US20170306246A1 - Low viscosity metal-based hydrogen sulfide scavengers - Google Patents

Low viscosity metal-based hydrogen sulfide scavengers Download PDF

Info

Publication number
US20170306246A1
US20170306246A1 US15/644,763 US201715644763A US2017306246A1 US 20170306246 A1 US20170306246 A1 US 20170306246A1 US 201715644763 A US201715644763 A US 201715644763A US 2017306246 A1 US2017306246 A1 US 2017306246A1
Authority
US
United States
Prior art keywords
acid
hydrogen sulfide
ether
viscosity
carbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/644,763
Inventor
Corina L. Sandu
Yun Bao
Jerry J. Weers
Ross Poland
Philip L. Leung
Lei Zhang
John A. Schield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US15/644,763 priority Critical patent/US20170306246A1/en
Publication of US20170306246A1 publication Critical patent/US20170306246A1/en
Priority to US15/938,630 priority patent/US10577542B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/06Metal salts, or metal salts deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN

Definitions

  • the present invention relates to additives for scavenging hydrogen sulfide.
  • the present invention particularly relates to additives for scavenging hydrogen sulfide based upon metals such as zinc.
  • sulfur-rich hydrocarbon streams also produce heavy environmental pollution.
  • sulfur species lead to brittleness in carbon steels and to stress corrosion cracking in more highly alloyed materials.
  • hydrogen sulfide in various hydrocarbon or aqueous streams poses a safety hazard and a corrosion hazard.
  • Zinc octoate is an effective hydrogen sulfide scavenger.
  • this compound When this compound is prepared at a ratio of zinc to octanoic acid of 1:2, it has a very high viscosity. It would be desirable in the art to prepare the zinc octoate hydrogen sulfide scavengers having comparatively low viscosity.
  • the invention is a composition useful for scavenging hydrogen sulfide comprising zinc octoate (1:2) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • the invention in another aspect, a method for treating fluids contaminated with hydrogen sulfide comprising introducing into the hydrogen sulfide contaminated fluid an additive useful for scavenging hydrogen sulfide comprising zinc octoate (1:2) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • an additive useful for scavenging hydrogen sulfide comprising zinc octoate (1:2) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • the invention is a composition useful for scavenging hydrogen sulfide comprising metal carboxylates which have high viscosity due to polymerization and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • the invention is a composition useful for scavenging hydrogen sulfide comprising zinc octoate (with a 1:2 molar ratio of zinc to octanoic acid) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 (20 or more) carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • Zinc octoate when prepared using the ratio of 1:2 for zinc and octanoic acid, is neutral and has a very high viscosity due to intrinsic polymerization reactions. At ambient temperatures it has a viscosity similar to that of extremely thick syrup.
  • zinc octoate for the purposes of this application is used to describe zinc organic based complexes salts, the reaction product of zinc resources (such as zinc powder and zinc oxide) and for example 2-ethyl hexanoic acid. This is the common industry usage and is employed herein to avoid confusion to those of ordinary skill in the art.
  • glycol ethers useful with the method of the disclosure include those having from about 5 to about 15 carbons.
  • Exemplary compounds include but are not limited to: ethylene glycol monomethyl ether; ethylene glycol monoethyl ether; ethylene glycol monopropyl ether; ethylene glycol monoisopropyl ether; ethylene glycol monobutyl ether; diethylene glycol monomethyl ether; diethylene glycol monoethyl ether; diethylene glycol mono-n-butyl ether; and combinations thereof.
  • the low molecular weight alkyl alcohols useful with the method of the disclosure include those having from about 1 to about 15 carbons.
  • Exemplary alcohols include, but are not limited to: methanol; ethanol; propanol; isopropanol; and combinations thereof.
  • the method of the disclosure may also be employed with other metal octoates.
  • Other metals that may be employed include, but are not limited to iron, manganese, cobalt, nickel, and the like.
  • the use of mixed metal octoates is also within the scope of the disclosure.
  • the metal carboxylates may be prepared using any method known to be useful to those of ordinary skill in the art of making such compounds.
  • a metal oxide is combined with ethyl hexanoic acid in the presence of acetic anhydride.
  • other methods may be employed wherein such methods result in a highly viscous additive.
  • high viscosity when used in relation to a hydrogen sulfide scavenger, shall mean having a viscosity of greater than 60,000 centipoises at 60° F.
  • carboxylic acids may be used with the method of the disclosure. Any carboxylic acid having from about 2 to about 18 carbons may be used to prepare metal carboxylates; subject to the proviso that the resulting composition is low enough in viscosity that it can be admixed with the viscosity improvers.
  • Such acids include but are not limited to: acetic acid, propionic acid, hexanoic acid, nonanoic acid, decanoic acid, neo-decanoic acid, naphthoic acid, linoleic acid, naphthenic acid, tall oil acid, oleic acid, 2-methyl valeric acid, and the like. These other acids may be employed, but with the caveat that the resulting metal carboxylate has a higher viscosity prior to being mixed with the viscosity improver.
  • carboxylic acids are not available as pure reagents.
  • ethyl hexanoic acid in some grades may have as much as 10% other acids present.
  • Deliberately mixed carboxylic acids may also be used and are within the scope of this application.
  • the zinc carboxylate may be the product of reacting oxide or hydroxide zinc and both octanoic acid and neo-decanoic acid for example.
  • the use of anhydrides as a source of acid is also within the scope of the application.
  • the hydrogen sulfide scavengers produced herein shall have a viscosity lower than that specified as high viscosity above.
  • the amount of discussed improver to be employed though, will be determined by the end user as a function of a balance between the economic cost of the viscosity improver and the capability of the process in which the scavenger is going to be employed. For example, in a refinery, one unit may require a very low viscosity, such as one that is less than 1,000 centipoises at 60° F. In contrast, perhaps even in the unit immediately next to the first unit, the hydrogen sulfide scavenger can be employed at a viscosity of 10,000 centipoises at 60° F.
  • the viscosity improver will be employed at a concentration of from about 1% to about 10%. In some embodiments, the viscosity improver will be employed at a concentration of from about 1 to about 30%. In still other embodiments, the viscosity improver will be employed at a concentration of from about 0.5 to about 60%.
  • the hydrogen sulfide scavengers claimed herein are useful in treating hydrocarbons.
  • the hydrocarbons may be crude, partially refined, or fully refined and pending commercial consumption.
  • the hydrocarbons to be treated are crude hydrocarbons, in one embodiment they may be very “crude” and be, for example, crude oil or heavy fuels oils or even asphalt.
  • the crude hydrocarbon may only be “crude” in regard to a subsequent refining step.
  • the method of the disclosure may be a refining step to produce light hydrocarbon fuels such as gasoline or aviation fuel.
  • the feed streams for such units have already undergone at least one step to remove components that are not desirable for producing such fuels.
  • the feed stream to this unit is a crude hydrocarbon even though it has had at least one refining process step already performed upon it.
  • Crude oil when first produced is most often a multiphase fluid. It will have a hydrocarbon phase, aqueous phase, and may include both gases and solids.
  • the hydrogen sulfide scavengers maybe employed in process water such as that produced during crude oil refining and even in wastewater that may be similarly contaminated.
  • compositions of the application may be further used as odor control agents during the handling, transport, and storage of hydrocarbons.
  • a further benefit of the use of the invention is a reduction of SOx emissions.
  • Sample 1 is prepared by first admixing acetic anhydride, butoxy ethanol and 2-ethylhexanoic acid. To this mixture zinc oxide is then added. The resulting material is then heated and refluxed to compete the reaction and then distilled to remove water.
  • Samples 2-3 are prepared similarly except that the alcohol is added after the formation of the zinc carboxylate. Note: the viscosity improvers may be added before, during or after the reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A composition useful for scavenging hydrogen sulfide by admixing metal carboxylates which have high viscosity due to polymerization and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 10 carbons, alkyl alcohols having from about 1 to about 10 carbons, and combinations thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent Ser. No. 14/183,109 filed on Feb. 18, 2014, which claims priority from U.S. Provisional Patent Application Ser. No. 61/766,512, filed on Feb. 19, 2013, both of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to additives for scavenging hydrogen sulfide. The present invention particularly relates to additives for scavenging hydrogen sulfide based upon metals such as zinc.
  • Background of the Art
  • The presence of sulfur species in hydrocarbon fluids and aqueous streams is undesirable for various reasons. The subterranean reservoirs currently being developed have increased amounts of sulfur species within the produced hydrocarbon streams (oil and gas). Hydrogen sulfide and mercaptans are toxic gases that are heavier than air and are very corrosive to well and surface equipment.
  • During combustion, sulfur-rich hydrocarbon streams also produce heavy environmental pollution. When sulfur-rich streams contact metals, sulfur species lead to brittleness in carbon steels and to stress corrosion cracking in more highly alloyed materials. Moreover, hydrogen sulfide in various hydrocarbon or aqueous streams poses a safety hazard and a corrosion hazard.
  • Zinc octoate is an effective hydrogen sulfide scavenger. When this compound is prepared at a ratio of zinc to octanoic acid of 1:2, it has a very high viscosity. It would be desirable in the art to prepare the zinc octoate hydrogen sulfide scavengers having comparatively low viscosity.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention is a composition useful for scavenging hydrogen sulfide comprising zinc octoate (1:2) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • In another aspect, the invention a method for treating fluids contaminated with hydrogen sulfide comprising introducing into the hydrogen sulfide contaminated fluid an additive useful for scavenging hydrogen sulfide comprising zinc octoate (1:2) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • In yet another, the invention is a composition useful for scavenging hydrogen sulfide comprising metal carboxylates which have high viscosity due to polymerization and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In one embodiment, the invention is a composition useful for scavenging hydrogen sulfide comprising zinc octoate (with a 1:2 molar ratio of zinc to octanoic acid) and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 15 (20 or more) carbons, and/or alkyl alcohols having from about 1 to about 10 carbons, without or with additional hydrocarbons from about 7 to about 30 carbons. Zinc octoate, when prepared using the ratio of 1:2 for zinc and octanoic acid, is neutral and has a very high viscosity due to intrinsic polymerization reactions. At ambient temperatures it has a viscosity similar to that of extremely thick syrup. It is very difficult to handle such fluids. Note, the term “zinc octoate” for the purposes of this application is used to describe zinc organic based complexes salts, the reaction product of zinc resources (such as zinc powder and zinc oxide) and for example 2-ethyl hexanoic acid. This is the common industry usage and is employed herein to avoid confusion to those of ordinary skill in the art.
  • It has been discovered that small amounts of certain glycol ethers and/or alkyl alcohols can produce dramatic changes in the viscosity of the zinc octoate. The glycol ethers useful with the method of the disclosure include those having from about 5 to about 15 carbons. Exemplary compounds include but are not limited to: ethylene glycol monomethyl ether; ethylene glycol monoethyl ether; ethylene glycol monopropyl ether; ethylene glycol monoisopropyl ether; ethylene glycol monobutyl ether; diethylene glycol monomethyl ether; diethylene glycol monoethyl ether; diethylene glycol mono-n-butyl ether; and combinations thereof.
  • The low molecular weight alkyl alcohols useful with the method of the disclosure include those having from about 1 to about 15 carbons. Exemplary alcohols include, but are not limited to: methanol; ethanol; propanol; isopropanol; and combinations thereof.
  • In addition to zinc, the method of the disclosure may also be employed with other metal octoates. Other metals that may be employed include, but are not limited to iron, manganese, cobalt, nickel, and the like. The use of mixed metal octoates is also within the scope of the disclosure.
  • The metal carboxylates, including zinc octoates, may be prepared using any method known to be useful to those of ordinary skill in the art of making such compounds. For example, in one embodiment, a metal oxide is combined with ethyl hexanoic acid in the presence of acetic anhydride. Still, other methods may be employed wherein such methods result in a highly viscous additive. For the purposes of this disclosure, the term high viscosity when used in relation to a hydrogen sulfide scavenger, shall mean having a viscosity of greater than 60,000 centipoises at 60° F.
  • In addition to ethyl hexanoic acid, other carboxylic acids may be used with the method of the disclosure. Any carboxylic acid having from about 2 to about 18 carbons may be used to prepare metal carboxylates; subject to the proviso that the resulting composition is low enough in viscosity that it can be admixed with the viscosity improvers. Such acids include but are not limited to: acetic acid, propionic acid, hexanoic acid, nonanoic acid, decanoic acid, neo-decanoic acid, naphthoic acid, linoleic acid, naphthenic acid, tall oil acid, oleic acid, 2-methyl valeric acid, and the like. These other acids may be employed, but with the caveat that the resulting metal carboxylate has a higher viscosity prior to being mixed with the viscosity improver.
  • Also, most carboxylic acids are not available as pure reagents. For example ethyl hexanoic acid in some grades may have as much as 10% other acids present. Deliberately mixed carboxylic acids may also be used and are within the scope of this application. In one embodiment, the zinc carboxylate may be the product of reacting oxide or hydroxide zinc and both octanoic acid and neo-decanoic acid for example. The use of anhydrides as a source of acid is also within the scope of the application.
  • The hydrogen sulfide scavengers produced herein shall have a viscosity lower than that specified as high viscosity above. The amount of discussed improver to be employed though, will be determined by the end user as a function of a balance between the economic cost of the viscosity improver and the capability of the process in which the scavenger is going to be employed. For example, in a refinery, one unit may require a very low viscosity, such as one that is less than 1,000 centipoises at 60° F. In contrast, perhaps even in the unit immediately next to the first unit, the hydrogen sulfide scavenger can be employed at a viscosity of 10,000 centipoises at 60° F. In such an application, it may be desirable to reduce the amount of discussed improver employed. One of ordinary skill in the art of refining hydrocarbons will well know the capability of the units used for such refining. Generally though, the viscosity improver will be employed at a concentration of from about 1% to about 10%. In some embodiments, the viscosity improver will be employed at a concentration of from about 1 to about 30%. In still other embodiments, the viscosity improver will be employed at a concentration of from about 0.5 to about 60%.
  • The hydrogen sulfide scavengers claimed herein are useful in treating hydrocarbons. The hydrocarbons may be crude, partially refined, or fully refined and pending commercial consumption. When the hydrocarbons to be treated are crude hydrocarbons, in one embodiment they may be very “crude” and be, for example, crude oil or heavy fuels oils or even asphalt. In another embodiment, the crude hydrocarbon may only be “crude” in regard to a subsequent refining step. For example, in one embodiment, the method of the disclosure may be a refining step to produce light hydrocarbon fuels such as gasoline or aviation fuel. In refineries, the feed streams for such units have already undergone at least one step to remove components that are not desirable for producing such fuels. Thus, in this embodiment, the feed stream to this unit is a crude hydrocarbon even though it has had at least one refining process step already performed upon it.
  • Crude oil, when first produced is most often a multiphase fluid. It will have a hydrocarbon phase, aqueous phase, and may include both gases and solids. In some applications of the method of the disclosure, the hydrogen sulfide scavengers maybe employed in process water such as that produced during crude oil refining and even in wastewater that may be similarly contaminated.
  • In addition to being useful for mitigating the presence of hydrogen sulfide, the compositions of the application may be further used as odor control agents during the handling, transport, and storage of hydrocarbons. A further benefit of the use of the invention is a reduction of SOx emissions. A scavenged hydrogen sulfide, or at least the vast majority of it, comes from recovery systems in modern refineries. The ultimate disposal point for such materials is generally a thermal oxidizer. The resultant SOx emissions can be reduced if the hydrogen sulfide never reaches the thermal oxidizer.
  • EXAMPLES
  • The following examples are provided to illustrate the present invention. The examples are not intended to limit the scope of the present invention and they should not be so interpreted. Amounts are in weight parts or weight percentages unless otherwise indicated.
  • Examples 1-5 & Comparative Examples A & B
  • No control of just a Zinc carboxylate is shown as it is too viscous to test. Sample 1 is prepared by first admixing acetic anhydride, butoxy ethanol and 2-ethylhexanoic acid. To this mixture zinc oxide is then added. The resulting material is then heated and refluxed to compete the reaction and then distilled to remove water.
  • Samples 2-3 are prepared similarly except that the alcohol is added after the formation of the zinc carboxylate. Note: the viscosity improvers may be added before, during or after the reaction.
  • Each mixture is then tested for viscosity and the results are shown below in Table 1.
  • TABLE 1
    Sample => Compositions
    WT % 1 2 3 4 5 A B
    ZnO 20.75 19.27 21.18 21.18 21.19 21.35 17.82
    2-ethylhexanoic acid 73.52 68.26 74.94 74.94 74.97 75.48 63.12
    Acetic Anhydride 0.5 0.5 0.50 0.5 0.5 0.5 0.5
    Aromatic 150 8.97 2.67 18.56
    2-(2-butoxyethoxy) ethanol 5.23
    2-butoxyethanol 3.00
    Isopropanol 3.37
    Butanol 3.37
    Methanol 3.34
    Viscosity Cp @ 60° F. 6.6K 16.7K 468K   68K
    Viscosity Cp @ 68° F. 12.2K 397K   52K
    Viscosity Cp @ 90° F. 18.9K 1.8K  3.8K 173K 40.6K
    Viscosity Cp @ 100° F. 14.8K 1.2K 1.8K 142K 32.4K
    Viscosity Cp @ 120° F. 10.0K 600  1.2K  95K 21.1K
  • Example 6
  • A crude oil stream was infused with about 2000 ppm hydrogen sulfide and then treated with the composition corresponding to Example 2 above. The test results are shown below in Table 2.
  • TABLE 2
    Doseage of
    Time after Example 2 % H2S
    Test treatment (ppm) H2S ppm Removed
    1  4 hrs 0 2000 N/A
    2  4 hrs 700 350 82.5
    3  4 hrs 350 675 66
    4 24 hrs 700 N/D 100
    5 24 hrs 350 70 96

Claims (4)

What is claimed is:
1. A composition useful for scavenging hydrogen sulfide comprising a zinc carboxylate and a viscosity improver selected from the group consisting of ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, and combinations thereof.
2. The composition of claim 1 wherein the zinc carboxylate is prepared using a carboxylic acid selected from the group consisting of ethyl hexanoic acid, acetic acid, propionic acid, hexanoic acid, nonanoic acid, decanoic acid, neo-decanoic acid, naphthoic acid, linoleic acid, naphthenic acid, tall oil acid, oleic acid, 2-methyl valeric acid, and combination thereof.
3. The composition of claim 1 further comprising one or more alkyl alcohols having from about 1 to about 10 carbons.
4. The composition of claim 3 wherein the one or more alkyl alcohols is selected from the group consisting of methanol; butanol; ethanol; propanol; isopropanol; and combinations thereof.
US15/644,763 2013-02-19 2017-07-08 Low viscosity metal-based hydrogen sulfide scavengers Abandoned US20170306246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/644,763 US20170306246A1 (en) 2013-02-19 2017-07-08 Low viscosity metal-based hydrogen sulfide scavengers
US15/938,630 US10577542B2 (en) 2013-02-19 2018-03-28 Low viscosity metal-based hydrogen sulfide scavengers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361766512P 2013-02-19 2013-02-19
US14/183,109 US9719027B2 (en) 2013-02-19 2014-02-18 Low viscosity metal-based hydrogen sulfide scavengers
US15/644,763 US20170306246A1 (en) 2013-02-19 2017-07-08 Low viscosity metal-based hydrogen sulfide scavengers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/183,109 Division US9719027B2 (en) 2013-02-19 2014-02-18 Low viscosity metal-based hydrogen sulfide scavengers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/938,630 Continuation-In-Part US10577542B2 (en) 2013-02-19 2018-03-28 Low viscosity metal-based hydrogen sulfide scavengers

Publications (1)

Publication Number Publication Date
US20170306246A1 true US20170306246A1 (en) 2017-10-26

Family

ID=51350385

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/183,109 Active 2035-07-08 US9719027B2 (en) 2013-02-19 2014-02-18 Low viscosity metal-based hydrogen sulfide scavengers
US15/644,763 Abandoned US20170306246A1 (en) 2013-02-19 2017-07-08 Low viscosity metal-based hydrogen sulfide scavengers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/183,109 Active 2035-07-08 US9719027B2 (en) 2013-02-19 2014-02-18 Low viscosity metal-based hydrogen sulfide scavengers

Country Status (8)

Country Link
US (2) US9719027B2 (en)
EP (1) EP2958973B1 (en)
CN (1) CN105073943B (en)
CA (1) CA2900548C (en)
ES (1) ES2812560T3 (en)
HU (1) HUE050557T2 (en)
PL (1) PL2958973T3 (en)
WO (1) WO2014130503A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719027B2 (en) 2013-02-19 2017-08-01 Baker Hughes Incorporated Low viscosity metal-based hydrogen sulfide scavengers
US10577542B2 (en) * 2013-02-19 2020-03-03 Baker Hughes, A Ge Company, Llc Low viscosity metal-based hydrogen sulfide scavengers
US11155745B2 (en) * 2015-05-14 2021-10-26 Clariant International Ltd. Composition and method for scavenging sulfides and mercaptans
ES2884150T3 (en) * 2016-01-08 2021-12-10 Innophos Inc Sequestering compositions for sulfur species
CN107892909A (en) * 2017-12-29 2018-04-10 四川正蓉实业有限公司 A kind of high efficiency composition sulphur removal corrosion inhibitor and preparation method thereof
US20200283687A1 (en) * 2019-01-31 2020-09-10 Ecolab Usa Inc. Alcohol-based hemi-formyls for hydrogen sulfide scavenging
US10800684B2 (en) * 2019-02-18 2020-10-13 Multi-Chem Group, Llc Zinc ammonium carbonate sulfide scavengers
EP3931257A1 (en) * 2019-02-28 2022-01-05 Ecolab USA Inc. Hydrogen sulfide scavengers for asphalt

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403119A (en) * 1964-10-19 1968-09-24 Staley Mfg Co A E Polymeric coating composition containing a metal salt of an organic carboxylic acid
US3528935A (en) * 1967-11-30 1970-09-15 Sinclair Research Inc Package stable,low viscosity,high solids,thermosetting coating compositions with latent curing catalyst
US3639109A (en) * 1968-01-02 1972-02-01 Cities Service Oil Co Smoke suppressant compositions for petroleum fuels
US3941606A (en) * 1971-07-20 1976-03-02 Mooney Chemicals, Inc. Metal carboxylate-alkoxy alcoholate composition and process
US4070510A (en) * 1976-03-12 1978-01-24 Acme Chemical Company Aqueous polish composition
US4100144A (en) * 1976-06-11 1978-07-11 Bayer Aktiengesellschaft Process for the preparation of oligourethanes
US4383062A (en) * 1981-01-28 1983-05-10 General Electric Waterborne coating compositions
US4952328A (en) * 1988-05-27 1990-08-28 The Lubrizol Corporation Lubricating oil compositions
US4981602A (en) * 1988-06-13 1991-01-01 The Lubrizol Corporation Lubricating oil compositions and concentrates
US5575951A (en) * 1993-04-16 1996-11-19 Akcros Chemicals America Liquid stabilizer comprising metal soap and solubilized metal perchlorate
US6599472B1 (en) * 2000-11-03 2003-07-29 Surface Chemists Of Florida Inc. Oil soluble scavengers for sulfides and mercaptans
US20040077753A1 (en) * 1995-05-10 2004-04-22 Duvall Tod C. Method for improving adhesion of water-based inks to halogen-containing resin articles
US20060229197A1 (en) * 2003-05-20 2006-10-12 Stark Jan W Metal delivery system for nanoparticle manufacture

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669765A (en) * 1969-05-12 1972-06-13 Carleton R Bradshaw Process for coating metal flakes
US3699765A (en) 1970-11-10 1972-10-24 North American Rockwell Electrostatic spinning head
GB2137633B (en) 1983-03-31 1986-10-29 Exxon Research Engineering Co Decreasing h2s emission in bitumen/sulphur mixtures
US5000835A (en) * 1989-10-02 1991-03-19 Exxon Chemical Patents, Inc. Method of reducing H2 S in asphalt
US5093385A (en) * 1989-12-21 1992-03-03 Minnesota Mining And Manufacturing Company Method of accelerating photoiniferter polymerization, polymer produced thereby, and product produced therewith
JP3391449B2 (en) 1991-08-01 2003-03-31 ヒクソン・インターナショナル・ピー・エル・シー Preservatives for wood and other cellulosic materials
US5688478A (en) 1994-08-24 1997-11-18 Crescent Holdings Limited Method for scavenging sulfides
US6310124B1 (en) 1996-10-03 2001-10-30 Cytec Technology, Corp. Aqueous dispersions
US6265515B1 (en) * 1999-06-14 2001-07-24 The United States Of America As Represented By The Secretary Of The Navy Fluorinated silicone resin fouling release composition
US6908888B2 (en) 2001-04-04 2005-06-21 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
WO2003010779A1 (en) * 2001-07-23 2003-02-06 Xco International Incorporated Heat sensitive cable and method of making same
US7094331B2 (en) 2003-11-05 2006-08-22 Marathon Ashland Petroleum Llc Viscosity modification of heavy hydrocarbons using dihydric alcohols
US20050145137A1 (en) 2003-12-31 2005-07-07 Buras Paul J. Process for preparing bitumen compositions with reduced hydrogen sulfide emission
WO2007080998A1 (en) * 2006-01-13 2007-07-19 Fushimi Pharmaceutical Co., Ltd. Cyanato-containing cyclic phosphazenes and process for production thereof
US8246813B2 (en) 2009-12-15 2012-08-21 Nalco Company Method of removing hydrogen sulfide
US20130199788A1 (en) 2010-02-12 2013-08-08 Julian Richard BARNES Method and composition for enyhanced hydrocarbons recovery
JP5741582B2 (en) 2010-08-06 2015-07-01 日亜化学工業株式会社 Method for manufacturing light emitting device
US9278307B2 (en) 2012-05-29 2016-03-08 Baker Hughes Incorporated Synergistic H2 S scavengers
US9719027B2 (en) 2013-02-19 2017-08-01 Baker Hughes Incorporated Low viscosity metal-based hydrogen sulfide scavengers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403119A (en) * 1964-10-19 1968-09-24 Staley Mfg Co A E Polymeric coating composition containing a metal salt of an organic carboxylic acid
US3528935A (en) * 1967-11-30 1970-09-15 Sinclair Research Inc Package stable,low viscosity,high solids,thermosetting coating compositions with latent curing catalyst
US3639109A (en) * 1968-01-02 1972-02-01 Cities Service Oil Co Smoke suppressant compositions for petroleum fuels
US3941606A (en) * 1971-07-20 1976-03-02 Mooney Chemicals, Inc. Metal carboxylate-alkoxy alcoholate composition and process
US4070510A (en) * 1976-03-12 1978-01-24 Acme Chemical Company Aqueous polish composition
US4100144A (en) * 1976-06-11 1978-07-11 Bayer Aktiengesellschaft Process for the preparation of oligourethanes
US4383062A (en) * 1981-01-28 1983-05-10 General Electric Waterborne coating compositions
US4952328A (en) * 1988-05-27 1990-08-28 The Lubrizol Corporation Lubricating oil compositions
US4981602A (en) * 1988-06-13 1991-01-01 The Lubrizol Corporation Lubricating oil compositions and concentrates
US5575951A (en) * 1993-04-16 1996-11-19 Akcros Chemicals America Liquid stabilizer comprising metal soap and solubilized metal perchlorate
US20040077753A1 (en) * 1995-05-10 2004-04-22 Duvall Tod C. Method for improving adhesion of water-based inks to halogen-containing resin articles
US6599472B1 (en) * 2000-11-03 2003-07-29 Surface Chemists Of Florida Inc. Oil soluble scavengers for sulfides and mercaptans
US20060229197A1 (en) * 2003-05-20 2006-10-12 Stark Jan W Metal delivery system for nanoparticle manufacture

Also Published As

Publication number Publication date
CN105073943B (en) 2018-09-21
CA2900548A1 (en) 2014-08-28
EP2958973A4 (en) 2016-10-05
EP2958973A1 (en) 2015-12-30
PL2958973T3 (en) 2020-11-16
ES2812560T3 (en) 2021-03-17
EP2958973B1 (en) 2020-05-27
US9719027B2 (en) 2017-08-01
CA2900548C (en) 2017-08-22
US20140231311A1 (en) 2014-08-21
HUE050557T2 (en) 2020-12-28
WO2014130503A1 (en) 2014-08-28
CN105073943A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
US9719027B2 (en) Low viscosity metal-based hydrogen sulfide scavengers
US9334448B2 (en) Method for reducing hydrogen sulfide evolution from asphalt and heavy fuel oils
CA2784112C (en) Improved method of removing hydrogen sulfide
US8523994B2 (en) Method for reducing hydrogen sulfide evolution from asphalt
US8034231B2 (en) Method for reducing hydrogen sulfide evolution from asphalt
US10577542B2 (en) Low viscosity metal-based hydrogen sulfide scavengers
EP3562915B1 (en) Amine based hydrogen sulfide scavenging additive compositions of copper salts, and medium comprising the same
RU2260034C1 (en) Motor gasoline additive
JP4645073B2 (en) Fuel oil additive and fuel oil composition
JP2011195759A (en) Method for manufacturing fuel oil c

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION