US20170247130A1 - Fill packaging method and fill packaging machine for liquid packing material - Google Patents

Fill packaging method and fill packaging machine for liquid packing material Download PDF

Info

Publication number
US20170247130A1
US20170247130A1 US15/507,021 US201515507021A US2017247130A1 US 20170247130 A1 US20170247130 A1 US 20170247130A1 US 201515507021 A US201515507021 A US 201515507021A US 2017247130 A1 US2017247130 A1 US 2017247130A1
Authority
US
United States
Prior art keywords
packaging film
packing material
lateral
packaging
fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/507,021
Inventor
Tomohisa HOSAKA
Akira Yajima
Michiya FUKUDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Lamick Co Ltd
Original Assignee
Taisei Lamick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Lamick Co Ltd filed Critical Taisei Lamick Co Ltd
Assigned to TAISEI LAMICK CO., LTD. reassignment TAISEI LAMICK CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUDA, MICHIYA, HOSAKA, TOMOHISA, YAJIMA, AKIRA
Publication of US20170247130A1 publication Critical patent/US20170247130A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/10Enclosing successive articles, or quantities of material, in preformed tubular webs, or in webs formed into tubes around filling nozzles, e.g. extruded tubular webs
    • B65B9/12Subdividing filled tubes to form two or more packages by sealing or securing involving displacement of contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/032Mechanical after-treatments
    • B29C66/0326Cutting, e.g. by using waterjets, or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7373Joining soiled or oxidised materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • B29C66/81465General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint one placed behind the other in a single row in the feed direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8351Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws
    • B29C66/83511Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws jaws mounted on rollers, cylinders or drums
    • B29C66/83513Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws jaws mounted on rollers, cylinders or drums cooperating jaws mounted on rollers, cylinders or drums and moving in a closed path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/849Packaging machines
    • B29C66/8491Packaging machines welding through a filled container, e.g. tube or bag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/26Devices specially adapted for producing transverse or longitudinal seams in webs or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/26Devices specially adapted for producing transverse or longitudinal seams in webs or tubes
    • B65B51/30Devices, e.g. jaws, for applying pressure and heat, e.g. for subdividing filled tubes
    • B65B51/306Counter-rotating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/06Enclosing successive articles, or quantities of material, in a longitudinally-folded web, or in a web folded into a tube about the articles or quantities of material placed upon it
    • B65B9/067Enclosing successive articles, or quantities of material, in a longitudinally-folded web, or in a web folded into a tube about the articles or quantities of material placed upon it the web advancing continuously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)

Abstract

In a method for forming a lateral sealed portion, a liquid packing material can be filled without biting bubbles, granulates and so on included in the liquid packing material into the lateral sealed portion. In a method for forming a lateral sealed portion with a pair of lateral sealing rolls after a packaging film fed and run is folded at its central portion and a vertical sealing is performed at their side edge parts to shape into a cylindrical form and a liquid packing material is filled into an inside of the cylindrically formed packaging film, at least a folded side part of the cylindrically formed packaging film is pushed with a pushing means arranged between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll and the lateral sealed portion is formed at a pushed position with the pair of lateral sealing bars.

Description

    TECHNICAL FIELD
  • This invention relates to a method for fill packaging a liquid packing material and a fill packaging machine utilizing such a method, and more particularly to a fill packaging method and fill packaging machine capable of blocking intrusion of a liquid packing material into a lateral seal portion.
  • RELATED ART
  • Recently, it is widely general to automatically fill and package a liquid packing material such as food and drink, seasonings, medicines, cosmetics or the like, a viscous material, powder, granulates or other material with a soft packaging film.
  • In an automatically fill packaging machine for such a packing material, for example, as described in Patent Document 1, a packaging film having a laminated structure comprised of a uniaxially or biaxially oriented base film layer and a non-oriented sealant layer or a packaging film having a single layer structure of partly coating a heat-sensitive adhesive layer onto a base film layer is folded at a central part thereof so as to face the sealant layer or the heat-sensitive adhesive layer inward, and side edge portions of the folded films are overlapped with each other and fused by heating and pressing with a pair of vertical sealing rolls to form a longitudinally extended vertical seal portion while feeding downward, whereby the packaging film is shaped into a cylindrical form.
  • Then, the cylindrically formed film is fed downward while being fused by heating and pressing with a plurality of heat sealing bars positioned at equal intervals in a circumferential direction on each periphery of a pair of lateral sealing rolls in a lateral sealing apparatus to intermittently form lateral sealed portions each extending a widthwise direction of the cylindrically formed packaging film at given intervals in the longitudinal direction of the packaging film, whereby package bags are manufactured. In this case, a packing material is filled into each of the package bags by continuously feeding the packing material to the packaging film or intermittently feeding from the formation of one lateral sealed portion in the cylindrically formed packaging film to the formation of next lateral sealed portion, and thereafter the continuously manufactured package bags are cut at a middle part of the lateral sealed portion by a cutting mechanism and taken out in the form of a single bag or at a continuous state of plural bags.
  • PRIOR ART DOCUMENTS Patent Document
  • Patent Document 1: JP-A-1104-114841
  • SUMMARY OF THE INVENTION Task to be Solved by the Invention
  • In such a conventional fill packaging machine, when the lateral sealed portion is formed by the pair of lateral sealing rolls as mentioned above, the folded portion of the packaging film becomes at a bulging state due to spring back from the formation of one lateral sealed portion to the formation of next lateral sealed portion, and hence there is a fear that the filled liquid packing material is sucked upward along the folded side through a capillary action and intruded into the next lateral sealed portion to cause poor sealing.
  • In the formation of the lateral sealed portion, lateral sealing is performed by the heat sealing bars on the lateral sealing rolls while pushing out the packing material in the cylindrically formed packaging film, whereby the intrusion of the packing material into the lateral sealed portion is suppressed but is not sufficient. Especially, when the packing material contains granulates as used in dressing for example, there is a fear that the granulates cannot be pushed out by the heat sealing bars and may be intruded into the lateral sealed portion. If the granulates are intruded into the lateral sealed portion, not only the appearance is damaged but also bubbling is generated to cause poor sealing, and there is a fear of leaking the packing material.
  • In case of filling and packaging the packing material particularly containing the granulates or the like, therefore, the intrusion of the granulates into the lateral sealed portion is prevented by intermittently filling the packing material from the formation of one lateral sealed portion to the formation of the next lateral sealed portion in the cylindrical packaging film as previously mentioned. In this method, however, there is a problem that the productivity is extremely lowered as compared to the case that the packing material is continuously filled.
  • Therefore, the invention is to provide a method for fill packaging a liquid packing material capable of filling the liquid packing material without intruding bubbles, granulates or the like into a lateral sealed portion and improving the productivity, and a fill packaging machine utilizing such a method.
  • Solution for Task
  • Under studies for realizing the above object, the inventors have found out that the invention is effective to be a method for fill packaging a liquid packing material by folding a packaging film fed and run in a longitudinal direction at its central portion so as to face adhesive layers or sealant layers to each other, forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, filling the liquid packing material into an inside of the cylindrically formed packaging film, tucking the packaging film in a direction perpendicular to the longitudinal direction with a pair of lateral sealing rolls to form a lateral sealed portion extending over a full width of the packaging film to thereby fill package the liquid packing material into the packaging film, characterized in that at least a folded side part of the cylindrically formed packaging film is pushed with a pushing means arranged between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll and the lateral sealed portion is formed at a pushed position with the pair of lateral sealing rolls, and the invention has been accomplished.
  • Also, the invention proposes a method for fill packaging a liquid packing material by folding a packaging film fed and run in a longitudinal direction at its central portion so as to face adhesive layers or sealant layers to each other, forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, filling the liquid packing material into an inside of the cylindrically formed packaging film, tucking the packaging film in a direction perpendicular to the longitudinal direction with a pair of lateral sealing rolls to form a lateral sealed portion extending over a full width of the packaging film to thereby fill package the liquid packing material into the packaging film, characterized in that at least a folded side part of the cylindrically formed packaging film is pushed with a pushing means arranged between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll, while both side faces of the cylindrically formed packaging film are tucked with a squeezing means in the running direction of the packaging film and in front of the lateral sealing rolls to intermittently squeeze out the liquid packing material, and the lateral sealed portion is formed with the pair of lateral sealing rolls at the position worked by the pushing means and the squeezing means.
  • In the fill packaging method for the liquid packing material according to the invention, the following further constructions are more preferable means.
  • (1) the pushing means is a push bar pushing the cylindrically formed packaging film over its full width;
  • (2) the pushing means is a push plate pushing the folded portion of the cylindrically formed packaging film over its full length;
  • (3) the squeezing means is a pair of squeeze plates;
  • (4) the pair of squeeze plates are moved at a displacement position of coming close to or free from each other based on a nature of the packaging film and filling conditions; and
  • (5) at least one of the pair of squeeze plates is provided at its tip section with a gas blowing port and the liquid packing material interposed in the cylindrically formed packaging film is squeezed out by a pressure of a gas blown from the gas blowing port.
  • Further, the invention proposes a fill packaging machine comprising a vertical sealing means for folding a packaging film fed and run in a longitudinal direction at its central part so as to face adhesive layers or sealant layers to each other and forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, and a lateral sealing means comprised of a pair of lateral sealing rolls for subjecting the packaging film to lateral sealing in a direction perpendicular to the longitudinal direction over the full width of the packaging film and at intervals in the longitudinal direction of the packaging film to form package bodies, characterized in that a pushing means for pushing at least a portion corresponding to a folded side of the packaging film is provided between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll.
  • Moreover, the invention proposes a fill packaging machine comprising a vertical sealing means for folding a packaging film fed and run in a longitudinal direction at its central part so as to face adhesive layers or sealant layers to each other and forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, and a lateral sealing means comprised of a pair of lateral sealing rolls for subjecting the packaging film to lateral sealing in a direction perpendicular to the longitudinal direction over the full width of the packaging film and at intervals in the longitudinal direction of the packaging film to form package bodies, characterized in that a squeezing means located so as to tuck both side faces of the cylindrically formed packaging film and capable of moving in a direction of coming close to or free from each other is provided in the running direction of the packaging film and in front of the lateral sealing rolls, and a pushing means for pushing at least a portion corresponding to a folded side of the packaging film is provided between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll.
  • In the fill packaging machine according to the invention, the following further constructions are more preferable means.
  • (1) the pushing means is a push bar pushing the cylindrically formed packaging film over its full width;
  • (2) the pushing means is a push plate pushing the folded portion of the cylindrically formed packaging film over its full length;
  • (3) the squeezing means is a pair of squeeze plates;
  • (4) at least one of the pair of squeeze plates is provided at its tip section with a gas blowing port;
  • (5) the push plate is constituted so that the position can be adjusted in accordance with the width of the cylindrically formed packaging film;
  • (6) a pushing width of the push plate in an axial direction of the lateral sealing roll is 1-50% of the width of the cylindrically formed packaging film; and
  • (7) the push bar is disposed adjacent to the heat sealing bar at a front side of the lateral sealing roll in the rotation direction of the heat sealing bar.
  • Effect of the Invention
  • In the fill packaging method for the liquid packing material and the fill packaging machine utilizing such a method according to the invention, the pushing means pushing at least a portion corresponding to a folded side of the packaging film is provided between the heat sealing bars located in the circumferential direction of the lateral sealing roll, so that bulging of the folded side part of the packaging film due to spring back can be prevented by the pushing means between the formations of one lateral sealed portion and next lateral sealed portion and hence the liquid packing material filled can be effectively prevented from sucking along the folded side part toward the next lateral sealed portion.
  • In the invention, when the packaging film is shaped into a cylinder by folding into two parts and forming the vertical sealed portion at their side edge parts and the liquid packing material is filled and packed into the cylindrically formed packaging film (hereinafter referred to as “cylindrical film”), moving of the liquid packing material fed from a filling nozzle inside the cylindrical film can be temporarily blocked by intermittently tucking (squeezing) the cylindrical film from both side faces thereof with the squeezing means. Thus, a portion not including the liquid packing material is intermittently formed on the lower side of the squeezing means, and a lateral sealed portion is formed in such a portion by the pair of lateral sealing rolls, whereby biting of the liquid packing material, particularly granulates and so on interposed in the liquid packing material into the lateral sealed portion can be blocked effectively. Therefore, even if the granulates and so on are interposed in the liquid packing material, biting of the granulates and so on is not caused in the lateral sealed portion and hence the liquid packing material can be filled and packed continuously through liquid-in seal filling and the productivity can be improved.
  • Also, the squeezing means is preferable to be comprised of a pair of squeeze plates. The biting of the liquid packing material into the lateral sealed portion can be suppressed more effectively by disposing a gas blowing port in a tip section of at least one of the pair of squeeze plates and oscillating the cylindrical film by a pressure of a gas blown from the gas blowing port to squeeze out the liquid packing material, granulates and so on included in the cylindrical film. Further, the action of directly tucking the cylindrical film with the squeeze plates can be assisted by the pressure of the gas, and there is no fear that the cylindrical film is damaged because the slippage is increased.
  • When the pushing means is a push plate pushing the folded side parts of the cylindrically formed packaging film over its full length, the penetration of the liquid packing material into the folded side parts is blocked completely, so that there is no possibility that the liquid packing material is sucked up into the lateral sealed portion along the folded side part. While when the pushing means is a push bar pushing the cylindrically formed packaging film over its full width, the sucking up of the liquid packing material filled not only in the folded side part but also over the full width of the packaging film is suppressed along the inner wall face of the packaging film, so that the biting of the liquid packing material into the lateral sealed portion can be blocked effectively. Furthermore, when both of the push plate and push bar are disposed as the pushing means, the effect of suppressing the biting into the lateral sealed portion can be developed more effectively.
  • In the invention, the pair of squeeze plates can be moved at a displacement position of coming close to or free from each other based on a nature of the packaging film and filling conditions, and the position of the push plate can be adjusted in accordance with the width of the cylindrical film, whereby the invention can be utilized effectively in the manufacture of various package bodies irrespectively of the thickness of the packaging film, kind of the liquid packing material, volume of the package body and so on.
  • Moreover, the pushing width of the push plate in the axial direction of the lateral sealing roll is made to 1-50% of the width of the cylindrical film, and the push bar is disposed adjacent to the heat sealing bar in the lateral sealing roll, whereby the filling of the liquid packing material into the packaging film is not interrupted and the internal volume of the package bag is not decreased excessively and the sucking up of the liquid packing material filled through capillary action is suppressed, and hence the biting of the liquid packing material into the lateral sealed portion can be blocked surely.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view illustrating a construction of a vertical type fill packaging machine as an example of the fill packaging machine according to the invention.
  • FIG. 2 is an enlarged perspective view illustrating an embodiment of a lateral sealed portion forming section in the fill packaging machine.
  • FIG. 3 shows another embodiment of a lateral sealed portion forming section in the full packaging machine, wherein (a) is an enlarged perspective view and (b) is an end view taken along A-A line.
  • FIG. 4 is an illustration diagram showing a method of filling a liquid packing material with a lateral sealed portion forming section in the embodiment of the fill packaging machine shown in FIG. 2, wherein (a) shows a state of filling the liquid packed material into a cylindrical film, and (b) shows a state of squeezing the cylindrical film with a pair of squeeze plates, and (c) shows a state of forming a lateral sealed portion in the cylindrical film with a pair of lateral sealing rolls.
  • EMBODIMENTS FOR CARRYING OUT THE INVENTION
  • An embodiment of the invention will be described with reference to the accompanying drawings below.
  • FIG. 1 is a schematic view illustrating a construction of a vertical fill packaging machine as an example of the fill packaging machine according to the invention.
  • In the vertical fill packaging machine, an elongated packaging film made of a laminate film by laminating a base film layer made, for example, from a biaxially oriented ethylene-vinyl alcohol copolymer resin or the like and a sealant layer made, for example, from a non-oriented ethylene-vinyl acetate copolymer resin or the like is folded in a widthwise direction so as to face the sealant layers to each other to overlap both side edge parts with each other while being run in its longitudinal direction, and many package bags are made from the packaging film and a packing material such as food and drink, seasonings, medicines, cosmetics and other liquidus, viscous or jelly fluidizing material is automatically filled in each of the package bags. The vertical fill packaging machine mainly comprises a film folding section 1, a vertical sealed portion forming section 2, a section 3 of feeding the packing material, a first lateral sealed portion forming section 4 a, a second lateral sealed portion forming section 4 b, and a cut section 5 cutting the package bags in the form of a single bag or at a continuous state of plural bags as shown in FIG. 1. Hereinafter, a case of using a liquid packing material inclusive of granulates and the like as a packing material will be described as an example.
  • In the film folding section 1 of FIG. 1, one elongated packaging film 6 continuously or intermittently fed from a film roll R is run from top to bottom, during which the packaging film 6 is folded in a widthwise direction so as to face sealant layers to each other while being guided with two U-shaped and inverted L-shaped guide rods 7, whereby both side edge parts of the packaging film 6 are overlapped at a left end thereof in the figure.
  • In the vertical sealed portion forming section 2, the both side edge parts overlapped after the folding of the packaging film 6 are heated and pressed by means of a pair of vertical sealing rolls 8 in the longitudinal direction (vertical direction) of the packaging film 6 to form a vertical sealed portion 13, whereby the packaging film 6 is shaped into a cylindrical form to provide a cylindrical film 15.
  • The vertical sealed portion forming section 2 comprises a pair of vertical sealing rolls 8 horizontally extending in a direction perpendicular to a plane of paper in the figure and in parallel to each other, motors 9 rotationally driving the pair of vertical sealing rolls 8 in reverse directions each other at a constant velocity through gear sets (not shown), and a pair of air cylinders 10 disposed in bearing portions supporting both end parts of a support shaft of the vertical sealing roll 8 so as to energize the pair of vertical sealing rolls 8 in a direction coming close to each other.
  • Each of the pair of vertical sealing rolls 8 is provided on its outer periphery with an annular flange 8 a and in an inside thereof with a heater (not shown) for heating the annular flange 8 a. The both side edge parts overlapped in the cylindrical film 15 are pressed by a pushing force of the pair of air cylinders 10 while being sandwiched between the respective annular flanges 8 a and heated by heat conducted from the heater to the annular flange 8 a, whereby the sealant layers in the both side edge parts are fused to each other to form a vertical sealed portion 13, while the cylindrical film 15 is run downward under rotation.
  • In the section 3 of feeding the packing material, a liquid packing material M fed from a tank (not shown) through a pump and a feed path (not shown) is filled into an inside of the cylindrical film 15 by means of a filling nozzle 11 passing between the pair of vertical sealing rolls 8 from top toward bottom.
  • In the first lateral sealed portion forming section 4 a, a lateral sealed portion 14 is intermittently formed by fusing the cylindrical film 15 at constant intervals in the longitudinal direction under heating and pressing over the full width with a pair of lateral sealing rolls 12. Thereafter, the lateral sealed portion 14 is re-pushed in the second lateral sealed portion forming section 4 b to ensure sealing, whereby many package bags W are manufactured at a state of connecting them to each other in the longitudinal direction of the cylindrical film 15. Next, individual package bags W are obtained by cutting an approximately middle part of the lateral sealed portion 14 in the cutting section 5.
  • Moreover, the pair of lateral sealing rolls 12 in the first and second lateral sealed portion forming sections 4 a and 4 b are rotationally driven in reverse directions and at a constant velocity by motors through gear sets. As the first lateral sealed portion forming section 4 a is typically shown in FIG. 2 in closeup, the each roll is provided on its outer periphery with a plurality of heat sealing bars 12 a (4 bars in the figure) located at equal intervals in the peripheral direction and extended in the axial direction. The lateral sealed portion 14 is formed or strengthened by tucking the cylindrical film 15 with the heat sealing bars 12 a. Moreover, a heater heating the heat sealing bars 12 a is included in each of the lateral sealing rolls 12.
  • As shown in FIG. 2, this fill packaging machine is characterized in a point that a pushing means 17 for pushing at least a portion corresponding to the folded side 6 a of the cylindrical film 15 is disposed between the plural heat sealing bars 12 a (4 bars in the figure) in the pair of lateral sealing rolls 12. Moreover, FIG. 2 shows an embodiment of the pushing means 17 comprising push plates 18 a, 18 b of a partially cylindrical face for pushing the portion corresponding to the folded side 6 a of the cylindrical film 15 over its full length.
  • Since the portion including at least the folded side 6 a of the cylindrical film 15 after one lateral sealing by the pair of heat sealing bars 12 is partially pushed with the push plates 18 a, 18 b, the folded side 6 a located between the lateral sealed portions 14 is never returned (bulged) to an original form over the full length due to spring back. Therefore, there is no fear that the liquid packing material filled in the cylindrical film 15 after one lateral sealing is sucked up along the folded side 6 a and also the liquid packing material is bitten into next lateral sealed portion 14. Although FIG. 2 shows that the package bag W is a three-way sealed bag, the push plates 18 a, 18 b can be preferably used on a bag having fold portions at both sides such as back lining sealed bag or the like.
  • Moreover, the push plates 18 a, 18 b are preferable to have a partially cylindrical face as shown in FIG. 2 as far as at least the folded side 6 a of the cylindrical film 15 can be pushed. In the push plates 18 a, 18 b, a pushing width in the axial direction of the lateral sealing roll 12 is preferable to be 1-50% of the width of the cylindrical film 15, more preferably 1-20%. This is due to the fact that a proper and adequate filling volume is ensured. According to this width, the push plates 18 a, 18 b can push the folded side 6 a of the cylindrical film 15 surely without blocking the filling of the liquid packing material and extremely decreasing the internal volume of the package bag. The width of the push plate 18 a, 18 b in the axial direction of the lateral sealing roll 12 is preferable to be 1-80% of the width of the heat sealing bar 12 a.
  • Since the push plate 18 a, 18 b can be fitted simply between the heat sealing bars 12 a with screws, bolts and the like, they are easy in the maintenance. Also, the push plates 18 a, 18 b can be utilized in the manufacture of various types of package bodies by adjusting the setting position in accordance with the width of the cylindrical film 15. Furthermore, the height can be properly adjusted by putting a shim between the push plate 18 a, 18 b and the roll surface of the lateral sealing roll 12.
  • FIG. 3 shows another embodiment of the lateral sealed portion forming section, wherein the pushing means 17 is comprised of push bars 19 a, 19 b. FIG. 3(a) is a perspective view, and FIG. 3(b) is an end view taken along A-A line in FIG. 3(a). Each of the push bars 19 a, 19 b is disposed in front of the heat sealing bar 12 a in the rotation direction thereof and adjacent to the heat sealing bar 12 a. Preferably, it is disposed in a position of 0.1-30 mm, more preferably 0.1-15 mm separated from the heat sealing bar 12 a. In this figure, the push bars 19 a, 19 b are disposed in parallel to the heat sealing bar 12 a, but are not limited thereto. They may be disposed obliquely with respect to the heat sealing bar 12 a in accordance with the viscosity and filling amount of the liquid packing material to push the cylindrical film 15 properly. Also, when the width of the push bar 19 a, 19 b in the axial direction of the lateral sealing roll 12 is made to be approximately equal to the width of the heat sealing bar 12 a, the cylindrical film 15 can be pushed over the full width, so that the liquid packing material filled in the cylindrical film 15 after the formation of one lateral sealed portion 14 can be prevented from sucking up along not only the folded side 6 a but also the inner wall face of the cylindrical film 15 and the biting of the liquid packing material into next lateral sealed portion can be suppressed effectively. Moreover, the push bars 19 a, 19 b can develop similar effects in not only bags having fold portion(s) such as three-way sealed bags and back lining sealed bags but also four-way sealed bags and so on.
  • In the push bar 19 a, 19 b, the surface form is not only arc-like as shown in FIG. 3 but also flat, chevron or the like. In any case, a maximum height from the roll shaft surface of the lateral sealing roll 12 is preferably −2 to +5 mm, more preferably 0 to +2 mm with respect to the height of the heat sealing bar 12 a. Thus, the packaging film can be pushed surely, so that the liquid packing material filled inside the cylindrical film 15 can be suppressed from sucking up to the position of next lateral sealed portion 14 effectively.
  • The push bar 19 a, 19 b may be made from Teflon®, silicon, plastics, elastic metal or the like, but is preferable to be a material having an heat insulating property because it is disposed adjacent to the heat sealing bar 12 a.
  • Further, the width of the push bar 19 a, 19 b in the running direction of the cylindrical film 15 is preferably 0.5-50 mm, more preferably 2-10 mm. In this case, the cylindrical film 15 can be pushed surely over the full width without excessively decreasing the internal volume of the package bag.
  • As the pushing means 17 may be disposed the push plates 18 a, 18 b and the push bars 19 a, 19 b together. In this case, the liquid packing material filled inside the cylindrical film 15 can be prevented from sucking up along the folded side 6 a and the inner wall face of the cylindrical film 15 more effectively, and the biting of the liquid packing material into next lateral sealed portion 14 can be suppressed effectively.
  • In the fill packaging machine, it is preferable that a squeezing means 16 is arranged in front of a position forming the lateral sealed portion 14 with the pair of lateral sealing rolls 12 in the first lateral sealed portion forming section 4 a in the running direction of the cylindrical film 15 as shown in FIG. 2. As the squeezing means 16, it is preferable to use a pair of squeeze plates 16 a, 16 b as shown in FIG. 2, but any mechanisms such as a pair of squeeze rolls and the like may be used as far as the running cylindrical film 15 can be squeezed from both side faces thereof.
  • The pair of squeeze plates 16 a, 16 b as the squeezing means 16 are arranged so as to tuck the side faces of the cylindrical film 15. Both the side faces of the cylindrical film 15 are tucked (squeezed) intermittently by the squeeze plates 16 a, 16 b at a predetermined timing, whereby descending of the liquid packing material filled inside the cylindrical film 15 is prevented temporarily.
  • Moreover, the squeezing means 16 has a function of squeezing out air included in the liquid packing material and an action of stabilizing the form of the package bag and the amount of the liquid packing material filled.
  • The descending of the liquid material and granulates toward the lower side of the squeezing means 16 in the cylindrical film 15 is blocked by the above function of the squeezing means 16 to form a portion not interposing them intermittently, and a lateral sealed portion 14 is formed in this portion with the next lateral sealing rolls 12, whereby biting of the liquid material and granulates into the latter lateral sealed portion 14 can be blocked effectively. Therefore, continuous fill packaging can be attained while blocking the biting of the liquid packing material into the lateral sealed portion 14 by the squeezing means 16.
  • Moreover, the pair of squeeze plates 16 a, 16 b are constituted in such a manner that they can be displaced into a direction coming close to and free from each other, for example, by oscillation or the like while tucking the cylindrical film 15 therebetween.
  • The timing of displacing the squeezing means 16, closing time (time of coming close to each other), opening time (time of coming free from each other) and so on are controlled by a control means such as microcomputer or the like, and calculated by a given arithmetic processing based on a nature of the packaging film 6 such as packaging form, film material and so on input by a production condition setting means mentioned later, input values of filling conditions such as filling amount of the packing material, feeding speed of the packaging film 6 and so on. Moreover, the control means may be combined with a control means acting as a main computer for the fill packaging machine.
  • The production condition setting means is constituted with an input means such as a numeric keypad or the like, or a touch panel integrally united with a monitor displaying values set by the input means and can set and change the nature of the packaging film 6 in the fill packing machine such as packaging form (length of package bag W (seal pitch)), film material and so on and the filling conditions such as running speed of the film and so on.
  • Further, the production condition setting means is provided with an active monitor displaying the displacing action of the squeezing means 16, lateral sealing speed and the like with time as a graph, whereby the displacing state of the squeezing means 16 can be confirmed visually, while the displacement timing, closing and opening times, closing distance of the squeezing means 16 and so on can be adjusted (input) properly.
  • Also, the production condition setting means is provided with a storing means such as backup RAM, EEPROM or the like for storing production conditions in accordance with the varieties of the packaging film 6 and the filling conditions.
  • Moreover, the squeeze plate 16 a, 16 b is made from a metal, a low-friction resin material such as Teflon® or the like, MC nylon, polyacetal, ultrahigh molecular weight polyethylene or the like. At leas one of the pair of squeeze plates 16 is provided on its tip portion with a gas blowing port. A non-flammable gas such as air, nitrogen or the like is blown out continuously or intermittently from the gas blowing port toward the cylindrical film 15 at a state of displacing the squeeze plates in a closing direction, and the liquid material and granulates interposed in the cylindrical film 15 are squeezed out effectively by oscillation based on the pressure of the gas. Moreover, the blowing direction of the gas from the gas blowing port may be upward, vertical or downward to the cylindrical film 15, which can expect the similar effect.
  • Moreover, the effect of squeezing out the liquid material and granulates by the gas pressure can be developed effectively by blowing the gas toward the cylindrical film 15 within a range from the folded side 6 a to at least 30% of the film width. Also, the timing, time, pressure and the like in the blowing of the gas can be set in the production condition setting means.
  • Next, the fill packaging method of the liquid packing material utilizing the squeeze plates 16 a, 16 b will be described with FIG. 4. A left-side view, middle view and right-side view in FIGS. 4(a), (b) and (c) show left side view, front view (showing only a back side in the figure) and right side view of the pair of heat sealing rolls 12, squeeze plates 16 a and 16 b and push plates 18 a and 18 b as the pushing means 17, respectively.
  • FIG. 4(a) shows a state that the lateral sealed portion 14 is formed by the pair of heat sealing bars 12 a and the liquid packing material is filled from the filling nozzle 11 into the cylindrical film 15. At this time, the pair of squeeze plates 16 a, 16 b are positioned at a state of coming free from each other. Also, the folded side 6 a of the cylindrical film 15 is at a state of starting push with the push plates 18 a, 18 b.
  • FIG. 4(b) shows a state that the pair of squeeze plates 16 a, 16 b start displacement into a direction of coming close to each other in accordance with instructions from the control means to the squeeze plates 16 a, 16 b and tuck the cylindrical film 15 from both side faces thereof and block descending of the liquid packing material in the cylindrical film 15. At this time, the folded side 6 a of the cylindrical film 15 is at a state of pushing a part in the longitudinal direction with the push plates 18 a, 18 b.
  • FIG. 4(c) shows a state that the pair of heat sealing bars 12 a arrive at a place of the cylindrical film 15 blocking the descending of the packing material in FIG. 4(b) and heat sealing is performed in this place to form a lateral sealed portion 14. The displacement of the squeeze plates 16 a, 16 b into the opening direction is started by instruction from the control means in response to this timing to again cause the filling of the liquid packing material into the cylindrical film 15.
  • By repeating the actions of FIG. 4(a) to FIG. 4(c) can be fill packaged the liquid packing material without biting into the lateral sealed portion 14 even if the filling is continuous.
  • DESCRIPTION OF REFERENCE SYMBOLS
  • R film roll W package bag
  • 1 folded portion of film
  • 2 vertical sealed portion forming section
  • 3 feeding section of packing material
  • 4 a first lateral sealed portion forming section
  • 4 b second lateral sealed portion forming section
  • 5 cutting section
  • 6 packaging film
  • 6 a folded side
  • 7 guide rod
  • 8 vertical sealing roll
  • 8 a annular flange
  • 9 motor
  • 10 air cylinder
  • 11 filling nozzle
  • 12 lateral sealing roll
  • 12 a heat sealing bar
  • 13 vertical sealed portion
  • 14 lateral sealed portion
  • 15 cylindrical film
  • 16 squeezing means
  • 16 a, 16 b squeeze plate
  • 17 pushing means
  • 18 a, 18 b push plate
  • 19 a, 19 b push bar

Claims (16)

1. A method for fill packaging a liquid packing material by folding a packaging film fed and run in a longitudinal direction at its central portion so as to face adhesive layers or sealant layers to each other, forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, filling the liquid packing material into an inside of the cylindrically formed packaging film, tucking the packaging film in a direction perpendicular to the longitudinal direction with a pair of lateral sealing rolls to form a lateral sealed portion extending over a full width of the packaging film to thereby fill package the liquid packing material into the packaging film, characterized in that at least a folded side part of the cylindrically formed packaging film is pushed with a pushing means arranged between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll and the lateral sealed portion is formed at a pushed position with the pair of lateral sealing rolls.
2. A method for fill packaging a liquid packing material by folding a packaging film fed and run in a longitudinal direction at its central portion so as to face adhesive layers or sealant layers to each other, forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, filling the liquid packing material into an inside of the cylindrically formed packaging film, tucking the packaging film in a direction perpendicular to the longitudinal direction with a pair of lateral sealing rolls to form a lateral sealed portion extending over a full width of the packaging film to thereby fill package the liquid packing material into the packaging film, characterized in that at least a folded side part of the cylindrically formed packaging film is pushed with a pushing means arranged between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll, while both side faces of the cylindrically formed packaging film are tucked with a squeezing means in the running direction of the packaging film and in front of the lateral sealing rolls to intermittently squeeze out the liquid packing material, and the lateral sealed portion is formed with the pair of lateral sealing rolls at the position worked by the pushing means and the squeezing means.
3. The method for fill packaging a liquid packing material according to claim 1, wherein the pushing means is a push bar pushing the cylindrically formed packaging film over its full width.
4. The method for fill packaging a liquid packing material according to claim 1, wherein the pushing means is a push plate pushing the folded portion of the cylindrically formed packaging film over its full length.
5. The method for fill packaging a liquid packing material according to claim 2, wherein the squeezing means is a pair of squeeze plates.
6. The method for fill packaging a liquid packing material according to claim 5, wherein the pair of squeeze plates are moved at a displacement position of coming close to or free from each other based on a nature of the packaging film and filling conditions.
7. The method for fill packaging a liquid packing material according to claim 5, wherein at least one of the pair of squeeze plates is provided at its tip section with a gas blowing port and the liquid packing material interposed in the cylindrically formed packaging film is squeezed out by a pressure of a gas blown from the gas blowing port.
8. A fill packaging machine comprising a vertical sealing means for folding a packaging film fed and run in a longitudinal direction at its central part so as to face adhesive layers or sealant layers to each other and forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, and a lateral sealing means comprised of a pair of lateral sealing rolls for subjecting the packaging film to lateral sealing in a direction perpendicular to the longitudinal direction over the full width of the packaging film and at intervals in the longitudinal direction of the packaging film to form package bodies, characterized in that a pushing means for pushing at least a portion corresponding to a folded side of the packaging film is provided between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll.
9. A fill packaging machine comprising a vertical sealing means for folding a packaging film fed and run in a longitudinal direction at its central part so as to face adhesive layers or sealant layers to each other and forming a vertical sealed portion at side edge parts of the folded packaging film in the longitudinal direction to shape into a cylindrical form, and a lateral sealing means comprised of a pair of lateral sealing rolls for subjecting the packaging film to lateral sealing in a direction perpendicular to the longitudinal direction over the full width of the packaging film and at intervals in the longitudinal direction of the packaging film to form package bodies, characterized in that a squeezing means located so as to tuck both side faces of the cylindrically formed packaging film and capable of moving in a direction of coming close to or free from each other is provided in the running direction of the packaging film and in front of the lateral sealing rolls, and a pushing means for pushing at least a portion corresponding to a folded side of the packaging film is provided between heat sealing bars located at equal intervals in a circumferential direction of the lateral sealing roll.
10. The fill packaging machine according to claim 8, wherein the pushing means is a push bar pushing the cylindrically formed packaging film over its full width.
11. The fill packaging machine according to claim 8, wherein the pushing means is a push plate pushing the folded portion of the cylindrically formed packaging film over its full length.
12. The fill packaging machine according to claim 9, wherein the squeezing means is a pair of squeeze plates.
13. The fill packaging machine according to claim 12, wherein at least one of the pair of squeeze plates is provided at its tip section with a gas blowing port.
14. The fill packaging machine according to claim 11, wherein the push plate is constituted so that the position can be adjusted in accordance with the width of the cylindrically formed packaging film.
15. The fill packaging machine according to claim 11, wherein a pushing width of the push plate in an axial direction of the lateral sealing roll is 1-50% of the width of the cylindrically formed packaging film.
16. The fill packaging machine according to claim 10, wherein the push bar is disposed adjacent to the heat sealing bar at a front side of the lateral sealing roll in the rotation direction of the heat sealing bar.
US15/507,021 2014-09-03 2015-08-31 Fill packaging method and fill packaging machine for liquid packing material Abandoned US20170247130A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014178817 2014-09-03
JP2014-178817 2014-09-03
PCT/JP2015/074772 WO2016035773A1 (en) 2014-09-03 2015-08-31 Fill packaging method and fill packaging machine for liquid object to be packaged

Publications (1)

Publication Number Publication Date
US20170247130A1 true US20170247130A1 (en) 2017-08-31

Family

ID=55439834

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/507,021 Abandoned US20170247130A1 (en) 2014-09-03 2015-08-31 Fill packaging method and fill packaging machine for liquid packing material

Country Status (4)

Country Link
US (1) US20170247130A1 (en)
JP (1) JP6033498B2 (en)
KR (1) KR101971379B1 (en)
WO (1) WO2016035773A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297752A1 (en) * 2014-10-02 2017-10-19 Taisei Lamick Co., Ltd. Fill packaging machine
US20180281997A1 (en) * 2017-03-29 2018-10-04 Altria Client Services Llc Cut and seal method and apparatus
WO2018208152A1 (en) 2017-05-08 2018-11-15 Sparkle Innovations B.V. Method and system for manufacture and filling with a sterile liquid of a tubular packaging
GB2572072A (en) * 2018-03-13 2019-09-18 Tna Australia Pty Ltd A packaging machine
CN111717482A (en) * 2019-03-20 2020-09-29 亚南自动机械株式会社 Automatic bar-shaped packaging device
CN112340112A (en) * 2020-11-23 2021-02-09 李美霞 Food packaging equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2019093B1 (en) * 2017-06-19 2018-12-27 Sparkle Innovations B V Method and system for manufacturing and filling a tubular package with a sterile liquid
KR101979672B1 (en) * 2018-11-07 2019-05-17 조병선 Package apparatus for stick shape
KR101979673B1 (en) * 2019-04-19 2019-05-17 조병선 Package apparatus for stick shape
KR102517932B1 (en) * 2022-08-25 2023-04-05 이강호 Vinyl packaging paper sealing and cutting device

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622421A (en) * 1967-02-27 1971-11-23 Continental Can Co Method for forming bags from thermoplastic tubing
US4067173A (en) * 1975-03-13 1978-01-10 Foodways National, Inc. Packaging machine
US4288967A (en) * 1979-11-30 1981-09-15 Fuji Machinery Co. Ltd. Center sealing device for a plastic film in a packaging apparatus
US4524567A (en) * 1981-09-11 1985-06-25 Mapa - Societa Per Azioni Machine for making, filling and sealing bags
US4563862A (en) * 1984-10-23 1986-01-14 Kliklok Corporation Package forming apparatus with combined holding and stripper mechanism
US4580392A (en) * 1982-04-13 1986-04-08 Tetra Pak International Ab Method and an apparatus for the processing of a material web
US4603540A (en) * 1983-06-20 1986-08-05 Sig Schweizerische Industrie-Gesellschaft Apparatus for making packaging bags
US4715166A (en) * 1987-01-07 1987-12-29 Tokiwa Kogyo Co., Ltd. Film packaging apparatus
US4727707A (en) * 1986-12-15 1988-03-01 Kliklok Corporation Packaging film feeding apparatus and method
US4751808A (en) * 1987-04-09 1988-06-21 Kliklok Corporation Combined stripper and sealing apparatus for bag forming and method
US4947618A (en) * 1987-09-23 1990-08-14 Rovema Verpackungsmaschinen Gmbh Bag sealing device
US5279098A (en) * 1990-07-31 1994-01-18 Ishida Scales Mfg. Co., Ltd. Apparatus for and method of transverse sealing for a form-fill-seal packaging machine
US5347795A (en) * 1991-10-03 1994-09-20 Ishida Scales Mfg. Co., Ltd. Transverse sealer for packaging machine
US5590511A (en) * 1995-08-22 1997-01-07 Milliken Packaging Corporation Automatic cutter adjustment
US5622033A (en) * 1994-12-23 1997-04-22 Ishida Co., Ltd. Transverse sealer for a bag maker
US5753067A (en) * 1994-12-23 1998-05-19 Ishida Co., Ltd. Transverse sealer for a bag maker with variable operating speed
US5937614A (en) * 1994-02-01 1999-08-17 Watkins; David Leonard Bag sealing apparatus
US6119438A (en) * 1995-06-30 2000-09-19 Kliklok Corporation Transitional product flow and adaptive control
US6138442A (en) * 1998-10-13 2000-10-31 Kliklok Corporation Packaging machine with continuous sealing jaw movement
US6178726B1 (en) * 1997-04-25 2001-01-30 Kawashima Packaging Machinery Ltd. Method of controlling end seal time in bag-making, filling and packaging machine
US20020035822A1 (en) * 1998-05-18 2002-03-28 Ishida Co., Ltd. Timing controller and packaging machine incorporating same
US6367230B1 (en) * 1999-02-03 2002-04-09 Ishida Co., Ltd. Method of forming, filling, and sealing bags continuously and an apparatus for forming, filling and sealing bags
US20020157357A1 (en) * 2000-02-28 2002-10-31 Yoshimori Takahashi Film folding-up and guiding device of filling and packing machine
US20020162305A1 (en) * 2001-04-27 2002-11-07 Hideshi Miyamoto Lateral sealing mechanism for bag making and packaging machine, and bag making and packaging machine
US20020170272A1 (en) * 2001-05-18 2002-11-21 Rodney Wayne Cooper Contoured seal facing for seal jaws in vertical form, fill, and seal packaging system
US20030129330A1 (en) * 2002-01-04 2003-07-10 Alderman Robert J. Cell insulation blanket with phase change material, and method of making
US20030213217A1 (en) * 2002-05-17 2003-11-20 Ishida Co., Ltd. Transversel sealing mechanism for bag-manufacturing and packaging machine and beg-packaging machine equipped therewith
US20030230387A1 (en) * 2002-03-11 2003-12-18 Smith Larry E. Crimper assembly for sealing overlapping portions of a sheet of packaging material
US6665999B1 (en) * 1999-09-07 2003-12-23 Recot, Inc. Seal jaw modules for reclose bag modification to vertical form, fill, and seal packaging system
US20040011007A1 (en) * 2002-07-22 2004-01-22 Kohl Garrett William Isolated targeting of problem areas in hermetic seals
US20040256058A1 (en) * 2003-06-19 2004-12-23 Irwin Jere F. Bag seal machine having repositionable seal bar anvil
US20060021300A1 (en) * 2002-10-30 2006-02-02 Toshio Tada Filling and packaging machine
US20060137298A1 (en) * 2004-12-27 2006-06-29 Ajinihon K.K. Method and system for manufacturing a package
US20060236659A1 (en) * 2003-08-20 2006-10-26 Nippon Seiki Co., Ltd. Vertical filling-packaging device, and method of making bag by the device
US20060283153A1 (en) * 2003-10-16 2006-12-21 Kyoritsu Seiyaku Corporation Packaging device and trash box
US7174699B1 (en) * 2004-11-24 2007-02-13 Bakery Holdings Llc Combination seal bar and cutter
US20100199602A1 (en) * 2004-12-16 2010-08-12 Montano Louis M Split crimper for heat sealing packaging material
US20110059833A1 (en) * 2009-09-10 2011-03-10 Ishida Co., Ltd. Bag manufacturing and packaging apparatus
US20120145516A1 (en) * 2010-12-14 2012-06-14 Ishida Co., Ltd. Article Transfer Apparatus
US20120198799A1 (en) * 2011-02-04 2012-08-09 Ishida Co., Ltd. Form-fill-seal machine
US20120204515A1 (en) * 2011-02-16 2012-08-16 Ishida Co., Ltd. Packaging machine
US8539741B2 (en) * 2010-02-10 2013-09-24 Triangle Package Machinery Company Seal and cut method and apparatus
US20150135653A1 (en) * 2013-11-19 2015-05-21 Tna Australia Pty Limited Sealing jaws for a packaging machine
US9079710B2 (en) * 2009-06-22 2015-07-14 Kyoritsu Seiyaku Corproration Packaging device for waste storage device and waste storage device
US9102424B2 (en) * 2009-03-26 2015-08-11 Nestec S.A. Jaw support for a pouch filler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601940B2 (en) 1990-08-31 1997-04-23 日本精機株式会社 Heat sealing equipment
JP3199140B2 (en) * 1993-02-03 2001-08-13 株式会社イシダ Horizontal sealing mechanism in bag making and packaging machine
JP2002234511A (en) * 2001-02-02 2002-08-20 Taisei Lamick Co Ltd Heat seal roll
JP2006219142A (en) * 2005-02-08 2006-08-24 Nippon Seiki Co Ltd Filling and packaging machine
JP2007076719A (en) * 2005-09-16 2007-03-29 Ishida Co Ltd Bag-making and packaging machine and packaging and boxing system with this bag-making and packaging machine
JP2015051807A (en) * 2013-08-08 2015-03-19 三光機械株式会社 Supersonic ironing device of roll type automatic packaging machine

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622421A (en) * 1967-02-27 1971-11-23 Continental Can Co Method for forming bags from thermoplastic tubing
US4067173A (en) * 1975-03-13 1978-01-10 Foodways National, Inc. Packaging machine
US4288967A (en) * 1979-11-30 1981-09-15 Fuji Machinery Co. Ltd. Center sealing device for a plastic film in a packaging apparatus
US4524567A (en) * 1981-09-11 1985-06-25 Mapa - Societa Per Azioni Machine for making, filling and sealing bags
US4580392A (en) * 1982-04-13 1986-04-08 Tetra Pak International Ab Method and an apparatus for the processing of a material web
US4603540A (en) * 1983-06-20 1986-08-05 Sig Schweizerische Industrie-Gesellschaft Apparatus for making packaging bags
US4563862A (en) * 1984-10-23 1986-01-14 Kliklok Corporation Package forming apparatus with combined holding and stripper mechanism
US4727707A (en) * 1986-12-15 1988-03-01 Kliklok Corporation Packaging film feeding apparatus and method
US4715166A (en) * 1987-01-07 1987-12-29 Tokiwa Kogyo Co., Ltd. Film packaging apparatus
US4751808A (en) * 1987-04-09 1988-06-21 Kliklok Corporation Combined stripper and sealing apparatus for bag forming and method
US4947618A (en) * 1987-09-23 1990-08-14 Rovema Verpackungsmaschinen Gmbh Bag sealing device
US5279098A (en) * 1990-07-31 1994-01-18 Ishida Scales Mfg. Co., Ltd. Apparatus for and method of transverse sealing for a form-fill-seal packaging machine
US5347795A (en) * 1991-10-03 1994-09-20 Ishida Scales Mfg. Co., Ltd. Transverse sealer for packaging machine
US5937614A (en) * 1994-02-01 1999-08-17 Watkins; David Leonard Bag sealing apparatus
US5622033A (en) * 1994-12-23 1997-04-22 Ishida Co., Ltd. Transverse sealer for a bag maker
US5753067A (en) * 1994-12-23 1998-05-19 Ishida Co., Ltd. Transverse sealer for a bag maker with variable operating speed
US6119438A (en) * 1995-06-30 2000-09-19 Kliklok Corporation Transitional product flow and adaptive control
US5590511A (en) * 1995-08-22 1997-01-07 Milliken Packaging Corporation Automatic cutter adjustment
US6178726B1 (en) * 1997-04-25 2001-01-30 Kawashima Packaging Machinery Ltd. Method of controlling end seal time in bag-making, filling and packaging machine
US20020035822A1 (en) * 1998-05-18 2002-03-28 Ishida Co., Ltd. Timing controller and packaging machine incorporating same
US6138442A (en) * 1998-10-13 2000-10-31 Kliklok Corporation Packaging machine with continuous sealing jaw movement
US6367230B1 (en) * 1999-02-03 2002-04-09 Ishida Co., Ltd. Method of forming, filling, and sealing bags continuously and an apparatus for forming, filling and sealing bags
US6665999B1 (en) * 1999-09-07 2003-12-23 Recot, Inc. Seal jaw modules for reclose bag modification to vertical form, fill, and seal packaging system
US20020157357A1 (en) * 2000-02-28 2002-10-31 Yoshimori Takahashi Film folding-up and guiding device of filling and packing machine
US20020162305A1 (en) * 2001-04-27 2002-11-07 Hideshi Miyamoto Lateral sealing mechanism for bag making and packaging machine, and bag making and packaging machine
US20020170272A1 (en) * 2001-05-18 2002-11-21 Rodney Wayne Cooper Contoured seal facing for seal jaws in vertical form, fill, and seal packaging system
US20030129330A1 (en) * 2002-01-04 2003-07-10 Alderman Robert J. Cell insulation blanket with phase change material, and method of making
US20030230387A1 (en) * 2002-03-11 2003-12-18 Smith Larry E. Crimper assembly for sealing overlapping portions of a sheet of packaging material
US20030213217A1 (en) * 2002-05-17 2003-11-20 Ishida Co., Ltd. Transversel sealing mechanism for bag-manufacturing and packaging machine and beg-packaging machine equipped therewith
US20040011007A1 (en) * 2002-07-22 2004-01-22 Kohl Garrett William Isolated targeting of problem areas in hermetic seals
US20060021300A1 (en) * 2002-10-30 2006-02-02 Toshio Tada Filling and packaging machine
US20040256058A1 (en) * 2003-06-19 2004-12-23 Irwin Jere F. Bag seal machine having repositionable seal bar anvil
US20060236659A1 (en) * 2003-08-20 2006-10-26 Nippon Seiki Co., Ltd. Vertical filling-packaging device, and method of making bag by the device
US20060283153A1 (en) * 2003-10-16 2006-12-21 Kyoritsu Seiyaku Corporation Packaging device and trash box
US7174699B1 (en) * 2004-11-24 2007-02-13 Bakery Holdings Llc Combination seal bar and cutter
US20100199602A1 (en) * 2004-12-16 2010-08-12 Montano Louis M Split crimper for heat sealing packaging material
US20060137298A1 (en) * 2004-12-27 2006-06-29 Ajinihon K.K. Method and system for manufacturing a package
US9102424B2 (en) * 2009-03-26 2015-08-11 Nestec S.A. Jaw support for a pouch filler
US9079710B2 (en) * 2009-06-22 2015-07-14 Kyoritsu Seiyaku Corproration Packaging device for waste storage device and waste storage device
US20110059833A1 (en) * 2009-09-10 2011-03-10 Ishida Co., Ltd. Bag manufacturing and packaging apparatus
US8539741B2 (en) * 2010-02-10 2013-09-24 Triangle Package Machinery Company Seal and cut method and apparatus
US20120145516A1 (en) * 2010-12-14 2012-06-14 Ishida Co., Ltd. Article Transfer Apparatus
US20120198799A1 (en) * 2011-02-04 2012-08-09 Ishida Co., Ltd. Form-fill-seal machine
US20120204515A1 (en) * 2011-02-16 2012-08-16 Ishida Co., Ltd. Packaging machine
US20150135653A1 (en) * 2013-11-19 2015-05-21 Tna Australia Pty Limited Sealing jaws for a packaging machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486839B2 (en) * 2014-10-02 2019-11-26 Taisei Lamick Co., Ltd. Fill packaging machine
US20170297752A1 (en) * 2014-10-02 2017-10-19 Taisei Lamick Co., Ltd. Fill packaging machine
US20220097887A1 (en) * 2017-03-29 2022-03-31 Altria Client Services Llc Cut and seal method and apparatus
US20180281997A1 (en) * 2017-03-29 2018-10-04 Altria Client Services Llc Cut and seal method and apparatus
US11897649B2 (en) 2017-03-29 2024-02-13 Altria Client Services Llc Cut and seal method and apparatus
US11591128B2 (en) * 2017-03-29 2023-02-28 Altria Client Services Llc Cut and seal method and apparatus
US11254460B2 (en) * 2017-03-29 2022-02-22 Altria Client Services Llc Cut and seal method and apparatus
WO2018208152A1 (en) 2017-05-08 2018-11-15 Sparkle Innovations B.V. Method and system for manufacture and filling with a sterile liquid of a tubular packaging
US11345501B2 (en) 2018-03-13 2022-05-31 Tna Australia Pty Limited Packaging machine
GB2572072B (en) * 2018-03-13 2022-08-31 Tna Australia Pty Ltd A packaging machine
GB2572072A (en) * 2018-03-13 2019-09-18 Tna Australia Pty Ltd A packaging machine
CN111717482A (en) * 2019-03-20 2020-09-29 亚南自动机械株式会社 Automatic bar-shaped packaging device
CN112340112A (en) * 2020-11-23 2021-02-09 李美霞 Food packaging equipment

Also Published As

Publication number Publication date
KR101971379B1 (en) 2019-04-22
JP6033498B2 (en) 2016-11-30
KR20170047334A (en) 2017-05-04
JPWO2016035773A1 (en) 2017-04-27
WO2016035773A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
US20170247130A1 (en) Fill packaging method and fill packaging machine for liquid packing material
JP6137584B2 (en) Filling and packaging machine
JP5958978B2 (en) HEAT SEALING DEVICE AND FILLING PACKING MACHINE HAVING THE SAME
WO2019182165A1 (en) Plurality-of-columns of filling and packaging method, plurality-of-columns of filling and packaging machine, and filling and packaging body
US10322828B2 (en) Bottom-gusseted package and heat-sealing method
JP2016016870A5 (en)
AU2018400833B2 (en) Apparatus and method for producing a sealed single-dose break-open package
JP6568789B2 (en) HEAT SEALING DEVICE AND FILLING PACKING MACHINE HAVING THE SAME
JP2020050374A (en) Seal blade for heat-seal roll
JP6465603B2 (en) Method for manufacturing packaging bag having back-bonded joint and filling packaging machine
JP6947398B2 (en) Vertical automatic filling and packaging machine
JP6708375B2 (en) Method for filling and packaging liquid to be packaged and filling and packaging machine using the same
JP6689533B2 (en) Package manufacturing method and sealer
JP2021041963A (en) Vertical type filling and packing machine and filling and packing method of to-be-packed object
TWI650273B (en) Longitudinal package manufacturing method and longitudinal package
CN100548810C (en) The apparatus and method that are used for Production and Packaging
JP6708702B2 (en) Method for filling and packaging liquid to be packaged and filling and packaging machine using the same
JP2023056226A (en) Plural-row vertical filling and packaging machine and plural-row package
JP6935211B2 (en) Composite blade
JP6125239B2 (en) Manufacturing method of sealed bag
JP2024007696A (en) Heat seal blade for horizontal seal roll, horizontal seal roll, and packaging machine
KR20230118546A (en) Methods and machines for manufacturing packaging materials
JP2022135637A (en) Vertical refilling packaging machine and refilling packaging method of packaged article
JP2020175914A (en) Multiple-row vertical filling packing machine and multiple-row filling packing method
JPS62220409A (en) Continuous filling packaging method and device for liquid and viscous material, etc. by low-temperature sealing seal

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAISEI LAMICK CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSAKA, TOMOHISA;YAJIMA, AKIRA;FUKUDA, MICHIYA;REEL/FRAME:041385/0361

Effective date: 20170207

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION