air pockets may be positioned adjacent to the face of one or more the Li-ion pouch cells.
  • When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
  • The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilized for realizing the invention in diverse forms thereof.

Claims (11)

What is claimed is:
1. A secondary battery including a housing with an internal chamber, an arrangement Li-ion pouch cells including electrical terminals exposed to the outside of the housing, wherein:
the secondary battery further includes an venting mechanism made of compressible materials to form air pockets to relieve internally generated pressure inside of said internal chamber by venting of compressible material air pockets to the outside of the housing, and
the Li-ion pouch cells and the compressible materials all encapsulated within a potting layer and located in said internal chamber of the housing.
2. The secondary battery according to claim 1, wherein the venting mechanism includes at least one pathway connecting the inside space of said air pockets and the outside of the housing.
3. The secondary battery according to claim 1, wherein venting mechanism includes at least one venting pathways, made of compressible material, interposed between the Li-ion pouch cells and the potting layer and connects to the outside of the housing.
4. The secondary battery according to claim 3, wherein the external ends of said venting pathways protrude from different external surfaces of the housing respectively.
5. The secondary battery according to claim 4, wherein the venting mechanism includes at least one one-way valve located at external ends of said venting pathways and allows the air pressure inside of said air pockets to be released to the outside of the housing.
6. The secondary battery according to claim 5, wherein the air pressure inside of said air pockets is higher than that of the outside of the housing when said one-way valve is closed.
7. The secondary battery according to claim 3, wherein the venting pathways includes at least one main pathway which connects to the outside of the housing and several branch pathways which fluidly communicate with said main pathway.
8. The secondary battery according to claim 7, wherein the venting pathway includes two main pathways parallel arranged with each other and several branch pathways parallel arranged between said two main pathways and connect the same.
9. The secondary battery according to claim 7, wherein each Li-ion pouch cell includes a cell body having cell tabs, a plurality of the Li-ion pouch cells are arranged adjacently with their corresponding cell tabs electrically connected and spacing rooms are formed between the cell tabs, the branch pathways are correspondingly located in the spacing rooms respectively.
10. The secondary battery according to claim 1, wherein the venting mechanism is located on the top of the Li-ion pouch cells.
11. The secondary battery according to claim 1, wherein the compressible materials to form the air pockets are positioned adjacent to the face of one or more the Li-ion pouch cells.
US15/493,586 2016-04-22 2017-04-21 Secondary battery with venting mechanism Active US10644286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/493,586 US10644286B2 (en) 2016-04-22 2017-04-21 Secondary battery with venting mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662326161P 2016-04-22 2016-04-22
US15/493,586 US10644286B2 (en) 2016-04-22 2017-04-21 Secondary battery with venting mechanism

Publications (2)

Publication Number Publication Date
US20170309878A1 true US20170309878A1 (en) 2017-10-26
US10644286B2 US10644286B2 (en) 2020-05-05

Family

ID=60088572

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/493,586 Active US10644286B2 (en) 2016-04-22 2017-04-21 Secondary battery with venting mechanism

Country Status (2)

Country Link
US (1) US10644286B2 (en)
CN (1) CN107452917B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214386A1 (en) * 2019-04-15 2020-10-22 Robert Bosch Gmbh Battery pack with a pressure management system
WO2020214387A1 (en) * 2019-04-15 2020-10-22 Robert Bosch Gmbh Battery pack with a pressure management system including a compensating device
US20200358055A1 (en) * 2019-05-10 2020-11-12 Andreas Stihl Ag & Co. Kg Battery Pack, Treatment System and Method for the Production of a Battery Pack
US20210399387A1 (en) * 2019-06-17 2021-12-23 Dongguan Amperex Technology Limited Battery assembly and electrochemical device
US20220077523A1 (en) * 2020-09-04 2022-03-10 Romeo Power, Inc. Systems and methods for battery tab cooling
US20220158146A1 (en) * 2020-11-18 2022-05-19 Ford Global Technologies, Llc Traction battery pack venting systems with enclosure assembly integrated vent exhaust channels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2251559A1 (en) * 2022-12-22 2024-06-23 Northvolt Systems Ab An enclosure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090137A1 (en) * 2006-10-13 2008-04-17 Derrick Scott Buck Battery pack with integral cooling and bussing devices
US20130266832A1 (en) * 2010-12-28 2013-10-10 Toyota Jidosha Kabushiki Kaisha Battery
WO2015030405A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Module housing for manufacturing unit module with heat-radiating structure and battery module comprising same
US20150295208A1 (en) * 2014-04-09 2015-10-15 Robert Bosch Gmbh Electrical energy stores, and method for operating an electrical energy store

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339932A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Battery pack
EP2088635A4 (en) * 2006-10-13 2011-08-03 Panasonic Corp Battery pack, battery-mounted device and connection structure for battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090137A1 (en) * 2006-10-13 2008-04-17 Derrick Scott Buck Battery pack with integral cooling and bussing devices
US20130266832A1 (en) * 2010-12-28 2013-10-10 Toyota Jidosha Kabushiki Kaisha Battery
WO2015030405A1 (en) * 2013-08-28 2015-03-05 주식회사 엘지화학 Module housing for manufacturing unit module with heat-radiating structure and battery module comprising same
US20160197386A1 (en) * 2013-08-28 2016-07-07 Lg Chem Ltd. Module housing of unit module having heat dissipation structure and battery module including the same
US20150295208A1 (en) * 2014-04-09 2015-10-15 Robert Bosch Gmbh Electrical energy stores, and method for operating an electrical energy store

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214386A1 (en) * 2019-04-15 2020-10-22 Robert Bosch Gmbh Battery pack with a pressure management system
WO2020214387A1 (en) * 2019-04-15 2020-10-22 Robert Bosch Gmbh Battery pack with a pressure management system including a compensating device
US20200358055A1 (en) * 2019-05-10 2020-11-12 Andreas Stihl Ag & Co. Kg Battery Pack, Treatment System and Method for the Production of a Battery Pack
US12119684B2 (en) * 2019-05-10 2024-10-15 Andreas Stihl Ag & Co. Kg Battery pack, treatment system and method for the production of a battery pack
US20210399387A1 (en) * 2019-06-17 2021-12-23 Dongguan Amperex Technology Limited Battery assembly and electrochemical device
US20220077523A1 (en) * 2020-09-04 2022-03-10 Romeo Power, Inc. Systems and methods for battery tab cooling
US11742539B2 (en) * 2020-09-04 2023-08-29 Romeo Power, Inc. Systems and methods for battery tab cooling
US20220158146A1 (en) * 2020-11-18 2022-05-19 Ford Global Technologies, Llc Traction battery pack venting systems with enclosure assembly integrated vent exhaust channels

Also Published As

Publication number Publication date
CN107452917A (en) 2017-12-08
US10644286B2 (en) 2020-05-05
CN107452917B (en) 2020-11-13

Similar Documents

Publication Publication Date Title
US10644286B2 (en) Secondary battery with venting mechanism
KR102282482B1 (en) Battery module and battery pack including the same
KR102056365B1 (en) Battery Module
US9444083B2 (en) Battery pack
US9537130B2 (en) Battery module
KR102014462B1 (en) Cartridge for secondary battery and battery module including the same
US8927136B2 (en) Battery cover insulator system for fluid communication with battery vents
US8956747B2 (en) Battery module
CN108493364B (en) Battery module and battery pack
US20140220396A1 (en) Battery pack
KR20180006150A (en) Cell module assembly improved in safety
US20140178723A1 (en) Battery block and battery module comprising same
JP5033271B2 (en) Battery module
CN115398721B (en) Battery, power utilization device, method and device for preparing battery
CN115152080A (en) Battery, device, preparation method of battery and preparation device
EP2797138B1 (en) Battery pack
US11335971B2 (en) Battery module with a plurality of battery cells
CN111106297B (en) Battery module
CN111133604B (en) Battery pack
KR102341404B1 (en) Battery module
KR20160141209A (en) Battery pack
JP6318979B2 (en) Battery unit
CN113270673A (en) Power battery
CN218677244U (en) Power battery integrated with soft package battery core and electric vehicle
CN218939874U (en) Battery and electricity utilization device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FARASIS ENERGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEPLER, KEITH;EDWARDS, JACKSON;LARSON, ANDREW;AND OTHERS;SIGNING DATES FROM 20170606 TO 20170626;REEL/FRAME:043168/0132

AS Assignment

Owner name: FARASIS ENERGY (GANZHOU) CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FARASIS ENERGY, INC.;REEL/FRAME:044537/0103

Effective date: 20171128

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4