US20170260286A1 - Antigen-Binding Fusion Proteins with Modified HSP70 Domains - Google Patents
Antigen-Binding Fusion Proteins with Modified HSP70 Domains Download PDFInfo
- Publication number
- US20170260286A1 US20170260286A1 US15/456,196 US201715456196A US2017260286A1 US 20170260286 A1 US20170260286 A1 US 20170260286A1 US 201715456196 A US201715456196 A US 201715456196A US 2017260286 A1 US2017260286 A1 US 2017260286A1
- Authority
- US
- United States
- Prior art keywords
- fusion protein
- seq
- protein
- hsp70
- virus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108020001507 fusion proteins Proteins 0.000 title claims abstract description 155
- 102000037865 fusion proteins Human genes 0.000 title claims abstract description 152
- 101710163595 Chaperone protein DnaK Proteins 0.000 title 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 title 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 title 1
- 239000000427 antigen Substances 0.000 claims abstract description 173
- 102000036639 antigens Human genes 0.000 claims abstract description 172
- 108091007433 antigens Proteins 0.000 claims abstract description 172
- 230000027455 binding Effects 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 70
- 230000028993 immune response Effects 0.000 claims abstract description 41
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 33
- 201000010099 disease Diseases 0.000 claims abstract description 27
- 108010027992 HSP70 Heat-Shock Proteins Proteins 0.000 claims description 97
- 102000018932 HSP70 Heat-Shock Proteins Human genes 0.000 claims description 97
- 150000007523 nucleic acids Chemical class 0.000 claims description 74
- 239000012634 fragment Substances 0.000 claims description 71
- 150000001413 amino acids Chemical class 0.000 claims description 67
- 102000039446 nucleic acids Human genes 0.000 claims description 67
- 108020004707 nucleic acids Proteins 0.000 claims description 67
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 43
- 241000282414 Homo sapiens Species 0.000 claims description 33
- 108090000015 Mesothelin Proteins 0.000 claims description 33
- 102000003735 Mesothelin Human genes 0.000 claims description 32
- 125000000539 amino acid group Chemical group 0.000 claims description 19
- 241000187479 Mycobacterium tuberculosis Species 0.000 claims description 17
- 229960005486 vaccine Drugs 0.000 claims description 17
- 239000013604 expression vector Substances 0.000 claims description 16
- 101000971513 Homo sapiens Natural killer cells antigen CD94 Proteins 0.000 claims description 13
- 102100021462 Natural killer cells antigen CD94 Human genes 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 13
- 230000004048 modification Effects 0.000 claims description 13
- 230000002163 immunogen Effects 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 201000008827 tuberculosis Diseases 0.000 claims description 10
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 147
- 102000004169 proteins and genes Human genes 0.000 abstract description 97
- 230000035939 shock Effects 0.000 abstract description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 132
- 210000004027 cell Anatomy 0.000 description 117
- 102000004196 processed proteins & peptides Human genes 0.000 description 112
- 229920001184 polypeptide Polymers 0.000 description 104
- 235000018102 proteins Nutrition 0.000 description 91
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 68
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 68
- 235000001014 amino acid Nutrition 0.000 description 67
- 229940024606 amino acid Drugs 0.000 description 65
- 241000700605 Viruses Species 0.000 description 56
- 230000014509 gene expression Effects 0.000 description 52
- 206010028980 Neoplasm Diseases 0.000 description 50
- 239000013598 vector Substances 0.000 description 46
- 230000004927 fusion Effects 0.000 description 37
- 239000013612 plasmid Substances 0.000 description 28
- 238000011282 treatment Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 22
- 241000894006 Bacteria Species 0.000 description 21
- 125000003729 nucleotide group Chemical group 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 19
- 241000196324 Embryophyta Species 0.000 description 19
- 230000001580 bacterial effect Effects 0.000 description 19
- 238000012217 deletion Methods 0.000 description 19
- 230000037430 deletion Effects 0.000 description 19
- 239000002773 nucleotide Substances 0.000 description 19
- 230000004071 biological effect Effects 0.000 description 18
- 206010061535 Ovarian neoplasm Diseases 0.000 description 17
- 230000004044 response Effects 0.000 description 17
- 230000004083 survival effect Effects 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 16
- 230000014616 translation Effects 0.000 description 16
- 241000588724 Escherichia coli Species 0.000 description 15
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 15
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 15
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 206010033128 Ovarian cancer Diseases 0.000 description 15
- -1 aspartate Chemical class 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 239000002671 adjuvant Substances 0.000 description 14
- 210000001744 T-lymphocyte Anatomy 0.000 description 13
- 201000011510 cancer Diseases 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 230000035882 stress Effects 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 241001430294 unidentified retrovirus Species 0.000 description 13
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 102000040430 polynucleotide Human genes 0.000 description 12
- 108091033319 polynucleotide Proteins 0.000 description 12
- 239000002157 polynucleotide Substances 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 241000238631 Hexapoda Species 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 9
- 210000004962 mammalian cell Anatomy 0.000 description 9
- 238000010369 molecular cloning Methods 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 230000004614 tumor growth Effects 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 241000271566 Aves Species 0.000 description 8
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 210000003289 regulatory T cell Anatomy 0.000 description 8
- 239000013603 viral vector Substances 0.000 description 8
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 7
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 7
- 241000709661 Enterovirus Species 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 210000003527 eukaryotic cell Anatomy 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 230000003308 immunostimulating effect Effects 0.000 description 7
- 238000011081 inoculation Methods 0.000 description 7
- 238000007912 intraperitoneal administration Methods 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 230000003248 secreting effect Effects 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 108090000312 Calcium Channels Proteins 0.000 description 6
- 102000003922 Calcium Channels Human genes 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 6
- 108060001084 Luciferase Proteins 0.000 description 6
- 239000005089 Luciferase Substances 0.000 description 6
- 206010027406 Mesothelioma Diseases 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 210000001236 prokaryotic cell Anatomy 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 241001515965 unidentified phage Species 0.000 description 6
- 239000004474 valine Substances 0.000 description 6
- 230000003442 weekly effect Effects 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 241000701022 Cytomegalovirus Species 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 5
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 241000712079 Measles morbillivirus Species 0.000 description 5
- 101710181812 Methionine aminopeptidase Proteins 0.000 description 5
- 229930182555 Penicillin Natural products 0.000 description 5
- 101710182846 Polyhedrin Proteins 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000003443 antiviral agent Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 241000712461 unidentified influenza virus Species 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 241000712471 Dhori virus Species 0.000 description 4
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 4
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 4
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 4
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 4
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241001631646 Papillomaviridae Species 0.000 description 4
- 241001505332 Polyomavirus sp. Species 0.000 description 4
- 102000028391 RNA cap binding Human genes 0.000 description 4
- 108091000106 RNA cap binding Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 241000702670 Rotavirus Species 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 208000009956 adenocarcinoma Diseases 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 229940009098 aspartate Drugs 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000002458 infectious effect Effects 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 206010022000 influenza Diseases 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000002601 intratumoral effect Effects 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 210000003071 memory t lymphocyte Anatomy 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 4
- 150000002960 penicillins Chemical class 0.000 description 4
- 210000003516 pericardium Anatomy 0.000 description 4
- 210000004303 peritoneum Anatomy 0.000 description 4
- 210000004224 pleura Anatomy 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000012743 protein tagging Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 3
- 241000701822 Bovine papillomavirus Species 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 101001026137 Cavia porcellus Glutathione S-transferase A Proteins 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- 241000702421 Dependoparvovirus Species 0.000 description 3
- 101100125027 Dictyostelium discoideum mhsp70 gene Proteins 0.000 description 3
- 241000991587 Enterovirus C Species 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- 206010018338 Glioma Diseases 0.000 description 3
- 101150031823 HSP70 gene Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 241000711386 Mumps virus Species 0.000 description 3
- 241000186366 Mycobacterium bovis Species 0.000 description 3
- 241000186362 Mycobacterium leprae Species 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 241000712464 Orthomyxoviridae Species 0.000 description 3
- 241000150218 Orthonairovirus Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 3
- 241000711504 Paramyxoviridae Species 0.000 description 3
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 241000286209 Phasianidae Species 0.000 description 3
- 241000713137 Phlebovirus Species 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000725643 Respiratory syncytial virus Species 0.000 description 3
- 241000710799 Rubella virus Species 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 241000256251 Spodoptera frugiperda Species 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 102000043871 biotin binding protein Human genes 0.000 description 3
- 108700021042 biotin binding protein Proteins 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 230000007123 defense Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 101150052825 dnaK gene Proteins 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 230000028996 humoral immune response Effects 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000011532 immunohistochemical staining Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 208000006178 malignant mesothelioma Diseases 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 206010027191 meningioma Diseases 0.000 description 3
- 210000005033 mesothelial cell Anatomy 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 3
- 201000002528 pancreatic cancer Diseases 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002336 ribonucleotide Substances 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 210000003705 ribosome Anatomy 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000007492 two-way ANOVA Methods 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- RGEMJCLUPGZKTQ-WAUHAFJUSA-N (3s,8r,9s,10r,13s,14s)-3-[2-(dimethylamino)ethoxy]-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one Chemical compound C([C@@H]12)C[C@]3(C)C(=O)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OCCN(C)C)C1 RGEMJCLUPGZKTQ-WAUHAFJUSA-N 0.000 description 2
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- YZHIXLCGPOTQNB-UHFFFAOYSA-N 2-methyl-furan-3-carbothioic acid [4-chloro-3-(3-methyl-but-2-enyloxy)-phenyl]-amide Chemical compound C1=C(Cl)C(OCC=C(C)C)=CC(NC(=S)C2=C(OC=C2)C)=C1 YZHIXLCGPOTQNB-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 229940125668 ADH-1 Drugs 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000701242 Adenoviridae Species 0.000 description 2
- 241000701386 African swine fever virus Species 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 241000712892 Arenaviridae Species 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 241000711404 Avian avulavirus 1 Species 0.000 description 2
- 241000714230 Avian leukemia virus Species 0.000 description 2
- 241000713838 Avian myeloblastosis virus Species 0.000 description 2
- 241001118702 Border disease virus Species 0.000 description 2
- 241001227615 Bovine foamy virus Species 0.000 description 2
- 241000714266 Bovine leukemia virus Species 0.000 description 2
- 241000711895 Bovine orthopneumovirus Species 0.000 description 2
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 description 2
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 2
- 102100027207 CD27 antigen Human genes 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 2
- 208000008889 California Encephalitis Diseases 0.000 description 2
- 241001502567 Chikungunya virus Species 0.000 description 2
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 2
- 241000710777 Classical swine fever virus Species 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 241000711573 Coronaviridae Species 0.000 description 2
- 241000150230 Crimean-Congo hemorrhagic fever orthonairovirus Species 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 241000725619 Dengue virus Species 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 208000000655 Distemper Diseases 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 241001115402 Ebolavirus Species 0.000 description 2
- 206010014584 Encephalitis california Diseases 0.000 description 2
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 2
- 241000713730 Equine infectious anemia virus Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000003782 Eukaryotic Initiation Factor-4F Human genes 0.000 description 2
- 108010057194 Eukaryotic Initiation Factor-4F Proteins 0.000 description 2
- 101710129170 Extensin Proteins 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 241000713800 Feline immunodeficiency virus Species 0.000 description 2
- 241000714165 Feline leukemia virus Species 0.000 description 2
- 241000282324 Felis Species 0.000 description 2
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 108010026389 Gramicidin Proteins 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- 241000709721 Hepatovirus A Species 0.000 description 2
- 208000009889 Herpes Simplex Diseases 0.000 description 2
- 241000700586 Herpesviridae Species 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 2
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 2
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 2
- 241000713673 Human foamy virus Species 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 241000726041 Human respirovirus 1 Species 0.000 description 2
- 241000714192 Human spumaretrovirus Species 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 2
- 241000711450 Infectious bronchitis virus Species 0.000 description 2
- 241000712431 Influenza A virus Species 0.000 description 2
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 2
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 2
- 241000710842 Japanese encephalitis virus Species 0.000 description 2
- 241000710912 Kunjin virus Species 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 201000009908 La Crosse encephalitis Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241000712899 Lymphocytic choriomeningitis mammarenavirus Species 0.000 description 2
- 102000043129 MHC class I family Human genes 0.000 description 2
- 108091054437 MHC class I family Proteins 0.000 description 2
- 241000713821 Mason-Pfizer monkey virus Species 0.000 description 2
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 2
- 241000712045 Morbillivirus Species 0.000 description 2
- 102000007474 Multiprotein Complexes Human genes 0.000 description 2
- 108010085220 Multiprotein Complexes Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 241000711941 Murine orthopneumovirus Species 0.000 description 2
- 241000711408 Murine respirovirus Species 0.000 description 2
- 241000710908 Murray Valley encephalitis virus Species 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- 241001457453 Nairobi sheep disease virus Species 0.000 description 2
- 241000207746 Nicotiana benthamiana Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 241000710944 O'nyong-nyong virus Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241000702244 Orthoreovirus Species 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 241000150350 Peribunyaviridae Species 0.000 description 2
- 241000710778 Pestivirus Species 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 241000711902 Pneumovirus Species 0.000 description 2
- 241000710884 Powassan virus Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 241000125945 Protoparvovirus Species 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 241000711798 Rabies lyssavirus Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000702247 Reoviridae Species 0.000 description 2
- 241000712909 Reticuloendotheliosis virus Species 0.000 description 2
- 241000711931 Rhabdoviridae Species 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 241000713124 Rift Valley fever virus Species 0.000 description 2
- 241000711897 Rinderpest morbillivirus Species 0.000 description 2
- 241000710942 Ross River virus Species 0.000 description 2
- 241000710801 Rubivirus Species 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 241001135555 Sandfly fever Sicilian virus Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 241000607768 Shigella Species 0.000 description 2
- 241001529934 Simian T-lymphotropic virus 3 Species 0.000 description 2
- 241000713656 Simian foamy virus Species 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 208000001203 Smallpox Diseases 0.000 description 2
- 241000713896 Spleen necrosis virus Species 0.000 description 2
- 241000710888 St. Louis encephalitis virus Species 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000725681 Swine influenza virus Species 0.000 description 2
- 208000000389 T-cell leukemia Diseases 0.000 description 2
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 241000710924 Togaviridae Species 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 238000010162 Tukey test Methods 0.000 description 2
- 241000713152 Uukuniemi virus Species 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 2
- 241000711970 Vesiculovirus Species 0.000 description 2
- 241000710886 West Nile virus Species 0.000 description 2
- 241000710951 Western equine encephalitis virus Species 0.000 description 2
- 241000714205 Woolly monkey sarcoma virus Species 0.000 description 2
- 241000710772 Yellow fever virus Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000011374 additional therapy Methods 0.000 description 2
- 108700010877 adenoviridae proteins Proteins 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000006229 amino acid addition Effects 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 229940125715 antihistaminic agent Drugs 0.000 description 2
- 239000000739 antihistaminic agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000139 costimulatory effect Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 238000002635 electroconvulsive therapy Methods 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 230000007946 glucose deprivation Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000001894 hemadsorption Effects 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000001325 log-rank test Methods 0.000 description 2
- 201000005249 lung adenocarcinoma Diseases 0.000 description 2
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 229960000282 metronidazole Drugs 0.000 description 2
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical class CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000016379 mucosal immune response Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 2
- 229940038309 personalized vaccine Drugs 0.000 description 2
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- YIQPUIGJQJDJOS-UHFFFAOYSA-N plerixafor Chemical compound C=1C=C(CN2CCNCCCNCCNCCC2)C=CC=1CN1CCCNCCNCCCNCC1 YIQPUIGJQJDJOS-UHFFFAOYSA-N 0.000 description 2
- 229960002169 plerixafor Drugs 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000012846 protein folding Effects 0.000 description 2
- 238000000164 protein isolation Methods 0.000 description 2
- 230000006432 protein unfolding Effects 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000000528 statistical test Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000011191 terminal modification Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- 230000002477 vacuolizing effect Effects 0.000 description 2
- 229940051021 yellow-fever virus Drugs 0.000 description 2
- NIDRYBLTWYFCFV-FMTVUPSXSA-N (+)-calanolide A Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-FMTVUPSXSA-N 0.000 description 1
- XEEQGYMUWCZPDN-DOMZBBRYSA-N (-)-(11S,2'R)-erythro-mefloquine Chemical compound C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 XEEQGYMUWCZPDN-DOMZBBRYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- RIWLPSIAFBLILR-WVNGMBSFSA-N (2s)-1-[(2s)-2-[[(2s,3s)-2-[[(2s)-2-[[(2s,3r)-2-[[(2r,3s)-2-[[(2s)-2-[[2-[[2-[acetyl(methyl)amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]pentanoyl]amino]-3-methylpentanoyl]amino]-5-(diaminomethy Chemical compound CC(=O)N(C)CC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@H]1C(=O)NCC RIWLPSIAFBLILR-WVNGMBSFSA-N 0.000 description 1
- MMHDBUJXLOFTLC-WOYTXXSLSA-N (2s)-2-[[(2r)-2-[[(2s)-2-[[(2s)-2-[[(2s)-1-acetylpyrrolidine-2-carbonyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-sulfanylpropanoyl]amino]butanediamide Chemical compound CC(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(N)=O)CC1=CN=CN1 MMHDBUJXLOFTLC-WOYTXXSLSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- YABJJWZLRMPFSI-UHFFFAOYSA-N 1-methyl-5-[[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-2-benzimidazolamine Chemical compound N=1C2=CC(OC=3C=C(N=CC=3)C=3NC(=CN=3)C(F)(F)F)=CC=C2N(C)C=1NC1=CC=C(C(F)(F)F)C=C1 YABJJWZLRMPFSI-UHFFFAOYSA-N 0.000 description 1
- 102100024341 10 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- 101710122378 10 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- AXRCEOKUDYDWLF-UHFFFAOYSA-N 3-(1-methyl-3-indolyl)-4-[1-[1-(2-pyridinylmethyl)-4-piperidinyl]-3-indolyl]pyrrole-2,5-dione Chemical compound C12=CC=CC=C2N(C)C=C1C(C(NC1=O)=O)=C1C(C1=CC=CC=C11)=CN1C(CC1)CCN1CC1=CC=CC=N1 AXRCEOKUDYDWLF-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- LUBUTTBEBGYNJN-UHFFFAOYSA-N 4-amino-n-(5,6-dimethoxypyrimidin-4-yl)benzenesulfonamide;5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1.COC1=NC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1OC LUBUTTBEBGYNJN-UHFFFAOYSA-N 0.000 description 1
- GJOHLWZHWQUKAU-UHFFFAOYSA-N 5-azaniumylpentan-2-yl-(6-methoxyquinolin-8-yl)azanium;dihydrogen phosphate Chemical compound OP(O)(O)=O.OP(O)(O)=O.N1=CC=CC2=CC(OC)=CC(NC(C)CCCN)=C21 GJOHLWZHWQUKAU-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 102100023990 60S ribosomal protein L17 Human genes 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000120516 African horse sickness virus Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 1
- 241001135972 Aleutian mink disease virus Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 102000009088 Angiopoietin-1 Human genes 0.000 description 1
- 108010048154 Angiopoietin-1 Proteins 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 101100178719 Arabidopsis thaliana HSP70-5 gene Proteins 0.000 description 1
- 101100125013 Arabidopsis thaliana HSP70-6 gene Proteins 0.000 description 1
- 101100125024 Arabidopsis thaliana HSP70-9 gene Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 241000701061 Ateline gammaherpesvirus 2 Species 0.000 description 1
- 241000701802 Aviadenovirus Species 0.000 description 1
- 241001213911 Avian retroviruses Species 0.000 description 1
- 241000700663 Avipoxvirus Species 0.000 description 1
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 108010074708 B7-H1 Antigen Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 101000840545 Bacillus thuringiensis L-isoleucine-4-hydroxylase Proteins 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000120506 Bluetongue virus Species 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 description 1
- 241000621124 Bovine papular stomatitis virus Species 0.000 description 1
- 241000701922 Bovine parvovirus Species 0.000 description 1
- 241001506128 Bovine rotavirus strain NCDV/G6 Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 102000001902 CC Chemokines Human genes 0.000 description 1
- 108010040471 CC Chemokines Proteins 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 101710185679 CD276 antigen Proteins 0.000 description 1
- 229940123189 CD40 agonist Drugs 0.000 description 1
- NIDRYBLTWYFCFV-IUUKEHGRSA-N Calanolide A Natural products C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-IUUKEHGRSA-N 0.000 description 1
- 241000701931 Canine parvovirus Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000700664 Capripoxvirus Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 241000710190 Cardiovirus Species 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 101710181340 Chaperone protein DnaK2 Proteins 0.000 description 1
- 102000006303 Chaperonin 60 Human genes 0.000 description 1
- 108010058432 Chaperonin 60 Proteins 0.000 description 1
- 229940122444 Chemokine receptor antagonist Drugs 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241000204955 Colorado tick fever virus Species 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 125000000030 D-alanine group Chemical class [H]N([H])[C@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 241000710829 Dengue virus group Species 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 101100011744 Dictyostelium discoideum grp94 gene Proteins 0.000 description 1
- 101100451497 Dictyostelium discoideum hspB gene Proteins 0.000 description 1
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 101100084900 Drosophila melanogaster Rpn11 gene Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 1
- 241001466953 Echovirus Species 0.000 description 1
- 208000006586 Ectromelia Diseases 0.000 description 1
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- MBYXEBXZARTUSS-QLWBXOBMSA-N Emetamine Natural products O(C)c1c(OC)cc2c(c(C[C@@H]3[C@H](CC)CN4[C@H](c5c(cc(OC)c(OC)c5)CC4)C3)ncc2)c1 MBYXEBXZARTUSS-QLWBXOBMSA-N 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000988559 Enterovirus A Species 0.000 description 1
- 241000709691 Enterovirus E Species 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 206010073064 Epithelioid mesothelioma Diseases 0.000 description 1
- 241000701081 Equid alphaherpesvirus 1 Species 0.000 description 1
- 241001598169 Equid alphaherpesvirus 3 Species 0.000 description 1
- 241000725578 Equid gammaherpesvirus 2 Species 0.000 description 1
- 208000000832 Equine Encephalomyelitis Diseases 0.000 description 1
- 241000186811 Erysipelothrix Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Natural products O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000701988 Escherichia virus T5 Species 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 108010008177 Fd immunoglobulins Proteins 0.000 description 1
- 241000725579 Feline coronavirus Species 0.000 description 1
- 241000701915 Feline panleukopenia virus Species 0.000 description 1
- 241001280522 Feline picornavirus Species 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 208000007212 Foot-and-Mouth Disease Diseases 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 241000589601 Francisella Species 0.000 description 1
- 241000701063 Gallid alphaherpesvirus 1 Species 0.000 description 1
- 241000701047 Gallid alphaherpesvirus 2 Species 0.000 description 1
- 101000796901 Gallus gallus Alcohol dehydrogenase 1 Proteins 0.000 description 1
- 208000005577 Gastroenteritis Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 108010036652 HSC70 Heat-Shock Proteins Proteins 0.000 description 1
- 101150022862 HSC70 gene Proteins 0.000 description 1
- 108010027814 HSP72 Heat-Shock Proteins Proteins 0.000 description 1
- 101150112743 HSPA5 gene Proteins 0.000 description 1
- 101150043239 HSPA8 gene Proteins 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 241000150562 Hantaan orthohantavirus Species 0.000 description 1
- 102100040407 Heat shock 70 kDa protein 1B Human genes 0.000 description 1
- 102100027421 Heat shock cognate 71 kDa protein Human genes 0.000 description 1
- 241000589989 Helicobacter Species 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 241000700739 Hepadnaviridae Species 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 1
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 241000701020 Herpesvirus sylvilagus Species 0.000 description 1
- 108010025076 Holoenzymes Proteins 0.000 description 1
- 101000883686 Homo sapiens 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101001037256 Homo sapiens Indoleamine 2,3-dioxygenase 1 Proteins 0.000 description 1
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 206010020460 Human T-cell lymphotropic virus type I infection Diseases 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000714259 Human T-lymphotropic virus 2 Species 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 244000309469 Human enteric coronavirus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241000829111 Human polyomavirus 1 Species 0.000 description 1
- 241000430519 Human rhinovirus sp. Species 0.000 description 1
- 241000617996 Human rotavirus Species 0.000 description 1
- DOMWKUIIPQCAJU-LJHIYBGHSA-N Hydroxyprogesterone caproate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CCCCC)[C@@]1(C)CC2 DOMWKUIIPQCAJU-LJHIYBGHSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 102100040061 Indoleamine 2,3-dioxygenase 1 Human genes 0.000 description 1
- 208000004467 Infectious Canine Hepatitis Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 241000701377 Iridoviridae Species 0.000 description 1
- 241000701460 JC polyomavirus Species 0.000 description 1
- 102000002698 KIR Receptors Human genes 0.000 description 1
- 108010043610 KIR Receptors Proteins 0.000 description 1
- 241000701646 Kappapapillomavirus 2 Species 0.000 description 1
- 241000120527 Kemerovo virus Species 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 1
- 239000002176 L01XE26 - Cabozantinib Substances 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 241000712902 Lassa mammarenavirus Species 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 241000700563 Leporipoxvirus Species 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 206010024503 Limb reduction defect Diseases 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 241000711828 Lyssavirus Species 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 206010025538 Malignant ascites Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001115401 Marburgvirus Species 0.000 description 1
- 241000701244 Mastadenovirus Species 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 241000710185 Mengo virus Species 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- UCHDWCPVSPXUMX-TZIWLTJVSA-N Montelukast Chemical compound CC(C)(O)C1=CC=CC=C1CC[C@H](C=1C=C(\C=C\C=2N=C3C=C(Cl)C=CC3=CC=2)C=CC=1)SCC1(CC(O)=O)CC1 UCHDWCPVSPXUMX-TZIWLTJVSA-N 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000711466 Murine hepatitis virus Species 0.000 description 1
- 241001135960 Murine rotavirus Species 0.000 description 1
- 206010062207 Mycobacterial infection Diseases 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187480 Mycobacterium smegmatis Species 0.000 description 1
- 108700009457 Mycobacterium tuberculosis HSP70 Proteins 0.000 description 1
- 241000187644 Mycobacterium vaccae Species 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 108010022476 N-Ac-CHAVC-NH2 Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108010072915 NAc-Sar-Gly-Val-(d-allo-Ile)-Thr-Nva-Ile-Arg-ProNEt Proteins 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 208000011448 Omsk hemorrhagic fever Diseases 0.000 description 1
- 241000725177 Omsk hemorrhagic fever virus Species 0.000 description 1
- 241000702259 Orbivirus Species 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000700639 Parapoxvirus Species 0.000 description 1
- 206010033976 Paravaccinia Diseases 0.000 description 1
- 241000701945 Parvoviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 241001068295 Replication defective viruses Species 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 206010051497 Rhinotracheitis Diseases 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-O S-adenosyl-L-methionine Chemical class O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H]([NH3+])C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-O 0.000 description 1
- AUVVAXYIELKVAI-UHFFFAOYSA-N SJ000285215 Natural products N1CCC2=CC(OC)=C(OC)C=C2C1CC1CC2C3=CC(OC)=C(OC)C=C3CCN2CC1CC AUVVAXYIELKVAI-UHFFFAOYSA-N 0.000 description 1
- 101001037255 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Indoleamine 2,3-dioxygenase Proteins 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000282695 Saimiri Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000714213 San Miguel sea lion virus Species 0.000 description 1
- 101000832889 Scheffersomyces stipitis (strain ATCC 58785 / CBS 6054 / NBRC 10063 / NRRL Y-11545) Alcohol dehydrogenase 2 Proteins 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- 241000702677 Simian rotavirus Species 0.000 description 1
- 240000002825 Solanum vestissimum Species 0.000 description 1
- 235000018259 Solanum vestissimum Nutrition 0.000 description 1
- 208000013128 Squamous cell carcinoma of pancreas Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000700568 Suipoxvirus Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 101100215487 Sus scrofa ADRA2A gene Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 229940122760 T cell stimulant Drugs 0.000 description 1
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 description 1
- 108010037529 TN14003 Proteins 0.000 description 1
- 241000712908 Tacaribe mammarenavirus Species 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229940123384 Toll-like receptor (TLR) agonist Drugs 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000255993 Trichoplusia ni Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 description 1
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 1
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241001494970 Vesicular exanthema of swine virus Species 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 241000120645 Yellow fever virus group Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 1
- LTEJRLHKIYCEOX-PUODRLBUSA-N [(2r)-1-[4-[(4-fluoro-2-methyl-1h-indol-5-yl)oxy]-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl]oxypropan-2-yl] 2-aminopropanoate Chemical compound C1=C2NC(C)=CC2=C(F)C(OC2=NC=NN3C=C(C(=C32)C)OC[C@@H](C)OC(=O)C(C)N)=C1 LTEJRLHKIYCEOX-PUODRLBUSA-N 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- ZGDKVKUWTCGYOA-URGPHPNLSA-N [4-[4-[(z)-c-(4-bromophenyl)-n-ethoxycarbonimidoyl]piperidin-1-yl]-4-methylpiperidin-1-yl]-(2,4-dimethyl-1-oxidopyridin-1-ium-3-yl)methanone Chemical compound C=1C=C(Br)C=CC=1C(=N/OCC)\C(CC1)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)C=C[N+]([O-])=C1C ZGDKVKUWTCGYOA-URGPHPNLSA-N 0.000 description 1
- 229940028652 abraxane Drugs 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- JNWLXGRRALQGJR-UHFFFAOYSA-N acetic acid;1,2-dimethylxanthen-9-one Chemical compound CC(O)=O.C1=CC=C2C(=O)C3=C(C)C(C)=CC=C3OC2=C1 JNWLXGRRALQGJR-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 108010011755 acetyl-prolyl-histidyl-seryl-cysteinyl-asparaginamide Proteins 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000003277 amino acid sequence analysis Methods 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229940124323 amoebicide Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical class C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000002590 anti-leukotriene effect Effects 0.000 description 1
- 230000002223 anti-pathogen Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000001147 anti-toxic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 239000000059 antiamebic agent Substances 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003286 arthritogenic effect Effects 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 244000309743 astrovirus Species 0.000 description 1
- 229960003852 atezolizumab Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960003159 atovaquone Drugs 0.000 description 1
- KUCQYCKVKVOKAY-CTYIDZIISA-N atovaquone Chemical compound C1([C@H]2CC[C@@H](CC2)C2=C(C(C3=CC=CC=C3C2=O)=O)O)=CC=C(Cl)C=C1 KUCQYCKVKVOKAY-CTYIDZIISA-N 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 241000701792 avian adenovirus Species 0.000 description 1
- 229960003005 axitinib Drugs 0.000 description 1
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229960001292 cabozantinib Drugs 0.000 description 1
- HFCFMRYTXDINDK-WNQIDUERSA-N cabozantinib malate Chemical compound OC(=O)[C@@H](O)CC(O)=O.C=12C=C(OC)C(OC)=CC2=NC=CC=1OC(C=C1)=CC=C1NC(=O)C1(C(=O)NC=2C=CC(F)=CC=2)CC1 HFCFMRYTXDINDK-WNQIDUERSA-N 0.000 description 1
- NIDRYBLTWYFCFV-UHFFFAOYSA-N calanolide F Natural products C1=CC(C)(C)OC2=C1C(OC(C)C(C)C1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- YQXCVAGCMNFUMQ-UHFFFAOYSA-N capravirine Chemical compound C=1C(Cl)=CC(Cl)=CC=1SC1=C(C(C)C)N=C(COC(N)=O)N1CC1=CC=NC=C1 YQXCVAGCMNFUMQ-UHFFFAOYSA-N 0.000 description 1
- 229950008230 capravirine Drugs 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 229960001803 cetirizine Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002559 chemokine receptor antagonist Substances 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 208000030499 combat disease Diseases 0.000 description 1
- WDOGQTQEKVLZIJ-WAYWQWQTSA-N combretastatin a-4 phosphate Chemical compound C1=C(OP(O)(O)=O)C(OC)=CC=C1\C=C/C1=CC(OC)=C(OC)C(OC)=C1 WDOGQTQEKVLZIJ-WAYWQWQTSA-N 0.000 description 1
- 108010047295 complement receptors Proteins 0.000 description 1
- 102000006834 complement receptors Human genes 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000039 congener Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 201000005332 contagious pustular dermatitis Diseases 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 201000003740 cowpox Diseases 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 108060002021 cyanovirin N Proteins 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 239000000409 cytokine receptor agonist Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 229960004969 dalteparin Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229960005319 delavirdine Drugs 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960002656 didanosine Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 229960000691 diiodohydroxyquinoline Drugs 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- AYXBAIULRDEVAS-UHFFFAOYSA-N dimethyl-[[4-[[3-(4-methylphenyl)-8,9-dihydro-7h-benzo[7]annulene-6-carbonyl]amino]phenyl]methyl]-(oxan-4-yl)azanium;iodide Chemical compound [I-].C1=CC(C)=CC=C1C1=CC=C(CCCC(=C2)C(=O)NC=3C=CC(C[N+](C)(C)C4CCOCC4)=CC=3)C2=C1 AYXBAIULRDEVAS-UHFFFAOYSA-N 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 101150115114 dnaJ gene Proteins 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- 229960003804 efavirenz Drugs 0.000 description 1
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- AUVVAXYIELKVAI-CKBKHPSWSA-N emetine Chemical compound N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@@H]1CC AUVVAXYIELKVAI-CKBKHPSWSA-N 0.000 description 1
- 229960002694 emetine Drugs 0.000 description 1
- AUVVAXYIELKVAI-UWBTVBNJSA-N emetine Natural products N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@H]1CC AUVVAXYIELKVAI-UWBTVBNJSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229950002189 enzastaurin Drugs 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001596 famotidine Drugs 0.000 description 1
- 208000005098 feline infectious peritonitis Diseases 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 108090000062 ficolin Proteins 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229940041006 first-generation cephalosporins Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 102000011778 gamma-delta T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010062214 gamma-delta T-Cell Antigen Receptors Proteins 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- 235000006539 genistein Nutrition 0.000 description 1
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 1
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical class C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- IUAYMJGZBVDSGL-XNNAEKOYSA-N gramicidin S Chemical compound C([C@@H]1C(=O)N2CCC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@H](C(N[C@H](CC=2C=CC=CC=2)C(=O)N2CCC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(C)C)C(=O)N1)C(C)C)=O)CC(C)C)C(C)C)C1=CC=CC=C1 IUAYMJGZBVDSGL-XNNAEKOYSA-N 0.000 description 1
- 229950009774 gramicidin s Drugs 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000004837 gut-associated lymphoid tissue Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000029570 hepatitis D virus infection Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 102000046432 human HSPD1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229950000038 interferon alfa Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- UXZFQZANDVDGMM-UHFFFAOYSA-N iodoquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(I)C2=C1 UXZFQZANDVDGMM-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- VHVPQPYKVGDNFY-ZPGVKDDISA-N itraconazole Chemical compound O=C1N(C(C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-ZPGVKDDISA-N 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 1
- 229960004942 lenalidomide Drugs 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010859 live-cell imaging Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940076783 lucentis Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 210000003126 m-cell Anatomy 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960001962 mefloquine Drugs 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 208000005871 monkeypox Diseases 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 229960005127 montelukast Drugs 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 208000027531 mycobacterial infectious disease Diseases 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 208000009091 myxoma Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- ONDPWWDPQDCQNJ-UHFFFAOYSA-N n-(3,3-dimethyl-1,2-dihydroindol-6-yl)-2-(pyridin-4-ylmethylamino)pyridine-3-carboxamide;phosphoric acid Chemical compound OP(O)(O)=O.OP(O)(O)=O.C=1C=C2C(C)(C)CNC2=CC=1NC(=O)C1=CC=CN=C1NCC1=CC=NC=C1 ONDPWWDPQDCQNJ-UHFFFAOYSA-N 0.000 description 1
- UYMDKKVILQGGBT-ZTOMLWHTSA-N n-[(2s)-5-(diaminomethylideneamino)-1-[[(1s)-1-naphthalen-1-ylethyl]amino]-1-oxopentan-2-yl]-4-[(pyridin-2-ylmethylamino)methyl]benzamide Chemical compound N([C@@H](CCCN=C(N)N)C(=O)N[C@@H](C)C=1C2=CC=CC=C2C=CC=1)C(=O)C(C=C1)=CC=C1CNCC1=CC=CC=N1 UYMDKKVILQGGBT-ZTOMLWHTSA-N 0.000 description 1
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 229940042402 non-nucleoside reverse transcriptase inhibitor Drugs 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002726 nonnucleoside reverse transcriptase inhibitor Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Chemical class 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 230000026792 palmitoylation Effects 0.000 description 1
- 201000006691 pancreatic squamous cell carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960000639 pazopanib Drugs 0.000 description 1
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 229960001624 pentamidine isethionate Drugs 0.000 description 1
- YBVNFKZSMZGRAD-UHFFFAOYSA-N pentamidine isethionate Chemical compound OCCS(O)(=O)=O.OCCS(O)(=O)=O.C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 YBVNFKZSMZGRAD-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 102000035123 post-translationally modified proteins Human genes 0.000 description 1
- 108091005626 post-translationally modified proteins Proteins 0.000 description 1
- 229960004839 potassium iodide Drugs 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 229960005179 primaquine Drugs 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 150000005299 pyridinones Chemical class 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- WTTIBCHOELPGFK-LBPRGKRZSA-N r82150 Chemical compound C1N(CC=C(C)C)[C@@H](C)CN2C(=S)NC3=CC=CC1=C32 WTTIBCHOELPGFK-LBPRGKRZSA-N 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 230000000601 reactogenic effect Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 229940041008 second-generation cephalosporins Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- IVDHYUQIDRJSTI-UHFFFAOYSA-N sorafenib tosylate Chemical compound [H+].CC1=CC=C(S([O-])(=O)=O)C=C1.C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 IVDHYUQIDRJSTI-UHFFFAOYSA-N 0.000 description 1
- 229960000487 sorafenib tosylate Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 235000003687 soy isoflavones Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 229960002812 sunitinib malate Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- IMOHHNXUCDZLKM-ADZSTZGASA-N t140 Chemical compound C([C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](CCCCN)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CC=1C=C2C=CC=CC2=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)=O)CCCCN)C1=CC=C(O)C=C1 IMOHHNXUCDZLKM-ADZSTZGASA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229960003454 tamoxifen citrate Drugs 0.000 description 1
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960001712 testosterone propionate Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 229940041007 third-generation cephalosporins Drugs 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000005029 transcription elongation Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241000990167 unclassified Simian adenoviruses Species 0.000 description 1
- 241000724775 unclassified viruses Species 0.000 description 1
- LONLGEZTBVAKJF-UHFFFAOYSA-N undecane-1,2,3-triol Chemical compound CCCCCCCCC(O)C(O)CO LONLGEZTBVAKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 229960000241 vandetanib Drugs 0.000 description 1
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 description 1
- 201000006266 variola major Diseases 0.000 description 1
- 201000000627 variola minor Diseases 0.000 description 1
- 208000014016 variola minor infection Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 101150061422 yip5 gene Proteins 0.000 description 1
- 229960000523 zalcitabine Drugs 0.000 description 1
- 229960002555 zidovudine Drugs 0.000 description 1
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 1
- MWLSOWXNZPKENC-SSDOTTSWSA-N zileuton Chemical compound C1=CC=C2SC([C@H](N(O)C(N)=O)C)=CC2=C1 MWLSOWXNZPKENC-SSDOTTSWSA-N 0.000 description 1
- 229960005332 zileuton Drugs 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3069—Reproductive system, e.g. ovaria, uterus, testes, prostate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/35—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
Definitions
- the invention relates to fusion proteins comprising an antigen binding domain fused with a modified heat shock 70 protein.
- the invention further relates to methods of using the fusion proteins to induce an immune response to antigens and to treat diseases associated with antigens.
- Mesothelin is a differentiation antigen whose expression in normal human tissues is limited to mesothelial cells lining the pleura, pericardium and peritoneum. However, mesothelin is highly expressed in several human cancers, including mesotheliomas, pancreatic adenocarcinomas, ovarian cancers and lung adenocarcinomas. Mesothelin is an appropriate target for methods of disease prevention or treatment and antibodies specific for mesothelin, and vaccines comprising mesothelin are useful for prophylactic and therapeutic methods.
- Immunization with vaccines remains a cornerstone of protection against threat of disease and infection.
- the key difficulty in vaccine development is rapidly matching a vaccine, or antitoxin, to a specific threat.
- Current vaccine development strategies rely on the identification and characterization of antigens that can be targeted to successfully eradicate infection or disease.
- Current vaccine development strategies are time- and labor-intensive and can only commence once a threat emerges. Such strategies are also impractical for generating personalized vaccines to combat disease for which target antigens varies among individuals.
- Current vaccine development strategies are therefore insufficient if a new and serious threat were to emerge, for which sufficient time were not available to identify and characterize target antigens before such a threat could be contained.
- Current vaccine development strategies are also insufficient for generating personalized vaccines for the general population.
- U.S. Pat. Nos. 7,749,501 and 7,943,133 describe fusion proteins comprising an engineered antibody fused to a stress protein to enhance the immune response to an antigen.
- the present invention addresses previous shortcomings in the art by disclosing modified fusion proteins with enhanced immunostimulatory and therapeutic properties.
- the present invention is based, in part, on the development of several modifications of Mycobacterium tuberculosis heat shock protein 70 (HSP70) that, alone or in combination, enhance the effectiveness of an antigen-binding fusion protein comprising the modified HSP70 to stimulate an immune response against an antigen and to treat diseases associated with an antigen.
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- one aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP7O) of less than 200 amino acids, wherein the HSP70 fragment comprises a minimal HSP70 sequence.
- HSP7O Mycobacterium tuberculosis heat shock protein 70
- Another aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of at least 100 amino acids and comprising no more than amino acids 1-495 of SEQ ID NO:1.
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- a further aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) comprising the amino acid sequence of SEQ ID NO:26 (sequence from provisional).
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- a fusion protein comprising an antigen binding domain fused in frame to a chimeric Mycobacterium tuberculosis heat shock protein 70 (HSP70), wherein the chimeric HSP70 comprises a backbone of a human HSP70 amino acid sequence wherein a beta sheet domain of about amino acid residues 367 to 479 (numbering based on SEQ ID NO:29) are substituted with a beta sheet domain of about amino acid residues 395 to 541 of M. tuberculosis HSP70 (numbering based on SEQ ID NO:1).
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- An additional aspect of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising an effective amount of the fusion protein of the invention and a pharmaceutically acceptable carrier.
- Another aspect of the invention relates to an immunogenic composition or vaccine comprising the fusion protein of the invention.
- a further aspect of the invention relates to a kit comprising the fusion protein of the invention and packaging means thereof.
- An additional aspect of the invention relates to an isolated nucleic acid encoding the fusion protein of the invention and expression vectors and cells comprising the nucleic acid.
- Another aspect of the invention relates to a method for inducing an immune response to an antigen in a subject, comprising administering to the subject the fusion protein of the invention that specifically binds the antigen, thereby inducing an immune response.
- a further aspect of the invention relates to a method of treating a disease associated with an antigen in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the fusion protein of the invention that specifically binds the antigen, thereby treating the disease.
- FIG. 1 shows the amino acid sequences of VIC-007 (SEQ ID NO:28) and VIC-008 (SEQ ID NO:27).
- VIC-008 was reconstructed from VIC-007 by removal of redundant amino acids GSS, SGILEQQG, and AAAMRS indicated in bold and italic and introduction of a single amino acid mutation, phenylalanine (F) in place of valine (V), at position 410 of MtbHsp70.
- A Longitudinal images of a representative mouse from each treatment group were presented from a week after tumor inoculation before treatment (W0) and subsequent five weeks (W1-W5).
- B The arrows indicated 4 treatments at 7-day intervals starting at a week after tumor inoculation. Total photons were calculated by IVIS Lumina Series III. Statistical differences were analyzed using Two-Way ANOVA followed by Tukey's multiple comparison tests. ****, p ⁇ 0.0001. Data were indicated as the mean ⁇ sem.
- FIG. 3 shows mouse survival after treatment. The mice were observed daily 1 week after treatment. At the endpoint the mice were euthanized and the survival time were calculated as life span from the day of tumor inoculation. The median survival and p values were determined using the Log-rank test.
- FIG. 4 shows ovarian cancer tumor growth in the first five weeks after start of therapy (week 0).
- C57BL/6 mice intraperitoneally injected with 5 ⁇ 10 6 luciferase-expressing ID8 mouse ovarian cancer cells.
- 10 mice in saline-treated control group 11 mice in VIC-008 treatment group.
- Mice received four weekly treatments starting one week after tumor introduction.
- Treatment dose of VIC-008 was 20 ⁇ g per mouse. Luciferase signal was monitored by IVIS. Statistical significance was established using two-way ANOVA test.
- FIG. 5 shows mouse survival after injection with ovarian cancer cells.
- C57BL/6 mice intraperitoneally injected with 5 ⁇ 10 6 luciferase-expressing ID8 mouse ovarian cancer cells.
- 10 mice in saline-treated control group 11 mice in VIC-008 treatment group.
- Mice received four weekly treatments starting one week after tumor introduction.
- Treatment dose of VIC-008 was 20 ⁇ g per mouse.
- Statistical significance was established using log-rank (Mantel-Cox) test.
- FIG. 6 shows intratumoral CD8+ T cell infiltration.
- Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008.
- Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD3+CD8+ T cells.
- T cells were counted as a percentage of gated live cells.
- FIG. 7 shows intratumoral Treg T cell infiltration.
- Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008.
- Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD4+CD25+FoxP3+ T regulatory cells.
- T regulatory cells were counted as a percentage of all CD3+CD4+ cells.
- FIG. 8 shows the ratio of CD8+ T cells to T regulatory cells in tumor.
- Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008.
- Tumor tissue was collected and immunoprofiled using flow cytometry to detect both CD3+CD8+ T cells and CD4+CD25+FoxP3+ T regulatory cells. Ratio was calculated based on percentages of the observed population.
- FIG. 9 shows intratumoral central memory CD8+ T cell infiltration.
- Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008.
- Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD8+CD44+CD27+ central memory T cells.
- CD8+ central memory T cells were counted as a percentage of all CD3+CD8+ cells.
- Amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by either the one-letter code, or the three letter code, both in accordance with 37 C.P.R. ⁇ 1.822 and established usage.
- consists essentially of (and grammatical variants), as applied to a polypeptide or polynucleotide sequence of this invention, means a polypeptide or polynucleotide that consists of both the recited sequence (e.g., SEQ ID NO) and a total often or less (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) additional amino acids on the N-terminal and/or C-terminal ends of the recited sequence or additional nucleotides on the 5′ and/or 3′ ends such that the function of the polypeptide or polynucleotide is not materially altered.
- the total of ten or less additional amino acids or nucleotides includes the total number of additional amino acids or nucleotides on both ends added together.
- the term “materially altered,” as applied to polypeptides of the invention, refers to an increase or decrease in immunostimulatory activity (e.g., towards a mesothelin-containing tumor) of at least about 50% or more as compared to the activity of a polypeptide consisting of the recited sequence.
- the term “materially altered,” as applied to polynucleotides of the invention refers to an increase or decrease in ability to express an encoded polypeptide of at least about 50% or more as compared to the activity of a polynucleotide consisting of the recited sequence.
- modulate refers to enhancement (e.g., an increase) or inhibition (e.g., a decrease) in the specified level or activity.
- “enhance” or “increase” refers to an increase in the specified parameter of at least about 1.25-fold, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 8-fold, 10-fold, twelve-fold, or even fifteen-fold.
- inhibitor or “reduce” or grammatical variations thereof as used herein refers to a decrease or diminishment in the specified level or activity of at least about 15%, 25%, 35%, 40%, 50%, 60%, 75%, 80%, 90%, 95% or more. In particular embodiments, the inhibition or reduction results in little or essentially no detectible activity (at most, an insignificant amount, e.g., less than about 10% or even 5%).
- contact refers to bringing the polypeptide and the calcium channel in sufficiently close proximity to each other for one to exert a biological effect on the other.
- contact means binding of the polypeptide to the calcium channel.
- treat By the terms “treat,” “treating,” or “treatment of,” it is intended that the severity of the subject's condition is reduced or at least partially improved or modified and that some alleviation, mitigation or decrease in at least one clinical symptom is achieved.
- prevent refers to prevention and/or delay of the onset of a disease, disorder and/or a clinical symptom(s) in a subject and/or a reduction in the severity of the onset of the disease, disorder and/or clinical symptom(s) relative to what would occur in the absence of the methods of the invention.
- the prevention can be complete, e.g., the total absence of the disease, disorder and/or clinical symptom(s).
- the prevention can also be partial, such that the occurrence of the disease, disorder and/or clinical symptom(s) in the subject and/or the severity of onset is less than what would occur in the absence of the present invention.
- a “therapeutically effective” amount as used herein is an amount that provides some improvement or benefit to the subject.
- a “therapeutically effective” amount is an amount that will provide some alleviation, mitigation, or decrease in at least one clinical symptom in the subject.
- the therapeutic effects need not be complete or curative, as long as some benefit is provided to the subject.
- a “prophylactically effective” amount as used herein is an amount that is sufficient to prevent and/or delay the onset of a disease, disorder and/or clinical symptoms in a subject and/or to reduce and/or delay the severity of the onset of a disease, disorder and/or clinical symptoms in a subject relative to what would occur in the absence of the methods of the invention.
- the level of prevention need not be complete, as long as some benefit is provided to the subject.
- mesothelin refers to a differentiation antigen whose expression in normal human tissues is limited to mesothelial cells lining the pleura, pericardium and peritoneum. However, mesothelin is highly expressed in several human cancers, including mesotheliomas, pancreatic adenocarcinomas, ovarian cancers and lung adenocarcinomas.
- the mesothelin gene encodes a precursor protein of 71 kDa that is processed to a 31 kDa shed protein called megakaryocyte potentiating factor (MPF) and a 40 kDa fragment, mesothelin, that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor.
- MPF megakaryocyte potentiating factor
- GPI glycosyl-phosphatidylinositol
- mesothelin-1 is found in pleura, pericardium and peritoneum and on surface epithelium of the ovaries, tonsils, and fallopian tubes (Ordonez, 2003).
- Mesothelin is also overexpressed in mesotheliomas, pancreatic adenocarcinomas, and squamous cell carcinomas of the head, neck, lung, esophagus, cervix, and vulva (Chang and Pastan 1992, 1996; Frierson et al. 2003).
- administering includes any method of delivery of a compound of the present invention, including but not limited to, a pharmaceutical composition or therapeutic agent, into a subject's system or to a particular region in or on a subject, including systemic or localized administration.
- systemic administration means the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
- Parenteral administration and “administered parenterally” means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intralesional, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrasternal injection, oral, epidural, intranasal and infusion.
- amino acid is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally-occurring amino acids.
- exemplary amino acids include naturally-occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing.
- antibody refers to an immunoglobulin, derivatives thereof which maintain specific binding ability, and proteins having a binding domain which is homologous or largely homologous to an immunoglobulin binding domain. These proteins may be derived from natural sources, or partly or wholly synthetically produced.
- An antibody may be monoclonal or polyclonal.
- the antibody may be a member of any immunoglobulin class, including any of the human classes: IgG, IgM, IgA, IgD, IgE and IgY.
- antibodies used with the methods and compositions described herein are derivatives of the IgG class.
- antibody also includes an antibody fragment as defined herein.
- antibody fragment refers to any derivative of an antibody which is less than full-length. In exemplary embodiments, the antibody fragment retains at least a significant portion of the full-length antibody's specific binding ability. Examples of antibody fragments include, but are not limited to, Fab, Fab′, F(ab′) 2 , scFv, Fv, dsFv diabody, and Fd fragments.
- the antibody fragment may be produced by any means. For instance the antibody fragment may be enzymatically or chemically produced by fragmentation of an intact antibody, it may be recombinantly produced from a gene encoding the partial antibody sequence, or it may be wholly or partially synthetically produced.
- the antibody fragment may optionally be a single chain antibody fragment.
- the fragment may comprise multiple chains which are linked together, for instance, by disulfide linkages.
- the fragment may also optionally be a multimolecular complex.
- a functional antibody fragment will typically comprise at least about 50 amino acids and more typically will comprise at least about 200 amino acids.
- Fab fragment refers to a fragment of an antibody comprising an antigen-binding site generated by cleavage of the antibody with the enzyme papain, which cuts at the hinge region N-terminally to the inter-H-chain disulfide bond and generates two Fab fragments from one antibody molecule.
- F(ab′) 2 fragment refers to a fragment of an antibody containing two antigen-binding sites, generated by cleavage of the antibody molecule with the enzyme pepsin which cuts at the hinge region C-terminally to the inter-H-chain disulfide bond.
- Fc fragment refers to the fragment of an antibody comprising the constant domain of its heavy chain.
- Fv fragment refers to the fragment of an antibody comprising the variable domains of its heavy chain and light chain.
- engineered antibody refers to a recombinant molecule that comprises at least an antibody fragment comprising an antigen binding site derived from the variable domain of the heavy chain and/or light chain of an antibody and may optionally comprise the entire or part of the variable and/or constant domains of an antibody from any of the Ig classes (for example IgA, IgD, IgE, IgG, IgM and IgY).
- engineered antibodies include enhanced single chain monoclonal antibodies and enhanced monoclonal antibodies. Examples of engineered antibodies are further described in PCT/US2007/061554, the entire contents of which are incorporated herein by reference.
- An “engineered antibody” includes an engineered antibody fragment, according to the method of the invention, and as defined herein.
- single chain variable fragment or scFv refers to an Fv fragment in which the heavy chain domain and the light chain domain are linked.
- One or more scFv fragments may be linked to other antibody fragments (such as the constant domain of a heavy chain or a light chain) to form antibody constructs having one or more antigen recognition sites.
- multivalent antibody refers to an antibody or engineered antibody comprising more than one antigen recognition site.
- a “bivalent” antibody has two antigen recognition sites, whereas a “tetravalent” antibody has four antigen recognition sites.
- the terms “monospecific,” “bispecific,” “trispecific,” “tetraspecific,” etc., refer to the number of different antigen recognition site specificities (as opposed to the number of antigen recognition sites) present in a multivalent antibody.
- a “monospecific” antibody's antigen recognition sites all bind the same epitope.
- a “bispecific” antibody has at least one antigen recognition site that hinds a first epitope and at least one antigen recognition site that binds a second epitope that is different from the first epitope.
- a “multivalent monospecific” antibody has multiple antigen recognition sites that all bind the same epitope.
- a “multivalent bispecific” antibody has multiple antigen recognition sites, some number of which bind a first epitope and some number of which bind a second epitope that is different from the first epitope.
- epitope refers to the region of an antigen to which an antibody binds preferentially and specifically.
- a monoclonal antibody binds preferentially to a single specific epitope of a molecule that can be molecularly defined.
- multiple epitopes can be recognized by a multispecific antibody.
- an “antigen” refers to a target of an immune response induced by a composition described herein.
- An antigen may be a protein antigen and is understood to include an entire protein, fragment of the protein exhibited on the surface of a virus or an infected, foreign, or tumor cell of a subject, as well as a peptide displayed by an infected, foreign, or tumor cell as a result of processing and presentation of the protein, for example, through the typical MHC class I or II pathways.
- foreign cells include bacteria, fungi, and protozoa.
- bacterial antigens include Protein A (PrA), Protein G (PrG), and Protein L (PrL).
- antigen binding site refers to a region of an antibody or fragment thereof, that specifically binds an epitope on an antigen.
- costimulatory molecule as used herein includes any molecule which is able to either enhance the stimulating effect of an antigen-specific primary T cell stimulant or to raise activity beyond the threshold level required for cellular activation resulting in activation of naive T cells.
- costimulatory molecule can be a membrane-resident receptor protein.
- an effective amount refers to that amount of a compound, material, or composition which is sufficient to effect a desired result.
- An effective amount of a compound can be administered in one or more administrations.
- a “fusion protein” or “fusion polypeptide” refers to a hybrid polypeptide which comprises polypeptide portions from at least two different polypeptides.
- a “fusion protein” as defined herein is a fusion of a first amino acid sequence (protein) comprising, for example a stress protein of the invention, joined to a second amino acid sequence comprising an antibody or fragment thereof that binds specifically to mesothelin or a biotin-binding protein.
- a fusion protein also includes a fusion protein comprising a first amino acid sequence comprising a stress protein, and a second amino sequence comprising a biotin binding protein.
- a fusion protein also includes a fusion protein comprising a first amino acid sequence comprising a stress protein and second amino acid sequence comprising an antibody binding protein.
- a fusion protein also includes a fusion protein comprising a first amino acid sequence comprising an antibody or fragment thereof that binds specifically to mesothelin and a second amino acid sequence comprising a biotin binding protein or
- the portions may be from proteins of the same organism, in which case the fusion protein is said to be “interspecies,” “intergenic,” etc.
- the fusion polypeptide may comprise one or more amino acid sequences linked to a first polypeptide.
- the fusion sequences may be multiple copies of the same sequence, or alternatively, may be different amino acid sequences.
- a first polypeptide may be fused to the N-terminus, the C-terminus, or the N- and C-terminus of a second polypeptide.
- a first polypeptide may be inserted within the sequence of a second polypeptide.
- linker is art-recognized and refers to a molecule (including but not limited to unmodified or modified nucleic acids or amino acids) or group of molecules (for example, 2 or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more) connecting two compounds, such as two polypeptides.
- the linker may be comprised of a single linking molecule or may comprise a linking molecule and at least one spacer molecule, intended to separate the linking molecule and a compound by a specific distance.
- a “spacer molecule” includes any amino acid segment that is not related to the two protein segments it separates. For example, in a fusion consisting of a stress protein and a biotin protein, a spacer molecule would consist of a stretch of amino acids that is unrelated to the proteins comprising the fusion protein.
- a “spacer molecule” useful according to the invention includes neutral ammo acids such as glycine, leucine, valine, alanine, rather than acidic or basic amino acids like aspartate, or arginine respectively.
- Gene construct refers to a nucleic acid, such as a vector, plasmid, viral genome or the like which includes a “coding sequence” for a polypeptide or which is otherwise transcribable to a biologically active RNA (e.g., antisense, decoy, ribozyme, etc.), may be transfected into cells, e.g., in certain embodiments mammalian cells, and may cause expression of the coding sequence in cells transfected with the construct.
- the gene construct may include one or more regulatory elements operably linked to the coding sequence, as well as intronic sequences, polyadenylation sites, origins of replication, marker genes, etc.
- “Host cell” refers to a cell that may be transduced with a specified transfer vector.
- the cell is optionally selected from in vitro cells such as those derived from cell culture, ex vivo cells, such as those derived from an organism, and in vivo cells, such as those in an organism. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- immunogenic refers to the ability of a substance to elicit an immune response.
- An “immunogenic composition” or “immunogenic substance” is a composition or substance which elicits an immune response.
- An “immune response” refers to the reaction of a subject to the presence of an antigen, which may include at least one of the following: antibody production, inflammation, developing immunity, developing hypersensitivity to an antigen, the response of antigen specific lymphocytes to antigen, tolerance, and transplant or graft rejection.
- an immune response to an antigen means, for example, a humoral or cellular response to the antigen.
- a typical immunoassay consists of coating the wells of an immunoassay plate with the antigen (for example by adding recombinant antigen or using a capture anti-antigen antibody) and then adding serial dilutions of patient serum to the wells. After washing away the sera, human immunoglobulins are detected with a conjugated anti-human immunoglobulin.
- a cellular immune response is measured by using a cell-killing assay.
- Patients peripheral blood lymphocytes (PBL) are isolated and added at different ratios to a CHO cell line expressing the antigen (non-transfected CHO cells or CHO cells transfected with a non-antigen construct are used as negative control).
- the antigen expressing CHO cells are transfected with an antigen construct and selected to express antigen on their surface. Killing is measured using radioactivity or release of a specific dye.
- treating a disease means reducing the amount of soluble antigen in the plasma of patients. Treating a disease also refers to reducing the tumor burden as measured by clinical means (for example by ecography or other methods known in the art. Treating a disease also refers to reducing tumor size/mass and/or prevention of metastases.
- the enhanced mesothelin antibody as described herein will reduce (eliminate) the tumor burden in patients diagnosed with, e.g., ovarian cancer, meningiomas, gliomas and metastases to the leptomininges, mesotheliomas, adenocarcinoma of the uterus, malignant mesothelioma, pancreatic cancer, and lung adenocarcinoma.
- isolated polypeptide or “isolated protein” refers to a polypeptide, which may be prepared from recombinant DNA or RNA, or be of synthetic origin, some combination thereof, or which may be a naturally-occurring polypeptide, which (1) is not associated with proteins with which it is normally associated in nature, (2) is isolated from the cell in which it normally occurs, (3) is essentially free of other proteins from the same cellular source, (4) is expressed by a cell from a different species, or (5) does not occur in nature.
- Isolating a polypeptide or protein refers to the process of removing a polypeptide from a tissue, cell or any mixture of polypeptides which are not polypeptides or proteins of interest.
- An isolated polypeptide or protein will be generally free from contamination by other polypeptides or proteins.
- An isolated polypeptide or protein can exist in the presence of a small fraction of other polypeptides or proteins which do not interfere with the utilization of the polypeptide or protein of interest.
- Isolated polypeptides or proteins will generally be at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% pure.
- isolated polypeptides or proteins according to the invention will be at least 98% or 99% pure.
- isolated nucleic acid refers to a polynucleotide of genomic, cDNA, synthetic, or natural origin or some combination thereof, which (1) is not associated with the cell in which the “isolated nucleic acid” is found in nature, or (2) is operably linked to a polynucleotide to which it is not linked in nature.
- Isolating a nucleic acid refers to the process of removing a nucleic acid from a tissue, cell or any mixture of nucleic acids which are not nucleic acids of interest.
- An isolated nucleic acid will be generally free from contamination by other nucleic acids.
- An isolated nucleic acid can exist in the presence of a small fraction of other nucleic acids which do not interfere with the utilization of the nucleic acid of interest.
- Isolated nucleic acids will generally be at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% pure. In one embodiment, isolated nucleic acids according to the invention will be at least 98% or 99% pure.
- Sequence identity or similarity may be determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the sequence identity alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Natl. Acad. Sci.
- PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351 (1987); the method is similar to that described by Higgins & Sharp, CABIOS 5:151 (1989).
- BLAST BLAST algorithm
- WU-BLAST-2 WU-BLAST-2 uses several search parameters, which are preferably set to the default values. The parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity.
- a percentage amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the “longer” sequence in the aligned region.
- the “longer” sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-Blast-2 to maximize the alignment score are ignored).
- percent nucleic acid sequence identity with respect to the coding sequence of the polypeptides disclosed herein is defined as the percentage of nucleotide residues in the candidate sequence that are identical with the nucleotides in the polynucleotide specifically disclosed herein.
- the alignment may include the introduction of gaps in the sequences to be aligned.
- sequences which contain either more or fewer amino acids than the polypeptides specifically disclosed herein it is understood that in one embodiment, the percentage of sequence identity will be determined based on the number of identical amino acids in relation to the total number of amino acids. Thus, for example, sequence identity of sequences shorter than a sequence specifically disclosed herein, will be determined using the number of amino acids in the shorter sequence, in one embodiment. In percent identity calculations relative weight is not assigned to various manifestations of sequence variation, such as insertions, deletions, substitutions, etc.
- Percent sequence identity can be calculated, for example, by dividing the number of matching identical residues by the total number of residues of the “shorter” sequence in the aligned region and multiplying by 100. The “longer” sequence is the one having the most actual residues in the aligned region.
- polypeptide herein, a person of skill the art will recognize that a protein can be used instead, unless the context clearly indicates otherwise.
- a “protein” may also refer to an association of one or more polypeptides.
- nucleic acid refers to a polymeric form nucleotides, either ribonucleotides or deoxynucleotides, a combination of ribo and deoxyribonucleotides or a modified form of either type of nucleotide.
- the terms should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides.
- protein protein
- polypeptide and “peptide” are used interchangeably herein when referring to a gene expression product, e.g., an amino acid sequence as encoded by a coding sequence.
- a “protein” may also refer to an association of one or more proteins, such as an antibody.
- a “protein” may also refer to a protein fragment.
- a protein may be a post-translationally modified protein such as a glycosylated protein.
- a “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more) amino acids are not identical to the amino acids of the corresponding wild type protein.
- a “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more) amino acids have been deleted as compared to the corresponding wild type protein.
- a “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acids have been added and/or substituted as compared the corresponding wild type protein.
- polypeptides specifically disclosed herein will typically tolerate substitutions (e.g., conservative substitutions) in the amino acid sequence and substantially retain biological activity.
- amino acid substitutions may be based on any characteristic known in the art, including the relative similarity or differences of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein, is generally understood in the art and Doolittle. J. Mol. Biol. 157:105 (1982); incorporated herein by reference in its entirety). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, id.), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine ( ⁇ 0.4); threonine ( ⁇ 0.7); serine ( ⁇ 0.8); tryptophan ( ⁇ 0.9); tyrosine ( ⁇ 1.3); proline ( ⁇ 1.6); histidine ( ⁇ 3.2); glutamate ( ⁇ 3.5); glutamine ( ⁇ 3.5); aspartate ( ⁇ 3.5); asparagine ( ⁇ 3.5); lysine ( ⁇ 3.9); and arginine ( ⁇ 4.5).
- the hydropathic index of the amino acid may be considered when modifying the polypeptides specifically disclosed herein.
- hydrophilicity values have been assigned to amino acid residues: arginine ( ⁇ 3.0); lysine ( ⁇ 3.0); aspartate (+3.0 ⁇ 1); glutamate (+3.0 ⁇ 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 ⁇ 1); alanine ( ⁇ 0.5); histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine ( ⁇ 1.8); isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); tryprophan ( ⁇ 3.4).
- hydrophilicity of the amino acid may be considered when identifying additional polypeptides beyond those specifically disclosed herein.
- the term “homolog” is used to refer to a molecule which differs from a naturally occurring polypeptide by minor modifications to the naturally occurring polypeptide, but which significantly retains a biological activity of the naturally occurring polypeptide. Minor modifications include, without limitation, changes in one or a few amino acid side chains, changes to one or a few amino acids (including deletions, insertions, and/or substitutions), changes in stereochemistry of one or a few atoms, and minor derivatizations, including, without limitation, methylation, glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitoylation, amidation, and addition of glycosylphosphatidyl inositol.
- substantially retains refers to a fragment, homolog, or other variant of a polypeptide that retains at least about 50% of the activity of the naturally occurring polypeptide (e.g., binding to or inhibiting a calcium channel), e.g., about 70%, 80%, 90% or more.
- Other biological activities, depending on the polypeptide may include pH sensitivity, enzyme activity, receptor binding, ligand binding, induction of a growth factor, a cell signal transduction event, etc.
- the polypeptide of the invention comprises at least one modified terminus, e.g., to protect the polypeptide against degradation.
- the N-terminus is acetylated and/or the C-terminus is amidated.
- the polypeptide comprises one or two D-alanines at the amino- and/or carboxyl-terminal ends.
- the polypeptide of the invention comprises at least one non-natural amino acid (e.g., 1, 2, 3, or more) or at least one terminal modification (e.g., 1 or 2). In some embodiments, the peptide comprises at least one non-natural amino acid and at least one terminal modification.
- Gene expression product is meant a molecule that is produced as a result of transcription of an entire gene or a portion of a gene.
- Gene products include RNA molecules transcribed from a gene, as well as proteins translated from such transcripts. Proteins may be naturally occurring isolated proteins or may be the product of recombinant or chemical synthesis.
- protein fragment refers to a protein in which amino acid residues are deleted as compared to the reference protein itself, but where the remaining amino acid sequence is usually identical to or substantially identical (for example, 100%, 99%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, or 60% identical) to that of the reference protein. Such deletions may occur at the amino-terminus or carboxy-terminus of the reference protein, or alternatively both. Deletions may also occur internally.
- Fragments typically are at least about 5, 6, 8 or 10 amino acids long, at least about 14 amino acids long, at least about 20, 30, 40 or 50 amino acids long, at least about 75 amino acids long, or at least about 100, 150, 200, 300, 500 or more amino acids long. Fragments may be obtained using proteinases to fragment a larger protein, or by recombinant methods, such as the expression of only part of a protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence).
- a fragment may comprise an enzymatic activity and/or an interaction site of the reference protein to, e.g., a cell receptor.
- a fragment may have immunogenic properties.
- the proteins may include mutations introduced at particular loci by a variety of known techniques, which do not adversely effect, but may enhance, their use in the methods provided herein. A fragment can retain one or more of the biological activities of the reference protein.
- a “functional” peptide or “functional fragment” is one that substantially retains at least one biological activity normally associated with that peptide (e.g., binding to or inhibiting a calcium channel).
- the “functional” peptide or “functional fragment” substantially retains all of the activities possessed by the unmodified peptide.
- substantially retains biological activity, it is meant that the peptide retains at least about 50%, 60%, 75%, 85%, 90%, 95%, 97%, 98%, 99%, or more, of the biological activity of the native polypeptide (and can even have a higher level of activity than the native peptide).
- non-functional peptide is one that exhibits little or essentially no detectable biological activity normally associated with the peptide (e.g., at most, only an insignificant amount, e.g., less than about 10% or even 5%).
- Biological activities such as protein binding and calcium channel inhibitory activity can be measured using assays that are well known in the art and as described herein.
- a “patient” or “subject” or “host” refers to either a human or non-human animal.
- a “subject” includes both avians and mammals, with mammals being preferred.
- avian as used herein includes, but is not limited to, chickens, ducks, geese, quail, turkeys, and pheasants.
- mammal as used herein includes, but is not limited to, humans, bovines, ovines, caprines, equines, felines, canines, lagomorphs, etc. Human subjects include neonates, infants, juveniles, and adults.
- phrases “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- a “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body.
- a pharmaceutically-acceptable material, composition or vehicle such as a liquid or solid filler, diluent, excipient, or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body.
- Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydrox
- a “pharmaceutically-acceptable salt” refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds.
- stress protein also known as a “heat shock protein” or “Hsp,” is a protein that is encoded by a stress gene, and is therefore typically produced in significantly greater amounts upon the contact or exposure of the stressor to the organism.
- stress protein as used herein is intended to include such portions and peptides of a stress protein
- Stress gene also includes homologous genes within known stress gene families, such as certain genes within the Hsp70 and Hsp90 stress gene families, even though such homologous genes are not themselves induced by a stressor.
- stress gene and stress protein as used in the present specification may be inclusive of the other, unless the context indicates otherwise.
- vaccine refers to a substance that elicits an immune response and also confers protective immunity upon a subject.
- Vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- One type of preferred vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication.
- Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked.
- Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”
- expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops, which, in their vector form are not bound to the chromosome.
- plasmid and “vector” are used interchangeably as the plasmid is the most commonly used form of vector.
- vector is intended to include such other forms of expression vectors, such as viral vectors, which serve equivalent functions and which become subsequently known in the art.
- an “immune response” or a “detectable response” includes a detectable level of a response that occurs in a subject that has been exposed to a fusion protein of the invention, as described herein, but not in a subject that has not been exposed to a fusion protein of the invention.
- a “response” that is detected includes but is not limited to an increase in an immune response or an increase in immunogenicity.
- a “detectable response” means a response that is at least 0.01%, 0.5%, 1% or more than the response of a subject that has not been exposed to a fusion protein of the invention.
- a “detectable response” also means a response that is at least 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1000-fold or more greater than the response of a subject that has not been exposed to a fusion protein of the invention.
- immunogenicity refers to the ability, for example the ability of a fusion protein of the invention to induce humoral and/or cell-mediated immune responses.
- immune response refers to a response made by the immune system of an organism to a substance, which includes but is not limited to foreign or self proteins.
- a “mucosal immune response” results from the production of secretory IgA (sIgA) antibodies in secretions that bathe all mucosal surfaces of the respiratory tract, gastrointestinal tract and the genitourinary tract and in secretions from all secretory glands (McGhee, J. R., et al., 1983, Annals NY Acad. Sci. 409).
- sIgA antibodies act to prevent colonization of pathogens on a mucosal surface (Williams, R. C. et al., Science 177, 697 (1972); McNabb, P. C., et al., Ann. Rev. Microbiol. 35, 477 (1981)) and thus act as a first line of defense to prevent colonization or invasion through a mucosal surface.
- the production of sIgA can be stimulated either by local immunization of the secretory gland or tissue or by presentation of an antigen to either the gut-associated lymphoid tissue (GALT or Peyer's patches) or the bronchial-associated lymphoid tissue (BALT; Cebra, J.
- Membranous microfold cells otherwise known as M cells, cover the surface of the GALT and BALT and may be associated with other secretory mucosal surfaces.
- M cells act to sample antigens from the luminal space adjacent to the mucosal surface and transfer such antigens to antigen-presenting cells (dendritic cells and macrophages), which in turn present the antigen to a T lymphocyte (in the case of T-dependent antigens), which process the antigen for presentation to a committed B cell.
- B cells are then stimulated to proliferate, migrate and ultimately be transformed into an antibody-secreting plasma cell producing IgA against the presented antigen.
- an “immune response” may be measured using techniques known to those of skill in the art. For example, serum, blood or other secretions may be obtained from an organism for which an “immune response” is suspected to be present, and assayed for the presence of the above mentioned immunoglobulins using an enzyme-linked immuno-absorbant assay (ELISA; U.S. Pat. No. 5,951,988; Ausubel et al., Short Protocols in Molecular Biology 3.sup.rd Ed. John Wiley & Sons, Inc. 1995).
- ELISA enzyme-linked immuno-absorbant assay
- a statistical test known in the art may be used to determine the difference in measured immunoglobolin levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least ⁇ 0.1, ⁇ 0.05, ⁇ 0.01, ⁇ 0.005, ⁇ 0.001, and even ⁇ 0.0001.
- an “immune response” may be measured using other techniques such as immunohistochemistry using labeled antibodies which are specific for portions of the immunoglobulins raised during the “immune response.”
- Microscopic data obtained by immunohistochemistry may be quantitated by scanning the immunohistochemically stained tissue sample and quantiating the level of staining using a computer software program known to those of skill in the art including, but not limited to NIH Image (National Institutes of Health, Bethesda, Md.).
- a fusion protein of the present invention can be said to stimulate an “immune response” if the quantitative measure of immunohistochemical staining in a subject treated with a fusion protein is statistically different from the measure of immunohistochemical staining detected in a subject not treated with a fusion protein.
- a statistical test known in the art may be used to determine the difference in measured immunohistochemical staining levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least ⁇ 0.1, ⁇ 0.05, ⁇ 0.01, ⁇ 0.005, ⁇ 0.001, and even ⁇ 0.0001.
- fusion proteins comprising an antigen binding domain fused in frame to a modified Mycobacterium tuberculosis heat shock protein 70 (HSP70).
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- the antigen binding domain may be an engineered antibody or antibody mimetic and may comprise, for example, at least one scFv, at least one Fab fragment, at least one Fv fragment, etc. It may be monovalent or it may be multivalent. In embodiments wherein the engineered antibody is multivalent, it may be bivalent, trivalent, tetravalent, etc.
- the multivalent antibodies may be monospecific or multispecific, e.g., bispecific, trispecific, tetraspecific, etc.
- the multivalent antibodies may be in any form, such as a diabody, triabody, tetrabody, etc.
- the engineered antibody is a Tandab.
- the modified HSP70 may be, for example, a fragment of the natural sequence, a modification of the natural amino acid sequence (e.g., a deletion, addition, and/or substitution) or any combination thereof.
- the full-length polypeptide sequence of Mycobacterium tuberculosis HSP70 is shown in SEQ ID NO:1.
- antigen binding domains and modified HSP70 sequences which may be incorporated into the subject fusion polypeptides is provided below.
- An antigen binding domain is any peptide sequence that specifically binds to an antigen and can function as part of a fusion protein.
- the antigen binding domain may be a natural sequence, e.g., an antibody or a fragment thereof, a ficolin, a collection, etc.
- the antigen binding domain may be a synthetic sequence, e.g., an engineered antibody, an antibody-like peptide, an antibody mimetic, an aptamer, etc.
- the antigen binding domain may specifically bind to an antigen of interest.
- the antigen binding domain may specifically bind, e.g., to a tumor cell antigen of a cancer to be treated or prevented by the methods of the present invention.
- antigens include, but are not limited to, for example, antigens of a human sarcoma cell or carcinoma cell, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, ostcogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma,
- the antigen binding domain may specifically bind other antigens, including disease-associated and/or viral antigens.
- the antigen binding domain may specifically bind diseased and/or virally infected cells expressing antigen on their surface.
- infectious diseases that can be treated or prevented by the methods of the present invention are caused by infectious agents.
- infectious agents or antigens derived therefrom, that may be targeted by the antigen binding domain of the present invention include, but are not limited to, viruses, bacteria, fungi, and protozoa.
- the invention is not limited to treating or preventing infectious diseases caused by intracellular pathogens but is intended to include extracellular pathogens as well.
- Many medically relevant microorganisms have been described extensively in the literature, e.g., see C. G. A Thomas, Medical Microbiology, Bailliere Tindall, Great Britain 1983, the entire contents of which is hereby incorporated by reference.
- Retroviridae e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdovidovi
- Retroviral antigens that may be targeted include antigens of both simple retroviruses and complex retroviruses.
- the simple retroviruses include the subgroups of B-type retroviruses, C-type retroviruses and D-type retroviruses.
- An example of a B-type retrovirus is mouse mammary tumor virus (MMTV).
- the C-type retroviruses include subgroups C-type group A (including Rous sarcoma virus (RSV), avian leukemia virus (ALV), and avian myeloblastosis virus (AMV)) and C-type group B (including, murine leukemia virus (MLV), feline leukemia virus (FeLV), murine sarcoma virus (MSV), gibbon ape leukemia virus (GALV), spleen necrosis virus (SNV), reticuloendotheliosis virus (RV) and simian sarcoma virus (SSV)).
- the D-type retroviruses include Mason-Pfizer monkey virus (MPMV) and simian retrovirus type 1 (SRV-1).
- the complex retroviruses include the subgroups of lentiviruses T-cell leukemia viruses and the foamy viruses.
- Lentiviruses include HIV-1, but also include HIV-2, SIV, Visna virus, feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV).
- the T-cell leukemia viruses include HTLV-I, HTLV-II, simian T-cell leukemia virus (STLV), and bovine leukemia virus (BLV).
- the foamy viruses include human foamy virus (HFV), simian foamy virus (SFV) and bovine foamy virus (BFV).
- antigens of RNA viruses that may be bound by an antigen binding domain include, but are not limited to, antigens of the following: members of the family Reoviridae, including the genus Orthoreovirus (multiple serotypes of both mammalian and avian retroviruses), the genus Orbivirus (Bluetongue virus, Eugenangee virus, Kemerovo virus, African horse sickness virus, and Colorado Tick Fever virus), the genus Rotavirus (human rotavirus, Kansas calf diarrhea virus, murine rotavirus, simian rotavirus, bovine or ovine rotavirus, avian rotavirus); the family Picornaviridae, including the genus Enterovirus (poliovirus, Coxsackie virus A and B, enteric cytopathic human orphan (ECHO) viruses, hepatitis A virus, Simian enteroviruses, Murine encephalomyelitis (ME) viruses, Poliovirus muris,
- the family Bunyaviridae including the genus Bunyvirus (Bunyamwera and related viruses, California encephalitis group viruses), the genus Phlebovirus (Sandfly fever Sicilian virus, Rift Valley fever virus), the genus Nairovirus (Crimean-Congo hemorrhagic fever virus, Kenya sheep disease virus), and the genus Uukuvirus (Unkuniemi and related viruses); the family Orthomyxoviridae, including the genus Influenza virus ( Influenza virus type A, many human subtypes);
- the family Bunyaviridae including the genus Bunyvirus (Bunyamwera and related viruses, California encephalitis group viruses), the genus Phlebovirus (Sandfly fever Sicilian virus, Rift Valley fever virus), the genus Nairovirus (Crimean-Congo hemorrhagic fever virus, Kenya sheep disease virus), and the genus Uukuvirus (Uukuniemi and related viruses); the family Orthomyxoviridae, including the genus Influenza virus (Influenza virus type A, many human subtype
- Illustrative DNA viral antigens include, but are not limited to antigens of the family Poxyiridae, including the genus Orthopoxvirus (Variola major, Variola minor, Monkey pox Vaccinia, Cowpox, Buffalopox, Rabbitpox, Ectromelia), the genus Leporipoxvirus (Myxoma, Fibroma), the genus Avipoxvirus (Fowlpox, other avian poxvirus), the genus Capripoxvirus (sheeppox, goatpox), the genus Suipoxvirus (Swinepox), the genus Parapoxvirus (contagious postular dermatitis virus, pseudocowpox, bovine papular stomatitis virus); the family Inidoviridae (African swine fever virus, Frog viruses 2 and 3, Lymphocystis virus of fish); the family Herpesviridae, including the
- Natural antibodies are themselves dimers, and thus, bivalent. If two hybridoma cells producing different antibodies are artificially fused, some of the antibodies produced by the hybrid hybridoma are composed of two monomers with different specificities. Such bispecific antibodies can also be produced by chemically conjugating two antibodies. Natural antibodies and their bispecific derivatives are relatively large and expensive to produce. The constant domains of mouse antibodies are also a major cause of the human anti-mouse antibody (HAMA) response, which prevents their extensive use as therapeutic agents. They can also give rise to unwanted effects due to their binding of Fc-receptors. For these reasons, molecular immunologists have been concentrating on the production of the much smaller Fab- and Fv-fragments in microorganisms.
- HAMA human anti-mouse antibody
- the Fv-fragment is much less stable, and a peptide linker may therefore be introduced between the heavy and light chain variable domains to increase stability.
- This construct is known as a single chain Fv (scFv)-fragment.
- a disulfide bond is sometimes introduced between the two domains for extra stability.
- scFv-based antibodies have been produced by fusion to extra polymerizing domains such as the streptavidin monomer that forms tetramers, and to amphipathic alpha helices. However, these extra domains can increase the immunogenicity of the tetravalent molecule.
- Bivalent and bispecific antibodies can be constructed using only antibody variable domains.
- a fairly efficient and relatively simple method is to make the linker sequence between the V H and V L domains so short that they cannot fold over and bind one another. Reduction of the linker length to 3-12 residues prevents the monomeric configuration of the scFv molecule and favors intermolecular V H -V L pairings with formation of a 60 kDa non-covalent scFv dimer “diabody” (Holliger et al., 1993, Proc. Natl. Acad., Sci. USA 90, 6444-6448).
- the diabody format can also be used for generation of recombinant bispecific antibodies, which are obtained by the noncovalent association of two single-chain fusion products, consisting of the V H domain from one antibody connected by a short linker to the V L domain of another antibody. Reducing the linker length still further below three residues can result in the formation of trimers (“triabody,” about 90 kDa) or tetramers (“tetrabody,” about 120 kDa) (Le Gall et al., 1999, FEBS Letters 453, 164-168).
- trimers about 90 kDa
- tetramers about 120 kDa
- multivalent engineered antibodies that may comprise the subject fusion polypeptides are described in Lu, et al., 2003, J. Immunol. Meth. 279:219-232 (di-diabodies or tetravalent bispecific antibodies); US Published Application 20050079170 (multimeric Fv molecules or “flexibodies”); and WO99/57150 and Kipriyanov, et al., 1999, J. Mol. Biol. 293:41-56 (tandem diabodies, or “Tandabs”).
- any of the above-described multivalent engineered antibodies may be developed by one of skill in the art using routine recombinant DNA techniques, for example as described in PCT international Application No. PCT/US86/02269; European Patent Application No. 184,187; European Parent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No. 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol.
- non-human antibodies are “humanized” by linking the non-human antigen binding domain with a human constant domain (e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. U.S.A., 81, pp 6851-55 (1984)).
- the antigen recognition sites or entire variable regions of the engineered antibodies may be derived from one or more parental antibodies directed against mesothelin.
- the parental antibodies can include naturally occurring antibodies or antibody fragments, antibodies or antibody fragments adapted from naturally occurring antibodies, antibodies constructed de novo using sequences of antibodies or antibody fragments known to be specific for an antigen of interest. Sequences that may be derived from parental antibodies include heavy and/or light chain variable regions and/or CDRs, framework regions or other portions thereof.
- Multivalent, multispecific antibodies may contain a heavy chain comprising two or more variable regions and/or a light chain comprising one or more variable regions wherein at least two of the variable regions recognize different epitopes on the same antigen.
- Candidate engineered antibodies for inclusion in the fusion polypeptides, or the fusion polypeptides themselves, may be screened for activity using a variety of known assays. For example, screening assays to determine binding specificity are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al., (Eds.), ANTIBODIES: A LABORATORY MANUAL; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988, Chapter 6.
- any suitable stress protein can be used in the fusion polypeptides of the present invention.
- the stress protein preferably is HSP70, e.g., from M. tuberculosis.
- a “heat shock protein” is encoded by a “heat shock gene” or a stress gene, refers to the protein product of a gene that is activated or otherwise detectably upregulated due to the contact or exposure of an organism (containing the gene) to a stressor, such as heat shock, hypoxia, glucose deprivation, heavy metal salts, inhibitors of energy metabolism and electron transport, and protein denaturants, or to certain benzoquinone ansamycins. Nover L., Heat Shock Response, CRC Press, Inc., Boca Raton, Fla. (1991). “Heat shock protein” also includes homologous proteins encoded by genes within known stress gene families, even though such homologous genes are not themselves induced by a stressor.
- a “heat shock protein fusion” refers to a heat shock protein or portion thereof, linked to an antigen binding domain.
- Heat shock treatment involves exposure of cells or organisms to temperatures that are one to several degrees Celsius above the temperature to which the cells are adapted. In coordination with the induction of such genes, the levels of corresponding stress proteins increase in stressed cells.
- a heat shock protein may be C- or N-terminally joined to a antigen-specific antigen binding domain to generate a heat shock protein fusion.
- a heat shock protein fusion comprising a heat shock protein and an antigen binding domain is capable of stimulating humoral and/or cellular immune responses, including CD8 cytotoxic T cell (CTL) responses, to the antigen.
- CTL cytotoxic T cell
- heat shock proteins which may be used according to the invention include BiP (also referred to as grp78), Hsp10, Hsp20-30, Hsp60 hsp70, hsc70, gp96 (grp94), hsp60, hsp40, and Hsp100-200, Hsp100, Hsp90, and members of the families thereof.
- Especially preferred heat shock proteins are BiP, gp96, and hsp70, as exemplified below.
- a particular group of heat shock proteins includes Hsp90, Hsp70, Hsp60, Hsp20-30, further preferably Hsp70 and Hsp60. Most preferred is a member of the hsp70 family.
- Hsp70 and Hsp60 proteins with molecular sizes of about 70 and 60 kDa, respectively, that are commonly referred to as Hsp70 and Hsp60, respectively. These and other specific stress proteins and the genes encoding them are discussed further below.
- Hsp70 and Hsp60 typically represent about 1-3% of cell protein based on the staining pattern using sodium dodecyl sulfate polyacrylamide gel electrophoresis and the stain Coomassie blue, but accumulate to levels as high as 25% under stressful conditions. Stress proteins appear to participate in important cellular processes such as protein synthesis, intracellular trafficking, and assembly and disassembly of protein complexes.
- Hsp90 and Hsp70 exhibit 50% or higher identity at the amino acid level and share many similarities at non-identical positions. It is noted that similar or higher levels of homology exist between different members of a particular stress protein family within species.
- the stress proteins we among the major determinants recognized by the host immune system in the immune response to infection by Mycobacterium tuberculosis and Mycobacterium lepr ae. Young. R. A. and Elliott, T. J., Stress Proteins, Infection, And immune Surveillance, Cell 50:58 (1989). Further, some rat arthritogenic T cells recognize Hsp60 epitopes, Van Eden, W. et al., Nature 331:171-173 (1988).
- Hsp70 examples include Hsp72 and Hsc73 from mammalian cells, DnaK from bacteria, particularly mycobacteria such as Mycobacterium leprae, Mycobacterium tuberculosis , and Mycobacterium bovis (such as Bacille-Calmette Guerin: referred to herein as Hsp71), DnaK from Escherichia coli , yeast, and other prokaryotes, and BiP and Grp78.
- Hsp70 is capable of specifically binding ATP as well as unfolded polypeptides and peptides, thereby participating in protein folding and unfolding as well as in the assembly and disassembly of protein complexes.
- the stress proteins of the present invention are obtained from enterobacteria, mycobacteria (particularly M. leprae, M. tuberculosis, M. vaccae, M. smegmatis and M. bovis ), E. coli , yeast, Drosophila, vertebrates, avians, chickens, mammals, rats, mice, primates, or humans.
- Naturally occurring or recombinantly derived mutants of heat shock proteins may be used according to the invention, including fragments and modified sequences.
- the present invention provides for the use of heat shock proteins mutated so as to facilitate their secretion from the cell (for example having mutation or deletion of an element which facilitates endoplasmic reticulum recapture, such as KDEL (SEQ ID NO:14) or its homologues; such mutants are described in PCT Application No. PCT/US96/13233 (WO 97/06685), which is incorporated herein by reference.
- the stress proteins used are isolated stress proteins, which means that the stress proteins have been selected and separated from the host cell in which they were produced. Such isolation can be carried out as described herein and using routine methods of protein isolation known in the art.
- the stress proteins may be in the form of acidic or basic salts, or in neutral form.
- individual amino acid residues may be modified by oxidation or reduction.
- various substitutions, deletions, or additions may be made to the amino acid or nucleic acid sequences, the net effect of which is to retain or further enhance the increased biological activity of the stress protein.
- Portions of stress proteins or peptides obtained from stress proteins may be used in the fusion polypeptides, provided such portions or peptides include the epitopes involved with enhancing the immune response. Portions of stress proteins may be obtained by fragmentation using proteinases, or by recombinant methods, such as the expression of only part of a stress protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence). Peptides may also be produced by such methods, or by chemical synthesis.
- the stress proteins may include mutations introduced at particular loci by a variety of known techniques.
- compositions provided herein may have individual amino acid residues that are modified by oxidation or reduction. Furthermore, various substitutions, deletions, or additions may be made to the amino acid or nucleic acid sequences, the net effect of which is to retain or further enhance the increased biological activity of the heat shock protein. Due to codon degeneracy, for example, there may be considerable variation in nucleotide sequences encoding the same amino acid sequence.
- heat shock protein is intended to encompass fragments of heat shock proteins obtained from heat shock proteins, provided such fragments include the epitopes involved with enhancing the immune response to mesothelin. Fragments of heat shock proteins may be obtained using proteinases, or by recombinant methods, such as the expression of only part of a stress protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence).
- the heat shock proteins may include mutations introduced at particular loci by a variety of known techniques to enhance its effect on the immune system. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989); Drinkwater and Klinedinst Proc. Natl. Acad. Sci. USA 83:3402-3406 (1986); Liao and Wise, Gene 88:107-111 (1990); Horwitz et al., Genome 3:112-117 (1989).
- the heat shock proteins used in the present invention are isolated heat shock proteins, which means that the heat shock proteins have been selected and separated from the host cell in which they were produced. Such isolation can be carried out as described herein and using routine methods of protein isolation known in the art. Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.. (1982); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989); Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182, Academic Press, Inc., San Diego, Calif. (1990).
- One aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of less than 200 amino acids, wherein the HSP70 fragment comprises a minimal HSP70 sequence.
- HSP70 fragment may comprise, consist essentially of, or consist of the minimal HSP sequence.
- the minimal HSP70 sequence refers to a fragment of HSP70 that provides all of the biological functions desired in the fusion proteins of the present invention.
- the minimal HSP70 sequence is at least 40 amino acids in length, e.g., at least about 40, 50, 60, 70, 80, 90, 100, 110, or 120 amino acids in length.
- the minimal HSP70 sequence is less than 400 amino acids in length, e.g., less than about 400, 350, 300, 250, 200, 190, 180, 170, 160, 150, 140, or 130 amino acids in length.
- the minimal HSP70 sequence comprises, consists essentially of, or consists of the fragment from about amino acid residues 368 (e.g., plus or minus 20, 15, 10, or 5 residues) to about amino acid residue 495 (e.g., plus or minus 20, 15, 10, or 5 residues) of M. tuberculosis HSP70 (SEQ ID NO:1).
- the minimal HSP70 region is about amino acid residues 368-495 or about 368-479 of SEQ ID NO:1.
- the fusion protein comprising the minimal HSP sequence comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:3.
- the underline indicates the linker between the V H and V L domains of the scFv, the italics indicates the linker between the scFv and the HSP70, and the bold indicates the CD94 domain.
- the minimal HSP sequence comprises a modified CD94 domain, i.e., the amino acid sequence of the CD94 domain is modified.
- CD94 domain refers to amino acid residues 422-435 of Mbt HSP70 (SEQ ID NO:1) having the sequence AAHNKLLGSFELTG (SEQ ID NO:15) or the equivalent sequence in other HSP70 proteins.
- the modified CD94 domain consists of an amino acid sequence selected from:
- the modified CD94 domain consists of the amino acid sequence TKENNLLGRFELSG (SEQ ID NO:19).
- the fusion protein comprising the minimal HSP sequence with the CD94 domain sequence TKENNLLGRFELSG (SEQ ID NO:19) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:5.
- the modified CD94 domain consists of the amino acid sequence TKDNNLLGRFELSG (SEQ ID NO:20).
- the fusion protein comprising the minimal HSP sequence with the CD94 domain sequence TKDNNLLGRFELSG (SEQ ID NO:20) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:7.
- the minimal HSP70 sequence may contain one or more amino acid additions, deletions or substitutions that enhance the effectiveness of the fusion protein of the invention.
- the minimal HSP70 sequence comprises a V410F substitution (numbering based on SEQ ID NO:1), which decreases the peptide binding activity of HSP70, thereby minimizing non-specific antigen delivery.
- the fusion protein further comprises a linker between the antibody binding domain and the HSP70 fragment.
- linker comprises, consists essentially of, or consists of an amino acid sequence selected from the group consisting of: GGSSRSS (SEQ ID NO:21), (GGGSGGG), (SEQ ID NO:22), GGGGSGGGGSGGGGS (SEQ ID NO:23), GGSSRSSSSGGGGSGGGG (SEQ ID NO:24), and GGSSESSSSGGGGSGGGG (SEQ ID NO:25).
- the linker is GGSRSSSSGGGGSGGGG (SEQ ID NO:24).
- the fusion protein comprising the minimal HSP70 sequence and the linker GGSSRSSSSGGGGSGGGG (SEQ ID NO:24) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:9.
- the linker is GGSSESSSSGGGGSGGGG (SEQ ID NO:25).
- the fusion protein comprising the minimal HSP70 sequence and the linker GGSSESSSSGGGGSGGGG (SEQ ID NO:25) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:11.
- a further aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of at least 100 amino acids and comprising no more than amino acids 1-495 of SEQ ID NO:1.
- HSP70 heat shock protein 70
- This fragment does not comprise the C-terminal lid sequence, the deletion providing enhanced biological activity for the fusion proteins of the invention.
- the HSP70 lid deletion fragment of this aspect of the invention has a maximum length of 495 amino acid residues starting with amino acid 1 or the natural M. tuberculosis amino acid sequence.
- the HSP lid deletion fragment may have a length of less than about 495, 490, 480, 470, 460, 450, 425, 400, 375, 350, 325, or 300 amino acid residues.
- the HSP fragment may have a length of at least about 100, 125, 150, 175, 200, 225, 250, 275, or 300 amino acid residues.
- the HSP70 lid deletion fragment may contain one or more amino acid additions, deletions or substitutions that enhance the effectiveness of the fusion protein of the invention.
- the HSP70 lid deletion fragment comprises one or more of the modifications (a) F176A or b) R318A (in the LPS binding site in subdomain II to alter LPS binding) or c) V410F (in the peptide binding domain to alter peptide binding) in any combination (numbering based on SEQ ID NO:1).
- the fusion protein comprising the HSP70 lid deletion fragment and additional modifications comprises, consists essentially of, or consists of the amino acid sequence of SEQ ID NOS:12, 13, or 31.
- the Treg domain (amino acid residues 141-155) may be modified, e.g., to one of VLRIVNEPMAAALAY (SEQ ID NO:32), VLRIVNEPTAAALAF (SEQ ID NO:33), or VLRIVNEPMAAALAF (SEQ ID NO:34).
- the HSP70 lid deletion fragment further comprises a modified CD94 domain as described above.
- An additional aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) comprising, consisting essentially of, or consisting of the amino acid sequence of SEQ ID NO:26 (VIC-008 sequence from provisional).
- HSP70 Mycobacterium tuberculosis heat shock protein 70
- the modified HSP70 of SEQ ID NO:26 or SEQ ID NO:27 may comprise one or more further modifications as described above, e.g. the CD94 domain and/or Treg domain and or LPS domain and/or peptide binding domain modifications and/or linker sequences described above.
- Another aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a chimeric M. tuberculosis HSP70, wherein the chimeric HSP70 comprises a backbone of a human HSP70 amino acid sequence wherein the beta sheet structure (e.g., about residue 367 to about residue 479 (e.g., plus or minus 20, 15, 10, or 5 residues)) (numbering based on SEQ ID NO:29)) is substituted with the beta sheet structure (e.g., about residue 395 to about residue 541 (e.g., plus or minus 20, 15, 10, or 5 residues)) of M. tuberculosis HSP70 (numbering based on SEQ ID NO:1).
- the beta sheet structure e.g., about residue 367 to about residue 479 (e.g., plus or minus 20, 15, 10, or 5 residues)
- the beta sheet structure e.g., about residue 395 to about residue 541 (e.g.,
- the human HSP70 backbone may be from any known human HSP70 family member, e.g., HSP70-1a, HSP70-1b, HSP70-1t, HSP70-2, HSP70-5, HSP70-6, HSC70, and HSP70-9.
- All of the modified HSP70 proteins described above may be fused to an antigen binding domain, which may be an engineered antibody or fragment thereof.
- the antigen binding domain is an scFv.
- the antigen binding domain may bind any antigen of interest.
- the antigen is a cancer antigen.
- the antigen binding domain binds specifically to mesothelin, e.g., a scFv that binds specifically to mesothelin.
- mesothelin antibodies include those disclosed in WO 2009/068204, incorporated by reference in its entirety.
- the scFv that binds specifically to mesothelin comprises, consists essentially of, or consists of the amino acid sequence of SEQ ID NO:30.
- the fusion proteins of the invention may further comprise a leader sequence on the N-terminus, e.g., such that the fusion protein is secreted from the host cell in which it is expressed.
- the leader sequence may be any suitable leader sequence, e.g., from a secreted protein that is native to the host.
- the leader sequence is a plant protein leader sequence, e.g., from Arabidopsis extensin, Nicotiana extensin, barley alpha amylase, or PR1A.
- a further aspect of the invention relates to a composition comprising one or more of the fusion proteins of the present invention.
- the composition is a pharmaceutical composition comprising an effective amount of the fusion protein of the invention and a pharmaceutically acceptable carrier.
- the composition is an immunogenic composition or vaccine comprising the fusion protein of the invention.
- compositions and methods for making fusion proteins according to the invention are provided also are compositions and methods for making fusion proteins according to the invention.
- Any of the fusion proteins described herein can be produced by recombinant means.
- a nucleic acid encoding a HSP70 protein can be joined to either end of a nucleic acid sequence encoding an antigen binding domain, such that the protein-coding sequences are sharing a common translational reading frame and can be expressed as a fusion protein including, for example, the antigen binding domain and the HSP70 protein.
- the combined sequence is inserted into a suitable vector chosen based on the expression features desired and the nature of the host cell.
- the nucleic acid sequences are assembled in a vector suitable for protein expression in CHO cells.
- the fusion protein can be purified by routine biochemical separation techniques or by immunoaffinity methods using an antibody to one of the components of the fusion protein.
- the selected vector can add a tag to the fusion protein sequence, e.g., an oligohistidine tag, permitting expression of a tagged fusion protein that can be purified by affinity methods using an antibody or other material having an appropriately high affinity for the tag.
- the fusion protein can be expressed and purified from mammalian cells.
- the mammalian expression vector (including fusion protein-coding sequences) can be administered to a subject to direct expression of a fusion protein according to the method of the invention in the subjects cells.
- the fusion protein can be expressed and purified from cultures of the cells. If a vector suitable for expression in plants is used, the fusion protein can be expressed and purified from transgenic plants expressing the protein.
- a nucleic acid encoding the fusion protein of the invention can also be produced chemically and then inserted into a suitable vector for fusion protein production and purification or administration to a subject. Finally, a fusion protein can also be prepared chemically.
- fusion genes are well known in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
- the fusion gene may be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments may be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which may subsequently be annealed to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992).
- an isolated nucleic acid comprising a fusion gene of a gene encoding at least one engineered antibody and a gene encoding at least one stress protein.
- the isolated nucleic acid may be codon-optimized to maximize expression in a host cell.
- the nucleic acid may be provided in a vector comprising a nucleotide sequence encoding an engineered fusion protein according to the invention, and operably linked to at least one regulatory sequence.
- a vector comprising a nucleotide sequence encoding an engineered fusion protein according to the invention, and operably linked to at least one regulatory sequence.
- the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed.
- the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should be considered.
- Such vectors may be administered in any biologically effective carrier, e.g., any formulation or composition capable of effectively transfecting cells either ex vivo or in vivo with genetic material encoding a chimeric polypeptide.
- Approaches include insertion of the nucleic acid into viral vectors including recombinant retroviruses, adenoviruses, adeno-associated viruses, human immunodeficiency viruses, and herpes simplex viruses-1, or recombinant bacterial or eukaryotic plasmids.
- Viral vectors may be used to transfect cells directly; plasmid DNA may be delivered alone with the help of, for example, cationic liposomes (lipofectin) or derivatized (e.g., antibody conjugated), polylysine conjugates, gramicidin S, artificial viral envelopes or other such intracellular carriers.
- Nucleic acids may also be directly injected. Alternatively, calcium phosphate precipitation may be carried out to facilitate entry of a nucleic acid into a cell.
- the subject nucleic acids may be used to cause expression and over-expression of a fusion protein of the invention in cells propagated in culture, e.g., to produce fusion proteins or polypeptides.
- the host cell may be any prokaryotic or eukaryotic cell.
- a HSP70 fusion may be expressed in bacterial cells, such as E. coli , insect cells (baculovirus), yeast, insect, plant, or mammalian cells. In those instances when the host cell is human, it may or may not be in a live subject.
- Other suitable host cells are known to those skilled in the art.
- the host cell may be supplemented with tRNA molecules not typically found in the host so as to optimize expression of the polypeptide. Other methods suitable for maximizing expression of the fusion polypeptde will be known to those in the art.
- a cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art.
- a fusion polypeptide may be secreted and isolated from a mixture of cells and medium comprising the polypeptide. Alternatively, a fusion polypeptide may be retained cytoplasmically and the cells harvested, lysed and the protein isolated.
- a fusion polypeptide may be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for particular epitopes of a fusion.
- a nucleotide sequence encoding all or part of a fusion protein of the invention may be used to produce a recombinant form of a protein via microbial or eukaryotic cellular processes.
- Ligating the sequence into a polynucleotide construct, such as an expression vector, and transforming or transfecting into hosts, either eukaryotic (yeast, avian, insect, plant, or mammalian) or prokaryotic (bacterial cells), are standard procedures. Similar procedures, or modifications thereof, may be employed to prepare recombinant fusion polypeptides by microbial means or tissue-culture technology in accord with the subject invention.
- Expression vehicles for production of a recombinant protein include plasmids and other vectors.
- suitable vectors for the expression of a fusion polypeptide include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids, and pUC-derived plasmids for expression in prokaryotic cells, such as E. coli.
- the nucleic acid is a fusion protein operably linked to a bacterial promoter, e.g., the anaerobic E. coli , NirB promoter or the E. coli lipoprotein lip promoter, described, e.g., in Inouye et al. (1985) Nucl. Acids Res. 13:3101; Salmonella page promoter (Miller et al., supra), Shigella ent promoter (Schmitt and Payne, J. Bacteriol. 173:816 (1991)), the tet promoter on Tn10 (Miller et al., supra), or the etx promoter of Vibrio cholera. Any other promoter can be used.
- a bacterial promoter e.g., the anaerobic E. coli , NirB promoter or the E. coli lipoprotein lip promoter, described, e.g., in Inouye et al. (1985) Nucl. Acid
- the bacterial promoter can be a constitutive promoter or an inducible promoter.
- An exemplary inducible promoter is a promoter which is inducible by iron or in non-limiting conditions. In fact, some bacteria, e.g., intracellular organisms, are believed to encounter iron-limiting conditions in the host cytoplasm. Examples at iron-regulated promoters of FepA and TonB are known in the art and are described, e.g., in the following references: Headley, V. et al. (1997) Infection & Immunity 65:818; Ochsner, U. A. et al. (1995) Journal of Bacteriology 177:7194; Hunt, M. D. et al.
- a plasmid preferably comprises sequences required for appropriate transcription of the nucleic acid in bacteria, e.g., a transcription termination signal.
- the vector can further comprise sequences encoding factors allowing for the selection of bacteria comprising the nucleic acid of interest, e.g., gene encoding a protein providing resistance to an antibiotic, sequences required for the amplification of the nucleic acid, e.g., a bacterial origin of replication.
- the powerful phage T5 promoter that is recognized by E. coli RNA polymerase is used together with a lac operator repression module to provide tightly regulated, high level expression or recombinant proteins in E. coli .
- protein expression is blocked in the presence of high levels of lac repressor.
- the DNA is operably linked to a first promoter and the bacterium further comprises a second DNA encoding a first polymerase which is capable of mediating transcription from the first promoter, wherein the DNA encoding the first polymerase is operably linked to a second promoter.
- the second promoter is a bacterial promoter, such as those delineated above.
- the polymerase is a bacteriophage polymerase, e.g., SP6, T3, or T7 polymerase and the first promoter is a bacteriophage promoter, e.g., an SP6, T3, or T7 promoter, respectively.
- Plasmids comprising bacteriophage promoters and plasmids encoding bacteriophage polymerases can be obtained commercially, e.g., from Promega Corp. (Madison, Wis.) and InVitrogen (San Diego, Calif.), or can be obtained directly from the bacteriophage using standard recombinant DNA techniques (J. Sambrook, E. Fritsch, T.
- the bacterium further comprises a DNA encoding a second polymerase which is capable of mediating transcription from the second promoter, wherein the DNA encoding the second polymerase is operably linked to a third promoter.
- the third promoter may be a bacterial promoter.
- more than two different polymerases and promoters could be introduced in a bacterium to obtain high levels of transcription.
- the use of one or more polymerases for mediating transcription in the bacterium can provide a significant increase in the amount of polypeptide in the bacterium relative to a bacterium in which the DNA is directly under the control of a bacterial promoter.
- the selection of the system to adopt will vary depending on the specific use, e.g., on the amount of protein that one desires to produce.
- a nucleic acid encoding a fusion protein of the invention is introduced into a host cell, such as by transfection, and the host cell is cultured under conditions allowing expression of the fusion polypeptide.
- Methods of introducing nucleic acids into prokaryotic and eukaryotic cells are well known in the art. Suitable media for mammalian and prokaryotic host cell culture are well known in the art.
- the nucleic acid encoding the subject fusion polypeptide is under the control of an inducible promoter, which is induced once the host cells comprising the nucleic acid have divided a certain number of times.
- the host cell may include a plasmid which expresses an internal T7 lysozyme, e.g., expressed from plasmid pLysSL. Lysis of such host cells liberates the lysozyme which then degrades the bacterial membrane.
- sequences that may be included in a vector for expression in bacterial or other prokaryotic cells include a synthetic ribosomal binding site; strong transcriptional terminators, e.g., t 0 from phage lambda and t 4 from the rmB operon in E. coli , to prevent read through transcription and ensure stability of the expressed polypeptide; an origin of replication, e.g., ColE1; and beta-lactamase gene, conferring ampicillin resistance.
- Other host cells include prokaryotic host cells. Even more preferred host cells are bacteria, e.g., E. coli . Other bacteria that can be used include Shigella spp., Salmonella spp., Listeria spp., Rickettsia spp., Yersinia spp., Escherichia spp., Klebsiella spp., Bordetella spp., Neisseria spp., Aeromonas spp., Francisella spp., Corynebacterium spp., Citrobacter spp., Chlamydia spp., Hemophilus spp., Brucella spp., Mycobacterium spp., Legionella spp., Rhodococcus spp., Pseudomonas spp., Helicobacter spp., Vibrio spp., Bacillus spp., and Erysipel
- YEP24, YIP5, YEP51, YEP52, pYES2, and YRP17 are cloning and expression vehicles used in the introduction of genetic constructs into S. cerevisiae (see, for example, Broach et al., (1983) in Experimental Manipulation of Gene Expression, ed. M. Inouye Academic Press, p. 83).
- These vectors may replicate in E. coli due to the presence of the pBR322 ori, and in S. cerevisiae due to the replication determinant of the yeast 2 micron plasmid.
- drug resistance markers such as amplicillin may be used.
- mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells.
- the pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, PMSG, pSVT7, pko-neo and pHyg derived vectors ate examples of mammalian expression vectors suitable for transfection of eukaryotic cells.
- vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells.
- derivatives of viruses such as the bovine papilloma virus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells.
- BBV-1 bovine papilloma virus
- pHEBo Epstein-Barr virus
- the various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art.
- suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures see Molecular Cloning A Laboratory Manual, 2nd Ed., ed.
- baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the ⁇ -gal comprising pBlueBac III).
- in vitro translation systems are, generally, a translation system which is a cell-free extract comprising at least the minimum elements necessary for translation of an RNA molecule into a protein.
- An in vitro translation system typically comprises at least ribosomes, tRNAs, initiator methionyl-tRNAMet, proteins or complexes involved in translation, e.g., eIF2, eIF3, the cap-binding (CB) complex, comprising the cap-binding protein (CBP) and eukaryotic initiation factor 4F (eIF4F).
- CBP cap-binding protein
- eIF4F eukaryotic initiation factor 4F
- in vitro translation systems examples include eukaryotic lysates, such as rabbit reticulocyte lysates, rabbit oocyte lysates, human cell lysates, insect cell lysates and wheat germ extracts. Lysates are commercially available from manufacturers such as Promega Corp., Madison, Wis.; Stratagene La Jolla, Calif.; Amersham, Arlington Heights, Ill.; and GIBCO/BRL, Grand Island, N.Y. In vitro translation systems typically comprise macromolecules, such as enzymes, translation, initiation and elongation factors, chemical reagents, and ribosomes. In addition, an in vitro transcription system may be used.
- eukaryotic lysates such as rabbit reticulocyte lysates, rabbit oocyte lysates, human cell lysates, insect cell lysates and wheat germ extracts. Lysates are commercially available from manufacturers such as Promega Corp., Madison, Wis.; Stratagene La Jolla, Calif
- Such systems typically comprise at least an RNA polymerase holoenzyme, ribonucleotides and any necessary transcription initiation, elongation and termination factors.
- An RNA nucleotide for in vitro translation may be produced using methods known in the art. In vitro transcription and translation may be coupled in a one-pot reaction to produce proteins from one or more isolated DNAs.
- a start codon AGT
- methionine aminopeptidase MAP
- the expression of a fusion protein may be driven by any of a number of promoters, e.g., a promoter suitable for expression in tobacco.
- a promoter suitable for expression in tobacco e.g., viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., 1984, Nature, 310:511-514), or the coat protein promoter of TMV (Takamatsu et al., 1987, EMBO J., 3:1671-1680; Broglie et al., 1984, Science, 224:838-843); or heat shock promoters, e.g., soybean hsp 17.5-E or hsp 17.3-B (Gurley et al., 1986, Mol.
- An alternative expression system which can be used to express a polypeptide tag or fusion protein comprising a polypeptide tag is an insect system.
- Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes.
- the virus grows in Spodoptera frugiperda cells.
- the PGHS-2 sequence may be cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
- the DNA encoding fusion protein is cloned into the pBlueBacIII recombinant transfer vector (Invitrogen, San Diego, Calif.) downstream of the polyhedrin promoter and transfected into Sf9 insect cells (derived from Spodoptera frugiperda Spodoptera frugiperda ovarian cells, available from Invitrogen, San Diego, Calif.) to generate recombinant virus.
- pBlueBacIII recombinant transfer vector Invitrogen, San Diego, Calif.
- Sf9 insect cells derived from Spodoptera frugiperda Spodoptera frugiperda ovarian cells, available from Invitrogen, San Diego, Calif.
- any the fusion proteins of the invention are produced separately and then linked, e.g., covalently linked, to each other.
- an antigen binding domain and a modified HSP70 protein are produced separately in vitro, purified, and mixed together under conditions under which a tag, for example, a biotin or antibody binding protein, will be able to be linked to the polypeptide of interest.
- the HSP70 protein and/or the antigen binding domain can be obtained (isolated) from a source in which they are known to occur, can be produced and harvested from cell cultures, can be produced by cloning and expressing a gene encoding the desired HSP70 protein or antigen binding domain, or can be synthesized chemically.
- a nucleic acid sequence encoding the desired HSP70 protein or antigen binding domain, or any component of the fusion proteins of the invention can be synthesized chemically.
- Such mixtures of conjugated proteins may have properties different from single fusion proteins.
- Linkers may be used to conjugate the components of an fusion protein according to the invention.
- Linkers include chemicals able to react with a defined chemical group of several, usually two, molecules and thus conjugate them.
- the majority of known cross-linkers react with amine, carboxyl, and sulfhydryl groups.
- the choice of target chemical group is crucial if the group may be involved in the biological activity of the polypeptides to be conjugated.
- maleimides which react with sulfhydryl groups, may inactivate Cys-comprising peptides or proteins that require the Cys to bind to a target.
- Linkers may be homofunctional (comprising reactive groups of the same type), heterofunctional (comprising different reactive groups), or photoreactive (comprising groups that become reactive on illumination.
- Linker molecules may be responsible for different properties of the conjugated compositions.
- the length of the linker should be considered in light of molecular flexibility during the conjugation step, and the availability of the conjugated molecule for its target (cell surface molecules and the like). Longer linkers may thus improve the biological activity of the compositions of the present invention, as well as the ease of preparation of them.
- the geometry of the linker may be used to orient a molecule for optimal reaction with a target.
- a linker with flexible geometry may allow the cross-linked polypeptides to conformationally adapt as they bind other polypeptides.
- the nature of the linker may be altered for other various purposes. For example, the aryl-structure of MBuS was found to be less immunogenic than the aromatic spacer of MBS.
- the hydrophobicity and functionality of the linker molecules may be controlled by the physical properties of component molecules.
- the hydrophobicity of a polymeric linker may be controlled by the order of monomeric units along the polymer, e.g., a block polymer in which these is a block of hydrophobic monomers interspersed with a block of hydrophilic monomers.
- a linker or cross-linker that is useful according to the invention can facilitate proper folding of the fusion protein, improve the biological activity of the fusion proteins of the invention, can facilitate preparation of the fusion proteins of the invention, etc.
- a linker can also function to provide for proper folding of the heavy and light chain segments of the scFv.
- a “linker” according to the invention may also contribute to target recognition.
- Any suitable amino acid linker that does not interfere with proper protein folding and function is useful according to the invention.
- a linker is a combination of nucleic acids that yields a series of neutral or slightly polar amino acids that facilitates proper folding of the fusion protein.
- an amino acid side chain cannot be ionized it is considered polar but neutral.
- aspartate is polar and acidic because the carboxylic side chain can be ionized.
- Tyrosine is polar. The hydroxyl group on the phenyl ring is not easily ionized thus it is considered polar but neutral.
- a linker consists of nucleic acids encoding the following amino acid sequence: GGSSRSS (SEQ ID NO: 21). In another embodiment, the linker consists of nucleic acids encoding the following amino acid sequence: (GGGSGGG)X4 (SEQ ID NO: 22).
- the linker sequence comprises the sequence GGGGSGGGGSGGGGS ((Gly 4 Ser) 3 ) SEQ ID NO: 23). In another embodiment the linker sequence comprises the sequence GGSSRSSSSGGGGSGGGG (SEQ ID NO: 24) or GGSSESSSSGGGGSGGGG (SEQ ID NO: 25). It is preferable to include glycine in the linker sequence because it has an H-side chain whereas all other amino acids have bulkier side chains.
- One aspect of the invention relates to an isolated nucleic acid encoding the fusion protein of the invention.
- the nucleic acid encodes any of the fusion protein sequences disclosed above.
- the isolated nucleic acid comprises, consists essentially of, or consists of a nucleic acid selected from:
- the isolated nucleic acid is at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleotide sequence of any one of SEQ ID NOS:2, 4, 6, 8, or 10.
- the isolated nucleic acid is codon-optimized for expression in a host cell, e.g., a bacterial cell, a mammalian cell, an insect cell, or a plant cell.
- the isolated nucleic acid is codon optimized for expression in a plant cell, e.g., wherein the plant is Nicotiana benthamiana or Nicotiana tabacum.
- the isolated nucleic acid may be operably linked to a promoter, e.g., a promoter that is suitable for expression in the host cell of interest.
- a promoter e.g., a promoter that is suitable for expression in the host cell of interest.
- the promoter is a plant promoter.
- Another aspect of the invention relates to an expression vector comprising the nucleic acid of the invention.
- the invention further relates to a cell comprising the isolated nucleic acid or the expression vector of the invention.
- the cell may be a bacterial cell, a mammalian cell, an insect cell, or a plant cell, e.g., a plant cell selected from N. benthamiana and N. tabacum.
- An additional aspect of the invention relates to a transgenic plant cell, plant part, or plant comprising the isolated nucleic acid of the invention.
- the fusion proteins described herein can be administered to a subject to enhance that subject's immune response, particularly a cell-mediated cytolytic response, against a cell expressing the antigen recognized by the antigen binding domain.
- the fusion protein may simply enhance the immune response (thus serving as an immunogenic composition), or confer protective immunity (thus serving as a vaccine).
- the protein fusion polypeptides produced as described above may be purified to a suitable purity for use as a pharmaceutical composition.
- a purified composition will have one species that comprises more than about 85 percent of all species present in the composition, more than about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of all species present.
- the object species may be purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single species.
- a skilled artisan may purify a fusion protein using standard techniques for protein purification, for example, immunoaffinity chromatography, size exclusion chromatography, etc., in light of the teachings herein. Purity of a polypeptide may be determined by a number of methods known to those of skill in the art, including for example, amino-terminal amino acid sequence analysis, gel electrophoresis and mass-spectrometry analysis.
- compositions comprising the above-described fusion proteins.
- pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the compounds described above and below, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents.
- the compounds may be administered as such or in admixtures with pharmaceutically acceptable carriers and may also be administered in conjunction with other agents.
- Consjunctive (combination) therapy thus includes sequential, simultaneous and separate, or coadministration of the active compound in a way that the therapeutic effects of the first administered one has not entirely disappeared when the subsequent is administered.
- the fusion proteins described herein can be administered to a subject in a variety of ways.
- the routes of administration include intradermal, transdermal (e.g., slow release polymers), intramuscular, intraperitoneal, intravenous, subcutaneous, oral, epidural and intranasal routes. Any other convenient route of administration can be used, for example, infusion or bolus injection, or absorption through epithelial or mucocutaneous linings.
- compositions described herein can contain and be administered together with other pharmacologically acceptable components such as biologically active agents (e.g., adjuvants such as alum), surfactants (e.g., glycerides), excipients (e.g., lactose), carriers, diluents and vehicles.
- biologically active agents e.g., adjuvants such as alum
- surfactants e.g., glycerides
- excipients e.g., lactose
- carriers e.g., lactose
- a fusion protein can be administered by in vivo expression of a nucleic acid encoding such protein sequences into a human subject. Expression of such a nucleic acid can also be achieved ex vivo as a means of stimulating white blood cells obtained from a subject to elicit, expand and propagate antigen-specific immune cells in vitro that are subsequently reintroduced into the subject.
- Expression vectors suitable for directing the expression of a fusion protein of interest can be selected from the large variety of vectors currently used in the field. Preferred will be vectors that are capable of producing high levels of expression as well as are effective in transducing a gene of interest.
- adenovirus vector pJM17 (All et al., Gene Therapy 1:367-84 (1994); Berkner K. L., Biotechniques 6:616-24 1988), second generation adenovirus vectors DE1/DE4 (Wang and Finer, Nature Medicine 2:714-6 (1996)), or adeno-associated viral vector AAV/Neo (Muro-Cacho et al., J. Immunotherapy 11:231-7 (1992)) can be used.
- retroviral vectors MFG (Jaffee et al., Cancer Res.
- Herpes simplex virus-based vectors such as pHSV1 ((Geller et al., Proc. Nat'l Acad. Sci. 87:8950-4 (1990) or vaccinia viral vectors such as MVA (Sutter and Moss. Proc. Nat'l Acad. Sci. 89: 10847-51 (1992)) can serve as alternatives.
- Frequently used specific expression units including promoter and 3′ sequences are those found in plasmid cDNA3 (Invitrogen), plasmid AH5, pRC/CMV (Invitrogen), pCMU II (Paabo et al., EMBO J. 5:1921-1927 (1986)), pZip-Neo SV (Cepko et al., Cell 37:1053-1062 (1984)) and pSRa (DNAX, Palo Alto, Calif.).
- genes into expression units and/or vectors can be accomplished using genetic engineering techniques, as described in manuals like Molecular Cloning and Current Protocols in Molecular Biology (Sambrook, J., et al., Molecular Cloning, Cold Spring Harbor Press (1989); Ausubel, F. M. et al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience (1989)).
- a resulting expressible nucleic acid can be introduced into cells of a human subject by any method capable of placing the nucleic acid into cells in an expressible form, for example as part of a viral vector such as described above, as naked plasmid or other DNA, or encapsulated in targeted liposomes or in erythrocyte ghosts (Friedman, T., Science, 244:1275-1281 (1989); Rabinovich, N. R. et al., Science 265:1401-1.404 (1994)).
- Methods of transduction include direct injection into tissues and tumors, liposomal transfection (Fraley et al., Nature 370:111-117 (1980)), receptor-mediated endocytosis (Zatloukal et al., Ann. N.Y. Acad. Sci. 660:136-153 (1992)), and particle bombardment-mediated gene transfer (Eisenbraun et al., DNA & Cell. Biol. 12:791-797 (1993)).
- the amount of fusion polypeptide (fused, conjugated or noncovalently joined as discussed before) in the compositions of the present invention is an amount which produces an effective immunostimulatory response in a subject as determined by the methods described herein.
- An effective amount is an amount such that when administered, it induces an immune response.
- the amount of fusion protein administered to the subject will vary depending on a variety of factors, including the engineered antibody and stress protein employed, the size, age, body weight, general health, sex, and diet of the subject as well as on the subject's general immunological responsiveness. Adjustment and manipulation of established dose ranges are well within the ability of those skilled in the art.
- the amount of engineered fusion protein according to the invention can be from about 1 microgram to about 1 gram, preferably from about 100 microgram to about 1 gram, and from about 1 milligram to about 1 gram.
- An effective amount of a composition comprising an expression vector is an amount such that when administered, it induces an immune response against the antigen against which the antigen binding domain is directed.
- the amount of expression vector administered to the subject will vary depending on a variety of factors, including the antigen binding domain and HSP70 protein expressed, the size, age, body weight, general health, sex, and diet of the subject, as well as on the subject's general immunological responsiveness.
- the effective amount will be in the range of 10 4 to 10 12 helper-free, replication-defective virus per kg body weight, preferably in the range of 10 5 to 10 11 virus per kg body weight and most preferably in the range of 10 6 to 10 10 virus per kg body weight.
- An effective dose can be estimated initially from in vitro assays.
- a dose can be formulated in animal models to achieve an induction of an immune response using techniques that are well known in the art.
- Dosage amount and interval may be adjusted individually.
- the proteins and/or strains of the invention may be administered in about 1 to 3 doses for a 1-36 week period.
- 3 doses are administered, at intervals of about 3-4 months, and booster vaccinations may be given periodically thereafter.
- Alternate protocols may be appropriate for individual patients.
- a suitable dose is an amount of protein or strain that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from the condition or infection for at least 1-2 years.
- compositions may also include adjuvants to enhance immune responses.
- such proteins may be further suspended in an oil emulsion to cause a slower release of the proteins in vivo upon injection.
- the optimal ratios of each component in the formulation may be determined by techniques well known to those skilled in the art.
- adjuvants may be employed in the vaccines of this invention to enhance the immune response.
- Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a specific or nonspecific stimulator of immune responses, such as lipid A, or Bortadella pertussis.
- Suitable adjuvants are commercially available and include, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.).
- Suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A, quil A, SBAS1c, SBAS2 (Ling et al., 1.997, Vaccine 15:1562-1567), SBAS7, Al(OH) 3 and CpG oligonucleotide (WO96/02555).
- the adjuvant may induce a Th1 type immune response.
- Suitable adjuvant systems include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL) together with an aluminum salt.
- An enhanced system involves the combination of a monophosphoryl lipid A and a saponium derivative, particularly the combination of 3D-MLP and the saponin QS21 as disclosed in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol as disclosed in WO 96/33739.
- more than one administration e.g., two, three, four, or more administrations
- time intervals e.g., hourly, daily, weekly, monthly, etc.
- One aspect of the invention relates to a method for inducing an immune response to an antigen in a subject, comprising administering to the subject the fusion protein of the invention that specifically binds the antigen, thereby inducing an immune response.
- Another aspect of the invention relates to a method of treating a disease associated with an antigen in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the fusion protein of any one of claims 1-31 that specifically binds the antigen, thereby treating the disease.
- the antigen is a disease antigen.
- the antigen may be a viral antigen, bacterial antigen, pathogen antigen, or cancer antigen as described above.
- the antigen is a cancer antigen, e.g., mesothelin.
- the disease associated with an antigen is a pathogen infection, e.g., a viral infection.
- the disease associated with an antigen is a cancer that expresses the antigen, e.g., mesothelin.
- the mesothelin-expressing cancer is ovarian cancer, meningioma, glioma, metastases to the leptomininges, mesothelioma, adenocarcinoma of the uterus, malignant mesothelioma, pancreatic cancer, or lung adenocarcinoma.
- the methods of the invention further comprise administering to the subject an additional active agent.
- the additional active agent may be a therapeutic agent, e.g., an anti-pathogen agent or an anti-cancer agent
- Anti-cancer agents include, without limitation, 1) vinca alkaloids (e.g., vinblastine, vincristine); 2) epipodophyillotoxins (e.g., etoposide and teniposide); 3) antibiotics (e.g., dactinomycin (actinomycin D), daunorubicin (daunomycin; rubidomycin), doxorubic, bleomycin, plicamycin (mithramycin), and mitomycin (mitomycin C)); 4) enzymes (e.g., L-asparaginase); 5) biological response modifiers (e.g., interferon-alfa); 6) platinum coordinating complexes (e.g., cisplatin and carboplatin); 7) anthracenediones (e.g., mitoxantrone); 8) substituted ureas (e.g., hydroxyurea); 9) methylhydrazine derivatives (e.g., pro
- the compounds of the invention are administered in conjunction with anti-angiogenesis agents, such as antibodies to VEGF (e.g., bevacizumab (AVASTIN), ranibizumab (LUCENTIS)) and other promoters of angiogenesis (e.g., bFGF, angiopoietin-1), antibodies to alpha-v/beta-3 vascular integrin (e.g., VITAXIN), angiostatin, endostatin, dalteparin, ABT-510, CNGRC peptide TNF alpha conjugate, cyclophosphamide, combretastatin A4 phosphate, dimethylxanthenone acetic acid, docetaxel, lenalidomide, enzastaurin, paclitaxel, paclitaxel albumin-stabilized nanoparticle formulation (Abraxane), soy isoflavone (Genistein), tamoxifen citrate, thalidomide, ADH-1
- Suitable antiviral agents include, for example, virus-inactivating agents such as nonionic, anionic and cationic surfactants, and C31 G (amine oxide and alkyl betaine), polybiguanides, docosanol, acylcarnitine analogs, octyl glycerol, and antimicrobial peptides such as magainins, gramicidins, protegrins, and retrocyclins.
- Mild surfactants e.g., sorbitan monolaurate, may advantageously be used as antiviral agents in the compositions described herein.
- antiviral agents that may advantageously be utilized in the compositions described herein include nucleotide or nucleoside analogs, such as tenfovir, acyclovir, amantadine, didanosine, foscarnet, ganciclovir, ribavirin, vidarabine, zalcitabine, and zidovudine.
- Further antiviral agents that may be used include non-nucleoside reverse transcriptase inhibitors, such as UC-781 (thiocarboxanilide), pyridinones, TIBO, nevaripine, delavirdine, calanolide A, capravirine and efavirenz.
- antiviral agents that may be used are those in the category of HIV entry blockers, such as cyanovirin-N, cyclodextrins, carregeenans, sulfated or sulfonated polymers, mandelic acid condensation polymers, monoclonal antibodies, chemokine receptor antagonists such as TAK-779, SCH-C/D, and AMD-3100, and fusion inhibitors such as T-20 and 1249.
- HIV entry blockers such as cyanovirin-N, cyclodextrins, carregeenans, sulfated or sulfonated polymers, mandelic acid condensation polymers, monoclonal antibodies, chemokine receptor antagonists such as TAK-779, SCH-C/D, and AMD-3100, and fusion inhibitors such as T-20 and 1249.
- Suitable antibacterial agents include antibiotics, such as aminoglycosides, cephalosporins, including first, second and third generation cephalosporins; macrolides, including erythromycins, penicillins, including natural penicillins, penicillinase-resistant penicillins, aminopenicillins, extended spectrum penicillins; sulfonamides, tetracyclines, fluoroquinolones, metronidazole and urinary tract antiseptics.
- antibiotics such as aminoglycosides, cephalosporins, including first, second and third generation cephalosporins
- macrolides including erythromycins, penicillins, including natural penicillins, penicillinase-resistant penicillins, aminopenicillins, extended spectrum penicillins
- sulfonamides including tetracyclines, fluoroquinolones, metronidazole and urinary tract antiseptics.
- Suitable antifungal agents include amphotericin B, nystatin, griseofulvin, flucytosine, fluconazole, potassium iodide, intraconazole, clortrimazole, miconazole, ketoconazole, and tolnaftate.
- Suitable antiprotozoal agents include antimalarial agents, such as chloroquine, primaquine, pyrimethamine, quinine, fansidar, and mefloquine; amebicides, such as dioloxamide, emetine, iodoquinol, metronidazole, paromomycine and quinacrine; pentamidine isethionate, atovaquone, and eflornithine.
- antimalarial agents such as chloroquine, primaquine, pyrimethamine, quinine, fansidar, and mefloquine
- amebicides such as dioloxamide, emetine, iodoquinol, metronidazole, paromomycine and quinacrine
- pentamidine isethionate atovaquone, and eflornithine.
- the additional active agent may be an agent that treats or enhances the effect of a treatment against a symptom or side effect of a disease or treatment.
- the additional active agent is an anti-inflammatory agent.
- anti-inflammatory agent examples include, without limitation, H1-antihistamines (e.g., cetirizine), H2-antihistamines (e.g., ranitidine, famotidine), antileukotrienes (e.g., montelukast, zileuton), and nonsteroidal anti-inflammatory drugs.
- the additional active agent may be an immunostimulatory agent and/or an immune checkpoint inhibitor that enhances the immunostimulatory effect of the fusion protein of the invention.
- Immunostimulatory agents include, without limitation, interleukin, interferon, cytokine, toll-like receptor (TLR) agonist, cytokine receptor agonist, CD40 agonist, Fc receptor agonist, CpG-containing immunostimulatory nucleic acid, complement receptor agonist, adjuvant, or CXCL12/CXCR4 axis inhibitors such as AMD3100, KRH-1636, T-20, T-22, T-140, TE-14011, T-14012, or TN14003, or an antibody that interferes with the dimerization of CXCR4.
- Immune checkpoint inhibitors include, without limitation, inhibitors of PD-1, PD-L1, CTLA4, B7-H3, B7-H4, BTLA, IDO, KIR, LAG3, A2AR, TIM-3, and VISTA, such as nivolumab, pembrolizumab, ipilimumab, durvalumab, or atezolizumab.
- the methods of the invention further comprise administering to the subject an additional therapy.
- the additional therapy may be any therapy known to be effective for treating a disease, e.g., therapies known to be effective for cancer treatment, e.g., surgery, radiotherapy, proton beam therapy, light-based therapy, etc.
- kits for expressing an engineered fusion protein according to the invention may be comprised of nucleic acids encoding an engineered fusion protein of the invention.
- the nucleic acids may be included in a plasmid or a vector, e.g., a bacterial plasmid or viral vector.
- Other kits comprise an engineered fusion polypeptide.
- the present invention provides kits for producing and/or purifying fusion polypeptides according to the invention.
- kits for preventing or treating infectious, inflammatory, autoimmune or malignant disease in a patient may comprise one or more pharmaceutical compositions as described above and optionally instructions for their use.
- the invention provides kits comprising one more pharmaceutical composition and one or more devices for accomplishing administration of such compositions.
- Kit components may be packaged for either manual or partially or wholly automated practice of the foregoing methods. In other embodiments involving kits, instructions for their use may be provided.
- a novel fusion protein, VIC-007 (SEQ ID NO:28), consists of the broadly immune-activating Mycobacterium tuberculosis -derived heat shock protein 70 (MtbHsp70) and the tumor antigen targeting activity of a single-chain variable fragment (scFv) binding mesothelin (MSLN), a validated immunotherapy target (4-6).
- MSLN is highly overexpressed on the surface of common epithelial cancers including epithelial malignant mesothelioma and ovarian cancer, while expressed at relatively low levels only in mesothelial cells lining the pleura, pericardium, and peritoneum in healthy individuals (7-10).
- MtbHsp70 is well characterized and functions as a potent immune-activating adjuvant. It stimulates monocytes and dendritic cells (DCs) to produce CC-chemokines (11, 12), which attract antigen processing and presenting macrophages, DCs, and effector T and B cells (13).
- DCs dendritic cells
- CC-chemokines 11, 12
- fusion of anti-MSLN scFv and MtbHsp70 takes advantage of the immune-activating action of MtbHsp70 and the tumor-targeting activity of the scFv, which will yield anti-tumor responses against the broadest profile of tumo antigens.
- VIC-007 significantly enhanced survival of immune competent mice with ovarian or malignant mesothelioma tumors through the augmentation of tumor-specific cell-mediated immune responses (14), the fusion protein did not result in long-term remission.
- VIC-008 SEQ ID NO:27
- VIC-007 and VIC-008 were compared side by side in the same set of mice and it was found that VIC-008 conferred significantly improved antitumoral efficacy in a syngeneic, orthotopic and immune competent murine model of ovarian cancer.
- Cells The ID8 ovarian cancer cells, a kind gift from Kathy Roby (University of Kansas Medical Center, Kansas City, Kans. (15), were transfected with luciferase lentiviral vector and stably expressed luciferase, here named Luc-ID8. Cells were maintained at 37° C. in DMEM with 2 mmol/L L-glutamine, 10 units/ml penicillin, 10 ⁇ g/ml streptomycin, and 10% fetal bovine serum in humidified atmosphere with 5% CO 2 . Cells were cultured until 80% confluent, and harvested with Trypsin EDTA (Mediatech) for animal injections.
- Ovarian cancer was established by Intraperitoneal (i.p.) injection of syngeneic cancer cells Luc-ID8 (5 ⁇ 10 6 cells per mouse) into 6-week old female C57BL/6 mice. All mice were purchased from Jackson laboratories. Mice with ovarian tumors were treated 7 days after tumor cell inoculation with i.p. injections of VIC-007 (4 ⁇ g per mouse), VIC-008 (4 ⁇ g per mouse), or normal saline. This was followed by 3 further treatments at 7-day intervals. All studies were performed in a manner that was blinded to the observer under protocols that were approved by the Massachusetts General Hospital Subcommittee on Research Animal Care (SRAC).
- SRAC Research Animal Care
- Intraperitoneal tumor growth was monitored weekly after tumor cell inoculation using in vivo live imaging by IVIS Spectrum (PerkinElmer). Mice were injected intraperitoneally with 150 mg/kg body weight of D-luciferin 10 min in advance and subsequently imaged by IVIS Spectrum.
- mice For survival studies, we observed the mice daily 1 week after inoculation of tumor cells. Tumor generations were consistently first evident via abdominal distension secondary to malignant ascites, and tumor-bearing mice were euthanized at the endpoint when there were signs of distress, including fur ruffling, rapid respiratory rate, hunched posture, reduced activity, and progressive ascites formation as previously described (16).
- the fusion protein scFv-MtbHsp70 was constructed with V H and V L from anti-MSLN p4 scFv (17) fused to full length MtbHsp70 with a (G4S)3 linker in between, which has been shown in our previous study (14).
- the previous version of the fusion protein VIC-007 achieved significant control of tumor growth and prolongation of the survival of tumor-bearing mice, but the antitumaral efficacy of the treatment regimen used needed to be improved.
- Antigenic peptides linked to MtbHsp70 through both non-covalent binding and by genetic fusion can elicit both MHC class I-restricted CD8+ and MHC class II-restricted CD4+ T-cell responses (18-22).
- VIC-008 which was modified from the original VIC-007 by the elimination of redundant amino acids and the introduction of a single amino acid mutation, valine (V) in place of phenylalanine (F), at position 410 of MtbHsp70 ( FIG. 1 ).
- This change is designed to prevent peptide binding (23) while retaining the immune-stimulatory capacity of the protein, in order to reduce the possibility that MtbHsp70 might incidentally bind and deliver other antigens that could result in off target effects or the induction of tolerance or autoimmunity.
- the fusion proteins were constructed and expressed by WuXi App Tech (Shanghai, China) in CHO cells and provided at a purity of above 95% by HPLC and an endotoxin level of less than 1.0 EU/mg.
- VIC-008 Enhances the Control of Tumor Growth: Murine ovarian cancer was established by i.p. injection of syngeneic cancer cells Luc-ID8 in immune competent C57BL/6 mice and treated with VIC-007 and VIC-008 as described in the section of materials and methods. As shown in FIG. 2 , both VIC-007 and VIC-008 significantly slowed tumor growth as recorded by bioluminescence signals compared to saline (p ⁇ 0.0001 and p ⁇ 0.0001) while VIC-008 further significantly delayed tumor growth compared to VIC-007 (p ⁇ 0.0001).
- mice were injected intraperitoneally injected with 5 ⁇ 10 6 luciferase-expressing ID8 mouse ovarian cancer cells.
- Mice received four weekly treatments of VIC-008 (20 ⁇ g) starting one week after tumor introduction. Results are shown in FIG. 4 .
- the survival curve is shown in FIG 5 .
- Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD3+CD8+ T cells. Results are shown in FIG. 6 .
- FIG. 8 shows the ratio of CD8+ T cells to T regulatory cells in the tumors.
- CD3+CD8+ T cells and CD4+CD25+FoxP3+ T regulatory cells were detected by flow cytometry. The ratio was calculated based on percentages of the observed population.
- FIG. 9 shows intratumoral central memory CD8+ T cell infiltration. Flow cytometry was used to detect CD8+CD44+CD27+ central memory T cells. CD8+ central memory T cells were counted as a percentage of all CD3+CD8+ cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 62/306,168, filed Mar. 10, 2016, the entire contents of which are incorporated by reference herein.
- This invention was made with government support under Grant No. W81XWH-14-1-0206 awarded by the Department of Defense. The government has certain rights in this invention.
- The invention relates to fusion proteins comprising an antigen binding domain fused with a modified
heat shock 70 protein. The invention further relates to methods of using the fusion proteins to induce an immune response to antigens and to treat diseases associated with antigens. - Mesothelin is a differentiation antigen whose expression in normal human tissues is limited to mesothelial cells lining the pleura, pericardium and peritoneum. However, mesothelin is highly expressed in several human cancers, including mesotheliomas, pancreatic adenocarcinomas, ovarian cancers and lung adenocarcinomas. Mesothelin is an appropriate target for methods of disease prevention or treatment and antibodies specific for mesothelin, and vaccines comprising mesothelin are useful for prophylactic and therapeutic methods.
- Classical monoclonal antibodies are currently produced in mammalian cells. Drawbacks of this method of production include the difficulty of producing and selecting appropriate clones, and the expense of culturing mammalian cells. The “next generation” of monoclonal antibodies are being engineered in E. coli. Recently, microbial expression of VH and VL domains tethered together by polypeptide linkers has created the capability of generating engineered “mini-antibodies.” These mini-bodies can be generated in E. coli in a virtually combinatorial fashion. These artificially created Fab or single chain Fv (scFv) can be linked together to form multimers, e.g., diabodies, triabodies and tetrabodies. Although they are capable of binding to antigens with almost antibody-like efficiency, these engineered, Fc deficient mini-antibodies lack the ability to interact with antigen presenting cells and are poorly immunogenic. Existing solutions to the lack of immunogenicity of engineered antibodies involve directing one of the antigen binding sites to bind directly with immune cells. This brings them in apposition, but does not result in the same MHC class I priming as would be observed for a monoclonal antibody.
- Immunization with vaccines remains a cornerstone of protection against threat of disease and infection. The key difficulty in vaccine development is rapidly matching a vaccine, or antitoxin, to a specific threat. Current vaccine development strategies rely on the identification and characterization of antigens that can be targeted to successfully eradicate infection or disease. Current vaccine development strategies are time- and labor-intensive and can only commence once a threat emerges. Such strategies are also impractical for generating personalized vaccines to combat disease for which target antigens varies among individuals. Current vaccine development strategies are therefore insufficient if a new and serious threat were to emerge, for which sufficient time were not available to identify and characterize target antigens before such a threat could be contained. Current vaccine development strategies are also insufficient for generating personalized vaccines for the general population.
- U.S. Pat. Nos. 7,749,501 and 7,943,133 describe fusion proteins comprising an engineered antibody fused to a stress protein to enhance the immune response to an antigen.
- The present invention addresses previous shortcomings in the art by disclosing modified fusion proteins with enhanced immunostimulatory and therapeutic properties.
- The present invention is based, in part, on the development of several modifications of Mycobacterium tuberculosis heat shock protein 70 (HSP70) that, alone or in combination, enhance the effectiveness of an antigen-binding fusion protein comprising the modified HSP70 to stimulate an immune response against an antigen and to treat diseases associated with an antigen.
- Thus, one aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP7O) of less than 200 amino acids, wherein the HSP70 fragment comprises a minimal HSP70 sequence.
- Another aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of at least 100 amino acids and comprising no more than amino acids 1-495 of SEQ ID NO:1.
- A further aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) comprising the amino acid sequence of SEQ ID NO:26 (sequence from provisional).
- Another aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a chimeric Mycobacterium tuberculosis heat shock protein 70 (HSP70), wherein the chimeric HSP70 comprises a backbone of a human HSP70 amino acid sequence wherein a beta sheet domain of about amino acid residues 367 to 479 (numbering based on SEQ ID NO:29) are substituted with a beta sheet domain of about amino acid residues 395 to 541 of M. tuberculosis HSP70 (numbering based on SEQ ID NO:1).
- An additional aspect of the invention relates to a pharmaceutical composition comprising an effective amount of the fusion protein of the invention and a pharmaceutically acceptable carrier.
- Another aspect of the invention relates to an immunogenic composition or vaccine comprising the fusion protein of the invention.
- A further aspect of the invention relates to a kit comprising the fusion protein of the invention and packaging means thereof.
- An additional aspect of the invention relates to an isolated nucleic acid encoding the fusion protein of the invention and expression vectors and cells comprising the nucleic acid.
- Another aspect of the invention relates to a method for inducing an immune response to an antigen in a subject, comprising administering to the subject the fusion protein of the invention that specifically binds the antigen, thereby inducing an immune response.
- A further aspect of the invention relates to a method of treating a disease associated with an antigen in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the fusion protein of the invention that specifically binds the antigen, thereby treating the disease.
- These and other aspects of the invention are set forth in more detail in the description of the invention below.
-
FIG. 1 shows the amino acid sequences of VIC-007 (SEQ ID NO:28) and VIC-008 (SEQ ID NO:27). VIC-008 was reconstructed from VIC-007 by removal of redundant amino acids GSS, SGILEQQG, and AAAMRS indicated in bold and italic and introduction of a single amino acid mutation, phenylalanine (F) in place of valine (V), at position 410 of MtbHsp70. -
FIGS. 2A-2B show tumor growth. Quantitative analysis of bioluminescence signals was performed using IVIS Spectrum on Luc-ID8 tumor inoculated mice (n=8 or 9) at a week after tumor inoculation and subsequently weekly. (A) Longitudinal images of a representative mouse from each treatment group were presented from a week after tumor inoculation before treatment (W0) and subsequent five weeks (W1-W5). (B) The arrows indicated 4 treatments at 7-day intervals starting at a week after tumor inoculation. Total photons were calculated by IVIS Lumina Series III. Statistical differences were analyzed using Two-Way ANOVA followed by Tukey's multiple comparison tests. ****, p<0.0001. Data were indicated as the mean±sem. -
FIG. 3 shows mouse survival after treatment. The mice were observed daily 1 week after treatment. At the endpoint the mice were euthanized and the survival time were calculated as life span from the day of tumor inoculation. The median survival and p values were determined using the Log-rank test. -
FIG. 4 shows ovarian cancer tumor growth in the first five weeks after start of therapy (week 0). C57BL/6 mice intraperitoneally injected with 5×106 luciferase-expressing ID8 mouse ovarian cancer cells. 10 mice in saline-treated control group; 11 mice in VIC-008 treatment group. Mice received four weekly treatments starting one week after tumor introduction. Treatment dose of VIC-008 was 20 μg per mouse. Luciferase signal was monitored by IVIS. Statistical significance was established using two-way ANOVA test. -
FIG. 5 shows mouse survival after injection with ovarian cancer cells. C57BL/6 mice intraperitoneally injected with 5×106 luciferase-expressing ID8 mouse ovarian cancer cells. 10 mice in saline-treated control group; 11 mice in VIC-008 treatment group. Mice received four weekly treatments starting one week after tumor introduction. Treatment dose of VIC-008 was 20 μg per mouse. Statistical significance was established using log-rank (Mantel-Cox) test. -
FIG. 6 shows intratumoral CD8+ T cell infiltration. Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD3+CD8+ T cells. T cells were counted as a percentage of gated live cells. -
FIG. 7 shows intratumoral Treg T cell infiltration. Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD4+CD25+FoxP3+ T regulatory cells. T regulatory cells were counted as a percentage of all CD3+CD4+ cells. -
FIG. 8 shows the ratio of CD8+ T cells to T regulatory cells in tumor. Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect both CD3+CD8+ T cells and CD4+CD25+FoxP3+ T regulatory cells. Ratio was calculated based on percentages of the observed population. -
FIG. 9 shows intratumoral central memory CD8+ T cell infiltration. Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD8+CD44+CD27+ central memory T cells. CD8+ central memory T cells were counted as a percentage of all CD3+CD8+ cells. - The present invention will now be described in more detail with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. All publications, patent applications, patents, patent publications and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.
- Unless the context indicates otherwise, it is specifically intended that the various features of the invention described herein can be used in any combination.
- Moreover, the present invention also contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted.
- To illustrate, if the specification states that a complex comprises components A, B and C, it is specifically intended that any of A, B or C, or a combination thereof, can be omitted and disclaimed singularly or in any combination.
- All publications, patent applications, patents, and other references mentioned herein are incorporated by reference herein in their entirety.
- Amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by either the one-letter code, or the three letter code, both in accordance with 37 C.P.R. §1.822 and established usage.
- As used in the description of the invention and the appended claims, the singular forms “a”, “an,” and “the” are intended to include the plural forms a well, unless the context clearly indicates otherwise.
- Also as used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well, as the lack of combinations when interpreted in the alternative (“or”).
- The term “about,” as used herein, when referring to a measurable value such as an amount of polypeptide, dose, time, temperature, enzymatic activity or other biological activity and the like, is meant to encompass variations of ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount.
- In this disclosure, “comprises,” “comprising,” “containing,” and “having” and the like have the open-ended meaning ascribed to them in U.S. patent law and mean “includes,” “including,” and the like.
- As used herein, the transitional phrase “consisting essentially of” (and grammatical variants) is to be interpreted as encompassing the recited materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed invention. Thus, the term “consisting essentially of” as used herein should not be interpreted as equivalent to “comprising.”
- The term “consists essentially of” (and grammatical variants), as applied to a polypeptide or polynucleotide sequence of this invention, means a polypeptide or polynucleotide that consists of both the recited sequence (e.g., SEQ ID NO) and a total often or less (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) additional amino acids on the N-terminal and/or C-terminal ends of the recited sequence or additional nucleotides on the 5′ and/or 3′ ends such that the function of the polypeptide or polynucleotide is not materially altered. The total of ten or less additional amino acids or nucleotides includes the total number of additional amino acids or nucleotides on both ends added together. The term “materially altered,” as applied to polypeptides of the invention, refers to an increase or decrease in immunostimulatory activity (e.g., towards a mesothelin-containing tumor) of at least about 50% or more as compared to the activity of a polypeptide consisting of the recited sequence. The term “materially altered,” as applied to polynucleotides of the invention, refers to an increase or decrease in ability to express an encoded polypeptide of at least about 50% or more as compared to the activity of a polynucleotide consisting of the recited sequence.
- The term “modulate,” “modulates,” or “modulation” refers to enhancement (e.g., an increase) or inhibition (e.g., a decrease) in the specified level or activity.
- The term “enhance” or “increase” refers to an increase in the specified parameter of at least about 1.25-fold, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 8-fold, 10-fold, twelve-fold, or even fifteen-fold.
- The term “inhibit” or “reduce” or grammatical variations thereof as used herein refers to a decrease or diminishment in the specified level or activity of at least about 15%, 25%, 35%, 40%, 50%, 60%, 75%, 80%, 90%, 95% or more. In particular embodiments, the inhibition or reduction results in little or essentially no detectible activity (at most, an insignificant amount, e.g., less than about 10% or even 5%).
- The term “contact” or grammatical variations thereof as used with respect to a polypeptide and a calcium channel, refers to bringing the polypeptide and the calcium channel in sufficiently close proximity to each other for one to exert a biological effect on the other. In some embodiments, the term contact means binding of the polypeptide to the calcium channel.
- By the terms “treat,” “treating,” or “treatment of,” it is intended that the severity of the subject's condition is reduced or at least partially improved or modified and that some alleviation, mitigation or decrease in at least one clinical symptom is achieved.
- The terms “prevent,” “preventing,” and “prevention” (and grammatical variations thereof) refer to prevention and/or delay of the onset of a disease, disorder and/or a clinical symptom(s) in a subject and/or a reduction in the severity of the onset of the disease, disorder and/or clinical symptom(s) relative to what would occur in the absence of the methods of the invention. The prevention can be complete, e.g., the total absence of the disease, disorder and/or clinical symptom(s). The prevention can also be partial, such that the occurrence of the disease, disorder and/or clinical symptom(s) in the subject and/or the severity of onset is less than what would occur in the absence of the present invention.
- A “therapeutically effective” amount as used herein is an amount that provides some improvement or benefit to the subject. Alternatively stated, a “therapeutically effective” amount is an amount that will provide some alleviation, mitigation, or decrease in at least one clinical symptom in the subject. Those skilled in the art will appreciate that the therapeutic effects need not be complete or curative, as long as some benefit is provided to the subject.
- A “prophylactically effective” amount as used herein is an amount that is sufficient to prevent and/or delay the onset of a disease, disorder and/or clinical symptoms in a subject and/or to reduce and/or delay the severity of the onset of a disease, disorder and/or clinical symptoms in a subject relative to what would occur in the absence of the methods of the invention. Those skilled in the art will appreciate that the level of prevention need not be complete, as long as some benefit is provided to the subject.
- As used herein “mesothelin” refers to a differentiation antigen whose expression in normal human tissues is limited to mesothelial cells lining the pleura, pericardium and peritoneum. However, mesothelin is highly expressed in several human cancers, including mesotheliomas, pancreatic adenocarcinomas, ovarian cancers and lung adenocarcinomas. The mesothelin gene encodes a precursor protein of 71 kDa that is processed to a 31 kDa shed protein called megakaryocyte potentiating factor (MPF) and a 40 kDa fragment, mesothelin, that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor.
- There are three (3) variants of mesothelin: soluble mesothelin-1, a unique mesothelin-2 transcript, and a mesothelin-3 variant with an extended C-terminus. Mesothelin-1 is found in pleura, pericardium and peritoneum and on surface epithelium of the ovaries, tonsils, and fallopian tubes (Ordonez, 2003). Mesothelin is also overexpressed in mesotheliomas, pancreatic adenocarcinomas, and squamous cell carcinomas of the head, neck, lung, esophagus, cervix, and vulva (Chang and Pastan 1992, 1996; Frierson et al. 2003).
- The term “administering” includes any method of delivery of a compound of the present invention, including but not limited to, a pharmaceutical composition or therapeutic agent, into a subject's system or to a particular region in or on a subject, including systemic or localized administration. The phrases “systemic administration,” “administered systemically,” “peripheral administration,” and “administered peripherally” as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration. “Parenteral administration” and “administered parenterally” means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intralesional, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrasternal injection, oral, epidural, intranasal and infusion.
- The term “amino acid” is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally-occurring amino acids. Exemplary amino acids include naturally-occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing.
- The term “antibody” refers to an immunoglobulin, derivatives thereof which maintain specific binding ability, and proteins having a binding domain which is homologous or largely homologous to an immunoglobulin binding domain. These proteins may be derived from natural sources, or partly or wholly synthetically produced. An antibody may be monoclonal or polyclonal. The antibody may be a member of any immunoglobulin class, including any of the human classes: IgG, IgM, IgA, IgD, IgE and IgY. In exemplary embodiments, antibodies used with the methods and compositions described herein are derivatives of the IgG class. The term “antibody” also includes an antibody fragment as defined herein.
- The term “antibody fragment” refers to any derivative of an antibody which is less than full-length. In exemplary embodiments, the antibody fragment retains at least a significant portion of the full-length antibody's specific binding ability. Examples of antibody fragments include, but are not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. The antibody fragment may be produced by any means. For instance the antibody fragment may be enzymatically or chemically produced by fragmentation of an intact antibody, it may be recombinantly produced from a gene encoding the partial antibody sequence, or it may be wholly or partially synthetically produced. The antibody fragment may optionally be a single chain antibody fragment. Alternatively, the fragment may comprise multiple chains which are linked together, for instance, by disulfide linkages. The fragment may also optionally be a multimolecular complex. A functional antibody fragment will typically comprise at least about 50 amino acids and more typically will comprise at least about 200 amino acids.
- The term “Fab fragment” refers to a fragment of an antibody comprising an antigen-binding site generated by cleavage of the antibody with the enzyme papain, which cuts at the hinge region N-terminally to the inter-H-chain disulfide bond and generates two Fab fragments from one antibody molecule.
- The term “F(ab′)2 fragment” refers to a fragment of an antibody containing two antigen-binding sites, generated by cleavage of the antibody molecule with the enzyme pepsin which cuts at the hinge region C-terminally to the inter-H-chain disulfide bond.
- The term “Fc fragment” refers to the fragment of an antibody comprising the constant domain of its heavy chain.
- The term “Fv fragment” refers to the fragment of an antibody comprising the variable domains of its heavy chain and light chain.
- The term “engineered antibody” refers to a recombinant molecule that comprises at least an antibody fragment comprising an antigen binding site derived from the variable domain of the heavy chain and/or light chain of an antibody and may optionally comprise the entire or part of the variable and/or constant domains of an antibody from any of the Ig classes (for example IgA, IgD, IgE, IgG, IgM and IgY). Examples of engineered antibodies include enhanced single chain monoclonal antibodies and enhanced monoclonal antibodies. Examples of engineered antibodies are further described in PCT/US2007/061554, the entire contents of which are incorporated herein by reference. An “engineered antibody” includes an engineered antibody fragment, according to the method of the invention, and as defined herein.
- The term “single chain variable fragment or scFv” refers to an Fv fragment in which the heavy chain domain and the light chain domain are linked. One or more scFv fragments may be linked to other antibody fragments (such as the constant domain of a heavy chain or a light chain) to form antibody constructs having one or more antigen recognition sites.
- The term “multivalent antibody” refers to an antibody or engineered antibody comprising more than one antigen recognition site. For example, a “bivalent” antibody has two antigen recognition sites, whereas a “tetravalent” antibody has four antigen recognition sites. The terms “monospecific,” “bispecific,” “trispecific,” “tetraspecific,” etc., refer to the number of different antigen recognition site specificities (as opposed to the number of antigen recognition sites) present in a multivalent antibody. For example, a “monospecific” antibody's antigen recognition sites all bind the same epitope. A “bispecific” antibody has at least one antigen recognition site that hinds a first epitope and at least one antigen recognition site that binds a second epitope that is different from the first epitope. A “multivalent monospecific” antibody has multiple antigen recognition sites that all bind the same epitope. A “multivalent bispecific” antibody has multiple antigen recognition sites, some number of which bind a first epitope and some number of which bind a second epitope that is different from the first epitope.
- The term “epitope” refers to the region of an antigen to which an antibody binds preferentially and specifically. A monoclonal antibody binds preferentially to a single specific epitope of a molecule that can be molecularly defined. In the present invention, multiple epitopes can be recognized by a multispecific antibody.
- An “antigen” refers to a target of an immune response induced by a composition described herein. An antigen may be a protein antigen and is understood to include an entire protein, fragment of the protein exhibited on the surface of a virus or an infected, foreign, or tumor cell of a subject, as well as a peptide displayed by an infected, foreign, or tumor cell as a result of processing and presentation of the protein, for example, through the typical MHC class I or II pathways. Examples of such foreign cells include bacteria, fungi, and protozoa. Examples of bacterial antigens include Protein A (PrA), Protein G (PrG), and Protein L (PrL).
- The term “antigen binding site” refers to a region of an antibody or fragment thereof, that specifically binds an epitope on an antigen.
- The term “costimulatory molecule” as used herein includes any molecule which is able to either enhance the stimulating effect of an antigen-specific primary T cell stimulant or to raise activity beyond the threshold level required for cellular activation resulting in activation of naive T cells. Such a costimulatory molecule can be a membrane-resident receptor protein.
- The term “effective amount” refers to that amount of a compound, material, or composition which is sufficient to effect a desired result. An effective amount of a compound can be administered in one or more administrations.
- A “fusion protein” or “fusion polypeptide” refers to a hybrid polypeptide which comprises polypeptide portions from at least two different polypeptides. A “fusion protein” as defined herein, is a fusion of a first amino acid sequence (protein) comprising, for example a stress protein of the invention, joined to a second amino acid sequence comprising an antibody or fragment thereof that binds specifically to mesothelin or a biotin-binding protein. A fusion protein also includes a fusion protein comprising a first amino acid sequence comprising a stress protein, and a second amino sequence comprising a biotin binding protein. A fusion protein also includes a fusion protein comprising a first amino acid sequence comprising a stress protein and second amino acid sequence comprising an antibody binding protein. A fusion protein also includes a fusion protein comprising a first amino acid sequence comprising an antibody or fragment thereof that binds specifically to mesothelin and a second amino acid sequence comprising a biotin binding protein or an antibody binding protein.
- The portions may be from proteins of the same organism, in which case the fusion protein is said to be “interspecies,” “intergenic,” etc. In various embodiments, the fusion polypeptide may comprise one or more amino acid sequences linked to a first polypeptide. In the case where more than one amino acid sequence is fused to a first polypeptide, the fusion sequences may be multiple copies of the same sequence, or alternatively, may be different amino acid sequences. A first polypeptide may be fused to the N-terminus, the C-terminus, or the N- and C-terminus of a second polypeptide. Furthermore, a first polypeptide may be inserted within the sequence of a second polypeptide.
- The term “linker” is art-recognized and refers to a molecule (including but not limited to unmodified or modified nucleic acids or amino acids) or group of molecules (for example, 2 or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more) connecting two compounds, such as two polypeptides. The linker may be comprised of a single linking molecule or may comprise a linking molecule and at least one spacer molecule, intended to separate the linking molecule and a compound by a specific distance.
- A “spacer molecule” includes any amino acid segment that is not related to the two protein segments it separates. For example, in a fusion consisting of a stress protein and a biotin protein, a spacer molecule would consist of a stretch of amino acids that is unrelated to the proteins comprising the fusion protein. A “spacer molecule” useful according to the invention includes neutral ammo acids such as glycine, leucine, valine, alanine, rather than acidic or basic amino acids like aspartate, or arginine respectively.
- “Gene construct” refers to a nucleic acid, such as a vector, plasmid, viral genome or the like which includes a “coding sequence” for a polypeptide or which is otherwise transcribable to a biologically active RNA (e.g., antisense, decoy, ribozyme, etc.), may be transfected into cells, e.g., in certain embodiments mammalian cells, and may cause expression of the coding sequence in cells transfected with the construct. The gene construct may include one or more regulatory elements operably linked to the coding sequence, as well as intronic sequences, polyadenylation sites, origins of replication, marker genes, etc.
- “Host cell” refers to a cell that may be transduced with a specified transfer vector. The cell is optionally selected from in vitro cells such as those derived from cell culture, ex vivo cells, such as those derived from an organism, and in vivo cells, such as those in an organism. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- The term “including” is used herein to mean “including but not limited to.” “Including” and “including but not limited to” are used interchangeably.
- The term “immunogenic” refers to the ability of a substance to elicit an immune response. An “immunogenic composition” or “immunogenic substance” is a composition or substance which elicits an immune response. An “immune response” refers to the reaction of a subject to the presence of an antigen, which may include at least one of the following: antibody production, inflammation, developing immunity, developing hypersensitivity to an antigen, the response of antigen specific lymphocytes to antigen, tolerance, and transplant or graft rejection.
- As used herein, “an immune response to an antigen” means, for example, a humoral or cellular response to the antigen.
- If a patient is mounting a humoral immune response to the antigen, anti-antigen antibody titer is measured. A typical immunoassay consists of coating the wells of an immunoassay plate with the antigen (for example by adding recombinant antigen or using a capture anti-antigen antibody) and then adding serial dilutions of patient serum to the wells. After washing away the sera, human immunoglobulins are detected with a conjugated anti-human immunoglobulin.
- A cellular immune response is measured by using a cell-killing assay. Patients peripheral blood lymphocytes (PBL) are isolated and added at different ratios to a CHO cell line expressing the antigen (non-transfected CHO cells or CHO cells transfected with a non-antigen construct are used as negative control). The antigen expressing CHO cells are transfected with an antigen construct and selected to express antigen on their surface. Killing is measured using radioactivity or release of a specific dye.
- As used herein, “treating a disease” means reducing the amount of soluble antigen in the plasma of patients. Treating a disease also refers to reducing the tumor burden as measured by clinical means (for example by ecography or other methods known in the art. Treating a disease also refers to reducing tumor size/mass and/or prevention of metastases.
- The enhanced mesothelin antibody as described herein, will reduce (eliminate) the tumor burden in patients diagnosed with, e.g., ovarian cancer, meningiomas, gliomas and metastases to the leptomininges, mesotheliomas, adenocarcinoma of the uterus, malignant mesothelioma, pancreatic cancer, and lung adenocarcinoma.
- The term “isolated polypeptide” or “isolated protein” refers to a polypeptide, which may be prepared from recombinant DNA or RNA, or be of synthetic origin, some combination thereof, or which may be a naturally-occurring polypeptide, which (1) is not associated with proteins with which it is normally associated in nature, (2) is isolated from the cell in which it normally occurs, (3) is essentially free of other proteins from the same cellular source, (4) is expressed by a cell from a different species, or (5) does not occur in nature.
- “Isolating” a polypeptide or protein refers to the process of removing a polypeptide from a tissue, cell or any mixture of polypeptides which are not polypeptides or proteins of interest. An isolated polypeptide or protein will be generally free from contamination by other polypeptides or proteins. An isolated polypeptide or protein can exist in the presence of a small fraction of other polypeptides or proteins which do not interfere with the utilization of the polypeptide or protein of interest. Isolated polypeptides or proteins will generally be at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% pure. In one embodiment, isolated polypeptides or proteins according to the invention will be at least 98% or 99% pure.
- The term “isolated nucleic acid” refers to a polynucleotide of genomic, cDNA, synthetic, or natural origin or some combination thereof, which (1) is not associated with the cell in which the “isolated nucleic acid” is found in nature, or (2) is operably linked to a polynucleotide to which it is not linked in nature.
- “Isolating” a nucleic acid refers to the process of removing a nucleic acid from a tissue, cell or any mixture of nucleic acids which are not nucleic acids of interest. An isolated nucleic acid will be generally free from contamination by other nucleic acids. An isolated nucleic acid can exist in the presence of a small fraction of other nucleic acids which do not interfere with the utilization of the nucleic acid of interest. Isolated nucleic acids will generally be at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% pure. In one embodiment, isolated nucleic acids according to the invention will be at least 98% or 99% pure.
- It will be appreciated by those skilled in the art that there can be variability in the polynucleotides that encode the polypeptides (and fragments thereof) of the present invention due to the degeneracy of the genetic code. The degeneracy of the genetic code, which allows different nucleic acid sequences to code for the same polypeptide, is well known in the literature (See, e.g., Table 1).
- As is known in the art, a number of different programs can be used to identify whether a polynucleotide or polypeptide has sequence identity or similarity to a known sequence. Sequence identity or similarity may be determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the sequence identity alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., Nucl. Acid Res. 12:387 (1984), preferably using the default settings, or by inspection.
- An example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351 (1987); the method is similar to that described by Higgins & Sharp, CABIOS 5:151 (1989).
- Another example of a useful algorithm is the BLAST algorithm, described in Altschul et al., J. Mol. Biol. 215:403 (1990) and Karlin et al., Proc. Natl. Acad. Sci. USA 90:5873 (1993). A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., Meth. Enzymol., 266:460 (1996); blast.wustl/edu/blast/README.html. WU-BLAST-2 uses several search parameters, which are preferably set to the default values. The parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity.
- An additional useful algorithm is gapped BLAST as reported by Altschul et al., Nucleic Acids Res. 25:3389 (1997).
- A percentage amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the “longer” sequence in the aligned region. The “longer” sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-Blast-2 to maximize the alignment score are ignored).
- In a similar manner, percent nucleic acid sequence identity with respect to the coding sequence of the polypeptides disclosed herein is defined as the percentage of nucleotide residues in the candidate sequence that are identical with the nucleotides in the polynucleotide specifically disclosed herein.
- The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer amino acids than the polypeptides specifically disclosed herein, it is understood that in one embodiment, the percentage of sequence identity will be determined based on the number of identical amino acids in relation to the total number of amino acids. Thus, for example, sequence identity of sequences shorter than a sequence specifically disclosed herein, will be determined using the number of amino acids in the shorter sequence, in one embodiment. In percent identity calculations relative weight is not assigned to various manifestations of sequence variation, such as insertions, deletions, substitutions, etc.
- In one embodiment, only identities are scored positively (+1) and all forms of sequence variation including gaps are assigned a value of “0,” which obviates the need fix a weighted scale or parameters as described below for sequence similarity calculations. Percent sequence identity can be calculated, for example, by dividing the number of matching identical residues by the total number of residues of the “shorter” sequence in the aligned region and multiplying by 100. The “longer” sequence is the one having the most actual residues in the aligned region.
- When referring to “polypeptide” herein, a person of skill the art will recognize that a protein can be used instead, unless the context clearly indicates otherwise. A “protein” may also refer to an association of one or more polypeptides.
- The term “nucleic acid” refers to a polymeric form nucleotides, either ribonucleotides or deoxynucleotides, a combination of ribo and deoxyribonucleotides or a modified form of either type of nucleotide. The terms should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides.
- Unless the context clearly indicates otherwise, “protein,” “polypeptide,” and “peptide” are used interchangeably herein when referring to a gene expression product, e.g., an amino acid sequence as encoded by a coding sequence. A “protein” may also refer to an association of one or more proteins, such as an antibody. A “protein” may also refer to a protein fragment. A protein may be a post-translationally modified protein such as a glycosylated protein.
- A “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more) amino acids are not identical to the amino acids of the corresponding wild type protein. A “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more) amino acids have been deleted as compared to the corresponding wild type protein. A “protein” according to the invention includes a protein wherein one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acids have been added and/or substituted as compared the corresponding wild type protein.
- It will be understood that the polypeptides specifically disclosed herein will typically tolerate substitutions (e.g., conservative substitutions) in the amino acid sequence and substantially retain biological activity. To identify polypeptides of the invention other than those specifically disclosed herein, amino acid substitutions may be based on any characteristic known in the art, including the relative similarity or differences of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- Amino acid substitutions other than those disclosed herein may be achieved by changing the codons of the DNA sequence (or RNA sequence), according to the following codon table:
-
TABLE 1 Amino Acid Codons Alanine Ala A GCA GCC GCG GCT Cysteine Cys C TGC TGT Aspartic acid Asp D GAC GAT Glutamic acid Glu E GAA GAG Phenylalanine Phe F TTC TTT Glycine Gly G GGA GGC GGG GGT Histidine His H CAC CAT Isoleucine Ile I ATA ATC ATT Lysine Lys K AAA AAG Leucine Leu L TTA TTG CTA CTC CTG CTT Methionine Met M ATG Asparagine Asn N AAC AAT Proline Pro P CCA CCC CCG CCT Glutamine Gln Q CAA CAG Arginine Arg R AGA AGG CGA CGC CGG CGT Serine Ser S AGC ACT TCA TCC TCG TCT Threonine Thr T ACA ACC ACG ACT Valine Val V GTA GTC GTG GTT Tryptophan Trp W TGG Tyrosine Tyr Y TAC TAT - In identifying amino acid sequences encoding polypeptides other than those specifically disclosed herein, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein, is generally understood in the art and Doolittle. J. Mol. Biol. 157:105 (1982); incorporated herein by reference in its entirety). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, id.), these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
- Accordingly, the hydropathic index of the amino acid (or amino acid sequence) may be considered when modifying the polypeptides specifically disclosed herein.
- It is also understood in the art that the substitution of amino acids can be made on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 (incorporated herein by reference in its entirety) states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.
- As detailed in U.S. Pat. No. 4,554,401, the following hydrophilicity values have been assigned to amino acid residues: arginine (±3.0); lysine (±3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryprophan (−3.4).
- Thus, the hydrophilicity of the amino acid (or amino acid sequence) may be considered when identifying additional polypeptides beyond those specifically disclosed herein.
- As used herein, the term “homolog” is used to refer to a molecule which differs from a naturally occurring polypeptide by minor modifications to the naturally occurring polypeptide, but which significantly retains a biological activity of the naturally occurring polypeptide. Minor modifications include, without limitation, changes in one or a few amino acid side chains, changes to one or a few amino acids (including deletions, insertions, and/or substitutions), changes in stereochemistry of one or a few atoms, and minor derivatizations, including, without limitation, methylation, glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitoylation, amidation, and addition of glycosylphosphatidyl inositol. The term “substantially retains,” as used herein, refers to a fragment, homolog, or other variant of a polypeptide that retains at least about 50% of the activity of the naturally occurring polypeptide (e.g., binding to or inhibiting a calcium channel), e.g., about 70%, 80%, 90% or more. Other biological activities, depending on the polypeptide, may include pH sensitivity, enzyme activity, receptor binding, ligand binding, induction of a growth factor, a cell signal transduction event, etc.
- In certain embodiments, the polypeptide of the invention comprises at least one modified terminus, e.g., to protect the polypeptide against degradation. In some embodiments, the N-terminus is acetylated and/or the C-terminus is amidated. In some embodiments, the polypeptide comprises one or two D-alanines at the amino- and/or carboxyl-terminal ends.
- In certain embodiments, the polypeptide of the invention comprises at least one non-natural amino acid (e.g., 1, 2, 3, or more) or at least one terminal modification (e.g., 1 or 2). In some embodiments, the peptide comprises at least one non-natural amino acid and at least one terminal modification.
- By “gene expression product” is meant a molecule that is produced as a result of transcription of an entire gene or a portion of a gene. Gene products include RNA molecules transcribed from a gene, as well as proteins translated from such transcripts. Proteins may be naturally occurring isolated proteins or may be the product of recombinant or chemical synthesis. The term “protein fragment” refers to a protein in which amino acid residues are deleted as compared to the reference protein itself, but where the remaining amino acid sequence is usually identical to or substantially identical (for example, 100%, 99%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, or 60% identical) to that of the reference protein. Such deletions may occur at the amino-terminus or carboxy-terminus of the reference protein, or alternatively both. Deletions may also occur internally.
- Fragments typically are at least about 5, 6, 8 or 10 amino acids long, at least about 14 amino acids long, at least about 20, 30, 40 or 50 amino acids long, at least about 75 amino acids long, or at least about 100, 150, 200, 300, 500 or more amino acids long. Fragments may be obtained using proteinases to fragment a larger protein, or by recombinant methods, such as the expression of only part of a protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence). In various embodiments, a fragment may comprise an enzymatic activity and/or an interaction site of the reference protein to, e.g., a cell receptor. In another embodiment, a fragment may have immunogenic properties. The proteins may include mutations introduced at particular loci by a variety of known techniques, which do not adversely effect, but may enhance, their use in the methods provided herein. A fragment can retain one or more of the biological activities of the reference protein.
- As used herein, a “functional” peptide or “functional fragment” is one that substantially retains at least one biological activity normally associated with that peptide (e.g., binding to or inhibiting a calcium channel). In particular embodiments, the “functional” peptide or “functional fragment” substantially retains all of the activities possessed by the unmodified peptide. By “substantially retains” biological activity, it is meant that the peptide retains at least about 50%, 60%, 75%, 85%, 90%, 95%, 97%, 98%, 99%, or more, of the biological activity of the native polypeptide (and can even have a higher level of activity than the native peptide). A “non-functional” peptide is one that exhibits little or essentially no detectable biological activity normally associated with the peptide (e.g., at most, only an insignificant amount, e.g., less than about 10% or even 5%). Biological activities such as protein binding and calcium channel inhibitory activity can be measured using assays that are well known in the art and as described herein.
- A “patient” or “subject” or “host” refers to either a human or non-human animal.
- A “subject” includes both avians and mammals, with mammals being preferred. The term “avian” as used herein includes, but is not limited to, chickens, ducks, geese, quail, turkeys, and pheasants. The term “mammal” as used herein includes, but is not limited to, humans, bovines, ovines, caprines, equines, felines, canines, lagomorphs, etc. Human subjects include neonates, infants, juveniles, and adults.
- The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- A “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.
- A “pharmaceutically-acceptable salt” refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds.
- As used herein, a “stress protein,” also known as a “heat shock protein” or “Hsp,” is a protein that is encoded by a stress gene, and is therefore typically produced in significantly greater amounts upon the contact or exposure of the stressor to the organism. The term “stress protein” as used herein is intended to include such portions and peptides of a stress protein A “stress gene,” also known as “heat shock gene”, as used herein, refers to a gene that is activated or otherwise detectably upregulated due to the contact or exposure of an organism (containing the gene) to a stressor, such as heat shock, hypoxia, glucose deprivation, heavy metal salts inhibitors of energy metabolism and electron transport, and protein denaturants, or to certain benzoquinone ansamycins. Nover, L., Heat Shock Response, CRC Press, Inc., Boca Raton, Fla. (1991). “Stress gene” also includes homologous genes within known stress gene families, such as certain genes within the Hsp70 and Hsp90 stress gene families, even though such homologous genes are not themselves induced by a stressor. Each of the terms stress gene and stress protein as used in the present specification may be inclusive of the other, unless the context indicates otherwise.
- The term “vaccine” refers to a substance that elicits an immune response and also confers protective immunity upon a subject.
- “Vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of preferred vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication. Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops, which, in their vector form are not bound to the chromosome. In the present specification, “plasmid” and “vector” are used interchangeably as the plasmid is the most commonly used form of vector. However, as will be appreciated by those skilled in the art, the invention is intended to include such other forms of expression vectors, such as viral vectors, which serve equivalent functions and which become subsequently known in the art.
- As used herein, “specifically binds” means via covalent or hydrogen bonding or electrostatic attraction.
- As used herein, an “immune response” or a “detectable response” includes a detectable level of a response that occurs in a subject that has been exposed to a fusion protein of the invention, as described herein, but not in a subject that has not been exposed to a fusion protein of the invention. A “response” that is detected includes but is not limited to an increase in an immune response or an increase in immunogenicity.
- A “detectable response” means a response that is at least 0.01%, 0.5%, 1% or more than the response of a subject that has not been exposed to a fusion protein of the invention. A “detectable response” also means a response that is at least 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1000-fold or more greater than the response of a subject that has not been exposed to a fusion protein of the invention.
- As used herein, “immunogenicity” refers to the ability, for example the ability of a fusion protein of the invention to induce humoral and/or cell-mediated immune responses.
- As used herein, “immune response” refers to a response made by the immune system of an organism to a substance, which includes but is not limited to foreign or self proteins. There are three general types of “immune response” including, but not limited to mucosal, humoral and cellular “immune responses.” A “mucosal immune response” results from the production of secretory IgA (sIgA) antibodies in secretions that bathe all mucosal surfaces of the respiratory tract, gastrointestinal tract and the genitourinary tract and in secretions from all secretory glands (McGhee, J. R., et al., 1983, Annals NY Acad. Sci. 409). These sIgA antibodies act to prevent colonization of pathogens on a mucosal surface (Williams, R. C. et al., Science 177, 697 (1972); McNabb, P. C., et al., Ann. Rev. Microbiol. 35, 477 (1981)) and thus act as a first line of defense to prevent colonization or invasion through a mucosal surface. The production of sIgA can be stimulated either by local immunization of the secretory gland or tissue or by presentation of an antigen to either the gut-associated lymphoid tissue (GALT or Peyer's patches) or the bronchial-associated lymphoid tissue (BALT; Cebra, J. J., et al., Cold Spring Harbor Symp. Quant. Biol. 41, 210 (1976); Bienenstock, J. M., Adv. Exp. Med. Biol. 107, 53 (1978); Weisz-Carrington, P. et al., J. Immunol. 123, 1705 (1979); McCaughan, C. et al., Internal Rev. Physiol 28, 131 (1983)). Membranous microfold cells, otherwise known as M cells, cover the surface of the GALT and BALT and may be associated with other secretory mucosal surfaces. M cells act to sample antigens from the luminal space adjacent to the mucosal surface and transfer such antigens to antigen-presenting cells (dendritic cells and macrophages), which in turn present the antigen to a T lymphocyte (in the case of T-dependent antigens), which process the antigen for presentation to a committed B cell. B cells are then stimulated to proliferate, migrate and ultimately be transformed into an antibody-secreting plasma cell producing IgA against the presented antigen. When the antigen is taken up by M cells overlying the GALT and BALT, a generalized mucosal immunity results with sIgA against the antigen being produced by all secretory tissues in the body (Cebra et al., supra; Bienenstock et al., supra; Weinz-Carrington et al., supra; McCaughan et al., supra). Oral immunization is therefore an important route to stimulate a generalized mucosal immune response and, in addition, leads to local stimulation of a secretory immune response in the oral cavity and in the gastrointestinal tract.
- An “immune response” may be measured using techniques known to those of skill in the art. For example, serum, blood or other secretions may be obtained from an organism for which an “immune response” is suspected to be present, and assayed for the presence of the above mentioned immunoglobulins using an enzyme-linked immuno-absorbant assay (ELISA; U.S. Pat. No. 5,951,988; Ausubel et al., Short Protocols in Molecular Biology 3.sup.rd Ed. John Wiley & Sons, Inc. 1995). A statistical test known in the art may be used to determine the difference in measured immunoglobolin levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least <0.1, <0.05, <0.01, <0.005, <0.001, and even <0.0001.
- An “immune response” may be measured using other techniques such as immunohistochemistry using labeled antibodies which are specific for portions of the immunoglobulins raised during the “immune response.” Microscopic data obtained by immunohistochemistry may be quantitated by scanning the immunohistochemically stained tissue sample and quantiating the level of staining using a computer software program known to those of skill in the art including, but not limited to NIH Image (National Institutes of Health, Bethesda, Md.). According to the present invention, a fusion protein of the present invention can be said to stimulate an “immune response” if the quantitative measure of immunohistochemical staining in a subject treated with a fusion protein is statistically different from the measure of immunohistochemical staining detected in a subject not treated with a fusion protein. A statistical test known in the art may be used to determine the difference in measured immunohistochemical staining levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least <0.1, <0.05, <0.01, <0.005, <0.001, and even <0.0001.
- Provided are fusion proteins comprising an antigen binding domain fused in frame to a modified Mycobacterium tuberculosis heat shock protein 70 (HSP70).
- The antigen binding domain may be an engineered antibody or antibody mimetic and may comprise, for example, at least one scFv, at least one Fab fragment, at least one Fv fragment, etc. It may be monovalent or it may be multivalent. In embodiments wherein the engineered antibody is multivalent, it may be bivalent, trivalent, tetravalent, etc. The multivalent antibodies may be monospecific or multispecific, e.g., bispecific, trispecific, tetraspecific, etc. The multivalent antibodies may be in any form, such as a diabody, triabody, tetrabody, etc. In certain embodiments, the engineered antibody is a Tandab. The modified HSP70 may be, for example, a fragment of the natural sequence, a modification of the natural amino acid sequence (e.g., a deletion, addition, and/or substitution) or any combination thereof. The full-length polypeptide sequence of Mycobacterium tuberculosis HSP70 is shown in SEQ ID NO:1.
-
(SEQ ID NO: 1) MARAVGIDLG TTNSVVSVLE GGDPVVVANS EGSRTTPSIV AFARNGEVLV GQPAKNQAVT NVDRTVRSVK RHMGSDWSIE IDGKKYTAPE ISARILMKLK RDAEAYLGED ITDAVITTPA YFNDAQRQAT KDAGQIAGLN VLRIVNEPTA AALAYGLDKG EKEQRILVFD LGGGTFDVSL LEIGEGVVEV RATSGDNHLG GDDWDQRVVD WLVDKFKGTS GIDLTKDKMA MQRLREAAEK AKIELSSSQS TSINLPYITV DADKNPLFLD EQLTRAEFQR ITQDLLDRTR KPFQSVIADT GISVSEIDHV VLVGGSTRMP AVTDLVKELT GGKEPNKGVN PDEVVAVGAA LQAGVLKGEV KDVLLLDVTP LSLGIETKGG VMTRLIERNT TIPTKRSETF TTADDNQPSV QIQVYQGERE IAAHNKLLGS FELTGIPPAP RGIPQIEVTF DIDANGIVHV TAKDKGTGKE NTIRIQEGSG LSKEDIDRMI KDAEAHAEED RKRREEADVR NQAETLVYQT EKFVKEQREA EGGSKVPEDT LNKVDAAVAE AKAALGGSDI SAIKSAMEKL GQESQALGQA IYEAAQAASQ ATGAAHPGGE PGGAHPGSAD DVVDAEVVDD GREAK - Further details about antigen binding domains and modified HSP70 sequences which may be incorporated into the subject fusion polypeptides is provided below.
- An antigen binding domain is any peptide sequence that specifically binds to an antigen and can function as part of a fusion protein. The antigen binding domain may be a natural sequence, e.g., an antibody or a fragment thereof, a ficolin, a collection, etc. The antigen binding domain may be a synthetic sequence, e.g., an engineered antibody, an antibody-like peptide, an antibody mimetic, an aptamer, etc.
- The antigen binding domain may specifically bind to an antigen of interest. The antigen binding domain may specifically bind, e.g., to a tumor cell antigen of a cancer to be treated or prevented by the methods of the present invention. Such antigens include, but are not limited to, for example, antigens of a human sarcoma cell or carcinoma cell, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, ostcogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, or heavy chain disease cell.
- The antigen binding domain may specifically bind other antigens, including disease-associated and/or viral antigens. The antigen binding domain may specifically bind diseased and/or virally infected cells expressing antigen on their surface.
- Infectious diseases that can be treated or prevented by the methods of the present invention are caused by infectious agents. Such infectious agents or antigens derived therefrom, that may be targeted by the antigen binding domain of the present invention, include, but are not limited to, viruses, bacteria, fungi, and protozoa. The invention is not limited to treating or preventing infectious diseases caused by intracellular pathogens but is intended to include extracellular pathogens as well. Many medically relevant microorganisms have been described extensively in the literature, e.g., see C. G. A Thomas, Medical Microbiology, Bailliere Tindall, Great Britain 1983, the entire contents of which is hereby incorporated by reference.
- Infectious viruses of both human and non-human vertebrates, include retroviruses, RNA viruses and DNA viruses expressing antigen. Examples of viral antigens include but are not limited to antigens of Retroviridae (e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bungaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses); Bimaviridae; Hepadnaviridae (Hepatitis B virus); Parvovirida (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes virus; Poxyiridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class I=internally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).
- Retroviral antigens that may be targeted include antigens of both simple retroviruses and complex retroviruses. The simple retroviruses include the subgroups of B-type retroviruses, C-type retroviruses and D-type retroviruses. An example of a B-type retrovirus is mouse mammary tumor virus (MMTV). The C-type retroviruses include subgroups C-type group A (including Rous sarcoma virus (RSV), avian leukemia virus (ALV), and avian myeloblastosis virus (AMV)) and C-type group B (including, murine leukemia virus (MLV), feline leukemia virus (FeLV), murine sarcoma virus (MSV), gibbon ape leukemia virus (GALV), spleen necrosis virus (SNV), reticuloendotheliosis virus (RV) and simian sarcoma virus (SSV)). The D-type retroviruses include Mason-Pfizer monkey virus (MPMV) and simian retrovirus type 1 (SRV-1). The complex retroviruses include the subgroups of lentiviruses T-cell leukemia viruses and the foamy viruses. Lentiviruses include HIV-1, but also include HIV-2, SIV, Visna virus, feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV). The T-cell leukemia viruses include HTLV-I, HTLV-II, simian T-cell leukemia virus (STLV), and bovine leukemia virus (BLV). The foamy viruses include human foamy virus (HFV), simian foamy virus (SFV) and bovine foamy virus (BFV).
- Examples of antigens of RNA viruses that may be bound by an antigen binding domain include, but are not limited to, antigens of the following: members of the family Reoviridae, including the genus Orthoreovirus (multiple serotypes of both mammalian and avian retroviruses), the genus Orbivirus (Bluetongue virus, Eugenangee virus, Kemerovo virus, African horse sickness virus, and Colorado Tick Fever virus), the genus Rotavirus (human rotavirus, Nebraska calf diarrhea virus, murine rotavirus, simian rotavirus, bovine or ovine rotavirus, avian rotavirus); the family Picornaviridae, including the genus Enterovirus (poliovirus, Coxsackie virus A and B, enteric cytopathic human orphan (ECHO) viruses, hepatitis A virus, Simian enteroviruses, Murine encephalomyelitis (ME) viruses, Poliovirus muris, Bovine enteroviruses, Porcine enteroviruses, the genus Cardiovirus (Encephalomyocarditis virus (EMC), Mengovirus), the genus Rhinovirus (Human rhinoviruses including at least 113 subtypes; other rhinoviruses), the genus Apthovirus (Foot and Mouth disease (FMDV); the family Calciviridae, including Vesicular exanthema of swine virus, San Miguel sea lion virus, Feline picornavirus and Norwalk virus; the family Togaviridae, including the genus Alphavirus (Eastern equine encephalitis virus, Semliki forest virus, Sindbis virus, Chikungunya virus, O'Nyong-Nyong virus, Ross river virus, Venezuelan equine encephalitis virus, Western equine encephalitis virus), the genus Flavirus (Mosquito home yellow fever virus, Dengue virus, Japanese encephalitis virus, St. Louis encephalitis virus, Murray Valley encephalitis virus, West Nile virus, Kunjin virus, Central European tick borne virus, Far Eastern tick borne virus, Kyasanur forest virus, Louping III virus, Powassan virus, Omsk hemorrhagic fever virus), the genus Rubivirus (Rubella virus), the genus Pestivirus (Mucosal disease virus, Hog cholera virus, Border disease virus); the family Bunyaviridae, including the genus Bunyvirus (Bunyamwera and related viruses, California encephalitis group viruses), the genus Phlebovirus (Sandfly fever Sicilian virus, Rift Valley fever virus), the genus Nairovirus (Crimean-Congo hemorrhagic fever virus, Nairobi sheep disease virus), and the genus Uukuvirus (Unkuniemi and related viruses); the family Orthomyxoviridae, including the genus Influenza virus (Influenza virus type A, many human subtypes); Swine influenza virus, and Avian and Equine influenza viruses; influenza type B (many human subtypes), and influenza type C (possible separate genus); the family paramyxoviridae, including the genus Paramyxovirus (Parainfluenza virus type 1, Sendai virus, Hemadsorption virus, Parainfluenza viruses types 2 to 5, Newcastle Disease Virus, Mumps virus), the genus Morbillivirus (Measles virus, subacute sclerosing panencephalitis virus, distemper virus, Rinderpest virus), the genus Pneumovirus (respiratory syncytial virus (RSV), Bovine respiratory syncytial virus and Pneumonia virus of mice); forest virus, Sindbis virus, Chikungunya virus, O'Nyong-Nyong virus, Ross river virus, Venezuelan equine encephalitis virus, Western equine encephalitis virus), the genus Flavirius (Mosquito borne yellow fever virus, Dengue virus, Japanese encephalitis virus, St. Louis encephalitis virus, Murray Valley encephalitis virus, West Nile virus, Kunjin virus, Central European tick borne virus, Far Eastern tick borne virus, Kyasanur forest virus, Louping III virus, Powassan virus, Omsk hemorrhagic fever virus), the genus Rubivirus (Rubella virus), the genus Pestivirus (Mucosal disease virus, Hog cholera virus, Border disease virus); the family Bunyaviridae, including the genus Bunyvirus (Bunyamwera and related viruses, California encephalitis group viruses), the genus Phlebovirus (Sandfly fever Sicilian virus, Rift Valley fever virus), the genus Nairovirus (Crimean-Congo hemorrhagic fever virus, Nairobi sheep disease virus), and the genus Uukuvirus (Uukuniemi and related viruses); the family Orthomyxoviridae, including the genus Influenza virus (Influenza virus type A, many human subtypes); Swine influenza virus, and Avian and Equine influenza viruses; influenza type B (many human subtypes), and influenza type C (possible separate genus); the family paramyxoviridae, including the genus Paramyxovirus (Parainfluenza virus type 1, Sendai virus, Hemadsorption virus, Parainfluenza viruses types 2 to 5, Newcastle Disease Virus, Mumps virus), the genus Morbillivirus (Measles virus, subacute sclerosing panencephalitis virus, distemper virus, Rinderpest virus), the genus Pneumovirus (respiratory syncytial virus (RSV), Bovine respiratory syncytial virus and Pneumonia virus of mice); the family Rhabdoviridae, including the genus Vesiculovirus (VSV), ChanBipura virus, Flanders-Hart Park virus), the genus Lyssavirus (Rabies virus), fish Rhabdoviruses, and two probable Rhabdoviruses (Marburg virus and Ebola virus); the family Arenaviridae, including Lymphocytic choriomeningitis virus (LCM), Tacaribe virus complex, and Lassa virus; the family Coronoaviridae, including Infectious Bronchitis Virus (IBV), Mouse Hepatitis virus, Human enteric corona virus, and Feline infectious peritonitis (Feline coronavirus).
- Illustrative DNA viral antigens include, but are not limited to antigens of the family Poxyiridae, including the genus Orthopoxvirus (Variola major, Variola minor, Monkey pox Vaccinia, Cowpox, Buffalopox, Rabbitpox, Ectromelia), the genus Leporipoxvirus (Myxoma, Fibroma), the genus Avipoxvirus (Fowlpox, other avian poxvirus), the genus Capripoxvirus (sheeppox, goatpox), the genus Suipoxvirus (Swinepox), the genus Parapoxvirus (contagious postular dermatitis virus, pseudocowpox, bovine papular stomatitis virus); the family Inidoviridae (African swine fever virus, Frog viruses 2 and 3, Lymphocystis virus of fish); the family Herpesviridae, including the alpha-Herpesviruses (Herpes Simplex Types 1 and 2, Varicella-Zoster, Equine abortion virus, Equine herpes virus 2 and 3, pseudorabies virus, infectious bovine keratoconjunctivitis virus, infectious bovine rhinotracheitis virus, feline rhinotracheitis virus, infectious laryngotracheitis virus) the Beta-herpesviruses (Human cytomegalovirus and cytomegaloviruses of swine, monkeys and rodents); the gramma-herpesviruses (Epstein-Barr virus (EBV), Marek's disease virus, Herpes saimiri, Herpesvirus ateles, Herpesvirus sylvilagus, guinea pig herpes virus, Lucke tumor virus); the family Adenoviridae, including the genus Mastadenovirus (Human subgroups A, B, C, D, E and ungrouped; simian adenoviruses (at least 23 serotypes), infectious canine hepatitis, and adenoviruses of cattle, pigs, sheep, frogs and many other species, the genus Aviadenovirus (Avian adenoviruses); and non-cultivatable adenoviruses; the family Papoviridae, including the genus Papillomavirus (Human papilloma viruses, bovine papilloma viruses, Shope rabbit papilloma virus, and various pathogenic papilloma viruses of other species), the genus Polyomavirus (polyomavirus, Simian vacuolating agent (SV-40), Rabbit vacuolating agent (RKV), K virus, BK virus, JC virus, and other primate polyoma viruses such as Lymphotrophic papilloma virus); the family Parvoviridae including the genus Adeno-associated viruses, the genus Parvovirus (Feline panleukopenia virus, bovine parvovirus, canine parvovirus. Aleutian mink disease virus, etc). Finally, DNA viral antigens may include viral antigens of viruses which do not fit into the above families such as Kuru and Creutzfeldt-Jacob disease viruses and chronic infectious neuropathic agents.
- Natural antibodies are themselves dimers, and thus, bivalent. If two hybridoma cells producing different antibodies are artificially fused, some of the antibodies produced by the hybrid hybridoma are composed of two monomers with different specificities. Such bispecific antibodies can also be produced by chemically conjugating two antibodies. Natural antibodies and their bispecific derivatives are relatively large and expensive to produce. The constant domains of mouse antibodies are also a major cause of the human anti-mouse antibody (HAMA) response, which prevents their extensive use as therapeutic agents. They can also give rise to unwanted effects due to their binding of Fc-receptors. For these reasons, molecular immunologists have been concentrating on the production of the much smaller Fab- and Fv-fragments in microorganisms. These smaller fragments are not only much easier to produce, they are also less immunogenic, have no effector functions, and, because of their relatively small size, they are better able to penetrate tissues and tumors. In the case of the Fab-fragments, the constant domains adjacent to the variable domains play a major role in stabilizing the heavy and light chain dimer. Accordingly, while full-length or nearly full length engineered antibodies may comprise the subject fusion polypeptides, smaller, single domain engineered antibodies (that may be multivalent and multispecific) are preferred for use in the fusion polypeptides.
- The Fv-fragment is much less stable, and a peptide linker may therefore be introduced between the heavy and light chain variable domains to increase stability. This construct is known as a single chain Fv (scFv)-fragment. A disulfide bond is sometimes introduced between the two domains for extra stability. Thus far, tetravalent scFv-based antibodies have been produced by fusion to extra polymerizing domains such as the streptavidin monomer that forms tetramers, and to amphipathic alpha helices. However, these extra domains can increase the immunogenicity of the tetravalent molecule.
- Bivalent and bispecific antibodies can be constructed using only antibody variable domains. A fairly efficient and relatively simple method is to make the linker sequence between the VH and VL domains so short that they cannot fold over and bind one another. Reduction of the linker length to 3-12 residues prevents the monomeric configuration of the scFv molecule and favors intermolecular VH-VL pairings with formation of a 60 kDa non-covalent scFv dimer “diabody” (Holliger et al., 1993, Proc. Natl. Acad., Sci. USA 90, 6444-6448). The diabody format can also be used for generation of recombinant bispecific antibodies, which are obtained by the noncovalent association of two single-chain fusion products, consisting of the VH domain from one antibody connected by a short linker to the VL domain of another antibody. Reducing the linker length still further below three residues can result in the formation of trimers (“triabody,” about 90 kDa) or tetramers (“tetrabody,” about 120 kDa) (Le Gall et al., 1999, FEBS Letters 453, 164-168). For a review of engineered antibodies, particularly single domain fragments, see Holliger and Hudson, 2005, Nature Biotechnology, 23:1126-1136. All of such engineered antibodies may be used in the fusion polypeptides provided herein.
- Other multivalent engineered antibodies that may comprise the subject fusion polypeptides are described in Lu, et al., 2003, J. Immunol. Meth. 279:219-232 (di-diabodies or tetravalent bispecific antibodies); US Published Application 20050079170 (multimeric Fv molecules or “flexibodies”); and WO99/57150 and Kipriyanov, et al., 1999, J. Mol. Biol. 293:41-56 (tandem diabodies, or “Tandabs”).
- Any of the above-described multivalent engineered antibodies may be developed by one of skill in the art using routine recombinant DNA techniques, for example as described in PCT international Application No. PCT/US86/02269; European Patent Application No. 184,187; European Parent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No. 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Cancer Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) BioTechniques 4:214; U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; Beidler et al. (1988) J. Immunol. 141:4053-4060; and Winter and Milstein, Nature, 349, pp 293-99 (1991)). Preferably non-human antibodies are “humanized” by linking the non-human antigen binding domain with a human constant domain (e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. U.S.A., 81, pp 6851-55 (1984)).
- The antigen recognition sites or entire variable regions of the engineered antibodies may be derived from one or more parental antibodies directed against mesothelin. The parental antibodies can include naturally occurring antibodies or antibody fragments, antibodies or antibody fragments adapted from naturally occurring antibodies, antibodies constructed de novo using sequences of antibodies or antibody fragments known to be specific for an antigen of interest. Sequences that may be derived from parental antibodies include heavy and/or light chain variable regions and/or CDRs, framework regions or other portions thereof.
- Multivalent, multispecific antibodies may contain a heavy chain comprising two or more variable regions and/or a light chain comprising one or more variable regions wherein at least two of the variable regions recognize different epitopes on the same antigen.
- Candidate engineered antibodies for inclusion in the fusion polypeptides, or the fusion polypeptides themselves, may be screened for activity using a variety of known assays. For example, screening assays to determine binding specificity are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al., (Eds.), ANTIBODIES: A LABORATORY MANUAL; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988, Chapter 6.
- Any suitable stress protein (heat shock protein (hsp)) can be used in the fusion polypeptides of the present invention. The stress protein preferably is HSP70, e.g., from M. tuberculosis.
- A “heat shock protein” is encoded by a “heat shock gene” or a stress gene, refers to the protein product of a gene that is activated or otherwise detectably upregulated due to the contact or exposure of an organism (containing the gene) to a stressor, such as heat shock, hypoxia, glucose deprivation, heavy metal salts, inhibitors of energy metabolism and electron transport, and protein denaturants, or to certain benzoquinone ansamycins. Nover L., Heat Shock Response, CRC Press, Inc., Boca Raton, Fla. (1991). “Heat shock protein” also includes homologous proteins encoded by genes within known stress gene families, even though such homologous genes are not themselves induced by a stressor. A “heat shock protein fusion” refers to a heat shock protein or portion thereof, linked to an antigen binding domain.
- Cells respond to a stressor (typically heat shock treatment) by increasing the expression of a group of genes commonly referred to as stress, or heat shock genes. Heat shock treatment involves exposure of cells or organisms to temperatures that are one to several degrees Celsius above the temperature to which the cells are adapted. In coordination with the induction of such genes, the levels of corresponding stress proteins increase in stressed cells.
- For example, a heat shock protein may be C- or N-terminally joined to a antigen-specific antigen binding domain to generate a heat shock protein fusion. A heat shock protein fusion comprising a heat shock protein and an antigen binding domain is capable of stimulating humoral and/or cellular immune responses, including CD8 cytotoxic T cell (CTL) responses, to the antigen.
- For example, but not by way of limitation, heat shock proteins which may be used according to the invention include BiP (also referred to as grp78), Hsp10, Hsp20-30, Hsp60 hsp70, hsc70, gp96 (grp94), hsp60, hsp40, and Hsp100-200, Hsp100, Hsp90, and members of the families thereof. Especially preferred heat shock proteins are BiP, gp96, and hsp70, as exemplified below. A particular group of heat shock proteins includes Hsp90, Hsp70, Hsp60, Hsp20-30, further preferably Hsp70 and Hsp60. Most preferred is a member of the hsp70 family.
- In bacteria, the predominant stress proteins are proteins with molecular sizes of about 70 and 60 kDa, respectively, that are commonly referred to as Hsp70 and Hsp60, respectively. These and other specific stress proteins and the genes encoding them are discussed further below. In bacteria, Hsp70 and Hsp60 typically represent about 1-3% of cell protein based on the staining pattern using sodium dodecyl sulfate polyacrylamide gel electrophoresis and the stain Coomassie blue, but accumulate to levels as high as 25% under stressful conditions. Stress proteins appear to participate in important cellular processes such as protein synthesis, intracellular trafficking, and assembly and disassembly of protein complexes. It appears that the increased amounts of stress proteins synthesized during stress serve primarily to minimize the consequences of induced protein unfolding. Indeed, the preexposure of cells to mildly stressful conditions that induce the synthesis of stress proteins affords protection to the cells from the deleterious effects of a subsequent more extreme stress.
- The major stress proteins appear to be expressed in every organism and tissue type examined so far. Also, it appears that stress proteins represent the most highly conserved group of proteins identified to date. For example, when stress proteins in widely diverse organisms are compared, Hsp90 and Hsp70 exhibit 50% or higher identity at the amino acid level and share many similarities at non-identical positions. It is noted that similar or higher levels of homology exist between different members of a particular stress protein family within species.
- The stress proteins, particularly Hsp70, Hsp60, Hsp20-30 and
Hsp 10, we among the major determinants recognized by the host immune system in the immune response to infection by Mycobacterium tuberculosis and Mycobacterium leprae. Young. R. A. and Elliott, T. J., Stress Proteins, Infection, And immune Surveillance, Cell 50:58 (1989). Further, some rat arthritogenic T cells recognize Hsp60 epitopes, Van Eden, W. et al., Nature 331:171-173 (1988). However, individuals, including healthy individuals, with no history mycobacterial infection or autoimmune disease also carry T cells that recognize both bacterial and human Hsp60 epitopes; a considerable fraction of T cells in healthy individuals that are characterized by expression of the gamma-delta T cell receptor recognize both self and foreign stress proteins. O'Brien R. et al., Cell 57:664-674 (1989). Thus, individuals, even healthy individuals, possess T-cell populations that recognize both foreign and self stress protein epitopes. - This system recognizing stress protein epitopes presumably constitutes an “early defense system” against invading organisms. Murray, P. J. and Young, R. A., J. Bacteriol 174: 4193-6 (1992). The system may be maintained by frequent stimulation by bacteria and viruses. As discussed before, healthy individuals have T cell populations recognizing self stress proteins. Thus, the presence of autoreactive T cells is compatible with normal health and does not cause autoimmune disease; this demonstrates the safety of stress proteins within an individual. The safety of stress proteins is additionally demonstrated by the success and relative safety of BCG (Bacille Calmette Guerin, a strain of Mycobacterium bovis) vaccinations, which induce an immune response against stress proteins that is also protective against Mycobacterium tuberculosis.
- Hsp70 examples include Hsp72 and Hsc73 from mammalian cells, DnaK from bacteria, particularly mycobacteria such as Mycobacterium leprae, Mycobacterium tuberculosis, and Mycobacterium bovis (such as Bacille-Calmette Guerin: referred to herein as Hsp71), DnaK from Escherichia coli, yeast, and other prokaryotes, and BiP and Grp78. Hsp70 is capable of specifically binding ATP as well as unfolded polypeptides and peptides, thereby participating in protein folding and unfolding as well as in the assembly and disassembly of protein complexes.
- In particular embodiments, the stress proteins of the present invention are obtained from enterobacteria, mycobacteria (particularly M. leprae, M. tuberculosis, M. vaccae, M. smegmatis and M. bovis), E. coli, yeast, Drosophila, vertebrates, avians, chickens, mammals, rats, mice, primates, or humans.
- Naturally occurring or recombinantly derived mutants of heat shock proteins may be used according to the invention, including fragments and modified sequences. For example, but not by way of limitation, the present invention provides for the use of heat shock proteins mutated so as to facilitate their secretion from the cell (for example having mutation or deletion of an element which facilitates endoplasmic reticulum recapture, such as KDEL (SEQ ID NO:14) or its homologues; such mutants are described in PCT Application No. PCT/US96/13233 (WO 97/06685), which is incorporated herein by reference.
- In particular embodiments, e.g., in cases involving chemical conjugates between a stress protein and an engineered antibody, the stress proteins used are isolated stress proteins, which means that the stress proteins have been selected and separated from the host cell in which they were produced. Such isolation can be carried out as described herein and using routine methods of protein isolation known in the art. The stress proteins may be in the form of acidic or basic salts, or in neutral form. In addition, individual amino acid residues may be modified by oxidation or reduction. Furthermore, various substitutions, deletions, or additions may be made to the amino acid or nucleic acid sequences, the net effect of which is to retain or further enhance the increased biological activity of the stress protein. Due to code degeneracy, for example, there may be considerable variation in nucleotide sequences encoding the same amino acid sequence. Portions of stress proteins or peptides obtained from stress proteins may be used in the fusion polypeptides, provided such portions or peptides include the epitopes involved with enhancing the immune response. Portions of stress proteins may be obtained by fragmentation using proteinases, or by recombinant methods, such as the expression of only part of a stress protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence). Peptides may also be produced by such methods, or by chemical synthesis. The stress proteins may include mutations introduced at particular loci by a variety of known techniques. See, e.g., Sambrook et. al., Molecular Cloning: A Laboratory Manual. 2d Ed., Cold Spring Harbor Laboratory Press (1989); Drinkwater and Klinedinst Proc. Natl, Acad, Sci. USA 83:3402-3406 (1986); Liao and Wise, Gene 88:107-111 (1990); Horwitz et al., Genome 3:112-117(1989).
- The pharmaceutical compositions provided herein may have individual amino acid residues that are modified by oxidation or reduction. Furthermore, various substitutions, deletions, or additions may be made to the amino acid or nucleic acid sequences, the net effect of which is to retain or further enhance the increased biological activity of the heat shock protein. Due to codon degeneracy, for example, there may be considerable variation in nucleotide sequences encoding the same amino acid sequence.
- The term “heat shock protein” is intended to encompass fragments of heat shock proteins obtained from heat shock proteins, provided such fragments include the epitopes involved with enhancing the immune response to mesothelin. Fragments of heat shock proteins may be obtained using proteinases, or by recombinant methods, such as the expression of only part of a stress protein-encoding nucleotide sequence (either alone or fused with another protein-encoding nucleic acid sequence). The heat shock proteins may include mutations introduced at particular loci by a variety of known techniques to enhance its effect on the immune system. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989); Drinkwater and Klinedinst Proc. Natl. Acad. Sci. USA 83:3402-3406 (1986); Liao and Wise, Gene 88:107-111 (1990); Horwitz et al., Genome 3:112-117 (1989).
- In particular embodiments, the heat shock proteins used in the present invention are isolated heat shock proteins, which means that the heat shock proteins have been selected and separated from the host cell in which they were produced. Such isolation can be carried out as described herein and using routine methods of protein isolation known in the art. Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.. (1982); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989); Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182, Academic Press, Inc., San Diego, Calif. (1990).
- One aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of less than 200 amino acids, wherein the HSP70 fragment comprises a minimal HSP70 sequence. The HSP70 fragment may comprise, consist essentially of, or consist of the minimal HSP sequence.
- The minimal HSP70 sequence refers to a fragment of HSP70 that provides all of the biological functions desired in the fusion proteins of the present invention. In some embodiments, the minimal HSP70 sequence is at least 40 amino acids in length, e.g., at least about 40, 50, 60, 70, 80, 90, 100, 110, or 120 amino acids in length. In some embodiments, the minimal HSP70 sequence is less than 400 amino acids in length, e.g., less than about 400, 350, 300, 250, 200, 190, 180, 170, 160, 150, 140, or 130 amino acids in length. In certain embodiments, the minimal HSP70 sequence comprises, consists essentially of, or consists of the fragment from about amino acid residues 368 (e.g., plus or
minus minus - In one embodiment, the fusion protein comprising the minimal HSP sequence comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:3. The underline indicates the linker between the VH and VL domains of the scFv, the italics indicates the linker between the scFv and the HSP70, and the bold indicates the CD94 domain.
-
(SEQ ID NO: 3) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG GGSGGGGSGG GGSVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREIAAH NKLLGSFELT GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A - In some embodiments, the minimal HSP sequence comprises a modified CD94 domain, i.e., the amino acid sequence of the CD94 domain is modified. As used herein, the term “CD94 domain” refers to amino acid residues 422-435 of Mbt HSP70 (SEQ ID NO:1) having the sequence AAHNKLLGSFELTG (SEQ ID NO:15) or the equivalent sequence in other HSP70 proteins.
- In some embodiments, the modified CD94 domain consists of an amino acid sequence selected from:
-
(SEQ ID NO: 16) AAHNNLLGSFELTG (SEQ ID NO: 17) AAHNNLLGRFELTG (SEQ ID NO: 18) AAHNNLLGRFFLSG (SEQ ID NO: 19) TKENNLLGRFELSG (SEQ ID NO: 20) TRDNNLLGRFELSG. - In certain embodiments, the modified CD94 domain consists of the amino acid sequence TKENNLLGRFELSG (SEQ ID NO:19). In one embodiment, the fusion protein comprising the minimal HSP sequence with the CD94 domain sequence TKENNLLGRFELSG (SEQ ID NO:19) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:5.
-
(SEQ ID NO: 5) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG GGSGGGGSGG GGSVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREITKE NNLLGRFELS GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A - In certain embodiments, the modified CD94 domain consists of the amino acid sequence TKDNNLLGRFELSG (SEQ ID NO:20). In one embodiment, the fusion protein comprising the minimal HSP sequence with the CD94 domain sequence TKDNNLLGRFELSG (SEQ ID NO:20) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:7.
-
(SEQ ID NO: 7) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG GGSGGGGSGG GGSVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREITKD NNLLGRFELS GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A - In certain embodiments, the minimal HSP70 sequence may contain one or more amino acid additions, deletions or substitutions that enhance the effectiveness of the fusion protein of the invention. In one embodiment, the minimal HSP70 sequence comprises a V410F substitution (numbering based on SEQ ID NO:1), which decreases the peptide binding activity of HSP70, thereby minimizing non-specific antigen delivery.
- In some embodiments, the fusion protein further comprises a linker between the antibody binding domain and the HSP70 fragment. In certain embodiments, linker comprises, consists essentially of, or consists of an amino acid sequence selected from the group consisting of: GGSSRSS (SEQ ID NO:21), (GGGSGGG), (SEQ ID NO:22), GGGGSGGGGSGGGGS (SEQ ID NO:23), GGSSRSSSSGGGGSGGGG (SEQ ID NO:24), and GGSSESSSSGGGGSGGGG (SEQ ID NO:25).
- In certain embodiments, the linker is GGSRSSSSGGGGSGGGG (SEQ ID NO:24). In one embodiment, the fusion protein comprising the minimal HSP70 sequence and the linker GGSSRSSSSGGGGSGGGG (SEQ ID NO:24) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:9.
-
(SEQ ID NO: 9) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG SSRSSSSGGG GSGGGGVTPL SLGIETKGGF MTRLIERNTT IPTKRSETFT TADDNQPSVQ IQVYQGEREI TKENNLLGRF ELSGIPPAPR GIPQIEVTFD IDANGIVHVT AKDKGTGKEN TITIQEGSGL SKEDIDRMIK DAEA - In certain embodiments, the linker is GGSSESSSSGGGGSGGGG (SEQ ID NO:25). In one embodiment, the fusion protein comprising the minimal HSP70 sequence and the linker GGSSESSSSGGGGSGGGG (SEQ ID NO:25) comprises, consists essentially of, or consist of the amino acid sequence of SEQ ID NO:11.
-
(SEQ ID NO: 11) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG SSESSSSGGG GSGGGGVTPL SLGIETKGGF MTRLIERNTT IPTKRSETFT TADDNQPSVQ IQVYQGEREI TKENNLLGRF ELSGIPPAPR GIPQIEVTFD IDANGIVHVT AKDKGTGKEN TIRIQEGSGL SKEDIDRMIK DAEA - A further aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) of at least 100 amino acids and comprising no more than amino acids 1-495 of SEQ ID NO:1. This fragment does not comprise the C-terminal lid sequence, the deletion providing enhanced biological activity for the fusion proteins of the invention. The HSP70 lid deletion fragment of this aspect of the invention has a maximum length of 495 amino acid residues starting with
amino acid 1 or the natural M. tuberculosis amino acid sequence. The HSP lid deletion fragment may have a length of less than about 495, 490, 480, 470, 460, 450, 425, 400, 375, 350, 325, or 300 amino acid residues. The HSP fragment may have a length of at least about 100, 125, 150, 175, 200, 225, 250, 275, or 300 amino acid residues. - In certain embodiments, the HSP70 lid deletion fragment may contain one or more amino acid additions, deletions or substitutions that enhance the effectiveness of the fusion protein of the invention. In one embodiment, the HSP70 lid deletion fragment comprises one or more of the modifications (a) F176A or b) R318A (in the LPS binding site in subdomain II to alter LPS binding) or c) V410F (in the peptide binding domain to alter peptide binding) in any combination (numbering based on SEQ ID NO:1). In one embodiment, the fusion protein comprising the HSP70 lid deletion fragment and additional modifications comprises, consists essentially of, or consists of the amino acid sequence of SEQ ID NOS:12, 13, or 31.
-
(SEQ ID NO: 12) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG SSRSSSSGGG GSGGGGMARA VGIDLGTTNS VVSVLEGGDP VVVANSEGSR TTPSIVAFAR NGEVLVGQPA KNQAVTNVDR TVRSVKRHMG SDWSIEIDGK KYTAPEISAR ILMKLKRDAE AYLGEDITDA VITTPAYFND AQRQATKDAG QIAGLNVLRI VNEPTAAALA YGLDKGEKEQ RILVFDLGGG TFDVSLLEIG EGVVEVRATS GDNHLGGDDW DQRVVDWLVD KFKGTSGIDL TKDKMAMQRL REAAEKAKIE LSSSQSTSIN LPYITVDADK NPLFLDEQLT RAEFQRITQD LLDRTRKPFQ SVIADTGISV SEIDHVVLVG GST A MPAVTD LVKELTGGKE PNKGVNPDEV VAVGAALQAG VLKGEVKDVL LLDVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREITKE NNLLGRFELS GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A (SEQ ID NO: 13) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG SSESSSSGGG GSGGGGMARA VGIDLGTTNS VVSVLEGGDP VVVANSEGSR TTPSIVAFAR NGEVLVGQPA KNQAVTNVDR TVRSVKRHMG SDWSIEIDGK KYTAPEISAR ILMKLKRDAE AYLGEDITDA VITTPAYFND AQRQATKDAG QIAGLNVLRI VNEPTAAALA YGLDKGEKEQ RILVFDLGGG TFDVSLLEIG EGVVEVRATS GDNHLGGDDW DQRVVDWLVD KFKGTSGIDL TKDKMAMQRL REAAEKAKIE LSSSQSTSIN LPYITVDADK NPLFLDEQLT RAEFQRITQD LLDRTRKPFQ SVIADTGISV SEIDHVVLVG GST A MPAVTD LVKELTGGKE PNKGVNPDEV VAVGAALQAG VLKGEVKDVL LLDVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREITKE NNLLGRFELS GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A (SEQ ID NO: 31) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG SSESSSSGGG GSGGGGMARA VGIDLGTTNS VVSVLEGGDP VVVANSEGSR TTPSIVAFAR NGEVLVGQPA KNQAVTNVDR TVRSVKRHMG SDWSIEIDGK KYTAPEISAR ILMKLKRDAE AYLGEDITDA VITTPAYFND AQRQATKDAG QIAGLNVLRI VNEPTAAALA YGLDKGEKEQ RILVFDLGGG TFDVSLLEIG EGVVEVRATS GDNHLGGDDW DQRVVDWLVD KFKGTSGIDL TKDKMAMQRL REAAEKAKIE LSSSQSTSIN LPYITVDADK NPLFLDEQLT RAEFQRITQD LLDRTRKPFQ SVIADTGISV SEIDHVVLVG GST A MPAVTD LVKELTGGKE PNKGVNPDEV VAVGAALQAG VLKGEVKDVL LLDVTPLSLG IETKGGFMTR LIERNTTIPT KRSETFTTAD DNQPSVQIQV YQGEREITKE NNLLGRFELS GIPPAPRGIP QIEVTFDIDA NGIVHVTAKD KGTGKENTIR IQEGSGLSKE DIDRMIKDAE A - In some embodiments, in any of the modified HSP70, including the sequence of SEQ ID NO:31, the Treg domain (amino acid residues 141-155) may be modified, e.g., to one of VLRIVNEPMAAALAY (SEQ ID NO:32), VLRIVNEPTAAALAF (SEQ ID NO:33), or VLRIVNEPMAAALAF (SEQ ID NO:34).
- In some embodiments, the HSP70 lid deletion fragment further comprises a modified CD94 domain as described above.
- In some embodiments, the fusion protein comprising the HSP70 lid deletion fragment further comprises a linker as described above.
- In some embodiments, the HSP70 lid deletion fragment further comprises a modification to the Treg domain. The Treg domain of HSP70 is well known and corresponds to amino acid residues 141-155 of SEQ ID NO:1 or the equivalent domain from other HSP70 proteins. The Treg domain may be modified, for example, by replacing the domain from the M. tuberculosis sequence with a Treg domain from another HSP70, e.g., a human HSP70 protein, or deleting and/or substituting one or more amino acid residues, e.g., one or more of the residues that are conserved among members of the HSP70 family.
- An additional aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) comprising, consisting essentially of, or consisting of the amino acid sequence of SEQ ID NO:26 (VIC-008 sequence from provisional).
-
(SEQ ID NO: 26) MARAVGIDLG TTNSVVSVLE GGDPVVVANS EGSRTTPSIV AFARNGEVLV GQPAKNQAVT NVDRTVRSVK RHMGSDWSIE IDGKKYTAPE ISARILMKLF RDAEAYLGED ITDAVITTPA YFNDAQRQAT KDAGQIAGLN VLRIVNEPTA AALAYGLDKG EKEQRILVFD LGGGTFDVSL LEIGEGVVEV RATSGDNHLG GDDWDQRVVD WLVDKFKGTS GIDLTKDKMA MQRLREAAEK AKIELSSSQS TSINLPYITV DADKNPLFLD EQLTRAEFQR ITQDLLDRTR KPFQSVIADT GISVSEIDHV VLVGGSTRMP AVTDLVKELT GGKEPNKGVN PDEVVAVGAA LQAGVLKGEV KDVLLLDVTP LSLGIETKGG FMTRLIERNT TIPTKRSETF TTADDNQPSV QIQVYQGERE IAAHNKLLGS FELTGIPPAP RGIPQIEVTF DIDANGIVHV TAKDKGTGKE NTIRIQEGSG LSKEDIDRMI KDAEAHAEED RKRREEADVR NQAETLVYQT EKFVKEQREA EGGSKVPEDT LNKVDAAVAE AKAALGGSDI SAIKSAMEKL GQESQALGQA IYEAAQAASQ ATGAAHPGGE PGGAHPGSAD DVVDAEVVDD GREAK - The modified HSP70 sequence of SEQ ID NO:26 may be part of a fusion protein comprising, consisting essentially of, or consisting of SEQ ID NO:27
-
(SEQ ID NO: 27) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVLGG GGSGGGGSGG GGSGGMARAV GIDLGTTNSV VSVLEGGDPV VVANSEGSRT TPSIVAFARN GEVLVGQPAK NQAVTNVDRT VRSVKRHMGS DWSIEIDGKK YTAPEISARI LMKLKRDAEA YLGEDITDAV ITTPAYFNDA QRQATKDAGQ IAGLNVLRIV NEPTAAALAY GLDKGEKEQR ILVFDLGGGT FDVSLLEIGE GVVEVRATSG DNHLGGDDWD QRVVDWLVDK FKGTSGIDLT KDKMAMQRLR EAAEKAKIEL SSSQSTSINL PYITVDADKN PLFLDEQLTR AEFQRITQDL LDRTRKPFQS VIADTGISVS EIDHVVLVGG STAMPAVTDL VKELTGGKEP NKGVNPDEVV AVGAALQAGV LKGEVKDVLL LDVTPLSLGI ETKGGFMTRL IERNTTIPTK RSETFTTADD NQPSVQIQVY QGEREIAAHN KLLGSFELTG IPPAPRGIPQ IEVTFDIDAN GIVHVTAKDK GTGKENTIRI QEGSGLSKED IDRMIKDAEA HAEEDRKRRE EADVRNQAET LVYQTEKFVK EQREAEGGSK VPEDTLNKVD AAVAEAKAAL GGSDISAIKS AMEKLGQESQ ALGQAIYEAA QAASQATGAA HPGGEPGGAH PGSADDVVDA EVVDDGREAK - The modified HSP70 of SEQ ID NO:26 or SEQ ID NO:27 may comprise one or more further modifications as described above, e.g. the CD94 domain and/or Treg domain and or LPS domain and/or peptide binding domain modifications and/or linker sequences described above.
- Another aspect of the invention relates to a fusion protein comprising an antigen binding domain fused in frame to a chimeric M. tuberculosis HSP70, wherein the chimeric HSP70 comprises a backbone of a human HSP70 amino acid sequence wherein the beta sheet structure (e.g., about residue 367 to about residue 479 (e.g., plus or
minus minus -
(SEQ ID NO: 29) MAKAAAIGID LGTTYSCVGV FQHGKVEITA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGD TKAFYPEEIS SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH FVEEFKRKHK KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA RFEELCSDLF RSTLEPVEKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ. EAEKYKAEDE VQRERVSAKN ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE QVCNPIISGL YQGAGGPGPG GFGAQGPKGG SGSGPTIEEV D - The human HSP70 backbone may be from any known human HSP70 family member, e.g., HSP70-1a, HSP70-1b, HSP70-1t, HSP70-2, HSP70-5, HSP70-6, HSC70, and HSP70-9.
- All of the modified HSP70 proteins described above may be fused to an antigen binding domain, which may be an engineered antibody or fragment thereof. In some embodiments, the antigen binding domain is an scFv.
- The antigen binding domain may bind any antigen of interest. In some embodiments, the antigen is a cancer antigen. In some embodiments, the antigen binding domain binds specifically to mesothelin, e.g., a scFv that binds specifically to mesothelin. Examples of mesothelin antibodies include those disclosed in WO 2009/068204, incorporated by reference in its entirety. In one embodiment the scFv that binds specifically to mesothelin comprises, consists essentially of, or consists of the amino acid sequence of SEQ ID NO:30.
-
(SEQ ID NO: 30) QVQLQQSGPG LVTPSQTLSL TCAISGDSVS SNSATWNWIR QSPSRGLEWL GRTYYRSKWY NDYAVSVKSR MSINPDTSKN QFSLQLNSVT PEDTAVYYCA RGMMTYYYGM DVWGQGTTVT VSSGILGSGG GGSGGGGSGG GGSQPVLTQS SSLSASPGAS ASLTCTLRSG INVGPYRIYW YQQKPGSPPQ YLLNYKSDSD KQQGSGVPSR FSGSKDASAN AGVLLISGLR SEDEADYYCM IWHSSAAVFG GGTQLTVL - The fusion proteins of the invention may further comprise a leader sequence on the N-terminus, e.g., such that the fusion protein is secreted from the host cell in which it is expressed. The leader sequence may be any suitable leader sequence, e.g., from a secreted protein that is native to the host. In some embodiments, the leader sequence is a plant protein leader sequence, e.g., from Arabidopsis extensin, Nicotiana extensin, barley alpha amylase, or PR1A.
- The fusion proteins of the present invention encompass variants of any of the sequences disclosed above, e.g., sequences that are at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to one of the sequences disclosed above.
- A further aspect of the invention relates to a composition comprising one or more of the fusion proteins of the present invention. In some embodiments, the composition is a pharmaceutical composition comprising an effective amount of the fusion protein of the invention and a pharmaceutically acceptable carrier. In some embodiments, the composition is an immunogenic composition or vaccine comprising the fusion protein of the invention.
- Provided also are compositions and methods for making fusion proteins according to the invention. Any of the fusion proteins described herein can be produced by recombinant means. For example, a nucleic acid encoding a HSP70 protein can be joined to either end of a nucleic acid sequence encoding an antigen binding domain, such that the protein-coding sequences are sharing a common translational reading frame and can be expressed as a fusion protein including, for example, the antigen binding domain and the HSP70 protein.
- The combined sequence is inserted into a suitable vector chosen based on the expression features desired and the nature of the host cell. In the examples provided hereinafter, the nucleic acid sequences are assembled in a vector suitable for protein expression in CHO cells. Following expression in the chosen host cell, the fusion protein can be purified by routine biochemical separation techniques or by immunoaffinity methods using an antibody to one of the components of the fusion protein. Alternatively, the selected vector can add a tag to the fusion protein sequence, e.g., an oligohistidine tag, permitting expression of a tagged fusion protein that can be purified by affinity methods using an antibody or other material having an appropriately high affinity for the tag. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed,, Cold Spring Harbor Laboratory Press (1989); Deutscher, M. Guide to Protein Purification Methods Enzymology, vol. 182, Academic Press, Inc. San Diego, Calif. (1990). If a vector suitable for expression in mammalian cells is used, e.g., one of the vectors discussed below, the fusion protein can be expressed and purified from mammalian cells. Alternatively, the mammalian expression vector (including fusion protein-coding sequences) can be administered to a subject to direct expression of a fusion protein according to the method of the invention in the subjects cells. If a vector suitable for expression in bacteria, yeast, insect cells, or the like is used, the fusion protein can be expressed and purified from cultures of the cells. If a vector suitable for expression in plants is used, the fusion protein can be expressed and purified from transgenic plants expressing the protein. A nucleic acid encoding the fusion protein of the invention can also be produced chemically and then inserted into a suitable vector for fusion protein production and purification or administration to a subject. Finally, a fusion protein can also be prepared chemically.
- Techniques for making fusion genes are well known in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene may be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments may be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which may subsequently be annealed to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992). Accordingly, provided is an isolated nucleic acid comprising a fusion gene of a gene encoding at least one engineered antibody and a gene encoding at least one stress protein. The isolated nucleic acid may be codon-optimized to maximize expression in a host cell.
- The nucleic acid may be provided in a vector comprising a nucleotide sequence encoding an engineered fusion protein according to the invention, and operably linked to at least one regulatory sequence. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. The vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should be considered. Such vectors may be administered in any biologically effective carrier, e.g., any formulation or composition capable of effectively transfecting cells either ex vivo or in vivo with genetic material encoding a chimeric polypeptide. Approaches include insertion of the nucleic acid into viral vectors including recombinant retroviruses, adenoviruses, adeno-associated viruses, human immunodeficiency viruses, and herpes simplex viruses-1, or recombinant bacterial or eukaryotic plasmids. Viral vectors may be used to transfect cells directly; plasmid DNA may be delivered alone with the help of, for example, cationic liposomes (lipofectin) or derivatized (e.g., antibody conjugated), polylysine conjugates, gramicidin S, artificial viral envelopes or other such intracellular carriers. Nucleic acids may also be directly injected. Alternatively, calcium phosphate precipitation may be carried out to facilitate entry of a nucleic acid into a cell.
- The subject nucleic acids may be used to cause expression and over-expression of a fusion protein of the invention in cells propagated in culture, e.g., to produce fusion proteins or polypeptides.
- Provided also is a host cell transfected with a recombinant gene in order to express an engineered fusion protein. The host cell may be any prokaryotic or eukaryotic cell. For example, a HSP70 fusion may be expressed in bacterial cells, such as E. coli, insect cells (baculovirus), yeast, insect, plant, or mammalian cells. In those instances when the host cell is human, it may or may not be in a live subject. Other suitable host cells are known to those skilled in the art. Additionally, the host cell may be supplemented with tRNA molecules not typically found in the host so as to optimize expression of the polypeptide. Other methods suitable for maximizing expression of the fusion polypeptde will be known to those in the art.
- A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. A fusion polypeptide may be secreted and isolated from a mixture of cells and medium comprising the polypeptide. Alternatively, a fusion polypeptide may be retained cytoplasmically and the cells harvested, lysed and the protein isolated. A fusion polypeptide may be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for particular epitopes of a fusion.
- Thus, a nucleotide sequence encoding all or part of a fusion protein of the invention may be used to produce a recombinant form of a protein via microbial or eukaryotic cellular processes. Ligating the sequence into a polynucleotide construct, such as an expression vector, and transforming or transfecting into hosts, either eukaryotic (yeast, avian, insect, plant, or mammalian) or prokaryotic (bacterial cells), are standard procedures. Similar procedures, or modifications thereof, may be employed to prepare recombinant fusion polypeptides by microbial means or tissue-culture technology in accord with the subject invention.
- Expression vehicles for production of a recombinant protein include plasmids and other vectors. For instance, suitable vectors for the expression of a fusion polypeptide include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids, and pUC-derived plasmids for expression in prokaryotic cells, such as E. coli.
- In another embodiment, the nucleic acid is a fusion protein operably linked to a bacterial promoter, e.g., the anaerobic E. coli, NirB promoter or the E. coli lipoprotein lip promoter, described, e.g., in Inouye et al. (1985) Nucl. Acids Res. 13:3101; Salmonella page promoter (Miller et al., supra), Shigella ent promoter (Schmitt and Payne, J. Bacteriol. 173:816 (1991)), the tet promoter on Tn10 (Miller et al., supra), or the etx promoter of Vibrio cholera. Any other promoter can be used. The bacterial promoter can be a constitutive promoter or an inducible promoter. An exemplary inducible promoter is a promoter which is inducible by iron or in non-limiting conditions. In fact, some bacteria, e.g., intracellular organisms, are believed to encounter iron-limiting conditions in the host cytoplasm. Examples at iron-regulated promoters of FepA and TonB are known in the art and are described, e.g., in the following references: Headley, V. et al. (1997) Infection & Immunity 65:818; Ochsner, U. A. et al. (1995) Journal of Bacteriology 177:7194; Hunt, M. D. et al. (1994) Journal of Bacteriology 176:3944; Svinarich, D. M. and S. Palchaudhuri. (1992) Journal of Diarrhoeal Diseases Research 10:139; Prince, R. W. et al. (1991) Molecular Microbiology 5:2823; Goldberg, M. B. et al. (1990) Journal of Bacteriology 172:6863; de Lorenzo, V. et al. (1987) Journal of Bacteriology 169:2624; and Hantke, K. (1981) Molecular & General Genetics 182:288.
- A plasmid preferably comprises sequences required for appropriate transcription of the nucleic acid in bacteria, e.g., a transcription termination signal. The vector can further comprise sequences encoding factors allowing for the selection of bacteria comprising the nucleic acid of interest, e.g., gene encoding a protein providing resistance to an antibiotic, sequences required for the amplification of the nucleic acid, e.g., a bacterial origin of replication.
- In one embodiment, the powerful phage T5 promoter, that is recognized by E. coli RNA polymerase is used together with a lac operator repression module to provide tightly regulated, high level expression or recombinant proteins in E. coli. In this system, protein expression is blocked in the presence of high levels of lac repressor. In one embodiment, the DNA is operably linked to a first promoter and the bacterium further comprises a second DNA encoding a first polymerase which is capable of mediating transcription from the first promoter, wherein the DNA encoding the first polymerase is operably linked to a second promoter. In a preferred embodiment, the second promoter is a bacterial promoter, such as those delineated above. In an even more preferred embodiment, the polymerase is a bacteriophage polymerase, e.g., SP6, T3, or T7 polymerase and the first promoter is a bacteriophage promoter, e.g., an SP6, T3, or T7 promoter, respectively. Plasmids comprising bacteriophage promoters and plasmids encoding bacteriophage polymerases can be obtained commercially, e.g., from Promega Corp. (Madison, Wis.) and InVitrogen (San Diego, Calif.), or can be obtained directly from the bacteriophage using standard recombinant DNA techniques (J. Sambrook, E. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Laboratory Press, 1989). Bacteriophage polymerases and promoters are further described, e.g., in the following references: Sagawa, H. et al. (1996) Gene 168:37; Cheng, X. et al. (1994) PNAS USA 91:4034; Dubendorff, J. W. and F. W. Studier (1991) Journal of Molecular Biology 219:45; Bujarski, J. J. and P. Kaesberg (1987) Nucleic Acids Research 15:1337; and Studier, F. W. et al. (1990) Methods in Enzymology 185:60). Such plasmids can be modified further according to the specific embodiment of the fusion polypeptide to be expressed.
- In another embodiment, the bacterium further comprises a DNA encoding a second polymerase which is capable of mediating transcription from the second promoter, wherein the DNA encoding the second polymerase is operably linked to a third promoter. The third promoter may be a bacterial promoter. However, more than two different polymerases and promoters could be introduced in a bacterium to obtain high levels of transcription. The use of one or more polymerases for mediating transcription in the bacterium can provide a significant increase in the amount of polypeptide in the bacterium relative to a bacterium in which the DNA is directly under the control of a bacterial promoter. The selection of the system to adopt will vary depending on the specific use, e.g., on the amount of protein that one desires to produce.
- Generally, a nucleic acid encoding a fusion protein of the invention is introduced into a host cell, such as by transfection, and the host cell is cultured under conditions allowing expression of the fusion polypeptide. Methods of introducing nucleic acids into prokaryotic and eukaryotic cells are well known in the art. Suitable media for mammalian and prokaryotic host cell culture are well known in the art. Generally, the nucleic acid encoding the subject fusion polypeptide is under the control of an inducible promoter, which is induced once the host cells comprising the nucleic acid have divided a certain number of times. For example, where a nucleic acid is under the control of a beta-galactose operator and repressor, isopropyl beta-D-thiogalactopyranoside (IPTG) is added to the culture when the bacterial host cells have attained a density of about OD600 0.45-0.60. The culture is then grown for some more time to give the host cell the time to synthesize the polypeptide. Cultures are then typically frozen and may be stored frozen for some time, prior to isolation and purification of the polypeptide.
- When using a prokaryotic host cell, the host cell may include a plasmid which expresses an internal T7 lysozyme, e.g., expressed from plasmid pLysSL. Lysis of such host cells liberates the lysozyme which then degrades the bacterial membrane.
- Other sequences that may be included in a vector for expression in bacterial or other prokaryotic cells include a synthetic ribosomal binding site; strong transcriptional terminators, e.g., t0 from phage lambda and t4 from the rmB operon in E. coli, to prevent read through transcription and ensure stability of the expressed polypeptide; an origin of replication, e.g., ColE1; and beta-lactamase gene, conferring ampicillin resistance.
- Other host cells include prokaryotic host cells. Even more preferred host cells are bacteria, e.g., E. coli. Other bacteria that can be used include Shigella spp., Salmonella spp., Listeria spp., Rickettsia spp., Yersinia spp., Escherichia spp., Klebsiella spp., Bordetella spp., Neisseria spp., Aeromonas spp., Francisella spp., Corynebacterium spp., Citrobacter spp., Chlamydia spp., Hemophilus spp., Brucella spp., Mycobacterium spp., Legionella spp., Rhodococcus spp., Pseudomonas spp., Helicobacter spp., Vibrio spp., Bacillus spp., and Erysipelothrix spp. Most of these bacteria can be obtained from the American Type Culture Collection (ATCC; 10801 University Blvd., Manassas, Va. 20110-2209).
- A number of vectors exist for the expression of recombinant proteins in yeast. For instance, YEP24, YIP5, YEP51, YEP52, pYES2, and YRP17 are cloning and expression vehicles used in the introduction of genetic constructs into S. cerevisiae (see, for example, Broach et al., (1983) in Experimental Manipulation of Gene Expression, ed. M. Inouye Academic Press, p. 83). These vectors may replicate in E. coli due to the presence of the pBR322 ori, and in S. cerevisiae due to the replication determinant of the
yeast 2 micron plasmid. In addition, drug resistance markers such as amplicillin may be used. - In certain embodiments, mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, PMSG, pSVT7, pko-neo and pHyg derived vectors ate examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma virus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. The various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17. In some instances, it may be desirable to express the recombinant protein by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β-gal comprising pBlueBac III).
- In another variation, protein production may be achieved using in vitro translation systems. In vitro translation systems are, generally, a translation system which is a cell-free extract comprising at least the minimum elements necessary for translation of an RNA molecule into a protein. An in vitro translation system typically comprises at least ribosomes, tRNAs, initiator methionyl-tRNAMet, proteins or complexes involved in translation, e.g., eIF2, eIF3, the cap-binding (CB) complex, comprising the cap-binding protein (CBP) and eukaryotic initiation factor 4F (eIF4F). A variety of in vitro translation systems are well known in the art and include commercially available kits. Examples of in vitro translation systems include eukaryotic lysates, such as rabbit reticulocyte lysates, rabbit oocyte lysates, human cell lysates, insect cell lysates and wheat germ extracts. Lysates are commercially available from manufacturers such as Promega Corp., Madison, Wis.; Stratagene La Jolla, Calif.; Amersham, Arlington Heights, Ill.; and GIBCO/BRL, Grand Island, N.Y. In vitro translation systems typically comprise macromolecules, such as enzymes, translation, initiation and elongation factors, chemical reagents, and ribosomes. In addition, an in vitro transcription system may be used. Such systems typically comprise at least an RNA polymerase holoenzyme, ribonucleotides and any necessary transcription initiation, elongation and termination factors. An RNA nucleotide for in vitro translation may be produced using methods known in the art. In vitro transcription and translation may be coupled in a one-pot reaction to produce proteins from one or more isolated DNAs.
- When expression of a carboxy terminal fragment of a polypeptide is desired, i.e., a truncation mutant, it may be necessary to add a start codon (ATG) to the oligonucleotide fragment comprising the desired sequence to be expressed. It is well known in the art that a methionine at the N-terminal position may be enzymatically cleaved by the use of the enzyme methionine aminopeptidase (MAP). MAP has been cloned from E. coli (Ben-Bassat et al., (1987) J. Bacteriol. 169:751-757) and Salmonella typhimurium and its in vitro activity has been demonstrated on recombinant proteins (Miller et al., (1987) PNAS USA 84:2718-1722). Therefore, removal of an N-terminal methionine, if desired, may be achieved either in vivo by expressing such recombinant polypeptides in a host which produces MAP (e.g., E. coli or CM89 or S. cerevisiae), or in vitro by use of purified MAP (e.g., procedure of Miller et al.).
- In cases where plant expression vectors are used, the expression of a fusion protein may be driven by any of a number of promoters, e.g., a promoter suitable for expression in tobacco. For example, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., 1984, Nature, 310:511-514), or the coat protein promoter of TMV (Takamatsu et al., 1987, EMBO J., 6:307-311) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al., 1994, EMBO J., 3:1671-1680; Broglie et al., 1984, Science, 224:838-843); or heat shock promoters, e.g., soybean hsp 17.5-E or hsp 17.3-B (Gurley et al., 1986, Mol. Cell. Biol., 6:559-565) may be used. These constructs can be introduced into plant cells using Ti plasmids, Ri plasmids, plant virus vectors; direct DNA transformation; microinjection, electroporation, etc. For reviews of such techniques see, for example, Weissbach & Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, New York, Section VIII, pp. 421-463; and Grierson & Corey, 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9.
- An alternative expression system which can be used to express a polypeptide tag or fusion protein comprising a polypeptide tag is an insect system. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The PGHS-2 sequence may be cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of the coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed (e.g., see Smith et al., 1983, J. Virol., 46:584, Smith, U.S. Pat. No. 4,215,051).
- In a specific embodiment of an insect system, the DNA encoding fusion protein is cloned into the pBlueBacIII recombinant transfer vector (Invitrogen, San Diego, Calif.) downstream of the polyhedrin promoter and transfected into Sf9 insect cells (derived from Spodoptera frugiperda Spodoptera frugiperda ovarian cells, available from Invitrogen, San Diego, Calif.) to generate recombinant virus. After plaque purification of the recombinant virus high-titer viral stocks are prepared that in turn would be used to infect Sf9 or High Five™ (BTI-TN-5B1-4 cells derived from Trichoplusia ni egg cell homogenates; available from Invitrogen, San Diego, Calif.) insect cells, to produce large quantities of appropriately post-translationally modified subject polypeptide.
- In other embodiments, the components of any the fusion proteins of the invention are produced separately and then linked, e.g., covalently linked, to each other.
- For example, an antigen binding domain and a modified HSP70 protein are produced separately in vitro, purified, and mixed together under conditions under which a tag, for example, a biotin or antibody binding protein, will be able to be linked to the polypeptide of interest. For example, the HSP70 protein and/or the antigen binding domain can be obtained (isolated) from a source in which they are known to occur, can be produced and harvested from cell cultures, can be produced by cloning and expressing a gene encoding the desired HSP70 protein or antigen binding domain, or can be synthesized chemically. Furthermore, a nucleic acid sequence encoding the desired HSP70 protein or antigen binding domain, or any component of the fusion proteins of the invention, can be synthesized chemically. Such mixtures of conjugated proteins may have properties different from single fusion proteins.
- Linkers (also known as “linker molecules” or “cross-linkers”) may be used to conjugate the components of an fusion protein according to the invention. Linkers include chemicals able to react with a defined chemical group of several, usually two, molecules and thus conjugate them. The majority of known cross-linkers react with amine, carboxyl, and sulfhydryl groups. The choice of target chemical group is crucial if the group may be involved in the biological activity of the polypeptides to be conjugated. For example, maleimides, which react with sulfhydryl groups, may inactivate Cys-comprising peptides or proteins that require the Cys to bind to a target. Linkers may be homofunctional (comprising reactive groups of the same type), heterofunctional (comprising different reactive groups), or photoreactive (comprising groups that become reactive on illumination.
- Linker molecules may be responsible for different properties of the conjugated compositions. The length of the linker should be considered in light of molecular flexibility during the conjugation step, and the availability of the conjugated molecule for its target (cell surface molecules and the like). Longer linkers may thus improve the biological activity of the compositions of the present invention, as well as the ease of preparation of them. The geometry of the linker may be used to orient a molecule for optimal reaction with a target. A linker with flexible geometry may allow the cross-linked polypeptides to conformationally adapt as they bind other polypeptides. The nature of the linker may be altered for other various purposes. For example, the aryl-structure of MBuS was found to be less immunogenic than the aromatic spacer of MBS. Furthermore, the hydrophobicity and functionality of the linker molecules may be controlled by the physical properties of component molecules. For example, the hydrophobicity of a polymeric linker may be controlled by the order of monomeric units along the polymer, e.g., a block polymer in which these is a block of hydrophobic monomers interspersed with a block of hydrophilic monomers.
- A linker or cross-linker that is useful according to the invention can facilitate proper folding of the fusion protein, improve the biological activity of the fusion proteins of the invention, can facilitate preparation of the fusion proteins of the invention, etc.
- A linker can also function to provide for proper folding of the heavy and light chain segments of the scFv. A “linker” according to the invention may also contribute to target recognition.
- Any suitable amino acid linker that does not interfere with proper protein folding and function is useful according to the invention.
- In one embodiment, a linker is a combination of nucleic acids that yields a series of neutral or slightly polar amino acids that facilitates proper folding of the fusion protein.
- If an amino acid side chain cannot be ionized it is considered polar but neutral. For example, aspartate is polar and acidic because the carboxylic side chain can be ionized. Tyrosine is polar. The hydroxyl group on the phenyl ring is not easily ionized thus it is considered polar but neutral.
- In one embodiment, a linker consists of nucleic acids encoding the following amino acid sequence: GGSSRSS (SEQ ID NO: 21). In another embodiment, the linker consists of nucleic acids encoding the following amino acid sequence: (GGGSGGG)X4 (SEQ ID NO: 22).
- In another embodiment the linker sequence comprises the sequence GGGGSGGGGSGGGGS ((Gly4Ser)3) SEQ ID NO: 23). In another embodiment the linker sequence comprises the sequence GGSSRSSSSGGGGSGGGG (SEQ ID NO: 24) or GGSSESSSSGGGGSGGGG (SEQ ID NO: 25). It is preferable to include glycine in the linker sequence because it has an H-side chain whereas all other amino acids have bulkier side chains.
- The chemistry of preparing and utilizing a wide variety of molecular linkers is well-known in the art and many pre-made linkers for use in conjugating molecules are commercially available from vendors such as Pierce Chemical Co., Roche Molecular Biochemicals, United States Biological, and the like.
- One aspect of the invention relates to an isolated nucleic acid encoding the fusion protein of the invention. In some embodiments, the nucleic acid encodes any of the fusion protein sequences disclosed above.
- In certain embodiments, the isolated nucleic acid comprises, consists essentially of, or consists of a nucleic acid selected from:
- a) the nucleotide sequence of any one of SEQ ID NOS:2, 4, 6, 8, or 10;
- b) a nucleotide sequence that is at least about 80% identical to the nucleotide sequence of a);
- c) a nucleotide sequence complementary to (a) or (b);
- d) a nucleotide sequence that is the reverse complement of to (a) or (b); or
- e) any combination of (a) to (d).
-
(SEQ ID NO: 2) CAAGTTCAAC TTCAACAATC TGGTCCTGGT CTTGTTACTC CTTCTCAAAC TCTTTCTCTT ACTTGTGCTA TTTGTGGTGA TTCTGTTTCT TCTAATTCTG CTACTTGGAA TTGGATTAGA CAATCTCCTT CTAGAGGTCT TGAATGGCTT GGTAGAACTT ATTATAGATC TAAGTGGTAT AATGATTATG CTGTTTCTGT TAAGTCTAGA ATGTCTATTA ATCCTGATAC TTCTAAGAAT CAATTTTCTC TTCAACTTAA TTCTGTTACT CCTGAAGATA CTGCTGTTTA TTATTGTGCT AGAGGTATGA TGACTTATTA TTATGGTATG GATGTTTGGG GTCAAGGTAC TACTGTTACT GTTTCTTCTG GTATTCTTGG TTCTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTC AACCTGTTCT TACTCAATCT TCTTCTCTTT CTGCTTCTCC TGGTGCTTCT GCTTCTCTTA CTTGTACTCT TAGATCTGGT ATTAATGTTG GTCCTTATAG AATTTATTGG TATCAACAAA AGCCTGGTTC TCCTCCTCAA TATCTTCTTA ATTATAAGTC TGATTCTGAT AAGCAACAAG GTTCTGGTGT TCCTTCTAGA TTTTCTGGTT CTAAGGATGC TTCTGCTAAT GCTGGTGTTC TTCTTATTTC TGGTCTTAGA TCTGAAGATG AAGCTGATTA TTATTGTATG ATTTGGCATT CTTCTGCTGC TGTTTTTGGT GGTGGTACTC AACTTACTGT TCTTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTG TGACCCCTTT GTCTTTGGGT ATTGAAACTA AAGGAGGTTT TATGACTAGA CTTATTGAAC GTAATACCAC TATTCCTACG AAGAGATCAG AGACTTTTAC TACTGCTGAT GACAATCAAC CTAGTGTTCA GATCCAAGTG TATCAAGGAG AGAGGGAAAT TGCTGCACAT AATAAGTTGC TTGGCTCATT TGAACTTACT GGAATTCCAC CTGCTCCTAG AGGTATTCCA CAAATAGAAG TGACATTTGA CATTGACGCA AATGGGATAG TTCATGTGAC TGCTAAGGAT AAAGGAACTG GTAAACAGAA TACTATTCGT ATTCAGGAAG GTAGTGGACT GTCTAAGGAA GATATTGACA GAATGATAAA GGACGCAGAA (SEQ ID NO: 4) CAAGTTCAAC TTCAACAATC TGGTCCTGGT CTTGTTACTC CTTCTCAAAC TCTTTCTCTT ACTTGTGCTA TTTCTGGTGA TTCTGTTTCT TCTAATTCTG CTACTTGGAA TTGGATTAGA CAATCTCCTT CTAGAGGTCT TGAATGGCTT GGTAGAACTT ATTATAGATC TAAGTGGTAT AATGATTATG CTGTTTCTGT TAAGTCTAGA ATGTCTATTA ATCCTGATAC TTCTAAGAAT CAATTTTCTC TTCAACTTAA TTCTGTTACT CCTGAAGATA CTGCTGTTTA TTATTGTGCT AGAGGTATGA TGACTTATTA TTATGGTATG GATGTTTGGG GTCAAGGTAC TACTGTTACT GTTTCTTCTG GTATTCTTGG TTCTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTC AACCTGTTCT TACTCAATCT TCTTCTCTTT CTGCTTCTCC TGGTGCTTCT GCTTCTCTTA CTTGTACTCT TAGATCTGGT ATTAATGTTG GTCCTTATAG AATTTATTGG TATCAACAAA AGCCTGGTTC TCCTCCTCAA TATCTTCTTA ATTATAAGTC TGATTCTGAT AAGCAACAAG GTTCTGGTGT TCCTTCTAGA TTTTCTGGTT CTAAGGATGC TTCTGCTAAT GCTGGTGTTC TTCTTATTTC TGGTCTTAGA TCTGAAGATG AAGCTGATTA TTATTGTATG ATTTGGCATT CTTCTGCTGC TGTTTTTGGT GGTGGTACTC AACTTACTGT TCTTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTG TGACCCCTTT GTCTTTGGGT ATTGAAACTA AAGGAGGTTT TATGACTAGA CTTATTGAAC GTAATACCAC TATTCCTACG AAGAGATCAG AGACATTTAC TACTGCTGAT GACAATCAAC CTAGTGTTCA GATCCAAGTG TATCAAGGAG AGAGGGAAAT TACTAAGGAG AATAATCTTC TTGGTAGATT TGAATTGTCT GGTATTCCAC CTGCTCCTAG AGGTATTCCA CAAATAGAAG TGACATTTGA CATTGACGCA AATGGGATAG TTCATGTGAC TGCTAAGGAT AAAGGAACTG GTAAAGAGAA TACTATTCGT ATTCAGGAAG GTAGTGGACT GTCTAAGGAA GATATTGACA GAATGATAAA GGACGCAGAA (SEQ ID NO: 6) CAAGTTCAAC TTCAACAATC TGGTCCTGGT CTTGTTACTC CTTCTCAAAC TCTTTCTCTT ACTTGTGCTA TTTCTGGTGA TTCTGTTTCT TCTAATTCTG CTACTTGGAA TTGGATTAGA CAATCTCCTT CTAGAGGTCT TGAATGGCTT GGTAGAACTT ATTATAGATC TAAGTGGTAT AATGATTATG CTGTTTCTGT TAAGTCTAGA ATGTCTATTA ATCCTGATAC TTCTAAGAAT CAATTTTCTC TTCAACTTAA TTCTGTTACT CCTGAAGATA CTGCTGTTTA TTATTGTGCT AGAGGTATGA TGACTTATTA TTATGGTATG GATGTTTGGG GTCAAGGTAC TACTGTTACT GTTTCTTCTG GTATTCTTGG TTCTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTC AACCTCTTCT TACTCAATCT TCTTCTCTTT CTGCTTCTCC TGGTGCTTCT GCTTCTCTTA CTTGTACTCT TAGATCTGGT ATTAATGTTG GTCCTTATAG AATTTATTGG TATCAACAAA AGCCTGGTTC TCCTCCTCAA TATCTTCTTA ATTATAAGTC TGATTCTGAT AAGCAACAAG GTTCTGGTGT TCCTTCTAGA TTTTCTGGTT CTAAGGATGC TTCTGCTAAT GCTGGTGTTC TTCTTATTTC TGGTCTTAGA TCTGAAGATG AAGCTGATTA TTATTGTATG ATTTGGCATT CTTCTGCTGC TGTTTTTGGT GGTGGTACTC AACTTACTGT TCTTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTG TGACCCCTTT GTCTTTGGGT ATTGAAACTA AAGGAGGTTT TATGACTAGA CTTATTGAAC GTAATACCAC TATTCCTACG AAGAGATCAG AGACATTTAC TACTGCTGAT GACAATCAAC CTAGTGTTCA GATCCAAGTG TATCAAGGAGAGAGGGAAATT ACTAAGGATA ATAATCTTCT TGGTAGATTT GAACTTTCTGG TATTCCACCT GCTCCTAGAG GTATTCCACA AATAGAAGTG ACATTTGACA TTGACGCAAA TGGGATAGTT CATGTGACTG CTAAGGATAA AGGAACTGGT AAAGAGAATA CTATTCGTAT TCAGGAAGGT AGTGGACTGT CTAAGGAAGA TATTGACAGA ATGATAAAGG ACGCAGAA (SEQ ID NO: 8) CAAGTTCAAC TTCAACAATC TGGTCCTGGT CTTGTTACTC CTTCTCAAAC TCTTTCTCTT ACTTGTGCTA TTTCTGGTGA TTCTGTTTCT TCTAATTCTG CTACTTGGAA TTGGATTAGA CAATCTCCTT CTAGAGGTCT TGAATGGCTT GGTAGAACTT ATTATAGATC TAAGTGGTAT AATGATTATG CTGTTTCTGT TAAGTCTAGA ATGTCTATTA ATCCTGATAC TTCTAAGAAT CAATTTTCTC TTCAACTTAA TTCTGTTACT CCTGAAGATA CTGCTGTTTA TTATTGTGCT AGAGGTATGA TGACTTATTA TTATGGTATG GATGTTTGGG GTCAAGGTAC TACTGTTACT GTTTCTTCTG GTATTCTTGG TTCTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTC AACCTGTTCT TACTCAATCT TCTTCTCTTT CTGCTTCTCC TGGTGCTTCT GCTTCTCTTA CTTGTACTCT TAGATCTGGT ATTAATGTTG GTCCTTATAG AATTTATTGG TATCAACAAA AGCCTGGTTC TCCTCCTCAA TATCTTCTTA ATTATAAGTC TGATTCTGAT AAGCAACAAG GTTCTGGTGT TCCTTCTAGA TTTTCTGGTT CTAAGGATGC TTCTGCTAAT GCTGGTGTTC TTCTTATTTC TGGTCTTAGA TCTGAAGATG AAGCTGATTA TTATTGTATG ATTTGGCATT CTTCTGCTGC TGTTTTTGGT GGTGGTACTC AACTTACTGT TCTTGGTGGA TCTTCAAGAT CTTCAAGTTC TGGTGGAGGA GGTTCTGGTG GAGGTGGTGT GACCCCTTTG TCTTTGGGTA TTGAAACTAA AGGAGGTTTT ATGACTAGAC TTATTGAACG TAATACCACT ATTCCTACGA AGAGATCAGA GACATTTACT ACTGCTGATG ACAATCAACC TAGTGTTCAG ATCCAAGTGT ATCAAGGAGA GAGGGAAATT ACTAAGGAGA ATAATCTTCT TGGTAGATTT GAATTGTCTG GTATTCCACC TGCTCCTAGA GGTATTCCAC AAATAGAAGT GACATTTGAC ATTGACGCAA ATGGGATAGT TCATGTGACT GCTAAGGATA AAGGAACTGG TAAAGAGAAT ACTATTCGTA TTCAGGAAGG TAGTGGACTG TCTAAGGAAG ATATTCACAG AATGATAAAG GACGCAGAA (SEQ ID NO: 10) CAAGTTCAAC TTCAACAATC TGGTCCTGGT CTTGTTACTC CTTCTCAAAC TCTTTCTCTT ACTTGTGCTA TTTCTGGTGA TTCTGTTTCT TCTAATTCTG CTACTTGGAA TTGGATTAGA CAATCTCCTT CTAGAGGTCT TGAATGGCTT GGTAGAACTT ATTATAGATC TAAGTGGTAT AATGATTATG CTGTTTCTGT TAAGTCTAGA ATGTCTATTA ATCCTGATAC TTCTAAGAAT CAATTTTCTC TTCAACTTAA TTCTGTTACT CCTGAAGATA CTGCTGTTTA TTATTGTGCT AGAGGTATGA TGACTTATTA TTATCGTATG GATGTTTGGG GTCAAGGTAC TACTGTTACT GTTTCTTCTG GTATTCTTGG TTCTGGTGGA GGTGGATCTG GTGGAGGTGG ATCAGGTGGA GGTGGTTCTC AACCTGTTCT TACTCAATCT TCTTCTCTTT CTGCTTCTCC TGGTGCTTCT GCTTCTCTTA CTTGTACTCT TAGATCTGCT ATTAATGTTG GTCCTTATAG AATTTATTGG TATCAACAAA AGCCTGGTTC TCCTCCTCAA TATCTTCTTA ATTATAAGTC TGATTCTGAT AAGCAACAAG GTTCTGGTGT TCCTTCTAGA TTTTCTGGTT CTAAGGATGC TTCTGCTAAT GCTGGTGTTC TTCTTATTTC TGGTCTTAGA TCTGAAGATG AAGCTGATTA TTATTGTATG ATTTGGCATT CTTCTGCTGC TGTTTTTGGT GGTGGTACTC AACTTACTGT TCTTGGTGGA TCTTCAGAAT CTTCAAGTTC TGGTGGAGGA GGTTCTGGTG GAGGTGGTGT GACCCCTTTG TCTTTGGGTA TTGAAACTAA AGGAGGTTTT ATGACTAGAC TTATTGAACG TAATACCACT ATTCCTACGA AGAGATCAGA GACATTTACT ACTGCTGATG ACAATCAACC TAGTGTTCAG ATCCAAGTGT ATCAAGGAGA GAGGGAAATT ACTAAGGAGA ATAATCTTCT TGGTAGATTT GAATTGTCTG GTATTCCACC TGCTCCTAGA GGTATTCCAC AAATAGAAGT GACATTTGAC ATTGACGCAA ATGGGATAGT TCATGTGACT GCTAAGGATA AAGGAACTGG TAAAGAGAAT ACTATTCGTA TTCAGGAAGG TAGTGGACTG TCTAAGGAAG ATATTGACAG AATGATAAAG GACGCAGAA - In some embodiments, the isolated nucleic acid is at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the nucleotide sequence of any one of SEQ ID NOS:2, 4, 6, 8, or 10.
- In certain embodiments, the isolated nucleic acid is codon-optimized for expression in a host cell, e.g., a bacterial cell, a mammalian cell, an insect cell, or a plant cell. In some embodiments, the isolated nucleic acid is codon optimized for expression in a plant cell, e.g., wherein the plant is Nicotiana benthamiana or Nicotiana tabacum.
- The isolated nucleic acid may be operably linked to a promoter, e.g., a promoter that is suitable for expression in the host cell of interest. In some embodiments, the promoter is a plant promoter.
- Another aspect of the invention relates to an expression vector comprising the nucleic acid of the invention.
- The invention further relates to a cell comprising the isolated nucleic acid or the expression vector of the invention. The cell may be a bacterial cell, a mammalian cell, an insect cell, or a plant cell, e.g., a plant cell selected from N. benthamiana and N. tabacum.
- An additional aspect of the invention relates to a transgenic plant cell, plant part, or plant comprising the isolated nucleic acid of the invention.
- The fusion proteins described herein can be administered to a subject to enhance that subject's immune response, particularly a cell-mediated cytolytic response, against a cell expressing the antigen recognized by the antigen binding domain. The fusion protein may simply enhance the immune response (thus serving as an immunogenic composition), or confer protective immunity (thus serving as a vaccine).
- Thus, the protein fusion polypeptides produced as described above may be purified to a suitable purity for use as a pharmaceutical composition. Generally, a purified composition will have one species that comprises more than about 85 percent of all species present in the composition, more than about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of all species present. The object species may be purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single species. A skilled artisan may purify a fusion protein using standard techniques for protein purification, for example, immunoaffinity chromatography, size exclusion chromatography, etc., in light of the teachings herein. Purity of a polypeptide may be determined by a number of methods known to those of skill in the art, including for example, amino-terminal amino acid sequence analysis, gel electrophoresis and mass-spectrometry analysis.
- Accordingly, provided are pharmaceutical compositions comprising the above-described fusion proteins. In one aspect, provided are pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the compounds described above and below, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. In another aspect, in certain embodiments, the compounds may be administered as such or in admixtures with pharmaceutically acceptable carriers and may also be administered in conjunction with other agents. (Conjunctive (combination) therapy thus includes sequential, simultaneous and separate, or coadministration of the active compound in a way that the therapeutic effects of the first administered one has not entirely disappeared when the subsequent is administered.
- The fusion proteins described herein can be administered to a subject in a variety of ways. The routes of administration include intradermal, transdermal (e.g., slow release polymers), intramuscular, intraperitoneal, intravenous, subcutaneous, oral, epidural and intranasal routes. Any other convenient route of administration can be used, for example, infusion or bolus injection, or absorption through epithelial or mucocutaneous linings. In addition, the compositions described herein can contain and be administered together with other pharmacologically acceptable components such as biologically active agents (e.g., adjuvants such as alum), surfactants (e.g., glycerides), excipients (e.g., lactose), carriers, diluents and vehicles. Furthermore, the compositions can be used ex vivo as a means of stimulating while blood cells obtained from a subject to elicit, expand and propagate antigen-specific immune cells in vitro that are subsequently reintroduced into the subject.
- Further, a fusion protein can be administered by in vivo expression of a nucleic acid encoding such protein sequences into a human subject. Expression of such a nucleic acid can also be achieved ex vivo as a means of stimulating white blood cells obtained from a subject to elicit, expand and propagate antigen-specific immune cells in vitro that are subsequently reintroduced into the subject. Expression vectors suitable for directing the expression of a fusion protein of interest can be selected from the large variety of vectors currently used in the field. Preferred will be vectors that are capable of producing high levels of expression as well as are effective in transducing a gene of interest. For example, recombinant adenovirus vector pJM17 (All et al., Gene Therapy 1:367-84 (1994); Berkner K. L., Biotechniques 6:616-24 1988), second generation adenovirus vectors DE1/DE4 (Wang and Finer, Nature Medicine 2:714-6 (1996)), or adeno-associated viral vector AAV/Neo (Muro-Cacho et al., J. Immunotherapy 11:231-7 (1992)) can be used. Furthermore, recombinant retroviral vectors MFG (Jaffee et al., Cancer Res. 53:2221-6 (1993)) or LN, LNSX, LNCX, LXSN (Miller and Rosman, Biotechniques 7:980-9 (1989)) can be employed. Herpes simplex virus-based vectors such as pHSV1 ((Geller et al., Proc. Nat'l Acad. Sci. 87:8950-4 (1990) or vaccinia viral vectors such as MVA (Sutter and Moss. Proc. Nat'l Acad. Sci. 89: 10847-51 (1992)) can serve as alternatives.
- Frequently used specific expression units including promoter and 3′ sequences are those found in plasmid cDNA3 (Invitrogen), plasmid AH5, pRC/CMV (Invitrogen), pCMU II (Paabo et al., EMBO J. 5:1921-1927 (1986)), pZip-Neo SV (Cepko et al., Cell 37:1053-1062 (1984)) and pSRa (DNAX, Palo Alto, Calif.). The introduction of genes into expression units and/or vectors can be accomplished using genetic engineering techniques, as described in manuals like Molecular Cloning and Current Protocols in Molecular Biology (Sambrook, J., et al., Molecular Cloning, Cold Spring Harbor Press (1989); Ausubel, F. M. et al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience (1989)). A resulting expressible nucleic acid can be introduced into cells of a human subject by any method capable of placing the nucleic acid into cells in an expressible form, for example as part of a viral vector such as described above, as naked plasmid or other DNA, or encapsulated in targeted liposomes or in erythrocyte ghosts (Friedman, T., Science, 244:1275-1281 (1989); Rabinovich, N. R. et al., Science 265:1401-1.404 (1994)). Methods of transduction include direct injection into tissues and tumors, liposomal transfection (Fraley et al., Nature 370:111-117 (1980)), receptor-mediated endocytosis (Zatloukal et al., Ann. N.Y. Acad. Sci. 660:136-153 (1992)), and particle bombardment-mediated gene transfer (Eisenbraun et al., DNA & Cell. Biol. 12:791-797 (1993)).
- The amount of fusion polypeptide (fused, conjugated or noncovalently joined as discussed before) in the compositions of the present invention is an amount which produces an effective immunostimulatory response in a subject as determined by the methods described herein. An effective amount is an amount such that when administered, it induces an immune response. In addition, the amount of fusion protein administered to the subject will vary depending on a variety of factors, including the engineered antibody and stress protein employed, the size, age, body weight, general health, sex, and diet of the subject as well as on the subject's general immunological responsiveness. Adjustment and manipulation of established dose ranges are well within the ability of those skilled in the art. For example, the amount of engineered fusion protein according to the invention, for example, mesothelin antibody-modified HSP70 fusion protein, can be from about 1 microgram to about 1 gram, preferably from about 100 microgram to about 1 gram, and from about 1 milligram to about 1 gram. An effective amount of a composition comprising an expression vector is an amount such that when administered, it induces an immune response against the antigen against which the antigen binding domain is directed. Furthermore, the amount of expression vector administered to the subject will vary depending on a variety of factors, including the antigen binding domain and HSP70 protein expressed, the size, age, body weight, general health, sex, and diet of the subject, as well as on the subject's general immunological responsiveness. Additional factors that need to be considered are the route of application and the type of vector used. For example, when prophylactic or therapeutic treatment is carried out with a viral vector containing a nucleic acid encoding an engineered fusion protein according to the invention, the effective amount will be in the range of 104 to 1012 helper-free, replication-defective virus per kg body weight, preferably in the range of 105 to 1011 virus per kg body weight and most preferably in the range of 106 to 1010 virus per kg body weight.
- An effective dose can be estimated initially from in vitro assays. For example, a dose can be formulated in animal models to achieve an induction of an immune response using techniques that are well known in the art. One having skill in the art could readily optimize administration to humans based on animal data. Dosage amount and interval may be adjusted individually. For example, when used as a vaccine, the proteins and/or strains of the invention may be administered in about 1 to 3 doses for a 1-36 week period. Preferably, 3 doses are administered, at intervals of about 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of protein or strain that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from the condition or infection for at least 1-2 years.
- The compositions may also include adjuvants to enhance immune responses. In addition, such proteins may be further suspended in an oil emulsion to cause a slower release of the proteins in vivo upon injection. The optimal ratios of each component in the formulation may be determined by techniques well known to those skilled in the art.
- Any of a variety of adjuvants may be employed in the vaccines of this invention to enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a specific or nonspecific stimulator of immune responses, such as lipid A, or Bortadella pertussis. Suitable adjuvants are commercially available and include, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A, quil A, SBAS1c, SBAS2 (Ling et al., 1.997, Vaccine 15:1562-1567), SBAS7, Al(OH)3 and CpG oligonucleotide (WO96/02555).
- In the vaccines of the present invention, the adjuvant may induce a Th1 type immune response. Suitable adjuvant systems include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL) together with an aluminum salt. An enhanced system involves the combination of a monophosphoryl lipid A and a saponium derivative, particularly the combination of 3D-MLP and the saponin QS21 as disclosed in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol as disclosed in WO 96/33739. Previous experiments have demonstrated a clear synergistic effect of combinations of 3D-MLP and QS21 in the induction of both humoral and Th1 type cellular immune responses. A particularly potent adjuvant formation involving QS21, 3D-MLP and tocopherol in an oil-in-water emulsion is described in WO 95/17210 and may comprise a formulation.
- In particular embodiments of the invention, more than one administration (e.g., two, three, four, or more administrations) can be employed over a variety of time intervals (e.g., hourly, daily, weekly, monthly, etc.) to achieve therapeutic effects.
- One aspect of the invention relates to a method for inducing an immune response to an antigen in a subject, comprising administering to the subject the fusion protein of the invention that specifically binds the antigen, thereby inducing an immune response.
- Another aspect of the invention relates to a method of treating a disease associated with an antigen in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of the fusion protein of any one of claims 1-31 that specifically binds the antigen, thereby treating the disease.
- In some embodiments, the antigen is a disease antigen. The antigen may be a viral antigen, bacterial antigen, pathogen antigen, or cancer antigen as described above. In some embodiments, the antigen is a cancer antigen, e.g., mesothelin.
- In certain embodiments, the disease associated with an antigen is a pathogen infection, e.g., a viral infection. In some embodiments, the disease associated with an antigen is a cancer that expresses the antigen, e.g., mesothelin. In some embodiments, the mesothelin-expressing cancer is ovarian cancer, meningioma, glioma, metastases to the leptomininges, mesothelioma, adenocarcinoma of the uterus, malignant mesothelioma, pancreatic cancer, or lung adenocarcinoma.
- In some embodiments, the methods of the invention further comprise administering to the subject an additional active agent. The additional active agent may be a therapeutic agent, e.g., an anti-pathogen agent or an anti-cancer agent
- Anti-cancer agents, include, without limitation, 1) vinca alkaloids (e.g., vinblastine, vincristine); 2) epipodophyillotoxins (e.g., etoposide and teniposide); 3) antibiotics (e.g., dactinomycin (actinomycin D), daunorubicin (daunomycin; rubidomycin), doxorubic, bleomycin, plicamycin (mithramycin), and mitomycin (mitomycin C)); 4) enzymes (e.g., L-asparaginase); 5) biological response modifiers (e.g., interferon-alfa); 6) platinum coordinating complexes (e.g., cisplatin and carboplatin); 7) anthracenediones (e.g., mitoxantrone); 8) substituted ureas (e.g., hydroxyurea); 9) methylhydrazine derivatives (e.g., procarbazine (N-methylhydrazine; MIH)); 10) adrenocortical suppressants (e.g., mitotane (o,p′-DDD) and aminoglutethimide); 11) adrenocorticosteroids (e.g., prednisone); 12) progestins (e.g., hydroxyprogesterone caproate, medroxyprogesterone acetate, and megestrol acetate); 13) estrogens (e.g., diethylstilbestrol and ethinyl estradiol); 14) antiestrogens (e.g., tamoxifen); 15) androgens (e.g., testosterone propionate and fluoxymesterone); 16) antiandrogens (e.g., flutamide); and 17) gonadotropin-releasing hormone analogs (e.g., leuprolide). In another embodiment, the compounds of the invention are administered in conjunction with anti-angiogenesis agents, such as antibodies to VEGF (e.g., bevacizumab (AVASTIN), ranibizumab (LUCENTIS)) and other promoters of angiogenesis (e.g., bFGF, angiopoietin-1), antibodies to alpha-v/beta-3 vascular integrin (e.g., VITAXIN), angiostatin, endostatin, dalteparin, ABT-510, CNGRC peptide TNF alpha conjugate, cyclophosphamide, combretastatin A4 phosphate, dimethylxanthenone acetic acid, docetaxel, lenalidomide, enzastaurin, paclitaxel, paclitaxel albumin-stabilized nanoparticle formulation (Abraxane), soy isoflavone (Genistein), tamoxifen citrate, thalidomide, ADH-1 (EXHERIN), AG-013736, AMG-706, AZD2171, sorafenib tosylate, BMS-582664, CHIR-265, pazopanib, P1-88, vatalanib, everolimus, suramin, sunitinib malate, XL184, ZD6474, ATN-161, cilenigtide, and celecoxib.
- Suitable antiviral agents include, for example, virus-inactivating agents such as nonionic, anionic and cationic surfactants, and C31 G (amine oxide and alkyl betaine), polybiguanides, docosanol, acylcarnitine analogs, octyl glycerol, and antimicrobial peptides such as magainins, gramicidins, protegrins, and retrocyclins. Mild surfactants, e.g., sorbitan monolaurate, may advantageously be used as antiviral agents in the compositions described herein. Other antiviral agents that may advantageously be utilized in the compositions described herein include nucleotide or nucleoside analogs, such as tenfovir, acyclovir, amantadine, didanosine, foscarnet, ganciclovir, ribavirin, vidarabine, zalcitabine, and zidovudine. Further antiviral agents that may be used include non-nucleoside reverse transcriptase inhibitors, such as UC-781 (thiocarboxanilide), pyridinones, TIBO, nevaripine, delavirdine, calanolide A, capravirine and efavirenz. Other antiviral agents that may be used are those in the category of HIV entry blockers, such as cyanovirin-N, cyclodextrins, carregeenans, sulfated or sulfonated polymers, mandelic acid condensation polymers, monoclonal antibodies, chemokine receptor antagonists such as TAK-779, SCH-C/D, and AMD-3100, and fusion inhibitors such as T-20 and 1249.
- Suitable antibacterial agents include antibiotics, such as aminoglycosides, cephalosporins, including first, second and third generation cephalosporins; macrolides, including erythromycins, penicillins, including natural penicillins, penicillinase-resistant penicillins, aminopenicillins, extended spectrum penicillins; sulfonamides, tetracyclines, fluoroquinolones, metronidazole and urinary tract antiseptics.
- Suitable antifungal agents include amphotericin B, nystatin, griseofulvin, flucytosine, fluconazole, potassium iodide, intraconazole, clortrimazole, miconazole, ketoconazole, and tolnaftate.
- Suitable antiprotozoal agents include antimalarial agents, such as chloroquine, primaquine, pyrimethamine, quinine, fansidar, and mefloquine; amebicides, such as dioloxamide, emetine, iodoquinol, metronidazole, paromomycine and quinacrine; pentamidine isethionate, atovaquone, and eflornithine.
- The additional active agent may be an agent that treats or enhances the effect of a treatment against a symptom or side effect of a disease or treatment. In one embodiment, the additional active agent is an anti-inflammatory agent. Examples include, without limitation, H1-antihistamines (e.g., cetirizine), H2-antihistamines (e.g., ranitidine, famotidine), antileukotrienes (e.g., montelukast, zileuton), and nonsteroidal anti-inflammatory drugs.
- The additional active agent may be an immunostimulatory agent and/or an immune checkpoint inhibitor that enhances the immunostimulatory effect of the fusion protein of the invention. Immunostimulatory agents include, without limitation, interleukin, interferon, cytokine, toll-like receptor (TLR) agonist, cytokine receptor agonist, CD40 agonist, Fc receptor agonist, CpG-containing immunostimulatory nucleic acid, complement receptor agonist, adjuvant, or CXCL12/CXCR4 axis inhibitors such as AMD3100, KRH-1636, T-20, T-22, T-140, TE-14011, T-14012, or TN14003, or an antibody that interferes with the dimerization of CXCR4. Immune checkpoint inhibitors include, without limitation, inhibitors of PD-1, PD-L1, CTLA4, B7-H3, B7-H4, BTLA, IDO, KIR, LAG3, A2AR, TIM-3, and VISTA, such as nivolumab, pembrolizumab, ipilimumab, durvalumab, or atezolizumab.
- In some embodiments, the methods of the invention further comprise administering to the subject an additional therapy. The additional therapy may be any therapy known to be effective for treating a disease, e.g., therapies known to be effective for cancer treatment, e.g., surgery, radiotherapy, proton beam therapy, light-based therapy, etc.
- The present invention provides kits for expressing an engineered fusion protein according to the invention. Such kits may be comprised of nucleic acids encoding an engineered fusion protein of the invention. The nucleic acids may be included in a plasmid or a vector, e.g., a bacterial plasmid or viral vector. Other kits comprise an engineered fusion polypeptide. Furthermore, the present invention provides kits for producing and/or purifying fusion polypeptides according to the invention.
- The present invention provides kits for preventing or treating infectious, inflammatory, autoimmune or malignant disease in a patient. For example, a kit may comprise one or more pharmaceutical compositions as described above and optionally instructions for their use. In still other embodiments, the invention provides kits comprising one more pharmaceutical composition and one or more devices for accomplishing administration of such compositions.
- Kit components may be packaged for either manual or partially or wholly automated practice of the foregoing methods. In other embodiments involving kits, instructions for their use may be provided.
- The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art.
- A novel fusion protein, VIC-007 (SEQ ID NO:28), consists of the broadly immune-activating Mycobacterium tuberculosis-derived heat shock protein 70 (MtbHsp70) and the tumor antigen targeting activity of a single-chain variable fragment (scFv) binding mesothelin (MSLN), a validated immunotherapy target (4-6). MSLN is highly overexpressed on the surface of common epithelial cancers including epithelial malignant mesothelioma and ovarian cancer, while expressed at relatively low levels only in mesothelial cells lining the pleura, pericardium, and peritoneum in healthy individuals (7-10). MtbHsp70 is well characterized and functions as a potent immune-activating adjuvant. It stimulates monocytes and dendritic cells (DCs) to produce CC-chemokines (11, 12), which attract antigen processing and presenting macrophages, DCs, and effector T and B cells (13). In theory, fusion of anti-MSLN scFv and MtbHsp70 takes advantage of the immune-activating action of MtbHsp70 and the tumor-targeting activity of the scFv, which will yield anti-tumor responses against the broadest profile of tumo antigens.
- Although our previous studies showed that VIC-007 significantly enhanced survival of immune competent mice with ovarian or malignant mesothelioma tumors through the augmentation of tumor-specific cell-mediated immune responses (14), the fusion protein did not result in long-term remission. In this study a new version of the fusion protein, VIC-008 (SEQ ID NO:27), was reconstructed from VIC-007 to remove redundant amino acids and minimize the activity of the natural peptide-binding site of MtbHsp70. VIC-007 and VIC-008 were compared side by side in the same set of mice and it was found that VIC-008 conferred significantly improved antitumoral efficacy in a syngeneic, orthotopic and immune competent murine model of ovarian cancer.
- Cells: The ID8 ovarian cancer cells, a kind gift from Kathy Roby (University of Kansas Medical Center, Kansas City, Kans. (15), were transfected with luciferase lentiviral vector and stably expressed luciferase, here named Luc-ID8. Cells were maintained at 37° C. in DMEM with 2 mmol/L L-glutamine, 10 units/ml penicillin, 10 μg/ml streptomycin, and 10% fetal bovine serum in humidified atmosphere with 5% CO2. Cells were cultured until 80% confluent, and harvested with Trypsin EDTA (Mediatech) for animal injections.
- Animal Model and Treatment: Ovarian cancer was established by Intraperitoneal (i.p.) injection of syngeneic cancer cells Luc-ID8 (5×106 cells per mouse) into 6-week old female C57BL/6 mice. All mice were purchased from Jackson laboratories. Mice with ovarian tumors were treated 7 days after tumor cell inoculation with i.p. injections of VIC-007 (4 μg per mouse), VIC-008 (4 μg per mouse), or normal saline. This was followed by 3 further treatments at 7-day intervals. All studies were performed in a manner that was blinded to the observer under protocols that were approved by the Massachusetts General Hospital Subcommittee on Research Animal Care (SRAC).
- In Vivo Imaging of Tumor Growth: Intraperitoneal tumor growth was monitored weekly after tumor cell inoculation using in vivo live imaging by IVIS Spectrum (PerkinElmer). Mice were injected intraperitoneally with 150 mg/kg body weight of D-luciferin 10 min in advance and subsequently imaged by IVIS Spectrum.
- Mouse Survival: For survival studies, we observed the mice daily 1 week after inoculation of tumor cells. Tumor generations were consistently first evident via abdominal distension secondary to malignant ascites, and tumor-bearing mice were euthanized at the endpoint when there were signs of distress, including fur ruffling, rapid respiratory rate, hunched posture, reduced activity, and progressive ascites formation as previously described (16).
- Statistical Analysis: Statistical differences between three or more experimental groups were analyzed using Two-Way ANOVA, followed by Tukey's multiple comparison tests when mean of each group is compared with that of every other group. Survival was analyzed with the Log-rank test. Prism 6.0 software (GraphPad Software) was used for all the statistical analysis.
- Reconstruction of the Fusion Protein scFv-MtbHsp70: The fusion protein scFv-MtbHsp70 was constructed with VH and VL from anti-MSLN p4 scFv (17) fused to full length MtbHsp70 with a (G4S)3 linker in between, which has been shown in our previous study (14). The previous version of the fusion protein VIC-007 achieved significant control of tumor growth and prolongation of the survival of tumor-bearing mice, but the antitumaral efficacy of the treatment regimen used needed to be improved. Antigenic peptides linked to MtbHsp70 through both non-covalent binding and by genetic fusion can elicit both MHC class I-restricted CD8+ and MHC class II-restricted CD4+ T-cell responses (18-22). In this study a new version of the scFv-MtbHsp70 fusion protein was developed. VIC-008, which was modified from the original VIC-007 by the elimination of redundant amino acids and the introduction of a single amino acid mutation, valine (V) in place of phenylalanine (F), at position 410 of MtbHsp70 (
FIG. 1 ). This change is designed to prevent peptide binding (23) while retaining the immune-stimulatory capacity of the protein, in order to reduce the possibility that MtbHsp70 might incidentally bind and deliver other antigens that could result in off target effects or the induction of tolerance or autoimmunity. - The fusion proteins were constructed and expressed by WuXi App Tech (Shanghai, China) in CHO cells and provided at a purity of above 95% by HPLC and an endotoxin level of less than 1.0 EU/mg.
- VIC-008 Enhances the Control of Tumor Growth: Murine ovarian cancer was established by i.p. injection of syngeneic cancer cells Luc-ID8 in immune competent C57BL/6 mice and treated with VIC-007 and VIC-008 as described in the section of materials and methods. As shown in
FIG. 2 , both VIC-007 and VIC-008 significantly slowed tumor growth as recorded by bioluminescence signals compared to saline (p<0.0001 and p<0.0001) while VIC-008 further significantly delayed tumor growth compared to VIC-007 (p<0.0001). - VIC-008 Enhances the Prolongation of Mouse Survival: The efficacy of VIC-007 and VIC-008 to prolong survival in the tumor-bearing mice was further evaluated. As shown in
FIG. 3 , both VIC-007 and VIC-008 significantly enhanced the survival of tumor-bearing mice compared to saline (p=0.0253 and p=0.0002) with increased median survival of 55 days from saline to 60 days from VIC-007 and further to 65 days from VIC-008. VIC-008 further significantly prolonged the survival of the tumor-bearing mice compared to VIC-007 (p=0.0301). - Taken together, these data showed that the new version of the fusion protein VIC-008 significantly delayed the tumor growth and prolonged the survival in a syngeneic murine model of ovarian cancer. Improved mouse survival of VIC-008 compared to VIC-007 is likely related to the changes made to the protein sequences. This study provides a definitive preclinical validation of the mesothelin targeted immune activating fusion protein as a therapeutic agent for ovarian cancer.
-
- 1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA: a cancer journal for clinicians. 2012; 62 (4):220-41. Epub 2012 Jun. 16.
- 2. Bast R C, Jr., Hennessy B, Mills G B. The biology of ovarian cancer: new opportunities for translation. Nature reviews Cancer. 2009; 9 (6):415-28. Epub 2009 May 23.
- 3. Mantia-Smaldone G M, Corr B, Chu C S. Immunotherapy in ovarian cancer. Human vaccines & immunotherapeutics. 2012; 8 (9):1179-91. Epub 2012 Aug. 22.
- 4. Hassan R, Cohen S J, Phillips M, Pastan I, Sharon E, Kelly R J, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010; 16 (24):6132-8. Epub 2010 Nov. 3.
- 5. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer. 2008; 44 (1):46-53. Epub 2007 Oct. 20.
- 6. Kreitman R J, Hassan R, Fitzgerald D J, Pastan I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clinical cancer research: an official journal of the American Association for Cancer Research. 2009; 15 (16):5274-9. Epub 2009 Aug. 13.
- 7. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93 (1):136-40. Epub 1996 Jan. 9.
- 8. Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz R E, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clinical cancer research: an official journal of the American Association for Cancer Research. 2001; 7 (12):3862-8. Epub 2001 Dec. 26.
- 9. Ho M, Bera T K, Willingham M C, Onda M, Hassan R, FitzGerald D, et al. Mesothelin expression in human lung cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007; 13 (5):1571-5. Epub 2007 Mar. 3.
- 10. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anti-cancer agents in medicinal chemistry. 2013; 13 (2):276-80. Epub 2012 Jun. 23.
- 11. Floto R A, MacAry P A, Boname J M, Mien T S, Kampmann B, Hair J R, or al., Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science. 2006; 314 (5798):454-8. Epub 2006 Oct. 21.
- 12. Wang Y, Kelly C G, Karttunen J T, Whittall T, Lehner P J, Duncan L, et al. CD40 is a cellular receptor mediating mycobacterial
heat shock protein 70 stimulation of CC-chemokines. Immunity. 2001; 15 (6):971-83. Epub 2002 Jan. 5. - 13:. Baggiolini M, Chemokines and leukocyte traffic. Nature. 1998; 392 (6676):565-8. Epub 1998 Apr. 29.
- 14. Yuan J, Kashiwagi S, Reeves P, Nezivar J, Yang Y, Arrifin N H, et al. A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. Journal of hematology & oncology. 2014; 7:15. Epub 2014 Feb. 26.
- 15. Rohy K F, Taylor C C, Sweetwood J P, Cheng Y, Pace J L Tawfik O, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000; 21 (4):585-91. Epub 2000 Apr. 7.
- 16. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R, et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer research. 2011; 71 (16):5522-34, Epub 2011 Jul. 12.
- 17. Bergan L, Gross J A, Nevin B, Urban N, Scholler N. Development and in vitro validation of anti-mesothelin biobodies that prevent CA125/Mesothelin-dependent cell attachment, Cancer letters. 2007; 255 (2):263-74. Epub 2007 Jun. 15.
- 18. Udono H, Srivastava P K. Heat shock protein 70-associated peptides elicit specific cancer immunity. The Journal of experimental medicine. 1993; 178 (4):1391-6. Epub 1993 Oct. 1.
- 19. Suto R, Srivastava P K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995; 269 (5230):1585-8. Epub 1995 Sep. 15.
- 20. Suzue K, Young R A, Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-I p 24. J Immunol. 1996; 156 (2):873-9. Epub 1996 Jan. 15.
- 21. Huang Q. Richmond J F, Suzue K, Eisen H N, Young R A. In vivo cytotoxic T lymphocyte elicitation by mycobacterial
heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. The Journal of experimental medicine, 2000; 191 (2):403-8. Epub 2000 Jan. 19. - 22. Ciupitu A-M T, Petersson M, C'Donneill C L, Williams K, Jindal S, Kiessling R, et al. Immunization with a Lymphocylic Choriomeningjtis Virus. Peptide Mixed with
Heat Shock Protein 70 Results in Protective Antiviral immunity and Specific Cytotoxic T Lymphocytes. The journal of experimental medicine. 1998; 198 (5): 685-91. - 23. MacAry P A, Javid B, Fioto R A, Smith K G, Oehlmnann W, Singh M, et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity, 2004:20(1 ):95-106. Epub 2004/01/24.
- C57BL/6 mice were injected intraperitoneally injected with 5×106 luciferase-expressing ID8 mouse ovarian cancer cells. Mice received four weekly treatments of VIC-008 (20 μg) starting one week after tumor introduction. Results are shown in
FIG. 4 . The survival curve is shown inFIG 5 . - Tumor samples were collected two weeks after the fourth and final treatment of either saline or VIC-008. Tumor tissue was collected and immunoprofiled using flow cytometry to detect CD3+CD8+ T cells. Results are shown in
FIG. 6 . - CD4+CD25+FoxP3+ T regulatory cells were detected by flow cytometry. T regulatory cells were counted as a percentage of all CD3+CD4+ cells. Results are shown in
FIG. 7 . -
FIG. 8 shows the ratio of CD8+ T cells to T regulatory cells in the tumors. CD3+CD8+ T cells and CD4+CD25+FoxP3+ T regulatory cells were detected by flow cytometry. The ratio was calculated based on percentages of the observed population. -
FIG. 9 shows intratumoral central memory CD8+ T cell infiltration. Flow cytometry was used to detect CD8+CD44+CD27+ central memory T cells. CD8+ central memory T cells were counted as a percentage of all CD3+CD8+ cells. - The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Claims (39)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/456,196 US20170260286A1 (en) | 2016-03-10 | 2017-03-10 | Antigen-Binding Fusion Proteins with Modified HSP70 Domains |
US16/532,200 US11718683B2 (en) | 2016-03-10 | 2019-08-05 | Antigen-binding fusion proteins with modified HSP70 domains |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662306168P | 2016-03-10 | 2016-03-10 | |
US15/456,196 US20170260286A1 (en) | 2016-03-10 | 2017-03-10 | Antigen-Binding Fusion Proteins with Modified HSP70 Domains |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/532,200 Continuation US11718683B2 (en) | 2016-03-10 | 2019-08-05 | Antigen-binding fusion proteins with modified HSP70 domains |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170260286A1 true US20170260286A1 (en) | 2017-09-14 |
Family
ID=59787756
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/456,196 Abandoned US20170260286A1 (en) | 2016-03-10 | 2017-03-10 | Antigen-Binding Fusion Proteins with Modified HSP70 Domains |
US16/532,200 Active 2037-06-27 US11718683B2 (en) | 2016-03-10 | 2019-08-05 | Antigen-binding fusion proteins with modified HSP70 domains |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/532,200 Active 2037-06-27 US11718683B2 (en) | 2016-03-10 | 2019-08-05 | Antigen-binding fusion proteins with modified HSP70 domains |
Country Status (9)
Country | Link |
---|---|
US (2) | US20170260286A1 (en) |
EP (1) | EP3426289A4 (en) |
JP (1) | JP2019511246A (en) |
CN (1) | CN109562154A (en) |
AU (1) | AU2017229991A1 (en) |
CA (1) | CA3017356A1 (en) |
IL (1) | IL261681A (en) |
MX (1) | MX2018010961A (en) |
WO (1) | WO2017156461A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109504698A (en) * | 2017-09-15 | 2019-03-22 | 上海恒润达生生物科技有限公司 | A kind of method and purposes of the Chimeric antigen receptor targeting full humanization mesothelin |
US11325951B2 (en) * | 2016-09-09 | 2022-05-10 | The General Hospital Corporation | HSP fusion protein with anti-chemorepellant agent for treatment of cancer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018049120A1 (en) | 2016-09-09 | 2018-03-15 | The General Hospital Corporation | Ex vivo antigen-presenting cells or activated cd-positive t cells for treatment of cancer |
EP3600395A4 (en) | 2017-03-23 | 2021-05-05 | The General Hospital Corporation | Cxcr4/cxcr7 blockade and treatment of human papilloma virus-associated disease |
WO2020072844A1 (en) * | 2018-10-05 | 2020-04-09 | Voyager Therapeutics, Inc. | Engineered nucleic acid constructs encoding aav production proteins |
CN111848819A (en) * | 2020-07-31 | 2020-10-30 | 广东昭泰体内生物医药科技有限公司 | MSLN-targeted chimeric antigen receptor and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020146426A1 (en) * | 2000-01-14 | 2002-10-10 | Whitehead Institute For Biomedical Research | In vivo CTL elicitation by heat shock protein fusion proteins maps to a discrete domain and is CD4+ T cell-independent |
US20030035807A1 (en) * | 1999-09-24 | 2003-02-20 | Mccormick Alison A. | Self antigen vaccines for treating B cell lymphomas and other cancers |
US20040063173A1 (en) * | 2000-09-13 | 2004-04-01 | Gabriele Multhoff | Hsp70 peptide stimulating natural killer (nk) cell activity and uses thereof |
US20060264609A1 (en) * | 2001-10-03 | 2006-11-23 | Thomas Lehner | Use of heat shock proteins |
US7943133B2 (en) * | 2006-02-02 | 2011-05-17 | Boston Biocom Llc | Mesothelin antibody protein fusions and methods of use |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215051A (en) | 1979-08-29 | 1980-07-29 | Standard Oil Company (Indiana) | Formation, purification and recovery of phthalic anhydride |
US4554101A (en) | 1981-01-09 | 1985-11-19 | New York Blood Center, Inc. | Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
JPS6147500A (en) | 1984-08-15 | 1986-03-07 | Res Dev Corp Of Japan | Chimera monoclonal antibody and its preparation |
EP0173494A3 (en) | 1984-08-27 | 1987-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by dna splicing and expression |
GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
JPS61134325A (en) | 1984-12-04 | 1986-06-21 | Teijin Ltd | Expression of hybrid antibody gene |
WO1987002671A1 (en) | 1985-11-01 | 1987-05-07 | International Genetic Engineering, Inc. | Modular assembly of antibody genes, antibodies prepared thereby and use |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
NZ253137A (en) | 1992-06-25 | 1996-08-27 | Smithkline Beecham Biolog | Vaccine comprising antigen and/or antigenic composition, qs21 (quillaja saponaria molina extract) and 3 de-o-acylated monophosphoryl lipid a. |
US5951988A (en) | 1993-03-30 | 1999-09-14 | University Of Saskatchewan | Adjuvant formulation with enhanced immunogenic activity, and related compositions and methods |
GB9326253D0 (en) | 1993-12-23 | 1994-02-23 | Smithkline Beecham Biolog | Vaccines |
DK0772619T4 (en) | 1994-07-15 | 2011-02-21 | Univ Iowa Res Found | Immunomodulatory oligonucleotides |
UA56132C2 (en) | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Vaccine composition (variants), method for stabilizing qs21 providing resistance against hydrolysis (variants), method for manufacturing vaccine |
CA2229543A1 (en) | 1995-08-18 | 1997-02-27 | Sloan-Kettering Institute For Cancer Research | Heat shock protein-based vaccines and immunotherapies |
DE19819846B4 (en) | 1998-05-05 | 2016-11-24 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Multivalent antibody constructs |
US6734173B1 (en) * | 1999-10-20 | 2004-05-11 | Johns Hopkins University | HSP DNA vaccines |
EP1293514B1 (en) | 2001-09-14 | 2006-11-29 | Affimed Therapeutics AG | Multimeric single chain tandem Fv-antibodies |
US20090162405A1 (en) * | 2006-12-14 | 2009-06-25 | Yong Qian | Proteinase-engineered cancer vaccine induces immune responses to prevent cancer and to systemically kill cancer cells |
WO2007054658A1 (en) * | 2005-11-14 | 2007-05-18 | King's College London | Control of immune responses |
CN101410140B (en) | 2006-02-02 | 2016-10-26 | 综合医院公司 | Engineered antibody-stress protein fusions |
EP2035452B1 (en) * | 2006-06-22 | 2012-04-25 | Novo Nordisk A/S | Soluble heterodimeric receptors and uses thereof |
US7795411B2 (en) * | 2006-10-05 | 2010-09-14 | Fred Hutchinson Cancer Research Center | Vectors for expressing in vivo biotinylated recombinant proteins |
US9272002B2 (en) * | 2011-10-28 | 2016-03-01 | The Trustees Of The University Of Pennsylvania | Fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting |
CN105481985A (en) * | 2016-01-11 | 2016-04-13 | 王小平 | Compound of heat shock protein 70 functional peptide and alpha fetoprotein epitope peptide |
-
2017
- 2017-03-10 WO PCT/US2017/021911 patent/WO2017156461A2/en active Application Filing
- 2017-03-10 MX MX2018010961A patent/MX2018010961A/en unknown
- 2017-03-10 CA CA3017356A patent/CA3017356A1/en active Pending
- 2017-03-10 JP JP2018567026A patent/JP2019511246A/en active Pending
- 2017-03-10 AU AU2017229991A patent/AU2017229991A1/en not_active Abandoned
- 2017-03-10 EP EP17764234.5A patent/EP3426289A4/en not_active Withdrawn
- 2017-03-10 CN CN201780029242.5A patent/CN109562154A/en active Pending
- 2017-03-10 US US15/456,196 patent/US20170260286A1/en not_active Abandoned
-
2018
- 2018-09-07 IL IL261681A patent/IL261681A/en unknown
-
2019
- 2019-08-05 US US16/532,200 patent/US11718683B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030035807A1 (en) * | 1999-09-24 | 2003-02-20 | Mccormick Alison A. | Self antigen vaccines for treating B cell lymphomas and other cancers |
US20020146426A1 (en) * | 2000-01-14 | 2002-10-10 | Whitehead Institute For Biomedical Research | In vivo CTL elicitation by heat shock protein fusion proteins maps to a discrete domain and is CD4+ T cell-independent |
US20040063173A1 (en) * | 2000-09-13 | 2004-04-01 | Gabriele Multhoff | Hsp70 peptide stimulating natural killer (nk) cell activity and uses thereof |
US20060264609A1 (en) * | 2001-10-03 | 2006-11-23 | Thomas Lehner | Use of heat shock proteins |
US7943133B2 (en) * | 2006-02-02 | 2011-05-17 | Boston Biocom Llc | Mesothelin antibody protein fusions and methods of use |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11325951B2 (en) * | 2016-09-09 | 2022-05-10 | The General Hospital Corporation | HSP fusion protein with anti-chemorepellant agent for treatment of cancer |
CN109504698A (en) * | 2017-09-15 | 2019-03-22 | 上海恒润达生生物科技有限公司 | A kind of method and purposes of the Chimeric antigen receptor targeting full humanization mesothelin |
Also Published As
Publication number | Publication date |
---|---|
JP2019511246A (en) | 2019-04-25 |
MX2018010961A (en) | 2019-03-28 |
IL261681A (en) | 2018-10-31 |
EP3426289A2 (en) | 2019-01-16 |
WO2017156461A2 (en) | 2017-09-14 |
CN109562154A (en) | 2019-04-02 |
US20200095332A1 (en) | 2020-03-26 |
AU2017229991A1 (en) | 2018-10-04 |
WO2017156461A3 (en) | 2017-10-05 |
US11718683B2 (en) | 2023-08-08 |
EP3426289A4 (en) | 2019-08-07 |
CA3017356A1 (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11718683B2 (en) | Antigen-binding fusion proteins with modified HSP70 domains | |
US20210179697A1 (en) | Immunotherapies employing self-assembling vaccines | |
US7943133B2 (en) | Mesothelin antibody protein fusions and methods of use | |
US8143387B2 (en) | Engineered antibody-stress protein fusions | |
JP7323949B2 (en) | Flagellin fusion protein and use thereof | |
CZ298347B6 (en) | Fusion protein of MAGE family, nucleic acid sequence encoding such protein, vector, host cell, vaccine and use of such fuse protein for preparing the vaccine | |
JP2011518186A5 (en) | ||
US20210038704A1 (en) | H3.3 ctl peptides and uses thereof | |
WO2015143581A1 (en) | Target-specific double-mutant fusion protein and preparation process therefor | |
US20220273780A1 (en) | Self-assembled vaccines and combination therapies for treating cancer | |
US20240082387A1 (en) | Fusion protein comprising coronavirus-derived receptor-binding domain and nucleocapsid protein, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAUNS, TIMOTHY;POZNANSKY, MARK C.;GELFAND, JEFFREY A.;AND OTHERS;REEL/FRAME:044081/0305 Effective date: 20170926 |
|
AS | Assignment |
Owner name: APERISYS, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCCORMACK, STEPHEN J.;REEL/FRAME:044757/0401 Effective date: 20180126 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: THE GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE ARMY, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS GENERAL HOSPITAL;REEL/FRAME:053458/0324 Effective date: 20200806 |