US20170241774A9 - Method for Reconstructing A Surface Using Spatially Structured Light and A Dynamic Vision Sensor - Google Patents

Method for Reconstructing A Surface Using Spatially Structured Light and A Dynamic Vision Sensor Download PDF

Info

Publication number
US20170241774A9
US20170241774A9 US15/107,375 US201415107375A US2017241774A9 US 20170241774 A9 US20170241774 A9 US 20170241774A9 US 201415107375 A US201415107375 A US 201415107375A US 2017241774 A9 US2017241774 A9 US 2017241774A9
Authority
US
United States
Prior art keywords
light
event
pixel
events
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/107,375
Other versions
US10302420B2 (en
US20170003121A1 (en
Inventor
Christian BRANDLI
Tobias Delbruck
Markus Andreas Hopflinger
Marco Hutter
Thomas Albert Mantel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Universitaet Zuerich
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Universitaet Zuerich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ, Universitaet Zuerich filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Assigned to UNIVERSITAT ZURICH reassignment UNIVERSITAT ZURICH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRANDLI, CHRISTIAN, DELBRUCK, TOBIAS
Assigned to ETH ZURICH reassignment ETH ZURICH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANTEL, Thomas Albert, HOPFLINGER, MARKUS ANDREAS, HUTTER, Marco
Publication of US20170003121A1 publication Critical patent/US20170003121A1/en
Publication of US20170241774A9 publication Critical patent/US20170241774A9/en
Application granted granted Critical
Publication of US10302420B2 publication Critical patent/US10302420B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present invention relates to a method for detecting and/or reconstructing a surface according to claim 1 as well as a corresponding computer program according to claim 15 and a system according to claim 16 .
  • Motion planning in mobile robots requires knowledge of the terrain structure in front of and underneath the robot; possible obstacles have to be detected and their size has to be evaluated. Especially legged robots need to know the terrain on which they are moving so that they can plan their steps accordingly.
  • a variety of 3D scanners such as the Microsoft Kinect ⁇ or LIDAR devices can be used for this task but these sensors and their computational overhead typically consume on the order of several watts of power while having a sample rate limited to tens of Hertz.
  • Passive vision systems partially overcome these limitations but they exhibit a limited spatial resolution because their terrain reconstruction is restricted to a small set of feature points.
  • the problem underlying the present invention is to provide for a method, a computer program, and system that allows for a faster detection and particularly geometric reconstruction of any surface (e.g. a terrain on which a robot moves or the recognition of gesture or posture where the respective object/surface moves and not the sensor) at a lower computational cost.
  • any surface e.g. a terrain on which a robot moves or the recognition of gesture or posture where the respective object/surface moves and not the sensor
  • to reconstruct a surface means to determine 3D (world) coordinates of said surface.
  • the reconstruction is to be understood as a virtual reconstruction of the surface.
  • the method according to the invention comprises the steps of:
  • the pixels are e.g. pixel circuits
  • the pixels are designed to convert the photocurrent I into a signal In(I u,v ) which is the (e.g. natural) logarithm of the photocurrent I u,v of the pixel (u,v).
  • the pixels may also be designed to transform the photocurrent to a signal by e.g. applying another monotonically varying function, e.g. a square root function, to the photocurrent, or some other function that changes slowly over time to optimize the response (e.g., to optimally control the sensitive range of the response to be centered around the time-average input value).
  • the essential feature of the respective pixel is that it detects changes in the photocurrent and emits address-events in response to these changes.
  • the spatial structure of the light does not have to be repeated—only the temporal one, i.e. dots or other structures like lines etc. appearing at random positions might be possible too, as long as they are synced with the trigger event (see below).
  • the light (intensity) modulation pattern may consist of a single intensity maximum, e.g., in the form of a pulse (e.g. a rectangular pulse), or a sequence of alternating intensity minima and maxima.
  • the modulation pattern can be sinusoidal or even a period of pseudo-random white noise. The modulation pattern is repeated so that a periodic intensity results.
  • this is avoided by suppressing redundant information at the pixel level by having the pixels report their outputs asynchronously.
  • This sparse asynchronous output can be evaluated more quickly (i.e. with lower average latency) and at a lower computational cost than output from a conventional frame-based image sensor.
  • the so called dynamic vision sensor (DVS, (Lichtsteiner et al., 2008)
  • a light source that provides spatially structured light comprising successive repeated light modulation patterns (e.g. a pulsed line laser), forming an active sensor to reconstruct the 3D structure of the surface in front of the system while it is moved.
  • This terrain reconstruction is based on e.g.
  • the proposed algorithm allows extracting the area (e.g. laser stripe) illuminated by the spatially structured light from the asynchronous temporal contrast events generated by the DVS using only the event timing so that the light source (e.g. laser) can be pulsed at arbitrary frequencies, particularly from below 1 Hz up to more than 1 kHz.
  • the flexibility in choosing the pulsing frequencies allows fast and detailed surface reconstructions for fast motions as well as saving laser power for slow motions.
  • the upper limit on frequency is determined mainly by the brightness of the lighting which affects the pixel bandwidth.
  • said light modulation pattern is or comprises a rectangular light pulse.
  • each address-event Ev(u,v,t) carries the coordinates (u,v) of its associated pixel, a time t at which the respective address-event Ev occurred, as well as an information whether the respective address-event Ev is an ON event at which said signal increased by an amount larger than said first threshold ⁇ ON , or an OFF event at which said signal decreased by an amount larger than said second threshold ⁇ OFF , and wherein particularly an output stream is output by the optical sensor comprising said address-events Ev.
  • time-events Et n are put into the output data stream of the optical sensor in between address-events Ev of the output stream, particularly by means of the optical sensor, wherein each time-event Et n is uniquely associated to the same phase of the light modulation pattern, wherein each time-event Et n carries an ascending natural number n labeling the respective light modulation pattern as well as its time t (e.g. the time at which said light modulation pattern occurred).
  • the time-events are triggered by the individual light modulation patterns or vice versa.
  • a score s is assigned to each ON event by means of a first scoring function P n ON (Ev) and to each OFF event by means of a second scoring function P n OF (Ev), wherein particularly each score merely depends on the address-event's time relative to the last time-event Et n , wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the last light modulation pattern associated to the last time-event Et n .
  • a first scoring function P n ON (Ev) for determining the first scoring function P n ON (Ev) at least ON events Ev since the time-event Et n ⁇ 1 and before the last time-event Et n are collected in bins B n of a first histogram H n ON depending on the time relative to the time-event Et n ⁇ 1 .
  • a first average histogram H n,avg ON is determined as an average over m of said first histograms associated to m successive time-event intervals Et n ⁇ m to Et n+1 ⁇ m . . . , Et n ⁇ 1 to Et n , m being a natural number (e.g.
  • a second average histogram H n,avg OFF is determined as an average over m of said second histograms associated to the m successive time-event intervals Et n ⁇ m to Et n+1 ⁇ m , . . . , Et n ⁇ 1 to Et n, m being the above defined natural number.
  • the respective average histogram corresponds to the respective histogram.
  • the first scoring function P n ON (Ev) is determined from the first average histogram H n,avg ON by subtracting from the first average histogram H n,avg ON the average bin count T n ON /k of the first average histogram H n,avg ON , and particularly by also normalizing the first average histogram H n,avg ON by the total number of ON events T n ON in it.
  • the second scoring function P n OFF (Ev) is determined from the second average histogram H n,avg OFF by subtracting from the second average histogram H n,avg OFF the average bin count T n OFF /k of the second average histogram H n,avg OFF , and particularly by also normalizing the second average histogram H n,avg OFF by the total number of OFF events T n OFF in it.
  • a score map M n is generated assigning to each pixel coordinate (u,v) the sum of the scores s of all ON and OFF events Ev with address (u,v) since the last time-event Et n and before the next time-event Et n+1 .
  • the spatially structured light is or comprises an e.g. horizontally oriented plane of light, such that said area or said image of said area is (or comprises) a one-dimensional possibly non-continuous pattern also denoted as light or laser (in case a laser is used) stripe.
  • the maximum score in the average score map M n,avg is determined for each column (e.g. u) of the average score map M n,avg , wherein in case the maximum score is above a pre-defined threshold value the corresponding pixel coordinate (u,v) is determined to be a pixel coordinate of said current image, and wherein particularly in case the average score map M n,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, a weighted average among the scores above said threshold value is conducted to determine the center of said current image of said area in the respective column.
  • the weighting consists of multiplying each of said pixel coordinates by the normalized score at the respective coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • the spatially structured light consists of or comprises a sparse set of light rays by means of which an area of said surface is illuminated, such that said area consists of a corresponding sparse number of disconnected zones.
  • Said number is preferably equal or below 10% of the number of pixels of the optical sensor.
  • the maximum scores in the average score map M n,avg are determined by maintaining for each region associated to one of the zones only the maximum score, wherein the pixel coordinate (u,v) of the current image of each zone is determined as the pixel coordinate of the maximum score of the associated region.
  • said regions are determined by an exhaustive search of the average score map M n,avg for local maxima.
  • a light source providing said spatially structured light and the image sensor remain in a fixed spatial position with respect to each other while moving relative to said surface so that said illuminated spatial area of said surface moves along the surface, i.e., scanning the surface.
  • the pixel coordinates (u,v) of the current image of said spatial area are transformed into world coordinates (x, y, z) so as to reconstruct said surface in said world coordinates.
  • the spatial structure of the spatially structured light may be varied over time, i.e., over said successive light modulation patterns, particularly so that a larger fraction of said surface is covered by said illuminated spatial area, so that the surface may be sampled at higher spatial density or even when there is no relative movement between the camera and the surface.
  • the computer program comprises program commands/code, which are adapted to conduct the following steps when the computer program is executed on a computer or loaded into a memory of the computer:
  • the program code of the computer program according to the invention is further adapted to conduct any of the steps stated in one of the claims 2 to 14 or any of the steps described below when the computer program is executed on a computer or loaded into a memory of the computer.
  • the program code of the computer program is adapted to read said output stream containing the address-events Ev described above when the computer program is executed on a computer or loaded into the memory of the computer.
  • the output stream also comprises the afore-described time-events Et n injected into the output stream in between address-events Ev of the output stream.
  • the program code of the computer program is adapted to assign a score s to each ON event by means of a first scoring function P n ON (Ev) and to each OFF event by means of a second scoring function P n OFF (Ev), wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the modulation pattern associated to the last time-event Et n (see also above).
  • the program code of the computer program is adapted to collect at least ON events Ev in the time-event interval Et n ⁇ 1 to Et n in bins B n of a first histogram H n ON depending on the time relative to the time-event Et n ⁇ 1 , wherein particularly the program code is adapted to determine a first average histogram (H n,avg ON ) as an average over m of said first histograms H n ON associated to m successive time-event intervals Et n ⁇ m to Et n+1 ⁇ m , . . . , Et n ⁇ 1 to Et n , m being a natural number (e.g.
  • the program code of the computer program is adapted to collect at least OFF events Ev in the time-event interval Et n ⁇ 1 to Et n in bins B n of a second histogram H n OFF depending on the time relative to the time-event Et n ⁇ 1 , wherein particularly the computer program is adapted to determine a second average histogram H n,avg OFF as an average over m second histograms associated to m preceding successive time-event intervals Et n ⁇ m to Et n+1 ⁇ m , . . . , Et n ⁇ 1 to Et n , m being the afore-defined natural number.
  • the program code of the computer program is adapted to determine the first scoring function P n ON (Ev) from the first average histogram H n,avg ON by subtracting from the first average histogram H n,avg ON the average bin count T n ON /k of the first average histogram H n,avg ON , and particularly by also normalizing the first average histogram H n,avg ON by the total number of ON events in it T n ON , and wherein the program code is adapted to determine the second scoring function P n OFF (Ev) from the second average histogram H n,avg OFF by subtracting from the second average histogram H n,avg OFF the average bin count T n OFF /k of the second average histogram H n,avg OFF , and particularly by also normalizing the second average histogram H n,avg OFF by the total number of OFF events T n OFF in it.
  • P n ON Ev
  • the program code of the computer program is adapted to determine the maximum score in the average score map M n,avg for each column (e.g. u) of the average score map M n,avg , wherein in case the maximum score is above a pre-defined threshold value the corresponding pixel coordinate (u,v) is determined to be a pixel coordinate of said current image, and wherein particularly in case the average score map M n,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, the program code is adapted to conduct a weighted average among the scores above said threshold value to determine the center of said current image of said area in the respective column, wherein particularly the weighting consists of multiplying each said pixel coordinate by the normalized score at this coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • the program code of the computer program may be adapted to determine the maximum scores in the average score map M n,avg by maintaining for each region associated to one of the zones only the maximum score, wherein the pixel coordinate (u,v) of the current image of each zone is determined as the pixel coordinate of the maximum score of the associated region.
  • the program code of the computer program is adapted to determine said regions by an exhaustive search of the average score map M n,avg for local maxima.
  • the program code of the computer program is adapted to transform the pixel coordinates (u,v) of the current image of said spatial area into world coordinates (x, y, z) so as to reconstruct said surface in said world coordinates.
  • the system according to the invention comprises:
  • said optical filter filters out light wavelengths outside of a light wavelength or a range of light wavelengths that are emitted by the light source.
  • the analyzing means may comprise a computer configured to execute the computer program according to the invention.
  • the analyzing means is designed to conduct any of the steps stated in claims 2 to 14 or any of the steps described below.
  • the light source is designed to generate a light (intensity) modulation pattern in the form of a light pulse, particularly a rectangular light pulse.
  • the system e.g. optical sensor
  • each address-event Ev(u,v,t) so that it carries the coordinates (u,v) of its associated pixel, a time t at which the respective address-event Ev occurred, as well as an information whether the respective address-event Ev is an ON event at which said signal increased by an amount larger than said first threshold ⁇ ON , or an OFF event at which said signal decreased by an amount larger than said second threshold ⁇ OFF
  • the optical sensor is designed to output an output stream comprising said address-events Ev.
  • the system is designed to put time-events Et into the output stream in between address-events Ev of the output stream, particularly by means of the optical sensor, wherein each time-event Et is uniquely associated to one of said light modulation patterns, wherein each time-event Et n carries an ascending number n labeling the respective light pulse as well as its time t.
  • the system e.g. the analyzing means
  • the system is designed to assign a score s to each ON event by means of a first scoring function P n ON (Ev) and to each OFF event by means of a second scoring function P n OFF (Ev), wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the modulation pattern associated to the last time-event Et n .
  • the system e.g. the analyzing means
  • the system is designed to collect at least ON events Ev in the time-event interval Et n ⁇ 1 to Et n in bins B n of a first histogram H n ON depending on the time relative to the time-event Et n ⁇ 1 , wherein particularly the analyzing means is designed to determine a first average histogram H n,avg ON as an average over m first histograms associated to m successive time-event intervals Et n ⁇ m to Et n+m , . . . , Et n ⁇ 1 to Et n , m being a natural number (see e.g.
  • the analyzing means is designed to collect at least OFF events Ev in the time-event interval Et n ⁇ 1 to Et n in bins B n of a second histogram H n OFF depending on the time relative to the time-event Et n ⁇ 1 , wherein particularly the analyzing means is designed to determine a second average histogram H n,avg OFF as an average over m second histograms associated to the preceding m successive time-event intervals Et n ⁇ m to Et n+1 ⁇ m , . . . , Et n ⁇ 1 to Et n .
  • the system e.g. the analyzing means
  • the system is designed to determine the first scoring function P n ON (Ev) from the first average histogram H n,avg ON by subtracting from the first average histogram H n,avg ON the average bin count T n ON /k of the first average histogram H n,avg ON , and particularly by also normalizing the first average histogram H n,avg ON by the total number of ON events in it T n ON
  • the analyzing means is designed to determine the second scoring function P n OFF (Ev) from the second average histogram H n,avg OFF by subtracting from the second average histogram H n,avg OFF the average bin count T n OFF /k of the second average histogram H n,avg OFF , and particularly by also normalizing the second average histogram H n,avg OFF by the total number of OFF events T n OFF in it.
  • the system e.g. the analyzing means
  • the system is designed to generate a score map M n assigning to each pixel coordinate (u,v) the sum of the scores s of all ON and OFF events Ev with the respective address (u,v) since the last time-event Et n and before the next time-event Et n+1 , wherein particularly the system is designed to determine an average score map M n,avg as an average over the last o score maps, o being a natural number (see e.g. above).
  • the system e.g. the light source
  • the system is designed to generate spatially structured light in the form of a plane of light (or comprising such a plane of light), such that said area or said image of said area is a line pattern (or comprises such a pattern).
  • the system e.g. the analyzing means
  • the system is designed to determine the maximum score in the average score map M n for each column (e.g. u) of the average score map M n,avg , wherein in case the maximum score is above a pre-defined threshold value the analyzing means is designed to determine the corresponding pixel coordinate (u,v) to be a pixel coordinate of said current image, and wherein particularly in case the average score map M n,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, the analyzing means is designed to conduct a weighted average among the scores above said threshold value to determine the center of said current image of said area in the respective column, wherein particularly the weighting consists of multiplying each said pixel coordinate by the normalized score at this coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • the system e.g. the analyzing means
  • the system is designed to alternatively generate spatially structured light consisting of or comprising a set of light rays by means of which an area of said surface is illuminated, such that said area consists of (or comprises) a corresponding number of disconnected zones.
  • the system e.g. the analyzing means
  • the system is designed to determine the maximum scores in the average score map M n,avg by maintaining for each region associated to one of the zones only the maximum score, wherein the analyzing means is designed to determine the pixel coordinate (u,v) of the current image of each zone as the pixel coordinate of the maximum score of the associated region.
  • the system e.g. the analyzing means
  • the system is designed to determine said regions by an exhaustive search of the average score map M n,avg for local maxima.
  • the light source providing said spatially structured light and the image sensor are arranged in a fixed spatial position with respect to each other. Further, the system is preferably configured to move relative to said surface.
  • the system e.g. the analyzing means
  • the system is designed to transform the pixel coordinates (u,v) of the current image of said spatial area into world coordinates (x, y, z), so as to reconstruct said surface in said world coordinates.
  • system e.g. a robot
  • system may be designed to move relative (e.g. with respect) to said surface particularly on or along said surface, particularly while illuminating said surface with said spatially structured light.
  • the system is designed to reconstruct said surface in real-time while moving relative to said surface, particularly on or along said surface.
  • system may be designed to vary said spatially structured light spatially over said successive light modulation patterns (see also above).
  • FIG. 1 shows a setup of the optical sensor (e.g. DVS) together with a light source (e.g. line laser).
  • a light source e.g. line laser.
  • A Schematic view of the setup.
  • B photo of the DVS128 camera (i.e. optical DVS sensor having 128 ⁇ 128 pixel with line laser): the rigid laser mount allows a constant distance and inclination angle of the laser with respect to the camera.
  • An optical filter is mounted on the lens.
  • FIG. 2 shows the coordinate systems used along the scanning direction.
  • y R , z R are the real world coordinates, y C , z C the ones of the camera.
  • x L is the distance of the laser line plane perpendicular to n L from the camera origin.
  • ⁇ C is the inclination angle of the sensor with respect to the horizontal plane and ⁇ L the laser inclination angle with respect to the camera.
  • FIG. 3 shows a calibration setup.
  • the light source e.g. pulsed laser
  • A Schematic view.
  • B Schematic of the optical sensor's (DVS) output: The laser is absorbed by the black stripes and only the white stripes generate events.
  • FIG. 4 shows a schematic overview of the laser stripe extraction filter.
  • the temporal histograms are used to adapt the scoring functions P, and each event's score is calculated and mapped on the score maps M.
  • the maps are averaged and the laser stripe is extracted by selecting the maximum scoring pixel for each column, if it is above the threshold ⁇ peak .
  • FIG. 5 shows examples of event histograms of the laser (light source) pulsed at 1 kHz at the relief used for the reconstruction.
  • A Measured histograms of ON and OFF events following laser pulse ON and OFF edges.
  • B Resulting OFF and ON scoring functions after normalization and mean subtraction.
  • FIG. 6 shows the number of events at a pixel per laser pulse of a 4.75 mW point laser. Although the event count drop with higher frequencies, the average does not drop below 1 event per cycle even at 2 kHz.
  • FIG. 7 shows an artificial 3D rapid prototype terrain used for an exemplary reconstruction. Shown is the area depicted in FIG. 8 , the laser line, and the scan direction.
  • FIG. 8 shows a reconstructed surface.
  • A CAD model of the surface.
  • B measured data points.
  • C interpolated reconstruction of the surface using Mathworks Corporation Matlab's TriScatteredInterp function.
  • D distance between closest reconstruction point and model aligned using the ICP algorithm of Besl and McKay (1992). This section of the reconstruction was chosen for display because in the surrounding area border effects were observed caused by the Gaussian profile of the laser line that reduced the DVS event rate to be too low to result in acceptable reconstruction.
  • the optical sensor 20 in the form of a dynamic vision sensor used in the present invention as shown in FIG. 1 is inspired by the functionality of the retina and senses only changes in brightness (Lichtsteiner et al., 2008). Each pixel reports a change in e.g. log-illuminance larger than a given threshold by sending out an asynchronous address-event: if it becomes brighter it generates a so called “ON event”, and if darker, it generates an “OFF event”.
  • the asynchronously generated address-events are communicated to a synchronous processing device by a complex programmable logic device (CPLD) which also transmits the time in microseconds at which the event occurred.
  • CPLD complex programmable logic device
  • Each event contains the pixel horizontal and vertical address (u,v), its polarity (ON/OFF) and the timestamp. After the event is registered, it is written into a FIFO buffer which is transferred through a high-speed USB 2.0 interface to a processing platform also denoted as analyzing means 50 .
  • the CLPD and the buffer may be arranged at the optical sensor 20 but may also be integrated into the analyzing means 50 (i.e. may form parts of the analyzing means 50 ).
  • Real-time computations on the processing platform operate on the basis of so called event packets which can contain a variable number of events but are preferably delivered at a minimum frequency of 1 kHz.
  • the output of the sensor 20 is non-redundant. This leads to a decrease in processor load and therefore to a reduction in power consumption of the system.
  • the asynchronous readout allows a low latency of as little as 15 ⁇ s. This latency allows fast control loops.
  • the speed of the optical sensor is capable of resolving fast movements such as a wheel spinning at e.g. 3000 rpm.
  • the output allows a detailed analysis of the dynamics in a scene or to process its output using temporal filters.
  • each event Ev carries its u- and v-address, a timestamp and its polarity as a value of +1 if it is an ON event and a ⁇ 1 for OFF events
  • ⁇ In(I u,v ) denotes the change in illumination at the pixel with coordinates u, v since the last event.
  • ⁇ ON and ⁇ OFF denote the event thresholds that must be crossed to trigger an event. These thresholds can be set independently which allows balancing the number of ON and OFF events.
  • the optical sensor 20 of the system 1 allows the injection of special, timestamped trigger events to the output stream by applying a pulse to a pin on the sensor 20 .
  • Et events are numbered in the method/computer program according to the invention so that they carry a pulse number n and a timestamp or time t:
  • a line laser 10 and a camera (e.g. optical sensor 20 ) to build a 3D scanner 1 . Since in an embodiment of the present invention this scanner setup 1 is used on a mobile robot that particularly already has a motion model for the purpose of navigation, a mirror free, fixed geometry setup can be used.
  • a light source 10 comprising a red line laser (Laser Components GmbH LC-LML-635) with a wavelength of 635 nm and an optical power of about 3 mW is mounted at a fixed distance above the optical sensor (DVS) 20 .
  • the laser power consumption is about 135 mW.
  • the relative angle of the laser plane or spatially structured light 30 and the optical sensor 20 is fixed.
  • the system 1 is moved over the terrain's surface 40 while the laser of the light source 10 is pulsed at a frequency f p .
  • Each pulse of the laser 10 initiated the acquisition of a set of events Ev for further analysis and laser stripe or area 31 extraction.
  • a background illumination level a brightly-lit laboratory at approximately 500 lx was used.
  • the system 1 was fixed and the terrain's surface 40 to scan was moved on an actuated sled on rails underneath it. This led to a simple linear camera motion model determined by the speed of the DC motor that pulled the sled towards the sensor system.
  • the sled was fixed to rails which locked the system 1 in one dimension and led to highly repeatable measurements.
  • the optical sensor 20 was equipped with a lens having a focal length of 10 mm and it was aimed at the terrain's surface 40 from a distance of 0.45 m.
  • the laser module 10 was placed at a distance of 55 mm from the optical sensor 20 at an inclination angle ⁇ L of 8° with respect to the principal axis of the optical sensor.
  • the system 1 observed the scene at an inclination angle ⁇ C of 39°.
  • the optical sensor 20 was equipped with an optical band pass filter (Edmund Optics NT65-167) centered at 636 nm in an embodiment.
  • the filter has full width at half maximum (FWHM) of 10 nm and a transmittance of 85% in the pass band and less than 0.01% in the stop band (optical density 4.0).
  • the event trigger pin of the optical sensor 20 was connected to a function generator triggering the laser of the light source 10 .
  • the optical sensor 20 is calibrated based on the approach described in (Siegwart, 2011). The model was simplified by the following assumptions:
  • k denotes the inverse of the pixel size
  • f l the focal length in pixels
  • u 0 ,v 0 the center pixel coordinates.
  • optical sensor (DVS) 20 does not produce any output for static scenes makes it difficult to find and align correspondences and therefore the typical checkerboard pattern could not be used for calibration.
  • the laser was pulsed ( 31 ) onto two striped blocks of different heights as depicted in FIG. 3 .
  • the black stripes on the blocks absorb sufficient laser light to not excite any events in the DVS 20 .
  • This setup allows finding sufficient correspondence points between the real world coordinates and the pixel coordinates to solve the set of calibration equations (Eqs. 3-5). This procedure needs only to be done once for a particular geometry of optical sensor 20 and light source 10 .
  • the stripe extraction method is summarized in FIG. 4 .
  • Most laser stripe extraction algorithms perform a simple column-wise maximum computation to find the peak in light intensity e.g. (Robinson et al., 2003).
  • the simplest approach to extract the laser stripe 31 would be to accumulate all events after a laser pulse 32 and find the column-wise maximum in activity. This approach performs poorly due to background activity: Even with the optical filter in place, contrast edges that move relative to the sensor 20 also induce events which corrupt the signal to noise ratio. For a more robust laser stripe 31 extraction, spatial constraints could be introduced but this would restrict the generality of the approach. Instead the proposed approach exploits the highly resolved temporal information of the output of the optical sensor (DVS) 20 .
  • the event stream can be sliced into a set of time windows W n each containing a set of events S n where n denotes the n'th trigger event.
  • ON and OFF events are placed into separate sets (for simplicity only the formulas for the ON events are shown, the formulas for the OFF events are formulated analogously):
  • the timing of the events is jittered by the asynchronous communication and is also dependent on the optical sensor's 20 bias settings and light conditions. Preliminary experiments showed that it is not sufficient to only accumulate the events in a fixed time window after the pulse 32 . Instead a stable laser stripe 31 extraction algorithm must adaptively collect relevant events. This adaptation is achieved by using of a temporal scoring function P which is continually updated as illustrated in FIG. 5 .
  • a score map M n ( FIG. 4 ) is established where each pixel (u, v) of Mn contains the sum of the scores of all the events with address (u, v) within the set S n (these subsets of S n are denoted as C n (u,v)).
  • M n is a 2D histogram of event scores. This score map tells us for each pixel how well-timed the events were with respect to the n′th trigger event, and it is computed by Eqs. 9-10:
  • the scoring function P that assigns each event a score indicating how probable it is that it was caused by the laser pulse Et n is obtained by using another histogram-based approach.
  • the rationale behind this approach is the following: All events that are caused by the laser pulse are temporally correlated with it while noise events generate a uniform temporal distribution. In a histogram with binned relative times, the events triggered by the laser pulse form peaks. In the proposed algorithm, the histogram H n consists of k bins B n of width f k .
  • H n is an average over m laser pulses or light modulation patterns (also denoted as H n,avg herein). H n is constructed by Eqs. 11-13:
  • f is the laser frequency
  • I is the bin index
  • k is the number of bins
  • D n (I) is a temporal bin of the set S n
  • B n (I) is a bin of the averaged histogram over the m pulses
  • H n is the set of all bins B n . It is illustrated in FIG. 5A .
  • the H n ON and H n OFF histograms are normalized by the total number T of events in them.
  • the average bin count T/k is subtracted from each bin. An event can have a negative score. This is the case if it is more probable that it is noise than signal.
  • T n is computed from Eq. 14:
  • T n ON ⁇ B n ON :B n ON ⁇ H n ON ⁇ (14)
  • the n'th scoring function P n (illustrated in FIG. 5B ) is computed from Eq. 15:
  • the last o score maps are averaged (M n,avg ) and the maximum score s(u,v) and its v value are determined for each column (preferably, the columns extends across/perpendicular to the laser stripe/area 31 image). If the maximum value is above a threshold ⁇ peak it is considered to be a laser stripe pixel. If the neighboring pixels are also above the threshold, a weighted average is applied among them to determine the center of the laser stripe. The positions of the laser stripe 31 are then transformed into real world coordinates using Eqs. 3-5 and thus mapped as surface points.
  • Ev of the optical sensor (DVS) 20 only its contribution to the current score map is computed, using the current scoring function.
  • the laser stripe 31 extraction and computation of the scoring function operate on different time scales. While the length o of the moving average for the scoring function is chosen as small as possible to ensure a low latency, the number of histograms m to be averaged is preferably chosen as large as possible to obtain higher stability and dampen the effect of variable background activity.
  • the average histogram changes only on a long time scale (depending on lighting conditions and sensor biasing) and this fact is exploited by only updating the averaged histogram every m'th pulse.
  • the m histograms do not need to be memorized and each event only increases the bin count.
  • the new scoring function is computed from the accumulated histogram by normalizing it only after the m'th pulse.
  • the score map computation is optimized by accumulating event scores for o laser pulses. Each event requires only a lookup of its score and a sum into the score map.
  • the search of the column wise maxima laser line pixels is based on the maximum values and their locations stored during accumulation. For each column, the weighted mean location of the peak is computed starting at the stored peak value and iterating over pixels up and down from the peak location until the score drops below the threshold value. This way, only a few pixels of the score map are inspected for each column.
  • the final step is to reset the accumulated score map and peak values to zero. This low-level memory reset is done by microprocessor logic hardware and is very fast.
  • the behavior of the sensor 20 depends on the sensor bias settings. These settings can be used to control parameters such as the temporal contrast cutoff frequency and the threshold levels.
  • the bias settings were optimized to report small as well as fast changes. These settings lead to an increase in noise events which does not affect the performance because they are filtered out successfully with the algorithm described previously.
  • the biases are set to produce a clear peak in the temporal histogram of the OFF events ( FIG. 5 ). The variation in the peak form for ON and OFF events is caused by the different detection circuits for the two polarities in the pixel (Lichtsteiner et al., 2008 ) and different starting illumination conditions before the pulse edges.
  • the parameters for the algorithm are chosen heuristically:
  • scoring function histogram update further decreases compute time to an average of 30 ns/event, only 25 ns more than processing event packets with a “no operation” filter that iterates over packets of DVS 20 events without doing anything else.
  • a stronger point laser (4.75 mW, Class C) was pulsed using a mechanical shutter to avoid artifacts from the rise and fall time of the electronic driver. This point was recorded with the optical sensor (DVS) 20 to investigate whether it can elicit more at least one event per polarity and pulse at high frequencies.
  • the measurements in FIG. 6 show that even at frequencies exceeding 2 kHz sufficient events are triggered by the pulse.
  • the mechanical shutter did not allow pulsing the laser faster than 2.1 kHz so the DVS might even go faster.
  • the increase of events per pulse above 1.8 kHz is probably caused by resonances in the optical sensor (DVS) photoreceptor circuits which facilitate the event generation.
  • FIG. 8 shows results of these measurements: FIG. 8A shows the CAD model and FIG. 8B shows the raw extracted line data after transformation through Eq. 5 using the calibration parameters and the measured sled speed. The blind spots where the laser 10 did not reach the surface and the higher sampling density on front surfaces are evident. These blind spots were filled by applying the MATLAB ⁇ function TriScatteredlnterp on the sample points as shown in FIG. 8C . Finally, FIG. 8D shows the error between the reconstruction and model as explained in the next paragraph.
  • the data was compared to the ground truth of the CAD model.
  • the model and data lack alignment marks and therefore they were first aligned by hand using a global translation.
  • the alignment was refined using the iterative closest point algorithm (ICP of Besl and McKay (1992)), which slightly adjusted the global translation and rotation to minimize the summed absolute distance errors.
  • the closest 3D point of the model was determined for each point of the non-interpolated FIG. 8B raw data and fourthly the distance to this model point was measured. The resulting accuracy i.e. the mean 3D distance between these two points in the 3D data is 1.7 ⁇ 1.1 mm, i.e.
  • the mean absolute distance between the sample and data points is 1.7 mm but the errors vary with a standard deviation of 1.1 mm. This accuracy represents ⁇ 0.25 pixel precision of measurement of the laser line given the geometry of the measurement setup.
  • most of the error originates from the parts of the surface where the line laser is occluded by the surface, which are interpolated as flat surfaces, and in particular the bottoms of the valleys show the worst error, as could be expected.
  • a dynamic vision sensor 20 as a sensing device for surface ( 40 ) reconstruction, particularly in an active sensor setup, was demonstrated.
  • An adaptive event-based filtering algorithm for efficiently extracting the laser line 31 position is proposed.
  • the proposed application of dynamic vision sensors in e.g. active sensor setups such as 3D scanners 1 allows surface reconstruction with high temporal resolution without the necessity of using a power-consuming high-speed camera and subsequent high frame rate processing or any moving parts.
  • the event-based output of DVSs 20 reduces the computational load and thereby decreases the latency and power consumption of such systems.
  • the system 1 benefits from the high dynamic range and the sparse output of the sensor 20 as well as the highly resolved time information on the dynamics in a scene.
  • temporal correlations between the pulsed stimulus and the recorded signal can be extracted as well as used as filtering criterion for the stripe 31 extraction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a method for detecting and reconstructing a surface illuminated with spatially structured light such that the light illuminates an area of the surface from which the light is reflected back. The light includes a temporarily varying intensity in the form of successive light modulation patterns. The back-reflected light is detected by an optical sensor including a plurality of pixels. A pixel coordinate is associated to each pixel and each pixel generated a photocurrent proportional to the intensity of the light impinging on a respective pixel, computes a signal related to a photocurrent, and each pixel outputs an address-event merely when a respective signal due to the light impinging on the respective pixel increases by an amount larger than a first threshold or decreases by an amount larger than a second threshold since a last address-event from the respective pixel.

Description

  • The present invention relates to a method for detecting and/or reconstructing a surface according to claim 1 as well as a corresponding computer program according to claim 15 and a system according to claim 16.
  • Motion planning in mobile robots requires knowledge of the terrain structure in front of and underneath the robot; possible obstacles have to be detected and their size has to be evaluated. Especially legged robots need to know the terrain on which they are moving so that they can plan their steps accordingly. A variety of 3D scanners such as the Microsoft Kinect© or LIDAR devices can be used for this task but these sensors and their computational overhead typically consume on the order of several watts of power while having a sample rate limited to tens of Hertz. Passive vision systems partially overcome these limitations but they exhibit a limited spatial resolution because their terrain reconstruction is restricted to a small set of feature points.
  • Based on this, the problem underlying the present invention is to provide for a method, a computer program, and system that allows for a faster detection and particularly geometric reconstruction of any surface (e.g. a terrain on which a robot moves or the recognition of gesture or posture where the respective object/surface moves and not the sensor) at a lower computational cost.
  • Particularly, in the sense of the present invention, to reconstruct a surface means to determine 3D (world) coordinates of said surface. Particularly, in this sense, the reconstruction is to be understood as a virtual reconstruction of the surface.
  • This problem is solved by a method having the features of claim 1.
  • According thereto, the method according to the invention comprises the steps of:
      • illuminating a surface with spatially structured light, such that said light illuminates an area (this area may be a connected or even a disconnected sub area) of said surface from which said light is reflected back, wherein said light comprises a temporally varying intensity in the form of successive repeated light modulation patterns (here, particularly, successive means successive in time),
      • wherein back-reflected light is detected by means of an optical sensor that comprises a plurality of pixels, wherein a pixel coordinate (u,v) is associated to each pixel, and wherein each pixel generates a signal (e.g. monotonically) related to a photocurrent generated by the pixel, which photocurrent is proportional to the intensity of the light impinging on the respective pixel, and wherein each pixel outputs an address-event Ev merely when the respective signal due to the e.g. back-reflected light impinging on the respective pixel increases by an amount being larger than a first threshold ΦON or decreases by an amount being larger than a second threshold ΦOFF since the last address-event Ev from the respective pixel, and wherein
      • as a current image of said area (also denoted as light or laser stripe in case spatially structured light in the form of a plane/sheet of (laser) light is used), pixel coordinates (u,v) of address-events Ev' caused by light of the last light modulation pattern back-reflected from said area onto the optical sensor are determined, particularly using scored address-events Ev of the optical sensor, wherein particularly the address events Ev are scored using collected statistics of the times t of the address-events Ev.
  • For instance, the pixels (which are e.g. pixel circuits) are designed to convert the photocurrent I into a signal In(Iu,v) which is the (e.g. natural) logarithm of the photocurrent Iu,v of the pixel (u,v). However, the pixels (or pixel circuits) may also be designed to transform the photocurrent to a signal by e.g. applying another monotonically varying function, e.g. a square root function, to the photocurrent, or some other function that changes slowly over time to optimize the response (e.g., to optimally control the sensitive range of the response to be centered around the time-average input value). Particularly, the essential feature of the respective pixel is that it detects changes in the photocurrent and emits address-events in response to these changes.
  • It is to be noted, that the spatial structure of the light does not have to be repeated—only the temporal one, i.e. dots or other structures like lines etc. appearing at random positions might be possible too, as long as they are synced with the trigger event (see below).
  • Further, the light (intensity) modulation pattern may consist of a single intensity maximum, e.g., in the form of a pulse (e.g. a rectangular pulse), or a sequence of alternating intensity minima and maxima. For instance, the modulation pattern can be sinusoidal or even a period of pseudo-random white noise. The modulation pattern is repeated so that a periodic intensity results.
  • Many of the drawbacks in existing sensor setups (active as well as passive) arise from the fact that investigating visual scenes as a stroboscopic series of (depth) frames leads to redundant data that occupies communication and processing bandwidth and limits sample rates to the frame rate.
  • In the framework of the present invention, this is avoided by suppressing redundant information at the pixel level by having the pixels report their outputs asynchronously. This sparse asynchronous output can be evaluated more quickly (i.e. with lower average latency) and at a lower computational cost than output from a conventional frame-based image sensor. In the present application such a vision sensor, the so called dynamic vision sensor (DVS, (Lichtsteiner et al., 2008)) is combined with a light source that provides spatially structured light comprising successive repeated light modulation patterns (e.g. a pulsed line laser), forming an active sensor to reconstruct the 3D structure of the surface in front of the system while it is moved. This terrain reconstruction is based on e.g. a series of surface profiles based on the line laser pulses. Particularly, the proposed algorithm allows extracting the area (e.g. laser stripe) illuminated by the spatially structured light from the asynchronous temporal contrast events generated by the DVS using only the event timing so that the light source (e.g. laser) can be pulsed at arbitrary frequencies, particularly from below 1 Hz up to more than 1 kHz. The flexibility in choosing the pulsing frequencies allows fast and detailed surface reconstructions for fast motions as well as saving laser power for slow motions. The upper limit on frequency is determined mainly by the brightness of the lighting which affects the pixel bandwidth.
  • According to a preferred embodiment of the method according to the invention, said light modulation pattern is or comprises a rectangular light pulse.
  • Further, according to a preferred embodiment of the method according to the invention, each address-event Ev(u,v,t) carries the coordinates (u,v) of its associated pixel, a time t at which the respective address-event Ev occurred, as well as an information whether the respective address-event Ev is an ON event at which said signal increased by an amount larger than said first threshold ΦON, or an OFF event at which said signal decreased by an amount larger than said second threshold ΦOFF, and wherein particularly an output stream is output by the optical sensor comprising said address-events Ev.
  • Further, according to a preferred embodiment of the method according to the invention, time-events Etn, particularly also denoted as trigger-events, are put into the output data stream of the optical sensor in between address-events Ev of the output stream, particularly by means of the optical sensor, wherein each time-event Etn is uniquely associated to the same phase of the light modulation pattern, wherein each time-event Etn carries an ascending natural number n labeling the respective light modulation pattern as well as its time t (e.g. the time at which said light modulation pattern occurred). Particularly, the time-events are triggered by the individual light modulation patterns or vice versa.
  • Further, according to a preferred embodiment of the method according to the invention, a score s is assigned to each ON event by means of a first scoring function Pn ON(Ev) and to each OFF event by means of a second scoring function Pn OF(Ev), wherein particularly each score merely depends on the address-event's time relative to the last time-event Etn, wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the last light modulation pattern associated to the last time-event Etn.
  • Further, according to a preferred embodiment of the method according to the invention, for determining the first scoring function Pn ON(Ev) at least ON events Ev since the time-event Etn−1 and before the last time-event Etn are collected in bins Bn of a first histogram Hn ON depending on the time relative to the time-event Etn−1. Preferably, a first average histogram Hn,avg ON is determined as an average over m of said first histograms associated to m successive time-event intervals Etn−m to Etn+1−m. . . , Etn−1 to Etn, m being a natural number (e.g. m=1,2, or 3 for instance). Further, preferably, for determining the second scoring function at least OFF events Ev since the time-event Etn−1 and before the last time event Etn are collected in bins Bn of a second histogram Hn OFF depending on the time relative to the time-event Etn−1. Preferably, a second average histogram Hn,avg OFF is determined as an average over m of said second histograms associated to the m successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn, m being the above defined natural number. In case of m=1, the respective average histogram corresponds to the respective histogram.
  • Further, according to a preferred embodiment of the method according to the invention, the first scoring function Pn ON(Ev) is determined from the first average histogram Hn,avg ON by subtracting from the first average histogram Hn,avg ON the average bin count Tn ON/k of the first average histogram Hn,avg ON, and particularly by also normalizing the first average histogram Hn,avg ON by the total number of ON events Tn ON in it. Further, preferably, the second scoring function Pn OFF(Ev) is determined from the second average histogram Hn,avg OFF by subtracting from the second average histogram Hn,avg OFF the average bin count Tn OFF/k of the second average histogram Hn,avg OFF, and particularly by also normalizing the second average histogram Hn,avg OFF by the total number of OFF events Tn OFF in it.
  • Further, according to a preferred embodiment of the method according to the invention, a score map Mn is generated assigning to each pixel coordinate (u,v) the sum of the scores s of all ON and OFF events Ev with address (u,v) since the last time-event Etn and before the next time-event Etn+1. Preferably, an average score map Mn,avg is determined as an average over the last o score maps Mn, o being a natural number (e.g. o=1, 2, or 3). In case of o=1, the average score map corresponds to the score map.
  • Further, according to a preferred embodiment of the method according to the invention, the spatially structured light is or comprises an e.g. horizontally oriented plane of light, such that said area or said image of said area is (or comprises) a one-dimensional possibly non-continuous pattern also denoted as light or laser (in case a laser is used) stripe.
  • Further, according to a preferred embodiment of the method according to the invention, the maximum score in the average score map Mn,avg is determined for each column (e.g. u) of the average score map Mn,avg, wherein in case the maximum score is above a pre-defined threshold value the corresponding pixel coordinate (u,v) is determined to be a pixel coordinate of said current image, and wherein particularly in case the average score map Mn,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, a weighted average among the scores above said threshold value is conducted to determine the center of said current image of said area in the respective column. Preferably, the weighting consists of multiplying each of said pixel coordinates by the normalized score at the respective coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • Further, according to another preferred embodiment of the method according to the invention, the spatially structured light consists of or comprises a sparse set of light rays by means of which an area of said surface is illuminated, such that said area consists of a corresponding sparse number of disconnected zones. Said number is preferably equal or below 10% of the number of pixels of the optical sensor.
  • Further, according to a preferred embodiment of the method according to the invention, the maximum scores in the average score map Mn,avg are determined by maintaining for each region associated to one of the zones only the maximum score, wherein the pixel coordinate (u,v) of the current image of each zone is determined as the pixel coordinate of the maximum score of the associated region.
  • Further, according to a preferred embodiment of the method according to the invention, said regions are determined by an exhaustive search of the average score map Mn,avg for local maxima.
  • Further, according to a preferred embodiment of the method according to the invention, a light source providing said spatially structured light and the image sensor remain in a fixed spatial position with respect to each other while moving relative to said surface so that said illuminated spatial area of said surface moves along the surface, i.e., scanning the surface.
  • Further, according to a preferred embodiment of the method according to the invention, the pixel coordinates (u,v) of the current image of said spatial area are transformed into world coordinates (x, y, z) so as to reconstruct said surface in said world coordinates.
  • According to yet another preferred embodiment the spatial structure of the spatially structured light may be varied over time, i.e., over said successive light modulation patterns, particularly so that a larger fraction of said surface is covered by said illuminated spatial area, so that the surface may be sampled at higher spatial density or even when there is no relative movement between the camera and the surface.
  • Furthermore, the problem underlying the present invention is solved by a computer program according to claim 15.
  • According thereto, the computer program comprises program commands/code, which are adapted to conduct the following steps when the computer program is executed on a computer or loaded into a memory of the computer:
      • receiving an output stream from an optical sensor comprising address-events Ev generated by said optical sensor when a surface is illuminated with spatially structured light, such that said light illuminates an area (can also be disconnected) of said surface from which at least a portion of said light is reflected back on the optical sensor, wherein said light comprises a temporarily varying intensity in the form of successive (e.g. repeated) light modulation patterns, and wherein said optical sensor comprises pixels, wherein a pixel coordinate (u,v) is associated to each pixel, and wherein each pixel generates a signal related to a photocurrent being proportional to the intensity of the light impinging on the respective pixel, and wherein each pixel outputs an address-event Ev comprised by said output stream merely when the respective signal due to back-reflected light impinging on the respective pixel increases by an amount being larger than a first threshold ΦON or decreases by an amount being larger than a second threshold ΦOFF since the last address-event Ev from the respective pixel, and wherein
      • as a current image of said area, pixel coordinates (u,v) of address-events Ev′ caused by light of the last light modulation pattern back-reflected from said area onto the optical sensor are determined, particularly using scored address-events Ev of the optical sensor, wherein particularly the address events Ev are scored using collected statistics of the times t of the address-events Ev, and wherein particularly the scores are determined using statistics collected based on the event Ev and the light modulation pattern trigger events Et.
  • Preferably, the program code of the computer program according to the invention is further adapted to conduct any of the steps stated in one of the claims 2 to 14 or any of the steps described below when the computer program is executed on a computer or loaded into a memory of the computer.
  • Preferably, the program code of the computer program is adapted to read said output stream containing the address-events Ev described above when the computer program is executed on a computer or loaded into the memory of the computer.
  • Further, preferably, as described above, the output stream also comprises the afore-described time-events Etn injected into the output stream in between address-events Ev of the output stream.
  • Further, preferably, the program code of the computer program is adapted to assign a score s to each ON event by means of a first scoring function Pn ON(Ev) and to each OFF event by means of a second scoring function Pn OFF(Ev), wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the modulation pattern associated to the last time-event Etn (see also above).
  • Further, preferably, for determining the first scoring function Pn ON(Ev), the program code of the computer program is adapted to collect at least ON events Ev in the time-event interval Etn−1 to Etn in bins Bn of a first histogram Hn ON depending on the time relative to the time-event Etn−1, wherein particularly the program code is adapted to determine a first average histogram (Hn,avg ON) as an average over m of said first histograms Hn ON associated to m successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn, m being a natural number (e.g. m=1, 2 or 3), and wherein for determining the second scoring function Pn OFF, the program code of the computer program is adapted to collect at least OFF events Ev in the time-event interval Etn−1 to Etn in bins Bn of a second histogram Hn OFF depending on the time relative to the time-event Etn−1, wherein particularly the computer program is adapted to determine a second average histogram Hn,avg OFF as an average over m second histograms associated to m preceding successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn, m being the afore-defined natural number.
  • Further, preferably, the program code of the computer program is adapted to determine the first scoring function Pn ON(Ev) from the first average histogram Hn,avg ON by subtracting from the first average histogram Hn,avg ON the average bin count Tn ON/k of the first average histogram Hn,avg ON, and particularly by also normalizing the first average histogram Hn,avg ON by the total number of ON events in it Tn ON, and wherein the program code is adapted to determine the second scoring function Pn OFF(Ev) from the second average histogram Hn,avg OFF by subtracting from the second average histogram Hn,avg OFF the average bin count Tn OFF/k of the second average histogram Hn,avg OFF, and particularly by also normalizing the second average histogram Hn,avg OFF by the total number of OFF events Tn OFF in it.
  • Further, preferably, the program code of the computer program is adapted to generate a score map Mn assigning to each pixel coordinate (u,v) the sum of the scores s of all ON and OFF events Ev with the respective address (u,v) since the last time-event Etn and before the next time-event Etn+1, wherein particularly an average score map Mn,avg is determined as an average over the last o score maps Mn, o being a natural number (e.g. o=1, 2, or 3).
  • Further, preferably, the program code of the computer program is adapted to determine the maximum score in the average score map Mn,avg for each column (e.g. u) of the average score map Mn,avg, wherein in case the maximum score is above a pre-defined threshold value the corresponding pixel coordinate (u,v) is determined to be a pixel coordinate of said current image, and wherein particularly in case the average score map Mn,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, the program code is adapted to conduct a weighted average among the scores above said threshold value to determine the center of said current image of said area in the respective column, wherein particularly the weighting consists of multiplying each said pixel coordinate by the normalized score at this coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • Further, particularly in case the spatially structured light consists of or comprises a set of light rays by means of which an area of said surface is illuminated, such that said area consists of (or comprises) a corresponding number of disconnected zones, the program code of the computer program may be adapted to determine the maximum scores in the average score map Mn,avg by maintaining for each region associated to one of the zones only the maximum score, wherein the pixel coordinate (u,v) of the current image of each zone is determined as the pixel coordinate of the maximum score of the associated region.
  • Preferably, the program code of the computer program is adapted to determine said regions by an exhaustive search of the average score map Mn,avg for local maxima.
  • Further, preferably, the program code of the computer program is adapted to transform the pixel coordinates (u,v) of the current image of said spatial area into world coordinates (x, y, z) so as to reconstruct said surface in said world coordinates.
  • Furthermore, the problem underlying the present invention is solved by a system having the features of claim 16.
  • According thereto, the system according to the invention comprises:
      • a light source, particularly a laser device, being designed to illuminate a surface with spatially structured light, such that said light illuminates an area of said surface from which said light is reflected back, wherein said light comprises a temporarily varying intensity in the form of successive light modulation patterns,
      • an optical sensor being configured to detect light back-reflected from said area, which may include an optical filter designed to pass light from said light source preferentially, wherein said optical sensor comprises a plurality of pixels, wherein a pixel coordinate (u,v) is associated to each pixel, and wherein each pixel is designed to generate a signal (e.g. monotonically) related to the photocurrent generated by the light impinging on the respective pixel, and wherein each of said pixels outputs an address-event Ev merely when the respective signal due to the e.g. back-reflected light impinging on the respective pixel increases by an amount being larger than a first threshold ΦON or decreases by an amount being larger than a second threshold ΦOFF since the last address-event Ev from the respective pixel, and
      • an analyzing means connected to said sensor means, wherein the analyzing means is designed to determine, as a current image of said area, pixel coordinates (u,v) of address-events Ev′ caused by light of the last light modulation pattern back-reflected from said area onto the optical sensor.
  • Preferably, said optical filter filters out light wavelengths outside of a light wavelength or a range of light wavelengths that are emitted by the light source.
  • Preferably, the analyzing means may comprise a computer configured to execute the computer program according to the invention.
  • Preferably, the analyzing means is designed to conduct any of the steps stated in claims 2 to 14 or any of the steps described below.
  • Further, preferably, the light source is designed to generate a light (intensity) modulation pattern in the form of a light pulse, particularly a rectangular light pulse.
  • Further, preferably, the system (e.g. optical sensor) is designed to generate each address-event Ev(u,v,t) so that it carries the coordinates (u,v) of its associated pixel, a time t at which the respective address-event Ev occurred, as well as an information whether the respective address-event Ev is an ON event at which said signal increased by an amount larger than said first threshold ΦON, or an OFF event at which said signal decreased by an amount larger than said second threshold ΦOFF, and wherein particularly the optical sensor is designed to output an output stream comprising said address-events Ev.
  • Further, preferably, the system is designed to put time-events Et into the output stream in between address-events Ev of the output stream, particularly by means of the optical sensor, wherein each time-event Et is uniquely associated to one of said light modulation patterns, wherein each time-event Etn carries an ascending number n labeling the respective light pulse as well as its time t.
  • Further, preferably, the system (e.g. the analyzing means) is designed to assign a score s to each ON event by means of a first scoring function Pn ON(Ev) and to each OFF event by means of a second scoring function Pn OFF(Ev), wherein particularly the respective score s is a measure for the probability that the respective address-event Ev was caused by the modulation pattern associated to the last time-event Etn.
  • Further, preferably, for determining the first scoring function (Pn ON(Ev)), the system (e.g. the analyzing means) is designed to collect at least ON events Ev in the time-event interval Etn−1 to Etn in bins Bn of a first histogram Hn ON depending on the time relative to the time-event Etn−1, wherein particularly the analyzing means is designed to determine a first average histogram Hn,avg ON as an average over m first histograms associated to m successive time-event intervals Etn−m to Etn+m, . . . , Etn−1 to Etn, m being a natural number (see e.g. above), and wherein for determining the second scoring function Pn OFF the analyzing means is designed to collect at least OFF events Ev in the time-event interval Etn−1 to Etn in bins Bn of a second histogram Hn OFF depending on the time relative to the time-event Etn−1, wherein particularly the analyzing means is designed to determine a second average histogram Hn,avg OFF as an average over m second histograms associated to the preceding m successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn.
  • Further, preferably, the system (e.g. the analyzing means) is designed to determine the first scoring function Pn ON(Ev) from the first average histogram Hn,avg ON by subtracting from the first average histogram Hn,avg ON the average bin count Tn ON/k of the first average histogram Hn,avg ON, and particularly by also normalizing the first average histogram Hn,avg ON by the total number of ON events in it Tn ON, and wherein the analyzing means is designed to determine the second scoring function Pn OFF(Ev) from the second average histogram Hn,avg OFF by subtracting from the second average histogram Hn,avg OFF the average bin count Tn OFF/k of the second average histogram Hn,avg OFF, and particularly by also normalizing the second average histogram Hn,avg OFF by the total number of OFF events Tn OFF in it.
  • Further, preferably, the system (e.g. the analyzing means) is designed to generate a score map Mn assigning to each pixel coordinate (u,v) the sum of the scores s of all ON and OFF events Ev with the respective address (u,v) since the last time-event Etn and before the next time-event Etn+1, wherein particularly the system is designed to determine an average score map Mn,avg as an average over the last o score maps, o being a natural number (see e.g. above).
  • Further, preferably, the system (e.g. the light source) is designed to generate spatially structured light in the form of a plane of light (or comprising such a plane of light), such that said area or said image of said area is a line pattern (or comprises such a pattern).
  • Further, preferably, the system (e.g. the analyzing means) is designed to determine the maximum score in the average score map Mn for each column (e.g. u) of the average score map Mn,avg, wherein in case the maximum score is above a pre-defined threshold value the analyzing means is designed to determine the corresponding pixel coordinate (u,v) to be a pixel coordinate of said current image, and wherein particularly in case the average score map Mn,avg comprises in a column scores s of neighboring pixel coordinates that are also above said threshold value, the analyzing means is designed to conduct a weighted average among the scores above said threshold value to determine the center of said current image of said area in the respective column, wherein particularly the weighting consists of multiplying each said pixel coordinate by the normalized score at this coordinate, wherein the normalized score is determined by dividing each score by the sum of the scores in the column.
  • Further, preferably, the system (e.g. the analyzing means) is designed to alternatively generate spatially structured light consisting of or comprising a set of light rays by means of which an area of said surface is illuminated, such that said area consists of (or comprises) a corresponding number of disconnected zones.
  • Preferably, in this case, the system (e.g. the analyzing means) is designed to determine the maximum scores in the average score map Mn,avg by maintaining for each region associated to one of the zones only the maximum score, wherein the analyzing means is designed to determine the pixel coordinate (u,v) of the current image of each zone as the pixel coordinate of the maximum score of the associated region.
  • Preferably, the system (e.g. the analyzing means) is designed to determine said regions by an exhaustive search of the average score map Mn,avg for local maxima.
  • Further, preferably, the light source providing said spatially structured light and the image sensor are arranged in a fixed spatial position with respect to each other. Further, the system is preferably configured to move relative to said surface.
  • Further, preferably, the system (e.g. the analyzing means) is designed to transform the pixel coordinates (u,v) of the current image of said spatial area into world coordinates (x, y, z), so as to reconstruct said surface in said world coordinates.
  • Furthermore, the system (e.g. a robot) may be designed to move relative (e.g. with respect) to said surface particularly on or along said surface, particularly while illuminating said surface with said spatially structured light.
  • Furthermore, the system is designed to reconstruct said surface in real-time while moving relative to said surface, particularly on or along said surface.
  • Furthermore, the system may be designed to vary said spatially structured light spatially over said successive light modulation patterns (see also above).
  • In the following, further advantages and features of the present invention as well as embodiments of the present invention are described with reference to the Figures, wherein:
  • FIG. 1 shows a setup of the optical sensor (e.g. DVS) together with a light source (e.g. line laser). (A) Schematic view of the setup. (B) photo of the DVS128 camera (i.e. optical DVS sensor having 128×128 pixel with line laser): the rigid laser mount allows a constant distance and inclination angle of the laser with respect to the camera. An optical filter is mounted on the lens.
  • FIG. 2 shows the coordinate systems used along the scanning direction. yR, zR are the real world coordinates, yC, zC the ones of the camera. xL is the distance of the laser line plane perpendicular to nL from the camera origin. αC is the inclination angle of the sensor with respect to the horizontal plane and αL the laser inclination angle with respect to the camera.
  • FIG. 3 shows a calibration setup. The light source (e.g. pulsed laser) shines onto two striped blocks of different height. (A) Schematic view. (B) Schematic of the optical sensor's (DVS) output: The laser is absorbed by the black stripes and only the white stripes generate events.
  • FIG. 4 shows a schematic overview of the laser stripe extraction filter. At the arrival of each light modulation pattern (here a laser pulse) the temporal histograms are used to adapt the scoring functions P, and each event's score is calculated and mapped on the score maps M. The maps are averaged and the laser stripe is extracted by selecting the maximum scoring pixel for each column, if it is above the threshold θpeak.
  • FIG. 5 shows examples of event histograms of the laser (light source) pulsed at 1 kHz at the relief used for the reconstruction. (A) Measured histograms of ON and OFF events following laser pulse ON and OFF edges. (B) Resulting OFF and ON scoring functions after normalization and mean subtraction.
  • FIG. 6 shows the number of events at a pixel per laser pulse of a 4.75 mW point laser. Although the event count drop with higher frequencies, the average does not drop below 1 event per cycle even at 2 kHz.
  • FIG. 7 shows an artificial 3D rapid prototype terrain used for an exemplary reconstruction. Shown is the area depicted in FIG. 8, the laser line, and the scan direction.
  • FIG. 8 shows a reconstructed surface. (A) CAD model of the surface. (B) measured data points. (C) interpolated reconstruction of the surface using Mathworks Corporation Matlab's TriScatteredInterp function. (D) distance between closest reconstruction point and model aligned using the ICP algorithm of Besl and McKay (1992). This section of the reconstruction was chosen for display because in the surrounding area border effects were observed caused by the Gaussian profile of the laser line that reduced the DVS event rate to be too low to result in acceptable reconstruction.
  • The optical sensor 20 in the form of a dynamic vision sensor used in the present invention as shown in FIG. 1 is inspired by the functionality of the retina and senses only changes in brightness (Lichtsteiner et al., 2008). Each pixel reports a change in e.g. log-illuminance larger than a given threshold by sending out an asynchronous address-event: if it becomes brighter it generates a so called “ON event”, and if darker, it generates an “OFF event”. The asynchronously generated address-events are communicated to a synchronous processing device by a complex programmable logic device (CPLD) which also transmits the time in microseconds at which the event occurred. Each event contains the pixel horizontal and vertical address (u,v), its polarity (ON/OFF) and the timestamp. After the event is registered, it is written into a FIFO buffer which is transferred through a high-speed USB 2.0 interface to a processing platform also denoted as analyzing means 50. The CLPD and the buffer may be arranged at the optical sensor 20 but may also be integrated into the analyzing means 50 (i.e. may form parts of the analyzing means 50). Real-time computations on the processing platform operate on the basis of so called event packets which can contain a variable number of events but are preferably delivered at a minimum frequency of 1 kHz. This approach of sensing a visual scene has the following advantages:
  • The absence of a global exposure time lets each pixel settle to its own operating point which leads to a dynamic range of more than 120 dB.
  • Because the pixels only respond to brightness changes, the output of the sensor 20 is non-redundant. This leads to a decrease in processor load and therefore to a reduction in power consumption of the system.
  • The asynchronous readout allows a low latency of as little as 15 μs. This latency allows fast control loops. The speed of the optical sensor is capable of resolving fast movements such as a wheel spinning at e.g. 3000 rpm.
  • Since the events are timestamped as they occur (with a temporal resolution of 1 μs), the output allows a detailed analysis of the dynamics in a scene or to process its output using temporal filters.
  • In the following, the output of the optical sensor 20 according to the invention is described as a set of events and each event Ev carries its u- and v-address, a timestamp and its polarity as a value of +1 if it is an ON event and a −1 for OFF events
  • Ev ( u , v , t ) = { + 1 , if Δln ( I u , v ) > Θ ON - 1 , if Δln ( I u , v ) < Θ OFF ( 1 )
  • where ΔIn(Iu,v) denotes the change in illumination at the pixel with coordinates u, v since the last event. ΦON and ΦOFF denote the event thresholds that must be crossed to trigger an event. These thresholds can be set independently which allows balancing the number of ON and OFF events.
  • In addition to these visually triggered events, the optical sensor 20 of the system 1 according to the invention allows the injection of special, timestamped trigger events to the output stream by applying a pulse to a pin on the sensor 20. These Et events are numbered in the method/computer program according to the invention so that they carry a pulse number n and a timestamp or time t:

  • Etn=t   (2)
  • There are several variations of combining a line laser 10 and a camera (e.g. optical sensor 20) to build a 3D scanner 1. Since in an embodiment of the present invention this scanner setup 1 is used on a mobile robot that particularly already has a motion model for the purpose of navigation, a mirror free, fixed geometry setup can be used. As shown in FIG. 1, a light source 10 comprising a red line laser (Laser Components GmbH LC-LML-635) with a wavelength of 635 nm and an optical power of about 3 mW is mounted at a fixed distance above the optical sensor (DVS) 20. The laser power consumption is about 135 mW. The relative angle of the laser plane or spatially structured light 30 and the optical sensor 20 is fixed. To run the surface (40) reconstruction, the system 1 is moved over the terrain's surface 40 while the laser of the light source 10 is pulsed at a frequency fp. Each pulse of the laser 10 initiated the acquisition of a set of events Ev for further analysis and laser stripe or area 31 extraction. As a background illumination level a brightly-lit laboratory at approximately 500 lx was used.
  • For the exemplary measurements described below, the system 1 was fixed and the terrain's surface 40 to scan was moved on an actuated sled on rails underneath it. This led to a simple linear camera motion model determined by the speed of the DC motor that pulled the sled towards the sensor system. The sled was fixed to rails which locked the system 1 in one dimension and led to highly repeatable measurements. The optical sensor 20 was equipped with a lens having a focal length of 10 mm and it was aimed at the terrain's surface 40 from a distance of 0.45 m. The laser module 10 was placed at a distance of 55 mm from the optical sensor 20 at an inclination angle αL of 8° with respect to the principal axis of the optical sensor. The system 1 observed the scene at an inclination angle αC of 39°.
  • To enhance the signal to noise ratio, i.e. the percentage of events originating from the pulsed laser line 31, the optical sensor 20 was equipped with an optical band pass filter (Edmund Optics NT65-167) centered at 636 nm in an embodiment. The filter has full width at half maximum (FWHM) of 10 nm and a transmittance of 85% in the pass band and less than 0.01% in the stop band (optical density 4.0).
  • To mark the laser pulses 32 within the event output stream from the optical sensor 20, the event trigger pin of the optical sensor 20 was connected to a function generator triggering the laser of the light source 10.
  • To extract the laser stripe 31, i.e. the pixels whose events originate from the laser line 30, the optical sensor 20 is calibrated based on the approach described in (Siegwart, 2011). The model was simplified by the following assumptions:
  • For the intrinsic camera model, rectangular pixels with orthogonal coordinates u,v are assumed. This leads to the following transformation from pixel coordinates to camera coordinates xC, yC, ZC:
  • u = kf l z C x C + u 0 ( 3 ) v = kf l z C y C + v 0 ( 4 )
  • where k denotes the inverse of the pixel size, fl the focal length in pixels, and u0,v0 the center pixel coordinates.
  • For the extrinsic camera model it was assumed that the rail restricts the origin of the camera xC0, yC0, zC0 to a planar translation (by ty and tz) within a plane spanned by the y- and z-axis of the world reference frame xR, yR and zR as depicted in FIG. 2. In the setup used for the measurement, the rotational degrees of freedom of the system were constrained so that the camera could only rotate (by αC) around its x-axis which leads to following transformation from camera to world coordinates:
  • ( x R y R z R ) = ( 1 0 0 0 cos ( α C + π 2 ) sin ( α C + π 2 ) 0 - sin ( α C + π 2 ) cos ( α C + π 2 ) ) ( x C y C z C ) + ( 0 t y t z ) ( 5 )
  • The fact that the optical sensor (DVS) 20 does not produce any output for static scenes makes it difficult to find and align correspondences and therefore the typical checkerboard pattern could not be used for calibration. As an alternative, the laser was pulsed (31) onto two striped blocks of different heights as depicted in FIG. 3. The black stripes on the blocks absorb sufficient laser light to not excite any events in the DVS 20. This setup allows finding sufficient correspondence points between the real world coordinates and the pixel coordinates to solve the set of calibration equations (Eqs. 3-5). This procedure needs only to be done once for a particular geometry of optical sensor 20 and light source 10.
  • The stripe extraction method is summarized in FIG. 4. Most laser stripe extraction algorithms perform a simple column-wise maximum computation to find the peak in light intensity e.g. (Robinson et al., 2003).
  • Accordingly, for the optical sensor (DVS) 20 the simplest approach to extract the laser stripe 31 would be to accumulate all events after a laser pulse 32 and find the column-wise maximum in activity. This approach performs poorly due to background activity: Even with the optical filter in place, contrast edges that move relative to the sensor 20 also induce events which corrupt the signal to noise ratio. For a more robust laser stripe 31 extraction, spatial constraints could be introduced but this would restrict the generality of the approach. Instead the proposed approach exploits the highly resolved temporal information of the output of the optical sensor (DVS) 20.
  • With the help of the laser trigger events Etn, the event stream can be sliced into a set of time windows Wn each containing a set of events Sn where n denotes the n'th trigger event. ON and OFF events are placed into separate sets (for simplicity only the formulas for the ON events are shown, the formulas for the OFF events are formulated analogously):

  • W n ={t:t>Et n
    Figure US20170241774A9-20170824-P00001
    t<Et n+1}  (6)

  • Sn ON ={Ev(u, v, t): t∈Wn
    Figure US20170241774A9-20170824-P00001
    Ev>0}  (7)
  • The timing of the events is jittered by the asynchronous communication and is also dependent on the optical sensor's 20 bias settings and light conditions. Preliminary experiments showed that it is not sufficient to only accumulate the events in a fixed time window after the pulse 32. Instead a stable laser stripe 31 extraction algorithm must adaptively collect relevant events. This adaptation is achieved by using of a temporal scoring function P which is continually updated as illustrated in FIG. 5.
  • The scoring function is used as follows: Each event obtains a score s=P(Ev) depending only on its time relative to the last trigger. From these s a score map Mn (FIG. 4) is established where each pixel (u, v) of Mn contains the sum of the scores of all the events with address (u, v) within the set Sn (these subsets of Sn are denoted as Cn(u,v)). In other words, Mn is a 2D histogram of event scores. This score map tells us for each pixel how well-timed the events were with respect to the n′th trigger event, and it is computed by Eqs. 9-10:
  • C n ON ( u , v ) = { Ev ( u , v , t ) : Ev S n ON u = u v = v } ( 9 ) M n ( u , v ) = C ON ( u , v ) P n ON ( Ev ) + C OFF ( u , v ) P n OFF ( Ev ) ( 10 )
  • The scoring function P that assigns each event a score indicating how probable it is that it was caused by the laser pulse Etn is obtained by using another histogram-based approach. The rationale behind this approach is the following: All events that are caused by the laser pulse are temporally correlated with it while noise events generate a uniform temporal distribution. In a histogram with binned relative times, the events triggered by the laser pulse form peaks. In the proposed algorithm, the histogram Hn consists of k bins Bn of width fk. For stability, Hn is an average over m laser pulses or light modulation patterns (also denoted as Hn,avg herein). Hn is constructed by Eqs. 11-13:
  • D n ON ( l ) = { Ev ( u , v , t ) : Ev S n ON t - Et n l fk t - Et n < l + 1 fk } ( 11 ) B n ON ( l ) = i = n - m n - 1 D i ON ( l ) Ev ( 12 ) H n ON = { B n ON ( l ) : l [ 0 , k - 1 ] } ( 13 )
  • where f is the laser frequency, I is the bin index, k is the number of bins, Dn(I) is a temporal bin of the set Sn, Bn(I) is a bin of the averaged histogram over the m pulses and the histogram Hn is the set of all bins Bn. It is illustrated in FIG. 5A.
  • To obtain the scoring function P, the Hn ON and Hn OFF histograms are normalized by the total number T of events in them. To penalize bins that have a count below the average i.e. bins that are dominated by the uniformly distributed noise, the average bin count T/k is subtracted from each bin. An event can have a negative score. This is the case if it is more probable that it is noise than signal. Tn is computed from Eq. 14:

  • Tn ON=Σ{Bn ON:Bn ON∈Hn ON}  (14)
  • The n'th scoring function Pn (illustrated in FIG. 5B) is computed from Eq. 15:
  • P n ON ( Ev ) = { B n ON : Ev B n ON } - ( T n ON k ) T n ON ( 15 )
  • To extract the laser stripe (area) 31, the last o score maps are averaged (Mn,avg) and the maximum score s(u,v) and its v value are determined for each column (preferably, the columns extends across/perpendicular to the laser stripe/area 31 image). If the maximum value is above a threshold Φpeak it is considered to be a laser stripe pixel. If the neighboring pixels are also above the threshold, a weighted average is applied among them to determine the center of the laser stripe. The positions of the laser stripe 31 are then transformed into real world coordinates using Eqs. 3-5 and thus mapped as surface points.
  • The following pseudo-code
  • //iterate over all events in a packet
    for event:packet
     //the laser stripe extraction is only done at
     //the arrival of a new pulse
     if(event.isTrigger)
      lastTrigger = event.timestamphistogramAverage.add(histogram)
      histogram.clear( )
      //update done according to eq.(15)
      scoreFunction.update(histogramAverage)averageMap.add(scoreMap)
      laserLine = averageMap.findColumPeaks( )
     else
      //update of histogram
      deltaT = lastTrigger-event.timestamp
      bin Index = deltaT*k/period
      histogram.bin[binIndex]++
      //update of score map
      score = scoreFunction.get(binIndex)
      scoreMap[event.u][event.v]+=score
     end if

    illustrates how the algorithm is preferably executed in the computer program according to the invention: Only on the arrival of a new laser trigger event, the histograms are averaged, the score maps are averaged to an average score map and the laser stripe is extracted. Otherwise, for each event Ev of the optical sensor (DVS) 20 only its contribution to the current score map is computed, using the current scoring function. The laser stripe 31 extraction and computation of the scoring function operate on different time scales. While the length o of the moving average for the scoring function is chosen as small as possible to ensure a low latency, the number of histograms m to be averaged is preferably chosen as large as possible to obtain higher stability and dampen the effect of variable background activity.
  • Algorithm Optimization: To reduce the memory consumption and the computational cost of this “frame-based” algorithm, the computations of the scoring function, the accumulation of evidence into a score map, and the search for the laser line columns were optimized to be event-based.
  • The average histogram changes only on a long time scale (depending on lighting conditions and sensor biasing) and this fact is exploited by only updating the averaged histogram every m'th pulse. The m histograms do not need to be memorized and each event only increases the bin count. The new scoring function is computed from the accumulated histogram by normalizing it only after the m'th pulse.
  • The score map computation is optimized by accumulating event scores for o laser pulses. Each event requires only a lookup of its score and a sum into the score map.
  • After each sum, if the new score value is higher than the previous maximum score for that column, then the new maximum score value and its location are stored for that column. This accumulation increases the latency by a factor of o, but is necessary in any case when the optical sensor's (DVS) events are not reliably generated by each pulse edge.
  • After the o laser pulses 32 are accumulated, the search of the column wise maxima laser line pixels is based on the maximum values and their locations stored during accumulation. For each column, the weighted mean location of the peak is computed starting at the stored peak value and iterating over pixels up and down from the peak location until the score drops below the threshold value. This way, only a few pixels of the score map are inspected for each column.
  • The final step is to reset the accumulated score map and peak values to zero. This low-level memory reset is done by microprocessor logic hardware and is very fast.
  • Because the DVS 20 does analog computation at the pixel level, the behavior of the sensor 20 depends on the sensor bias settings. These settings can be used to control parameters such as the temporal contrast cutoff frequency and the threshold levels. For the experiments described in the following, the bias settings were optimized to report small as well as fast changes. These settings lead to an increase in noise events which does not affect the performance because they are filtered out successfully with the algorithm described previously. Furthermore, the biases are set to produce a clear peak in the temporal histogram of the OFF events (FIG. 5). The variation in the peak form for ON and OFF events is caused by the different detection circuits for the two polarities in the pixel (Lichtsteiner et al., 2008) and different starting illumination conditions before the pulse edges.
  • The parameters for the algorithm are chosen heuristically: The bin size is fixed to 50 μs, the scoring function average is taken over a sliding window size m=1000 histograms, the stripe detection is set to average o=3 probability maps, and the peak threshold for the line detection is chosen to be Φpeak=1.5.
  • Firstly, the performance of the stripe extraction algorithm was measured. Finally, a complex 3D terrain was used to assess the performance under more realistic conditions.
  • Comparing the computational cost to process an event (measured in CPU time) between the frame-based and the event-based algorithm with o=10 pulses showed an 1800% improvement from 900 ns to 50 ns per event. This improvement is a direct result of the sparse sensor output: For each laser line point update, only a few active pixels around the peak value in the score map column are considered, rather than the entire column. At the typical event rate of 500 keps observed in the terrain reconstruction example, using a laser pulse frequency of 500 Hz, a single core of a Core i7 850 personal computer is occupied 2.5% of its available processor time using the event-based algorithm, measured by using the Windows 7 resource monitoring utility. Turning off the scoring function histogram update further decreases compute time to an average of 30 ns/event, only 25 ns more than processing event packets with a “no operation” filter that iterates over packets of DVS 20 events without doing anything else.
  • To assess the line-detection performance of the stripe extraction algorithm, a ground truth was manually established for a scenario in which a plain block of uniform height was passed under the setup. The block was moved at about 2 cm/s to investigate the performance of the laser stripe 31 extraction algorithm at different frequencies. In Table 1, the results of these measurements are displayed: “False positives” designates the ratio of events wrongly associated to the line over the total number of events. The performance of the algorithm drops at a frequency of 500 Hz and because the DVS should be capable of detecting temporal contrasts in the kHz regime, this was further investigated. For optimal algorithm performance, each pulse should at least excite one event per column. This is not the case for the line laser pulsed at 500 Hz because the pixel bandwidth at the laser intensity used is limited to about this frequency. Therefore not every pulse results in a DVS event, and so the laser stripe can only be found in a few columns which leads to a degradation of the reconstruction quality from single laser pulses.
  • TABLE 1
    Performance of the line extraction algorithm. The line laser is
    not strong enough to perform well at frequencies above 200 Hz.
    Frequency False positives
    50 Hz 0.14%
    100 Hz <0.01% 
    200 Hz 0.03%
    500 Hz 5.75%
  • To explore how fast the system could go, another laser setup was used: A stronger point laser (4.75 mW, Class C) was pulsed using a mechanical shutter to avoid artifacts from the rise and fall time of the electronic driver. This point was recorded with the optical sensor (DVS) 20 to investigate whether it can elicit more at least one event per polarity and pulse at high frequencies. The measurements in FIG. 6 show that even at frequencies exceeding 2 kHz sufficient events are triggered by the pulse. The mechanical shutter did not allow pulsing the laser faster than 2.1 kHz so the DVS might even go faster. The increase of events per pulse above 1.8 kHz is probably caused by resonances in the optical sensor (DVS) photoreceptor circuits which facilitate the event generation. These findings indicate that using the current optical sensor (DVS) a system using a sufficiently strong line laser should be capable of running at up to 2 kHz. or even higher frequency depending on the surface reflectivity, the DVS pixel design, the pixel biasing currents, and the requirements for pulse reliability. It could be, for example, that it is not necessary for a particular application that every cycle of the laser pulsing elicits a DVS event. Even in the condition that not every cycle elicits a pulse, the events that are emitted will still be related to the pulse phase so that they can be filtered by the methods described previously.
  • In an example, an artificial terrain was designed with a CAD program and it was fabricated on a 3D printer (FIG. 7). The sensor setup of FIG. 1 was used together with the sled to capture data at a speed of 1.94 cm/s over this terrain using a laser pulse frequency of 200 Hz, translating in the ty direction (Eq. 5). (This slow speed was a limitation of the DC motor driving the sled.) FIG. 8 shows results of these measurements: FIG. 8A shows the CAD model and FIG. 8B shows the raw extracted line data after transformation through Eq. 5 using the calibration parameters and the measured sled speed. The blind spots where the laser 10 did not reach the surface and the higher sampling density on front surfaces are evident. These blind spots were filled by applying the MATLAB© function TriScatteredlnterp on the sample points as shown in FIG. 8C. Finally, FIG. 8D shows the error between the reconstruction and model as explained in the next paragraph.
  • To quantify the error, the data was compared to the ground truth of the CAD model. However, the model and data lack alignment marks and therefore they were first aligned by hand using a global translation. Next, the alignment was refined using the iterative closest point algorithm (ICP of Besl and McKay (1992)), which slightly adjusted the global translation and rotation to minimize the summed absolute distance errors. Thirdly the closest 3D point of the model was determined for each point of the non-interpolated FIG. 8B raw data and fourthly the distance to this model point was measured. The resulting accuracy i.e. the mean 3D distance between these two points in the 3D data is 1.7±1.1 mm, i.e. the mean absolute distance between the sample and data points is 1.7 mm but the errors vary with a standard deviation of 1.1 mm. This accuracy represents ±0.25 pixel precision of measurement of the laser line given the geometry of the measurement setup. In the resampled, linearly interpolated data shown in FIG. 8D, most of the error originates from the parts of the surface where the line laser is occluded by the surface, which are interpolated as flat surfaces, and in particular the bottoms of the valleys show the worst error, as could be expected.
  • In the present application the first application of a dynamic vision sensor 20 as a sensing device for surface (40) reconstruction, particularly in an active sensor setup, was demonstrated. An adaptive event-based filtering algorithm for efficiently extracting the laser line 31 position is proposed. The proposed application of dynamic vision sensors in e.g. active sensor setups such as 3D scanners 1 allows surface reconstruction with high temporal resolution without the necessity of using a power-consuming high-speed camera and subsequent high frame rate processing or any moving parts. The event-based output of DVSs 20 reduces the computational load and thereby decreases the latency and power consumption of such systems. The system 1 benefits from the high dynamic range and the sparse output of the sensor 20 as well as the highly resolved time information on the dynamics in a scene. With the proposed algorithm, temporal correlations between the pulsed stimulus and the recorded signal can be extracted as well as used as filtering criterion for the stripe 31 extraction.
  • REFERENCES
  • Besl, P. J., and McKay, N. D. (1992). A Method for Registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell 239-256. doi: 10.1109/34.121791.
  • Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 43, 566-576. doi: 10.1109/JSSC.2007.914337.
  • Robinson, A., Alboul, L., and Rodrigues, M. (2003). Methods for Indexing Stripes in Uncoded Structured Light Scanning Systems. in International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (Plzen-Bory, Czech Republic). Available at: http://wscg.zcu.cz/WSCG2004/Papers_2004_Full/l11.pdf.
  • Siegwart, R. (2011). Introduction to Autonomous Mobile Robots. 2nd ed. Cambridge, Mass: MIT Press.

Claims (16)

1. Method for detecting and reconstructing a surface, said method comprising the following steps:
illuminating a surface (40) with spatially structured light (30), such that said light illuminates an area (31) of said surface (40) from which said light is reflected back, said light comprises a temporarily varying intensity (I) in the form of successive light modulation patterns (32):
detecting back-reflected light by an optical sensor (20) that comprises a plurality of pixels, a pixel coordinate (u,v) is associated to each pixel, and each pixel generates a photocurrent being proportional to the intensity of the light impinging on a respective pixel, and computes a signal related to said photocurrent, and each pixel outputs an address-event (Ev) merely when the respective signal due to the light impinging on the respective pixel increases by an amount being larger than a first threshold (ΦON) or decreases by an amount being larger than a second threshold (ΦOFF) since a last address-event (Ev) from the respective pixel: and
determining, as a current image of said area (31), pixel coordinates (u,v) of address-events (Ev′) caused by light of a last light modulation pattern (32) back-reflected from said area (31) onto the optical sensor (20).
2. Method according to claim 1, wherein said light modulation pattern (32) is a rectangular light pulse.
3. Method according to claim 1, wherein each address-event (Ev(u, v, t)) carries the coordinates (u,v) of its associated pixel, a time (t) at which a respective address-event (Ev) occurred, as well as an information whether the respective address-event (Ev) is an ON event at which said signal increased by an amount larger than said first threshold (ΦON), or an OFF event at which said signal decreased by an amount larger than said second threshold (ΦOFF), and an output stream is output by the optical sensor (20) comprising said address-events (Ev).
4. Method according to claim 3, wherein time-events Etn are injected into the output stream in between address-events (Ev) of the output stream by the optical sensor (20), each time-event Etn is uniquely associated to one of said light modulation patterns (32), and each time-event Etn carries an ascending number n labeling the respective light modulation pattern (32), as well as its time (t).
5. Method according to claim 3, wherein a score (s) is assigned to each ON event by first scoring function (Pn ON(Ev)) and to each OFF event by a second scoring function (pn OFF(Ev)), the respective score (s) is a measure for a probability that the respective address-event (Ev) was caused by the light modulation pattern (32) associated to the last time-event Etn.
6. Method according to claim 5, wherein for determining the first scoring function (Pn ON(Ev)) at least ON events (Ev) in the time-event interval Etn−1 to Etn are collected in bins (Bn) of a first histogram (Hn ON) depending on a time relative to the time-event Etn−1, a first average histogram (Hn,avg ON) is determined as an average over m first histograms associated to m successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn, m being a natural number, and for determining the second scoring function (Pn OFF(Ev)) at least OFF events (Ev) in the time-event interval Etn−1 to Etn are collected in bins (Bn) of a second histogram (Hn OFF) depending on the time relative to the time-event Etn−1, a second average histogram (Hn,avg OFF) is determined as an average over m second histograms associated to m successive time-event intervals Etn−m to Etn+1−m, . . . , Etn−1 to Etn.
7. Method according to claim 6, wherein the first scoring function (Pn ON(Ev)) is determined from the first average histogram (Hn,avg ON) by subtracting from the first average histogram (Hn,avg ON) an average bin count (Tn ON/k) of the first average histogram (Hn,avg ON), and by also normalizing the first average histogram (Hn,avg ON) by a total number of ON events (Tn ON) in it, and the second scoring function (Pn OFF(Ev)) is determined from the second average histogram (Hn,avg OFF) by subtracting from the second average histogram (Hn,avg OFF) an average bin count (Tn OFF/k) of the second average histogram (Hn,avg OFF), and by also normalizing the second average histogram (Hn,avg OFF) by a total number of OFF events (Tn OFF) in it.
8. Method according to claim 1, wherein a score map (Mn) is generated assigning to each pixel coordinate (u,v) a sum of the scores (s) of all ON and OFF events (Ev) for a respective pixel coordinate (u,v) since a last time-event Etn and before a next time-event Etn+1, an average score map (Mn,avg) is determined as an average over a last o score maps (Mn), o being a natural number.
9. Method according to claim 1, wherein the spatially structured light (30) is a plane of light (30), such that said area (31) or said image of said area is a line pattern (31).
10. Method according to claim 8, wherein a maximum score in the average score map (M,avg) is determined for each column of the average score map (Mn,avg), in case the maximum score is above a pre-defined threshold value the corresponding pixel coordinate (u,v) is determined to be a pixel coordinate of said current image, and in case the average score map (Mn,avg) comprises in a column scores (s) of neighboring pixel coordinates that are also above said threshold value, a weighted average among the scores above said threshold value is conducted to determine a center of said current image of said area in a respective column, the weighting consists of multiplying each of said pixel coordinates by a normalized score at a respective coordinate, and the normalized score is determined by dividing each score by a sum of scores in the column.
11. Method according to claim 1, wherein the spatially structured light (30) consists of a set of light rays by means of which an area of said surface (40) is illuminated, such that said area consists of a corresponding number of disconnected zones, the maximum scores in an average score map (Mn,avg) are determined by maintaining for each region associated to one of the disconnected zones only a maximum score, the pixel coordinate (u,v) of the current image of each zone is determined as the pixel coordinate of the maximum score of an associated region, and said regions are determined by an exhaustive search of the average score map (Mn,avg) for local maxima.
12. Method according claim 1, wherein a light source (10) providing said spatially structured light (30) and the optical sensor (20) remain in a fixed spatial position with respect to each other while moving relative to said surface (40).
13. Method according to claim 1, wherein the pixel coordinates (u,v) of the current image of said spatial area (31) are transformed into world coordinates (x, y, z) so as to reconstruct said surface (40) in said world coordinates.
14. Method according to claim 1, wherein the spatial structure (30) of the spatially structured light (30) is varied over said successive light modulation patterns (32), so that a large fraction of said surface (40) is covered by said illuminated spatial area (31).
15. System for reconstructing a surface, the system including a set of computer executable instructions stored on a non-transitory computer readable medium and arranged to execute the following steps on a microprocessor:
receiving an output stream from an optical sensor (20) comprising address-events (Ev) generated by said optical sensor (20) when a surface (40) is illuminated with spatially structured light (30), such that said light illuminates an area (31) of said surface (40) from which at least a portion of said light is reflected back onto the optical sensor (20), wherein said light comprises a temporarily varying intensity (I) in the form of successive light modulation patterns (32), and wherein said optical sensor (20) comprises pixels, wherein a pixel coordinate (u,v) is associated to each pixel, and wherein each pixel generates a signal related to a photocurrent being related to the intensity of the light impinging on the respective pixel, and wherein each pixel outputs an address-event (Ev) comprised by said output stream merely when the respective signal due to back-reflected light impinging on the respective pixel increases by an amount being larger than a first threshold ΦON or decreases by an amount being larger than a second threshold ΦOFF since the last address-event (Ev) from the respective pixel, and wherein
as a current image of said area (31), pixel coordinates (u,v) of address-events (Ev′) caused by light of the last light modulation pattern (32) back-reflected from said area (31) onto the optical sensor (20) are determined, particularly using scored address-events (Ev) of the optical sensor (20), wherein particularly the address events (Ev) are scored using collected statistics of the times (t) of the address-events (Ev).
16. System, for reconstructing a surface, said system comprisingi
a light source (10) being designed to illuminate a surface (40) with spatially structured light, such that said light illuminates an area (31) of said surface (40) from which said light is reflected back, said light comprises a temporarily varying intensity (I) in the form of successive light modulation patterns (32),
an optical sensor (20) being configured to detect light back-reflected from said area (31), said optical sensor (20) comprises an optical filter that is designed to filter out light wavelengths lying outside of a range of wavelengths of said light source (10), and said optical sensor (20) comprises a plurality of pixels, a pixel coordinate (u,v) is associated to each pixel, and each pixel is designed to generate a signal related to a photocurrent generated by the light impinging on a respective pixel, and each of said pixels outputs an address-event (Ev) merely when a respective signal due to the light impinging on the respective pixel increases by an amount being larger than a first threshold (ΦON) or decreases by an amount being larger than a second threshold (ΦOFF) since the last address-event (Ev) from the respective pixel, and
an analyzing means (50) connected to said optical sensor (20) for determining, as a current image of said area (31), pixel coordinates (u,v) of address-events (Ev′) caused by light of a last light modulation pattern (32) back-reflected from said area (31) onto the optical sensor (20).
US15/107,375 2013-12-23 2014-12-22 Method for reconstructing a surface using spatially structured light and a dynamic vision sensor Active 2035-03-09 US10302420B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13199421.2 2013-12-23
EP13199421 2013-12-23
EP13199421.2A EP2887009A1 (en) 2013-12-23 2013-12-23 Method for reconstructing a surface using spatially structured light and a dynamic vision sensor
PCT/EP2014/078985 WO2015097149A1 (en) 2013-12-23 2014-12-22 Method for reconstructing a surface using spatially structured light and a dynamic vision sensor

Publications (3)

Publication Number Publication Date
US20170003121A1 US20170003121A1 (en) 2017-01-05
US20170241774A9 true US20170241774A9 (en) 2017-08-24
US10302420B2 US10302420B2 (en) 2019-05-28

Family

ID=49920058

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/107,375 Active 2035-03-09 US10302420B2 (en) 2013-12-23 2014-12-22 Method for reconstructing a surface using spatially structured light and a dynamic vision sensor

Country Status (3)

Country Link
US (1) US10302420B2 (en)
EP (2) EP2887009A1 (en)
WO (1) WO2015097149A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268122A1 (en) * 2014-03-18 2015-09-24 Jenny Science Ag Method for force calibration, force computation and force limitation in iron core linear motors
US20180012078A1 (en) * 2016-07-08 2018-01-11 Reza POURNAGHI Systems, processes and devices for occlusion detection for video-based object tracking
US20210074411A1 (en) * 2018-05-17 2021-03-11 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for a patient selection for a ductal carcinoma in situ observation and determinations of actions based on the same
US11405567B2 (en) 2019-03-28 2022-08-02 Samsung Electronics Co., Ltd. Dynamic vision sensors configured to calibrate event signals using optical black region and methods of operating the same
US11525899B2 (en) * 2016-09-30 2022-12-13 Robert Bosch Gmbh Optical sensor for distance and/or velocity measurement, system for mobility monitoring of autonomous vehicles, and method for mobility monitoring of autonomous vehicles
US11558573B2 (en) 2019-02-11 2023-01-17 Samsung Electronics Co., Ltd. Sensor for accumulation signal
WO2023117387A1 (en) * 2021-12-22 2023-06-29 Sony Semiconductor Solutions Corporation Depth sensor device and method for operating a depth sensor device
WO2024135092A1 (en) * 2022-12-22 2024-06-27 Sony Semiconductor Solutions Corporation Signal processing device, signal processing method, and imaging system
US12104893B2 (en) 2019-10-28 2024-10-01 Denso Wave Incorporated Three-dimensional measurement device

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147024B2 (en) * 2014-09-16 2018-12-04 Qualcomm Incorporated Interfacing an event based system with a frame based processing system
CN105203045B (en) * 2015-07-02 2018-07-06 天津师范大学 A kind of shape of product integrity detection system and inspection method based on asynchronous time domain visual sensor
US10268188B2 (en) * 2015-12-02 2019-04-23 Qualcomm Incorporated Active camera movement determination for object position and extent in three-dimensional space
US10198660B2 (en) * 2016-01-27 2019-02-05 Samsung Electronics Co. Ltd. Method and apparatus for event sampling of dynamic vision sensor on image formation
GB201612528D0 (en) 2016-07-19 2016-08-31 Machines With Vision Ltd Vehicle localisation using the ground or road surface
US10078908B2 (en) * 2016-08-12 2018-09-18 Elite Robotics Determination of relative positions
CN108574793B (en) 2017-03-08 2022-05-10 三星电子株式会社 Image processing apparatus configured to regenerate time stamp and electronic apparatus including the same
CN107543497B (en) * 2017-03-23 2019-10-01 四川精视科技有限公司 A kind of non-overlap ken Binocular vision photogrammetry station coordinates correlating method
US10348994B2 (en) 2017-04-06 2019-07-09 Samsung Electronics Co., Ltd. Intensity image acquisition from dynamic vision sensors
US10237481B2 (en) 2017-04-18 2019-03-19 Facebook Technologies, Llc Event camera for generation of event-based images
US10628699B2 (en) 2017-06-13 2020-04-21 Samsung Electronics Co., Ltd. Event-based image feature extraction
US10535151B2 (en) 2017-08-22 2020-01-14 Microsoft Technology Licensing, Llc Depth map with structured and flood light
US10380751B1 (en) * 2017-12-12 2019-08-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Robot vision in autonomous underwater vehicles using the color shift in underwater imaging
WO2019229891A1 (en) * 2018-05-30 2019-12-05 株式会社ニコンビジョン Optical detection device and method, and distance measurement device and method
CN112327274B (en) * 2018-06-08 2022-11-22 上海禾赛科技有限公司 Laser radar
JP6863342B2 (en) * 2018-07-02 2021-04-21 株式会社デンソー Optical ranging device
EP3595295B1 (en) * 2018-07-11 2024-04-17 IniVation AG Array of cells for detecting time-dependent image data
EP3693698A1 (en) * 2019-02-05 2020-08-12 Leica Geosystems AG Measuring device with event-based camera
CN110031827B (en) * 2019-04-15 2023-02-07 吉林大学 Gesture recognition method based on ultrasonic ranging principle
CN110223310B (en) * 2019-05-22 2023-07-18 上海大学 Line structure light center line and box edge detection method based on deep learning
JP7451110B2 (en) * 2019-08-27 2024-03-18 ソニーグループ株式会社 Ranging systems and electronic equipment
US11588987B2 (en) 2019-10-02 2023-02-21 Sensors Unlimited, Inc. Neuromorphic vision with frame-rate imaging for target detection and tracking
US11869273B2 (en) 2019-10-30 2024-01-09 Sony Group Corporation Object recognition with removal of event as noise when the event is detected for a group of pixels exceeding a threshold
KR102702094B1 (en) 2019-12-17 2024-09-04 삼성전자주식회사 Dynamic vision sensor system
JP7383542B2 (en) * 2020-03-24 2023-11-20 株式会社東芝 Photodetector and distance measuring device
CN111336920B (en) * 2020-03-27 2021-09-21 南方科技大学 Calibration method and system for laser position on spatial light modulator
CN113744355B (en) * 2020-05-29 2023-09-26 杭州海康威视数字技术股份有限公司 Pulse signal processing method, device and equipment
WO2022014171A1 (en) * 2020-07-13 2022-01-20 ソニーグループ株式会社 Information processing device, information processing method, and program
CN112351191B (en) * 2020-09-14 2021-11-23 中标慧安信息技术股份有限公司 Mobile detection processing method and system
JPWO2022113877A1 (en) * 2020-11-25 2022-06-02
US20220196386A1 (en) * 2020-12-22 2022-06-23 Faro Technologies, Inc. Three-dimensional scanner with event camera
WO2022209151A1 (en) * 2021-03-30 2022-10-06 株式会社デンソーウェーブ Three-dimensional measurement device
CN113419251B (en) * 2021-05-17 2023-07-18 重庆大学 Gesture recognition, coding and decoding and communication method based on laser reflection
AT524572B1 (en) * 2021-05-26 2022-07-15 Ait Austrian Inst Tech Gmbh Method for detecting the three-dimensional structure of an object
US20230094994A1 (en) * 2021-09-29 2023-03-30 Congying SUI Imaging Method, Sensor, 3D Shape Reconstruction Method and System
WO2023089788A1 (en) * 2021-11-19 2023-05-25 ファナック株式会社 Three-dimensional measuring device
CN115112049A (en) * 2022-08-31 2022-09-27 山东大学 Three-dimensional shape line structured light precision rotation measurement method, system and device
JP2024101649A (en) * 2023-01-18 2024-07-30 株式会社デンソーウェーブ Three-dimensional measurement apparatus
JP2024105049A (en) * 2023-01-25 2024-08-06 株式会社デンソーウェーブ 3D measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135731A1 (en) * 2005-06-03 2008-06-12 Universitat Zurich Photoarray for Detecting Time-Dependent Image Data
US20120140243A1 (en) * 2010-12-03 2012-06-07 Zygo Corporation Non-contact surface characterization using modulated illumination
US20120274744A1 (en) * 2011-04-26 2012-11-01 Aptina Imaging Corporation Structured light imaging system
US20130085642A1 (en) * 2011-09-30 2013-04-04 Honda Research Institute Europe Gmbh Analyzing road surfaces

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055444A1 (en) * 2010-10-29 2012-05-03 IT-Universitetet i København Method of determining reflections of light
AU2012260548B2 (en) * 2011-05-24 2015-07-09 Koninklijke Philips N.V. 3D scanner using structured lighting
FR2983998B1 (en) * 2011-12-08 2016-02-26 Univ Pierre Et Marie Curie Paris 6 METHOD FOR 3D RECONSTRUCTION OF A SCENE USING ASYNCHRONOUS SENSORS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135731A1 (en) * 2005-06-03 2008-06-12 Universitat Zurich Photoarray for Detecting Time-Dependent Image Data
US20120140243A1 (en) * 2010-12-03 2012-06-07 Zygo Corporation Non-contact surface characterization using modulated illumination
US20120274744A1 (en) * 2011-04-26 2012-11-01 Aptina Imaging Corporation Structured light imaging system
US20130085642A1 (en) * 2011-09-30 2013-04-04 Honda Research Institute Europe Gmbh Analyzing road surfaces

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268122A1 (en) * 2014-03-18 2015-09-24 Jenny Science Ag Method for force calibration, force computation and force limitation in iron core linear motors
US20180012078A1 (en) * 2016-07-08 2018-01-11 Reza POURNAGHI Systems, processes and devices for occlusion detection for video-based object tracking
US10185877B2 (en) * 2016-07-08 2019-01-22 Huawei Technologies Co., Ltd. Systems, processes and devices for occlusion detection for video-based object tracking
US11525899B2 (en) * 2016-09-30 2022-12-13 Robert Bosch Gmbh Optical sensor for distance and/or velocity measurement, system for mobility monitoring of autonomous vehicles, and method for mobility monitoring of autonomous vehicles
US20210074411A1 (en) * 2018-05-17 2021-03-11 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for a patient selection for a ductal carcinoma in situ observation and determinations of actions based on the same
US11558573B2 (en) 2019-02-11 2023-01-17 Samsung Electronics Co., Ltd. Sensor for accumulation signal
US11405567B2 (en) 2019-03-28 2022-08-02 Samsung Electronics Co., Ltd. Dynamic vision sensors configured to calibrate event signals using optical black region and methods of operating the same
US12104893B2 (en) 2019-10-28 2024-10-01 Denso Wave Incorporated Three-dimensional measurement device
WO2023117387A1 (en) * 2021-12-22 2023-06-29 Sony Semiconductor Solutions Corporation Depth sensor device and method for operating a depth sensor device
WO2024135092A1 (en) * 2022-12-22 2024-06-27 Sony Semiconductor Solutions Corporation Signal processing device, signal processing method, and imaging system

Also Published As

Publication number Publication date
EP3087341B1 (en) 2019-08-28
EP2887009A1 (en) 2015-06-24
EP3087341A1 (en) 2016-11-02
WO2015097149A1 (en) 2015-07-02
US10302420B2 (en) 2019-05-28
US20170003121A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US10302420B2 (en) Method for reconstructing a surface using spatially structured light and a dynamic vision sensor
CN108370438B (en) Range gated depth camera assembly
Brandli et al. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor
JP6125188B2 (en) Video processing method and apparatus
CN103471512B (en) A kind of glass plate width detecting system based on machine vision
US10302424B2 (en) Motion contrast depth scanning
US20020118874A1 (en) Apparatus and method for taking dimensions of 3D object
CN104751146B (en) A kind of indoor human body detection method based on 3D point cloud image
CN114396875B (en) Rectangular package volume measurement method based on vertical shooting of depth camera
CN107238727B (en) Photoelectric type rotation speed sensor based on dynamic vision sensor chip and detection method
KR102432644B1 (en) How to 3D Reconstruct a Scene
JP2022532014A (en) Systems and methods for vibration imaging and sensing
CN113554697A (en) Cabin section profile accurate measurement method based on line laser
US20210148694A1 (en) System and method for 3d profile determination using model-based peak selection
BE1025329A9 (en) Human body recognition method and human body recognition sensor
CN112740065B (en) Imaging device, method for imaging and method for depth mapping
CN107271445A (en) Defect detection method and device
CN107564051B (en) Depth information acquisition method and system
CN102945547B (en) Cold-rolled steel plate surface image illumination homogenizing method
Chéné et al. Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods
KR101640527B1 (en) Method and Apparatus for Monitoring Video for Estimating Size of Single Object
CN103605968A (en) Pupil locating method based on mixed projection
CN110349133A (en) Body surface defect inspection method, device
CN109661683B (en) Structured light projection method, depth detection method and structured light projection device based on image content
CN207610704U (en) A kind of photopic vision dynamic positioning system based on light stream

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITAT ZURICH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRANDLI, CHRISTIAN;DELBRUCK, TOBIAS;SIGNING DATES FROM 20160628 TO 20160712;REEL/FRAME:039272/0001

Owner name: ETH ZURICH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOPFLINGER, MARKUS ANDREAS;HUTTER, MARCO;MANTEL, THOMAS ALBERT;SIGNING DATES FROM 20160626 TO 20160629;REEL/FRAME:039271/0520

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4