US20170239972A1 - Optical anti-counterfeiting component and optical anti-counterfeiting product - Google Patents

Optical anti-counterfeiting component and optical anti-counterfeiting product Download PDF

Info

Publication number
US20170239972A1
US20170239972A1 US15/518,794 US201515518794A US2017239972A1 US 20170239972 A1 US20170239972 A1 US 20170239972A1 US 201515518794 A US201515518794 A US 201515518794A US 2017239972 A1 US2017239972 A1 US 2017239972A1
Authority
US
United States
Prior art keywords
optical
sub
counterfeiting
layer
optical anti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/518,794
Other versions
US10421308B2 (en
Inventor
Baoli Zhang
Kai Sun
Weiwei Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Banknote Printing and Minting Corp
Zhongchao Special Security Technology Co Ltd
Original Assignee
China Banknote Printing and Minting Corp
Zhongchao Special Security Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52603795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170239972(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by China Banknote Printing and Minting Corp, Zhongchao Special Security Technology Co Ltd filed Critical China Banknote Printing and Minting Corp
Assigned to CHINA BANKNOTE PRINTING AND MINTING CORP., ZHONGCHAO SPECIAL SECURITY TECHNOLOGY CO., LTD reassignment CHINA BANKNOTE PRINTING AND MINTING CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUN, KAI, ZHANG, WEIWEI, ZHANG, Baoli
Publication of US20170239972A1 publication Critical patent/US20170239972A1/en
Application granted granted Critical
Publication of US10421308B2 publication Critical patent/US10421308B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/06121Constructional details the marking having been punched or cut out, e.g. a barcode machined in a metal work-piece
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/08Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
    • G06K19/10Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards
    • G06K19/14Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being sensed by radiation

Definitions

  • the present invention relates to the optical anti-counterfeiting field, in particular to an optical anti-counterfeiting component and an optical anti-counterfeiting product.
  • the multi-layer structured coating technique can present different color characteristics or present different colors at different viewing angles, which can't be imitated or duplicated by means of electronic devices such as cameras, scanners, and printers, etc.; therefore, it has high anti-counterfeiting capability.
  • the requirements in the anti-counterfeiting field can't be satisfied well by multi-layer coating technique solely nowadays.
  • optical variable magnetic ink is formed by adding a magnetic layer in an optical variable structure, and the OVMI particles can be induced by the magnetic field to align directionally in the directions of the magnetic induction lines, so that specific graphic and text structures can be formed.
  • the shape can't be designed freely under the constraints of the shape of the magnetic field; in addition, special orientation equipment and process are required to achieve directional alignment of the optical variable magnetic particles.
  • a technical integration solution that combines interferential multi-layer coating with holographic technique, and color matching technique, etc. is complex, and the corresponding effect is not ideal. Therefore, with such a technical integration solution, the improvement of anti-counterfeiting capability of the interferential multi-layer coating is still limited.
  • the object of the present invention is to provide an optical anti-counterfeiting component and an optical anti-counterfeiting product, in order to improve performance of the anti-counterfeiting products.
  • the present invention provides an optical anti-counterfeiting component, comprising: a substrate; a sub-wavelength surface micro-structure and an optical reflection facet formed on an upper surface of the substrate; and a multi-layer structured coating formed on the sub-wavelength surface micro-structure and the optical reflection facet.
  • the sub-wavelength surface micro-structure and the optical reflection facet overlap with each other partially.
  • the multi-layer structured coating forms a Fabry-Perot resonant cavity.
  • the multi-layer structured coating forms a hollowed-out pattern.
  • the hollowed-out pattern has a registration relationship with the sub-wavelength surface micro-structure and/or the optical reflection facet.
  • the sub-wavelength surface micro-structure is an one-dimensional grating or a two-dimensional grating; a groove shape of the sub-wavelength surface micro-structure is sinusoidal, rectangular, or zigzag shape, or a shape joined or combined from at least two of sinusoidal, rectangular, and zigzag shapes.
  • a groove depth of the sub-wavelength surface micro-structure is 10 nm-500 nm.
  • the groove depth of the sub-wavelength surface micro-structure is 50 nm-300 nm.
  • a characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 50 nm-500 nm.
  • the characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 200 nm-400 nm.
  • a characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 1 ⁇ m-300 ⁇ m.
  • the characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 3 ⁇ m-100 ⁇ m.
  • the characteristic dimension of the optical reflection facet in at least one dimension in a two-dimensional plane in which the optical reflection facet lies is 5 ⁇ m-30 ⁇ m.
  • At least one of diffraction optical variable feature, micro-nano structural feature, printing feature, fluorescent feature, and magnetic, optical, electrical, or radioactive feature for machine reading is formed on at least one of the substrate, the sub-wavelength surface micro-structure, and the optical reflection facet.
  • the multi-layer structured coating consists of an absorbing layer, a dielectric layer, and a reflecting layer.
  • the present invention further provides an optical anti-counterfeiting product, which includes the optical anti-counterfeiting component.
  • a contrasting optical characteristic is formed between the region in which the sub-wavelength surface micro-structure and the multi-layer structured coating lie and the region in which the optical reflection facet and the multi-layer structured coating lie, so that the optical anti-counterfeiting component or the optical anti-counterfeiting product that includes the optical anti-counterfeiting component can be identified easily and has high anti-counterfeiting capability.
  • FIG. 1 is a sectional view of the optical anti-counterfeiting component according to an embodiment of the present invention
  • FIGS. 2( a ) and 2( b ) are sectional views of the optical anti-counterfeiting component according to another embodiment of the present invention.
  • FIG. 3 is a sectional view of the optical anti-counterfeiting component according to yet another embodiment of the present invention.
  • FIG. 4 is a top view of the optical anti-counterfeiting component according to yet another embodiment of the present invention.
  • Substrate 101 Upper surface 103 Multi-layer structured coating 1021
  • Sub-wavelength surface micro-structure 1022 Optical reflection facet 1022′ Curved surface 1
  • the optical anti-counterfeiting component 1 comprises: a substrate 101 , a sub-wavelength surface micro-structure 1021 , an optical reflection facet 1022 , and a multi-layer structured coating 103 , wherein, the sub-wavelength surface micro-structure 1021 is formed on an upper surface 102 of the substrate 101 , and the sub-wavelength surface micro-structure 1021 at least partially cover the upper surface 102 ; the optical reflection facet 1022 is formed on the upper surface 102 of the substrate 101 , and the optical reflection facet 1021 at least partially covers the upper surface 102 ; a region in which the sub-wavelength surface micro-structure 1021 lies is denoted as region A, and a region in which the optical reflection facet 1022 lies is denoted as region B; the multi-layer structured coating 103 at least partially covers the region A and the region B.
  • the region A and the region B are different from each other in color; moreover, the region B has an optical scattering characteristic provided by substantially random change distributed in a two-dimensional plane in which the optical facet lies according to the orientation of the optical facet, and/or the region B can be perceived by the observer as a surface protruding forward and/or backward relative to its actual spatial shape according to the selected orientation of the optical facet.
  • the sub-wavelength surface micro-structure can be a one-dimensional grating or two-dimensional grating, and the groove shape of the sub-wavelength surface micro-structure can be sinusoidal, rectangular, or zigzag shape, etc.; the grating distribution of the two-dimensional grating can be in an orthogonal structure, honeycomb structure, two-dimensional Bravais lattice structure, or random structure, etc.
  • the structure of the sub-wavelength surface micro-structure is not limited to the above-mentioned structures; moreover, a structure joined or combined from those structures can be used for the sub-wavelength surface micro-structure in the actual optical anti-counterfeiting component.
  • patterns such as text and logo, etc. required for anti-counterfeiting can be realized.
  • the groove depth of the sub-wavelength surface micro-structure is 10 nm-500 nm, and more preferably is 50 nm-300 nm.
  • the characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 50 nm-500 nm, and preferably is 200 nm-400 nm.
  • the characteristic dimension in one direction meets that requirement, the characteristic dimension in other direction is not limited.
  • the period and the groove depth of the sub-wavelength surface micro-structure have a certain matching relationship with each other, that matching relationship can be represented by a depth-width ratio (i.e., ratio of groove depth to period), which can be calculated by strict coupled wave theoretical design according to the specific reproduction effect.
  • a depth-width ratio i.e., ratio of groove depth to period
  • the range of the depth-width ratio generally is 0.3-2, and more preferably is 0.4-1.
  • the duty cycle of the sub-wavelength surface micro-structure (i.e., ratio of grating ridge width to period) is also an important parameter that has an influence on the optical effect.
  • the duty cycle mainly has an influence on the brightness and contrast of the optical anti-counterfeiting component.
  • the duty cycle should be 0.3-0.7, and preferably is 0.4-0.6.
  • the multi-layer structured coating 103 can be in a multi-layer dielectric film structure, i.e., consisting of different dielectric layers that have high or low refractivity. Such structure is generally designed with a ⁇ /4 film system.
  • the materials of the dielectric layers can be one or more of inorganic coating film materials such as MgF 2 , SiO 2 , Al 2 O 3 , MgO, HfO 2 , TiO 2 , ZnS, and ZnO, etc.
  • the dielectric layers can employ high molecular polymers, or employ the combination of inorganic coating film materials and high molecular polymers.
  • the structure of the multi-layer structured coating 103 can be a metal/dielectric multi-layer film structure, and generally employs three-layer structure or five-layer structure.
  • the structure of the multi-layer structured coating 103 can comprise at least one of the following structures:
  • a reflecting layer, a dielectric layer and an absorbing layer formed orderly on the sub-wavelength surface micro-structure, or formed in a reversed order;
  • a multi-layer structured coating in a three-layer structure consists of a reflecting layer, a dielectric layer and an absorbing layer, or consists of an absorbing layer, a dielectric layer and an absorbing layer, wherein, the former has an optical variable effect on one side only, while the latter has an optical variable effect on both sides.
  • a multi-layer structured coating in a five-layer structure consists of an absorbing layer, a dielectric layer, a reflecting layer, a dielectric layer and an absorbing layer, or consists of an absorbing layer, a dielectric layer, an absorbing layer, a dielectric layer and an absorbing layer.
  • the multi-layer structured coating in a five-layer structure has optical variable effects in both sides, and the optical variable effects can be designed as being identical to each other or different from each other, depending on the parameters and materials of the reflecting layer, dielectric layer, and absorbing layer.
  • the above-mentioned reflecting layer generally is a metal layer in larger thickness that is generally greater than 20 nm, and the material of the reflecting layer can be one or more of Au, Ag, Al, Fe, Sn, Zn, Ni, and Cr, etc.
  • the above-mentioned dielectric layers can be single-layer dielectric layers, the dielectric materials of the dielectric layers can be selected from inorganic coating film materials such as MgF 2 , SiO 2 , Al 2 O 3 , MgO, PMMA, HfO 2 , TiO 2 , ZnS, and ZnO or the like and high molecular polymers, and the thickness generally is 10 nm-1000 nm, and preferably is 50 nm-800 nm, depending on the optical effect to be achieved and the refractivity of material.
  • the dielectric layers can be multi-layer dielectric layers
  • the dielectric materials of the dielectric layers can be selected from commonly used inorganic coating film materials such as MgF 2 , SiO 2 , Al 2 O 3 , MgO, PMMA, HfO 2 , TiO 2 , ZnS, and ZnO or the like, and the multi-layered dielectric films are generally used with a ⁇ /4 film system design of high and low refractivity.
  • the materials of the absorbing layers can be one or more of metal materials such as Au, Ag, Cu, Al, Fe, Sn, Zn, Ni, and Cr and the like or metallic compounds, the thickness generally doesn't exceed 20 nm, and preferably is 5-10 nm, for the purpose of partial reflection, partial transmission, and partial absorption of the illumination light.
  • the structure of the multi-layer structured coating 103 according to the present invention is not limited to the above-mentioned. structure; for example, a two-layer structure (i.e., a reflecting layer and a dielectric layer), a four-layer structure (i.e., an absorbing layer, a dielectric layer, a reflecting layer, and a dielectric layer), etc., are also permitted.
  • the multi-layer structured coating 103 can form a Fabry-Perot resonant cavity, which has a selective absorption and reflection effect for incident white light, so that the exiting light only contains specific wave bands, and thereby specific colors are formed; when the incident angle or exit angle of the light changes, the corresponding light path will change, and the interference wave band will change too, resulting in change of the colors presented to the observer, and thereby an optical variable effect in specific colors is created.
  • the parameter matching relationship, specific principle, and optical characteristics have been defined specifically in the Chinese Patent No. CN10251443, the content of which is included in the present invention.
  • a combination of the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103 a color change characteristic that the color changes with the viewing angle is created, and is different from a color characteristic solely provided by a multi-layer structured coating with a flat or smooth surface; thus, a unique color change characteristic that the color changes with the viewing angle is created.
  • the characteristic dimension or period of the optical reflection facet 1022 in at least one dimension of a two-dimensional plane in which the optical reflection facet 1022 lies is 1 ⁇ m-300 ⁇ m preferably is 3 ⁇ m-100 ⁇ m, and particularly preferably is 5 ⁇ m-30 ⁇ m.
  • the depth of the optical reflection facet is smaller than 10 ⁇ m, and preferably is 1 ⁇ m-5 ⁇ m. Thus, the facet has no light diffraction effect in the visible wavelength range.
  • the orientation of the optical reflection facet can be determined according to its inclination angle and/or azimuth angle.
  • the specific parameter setting, principle, and optical characteristics have been defined by Chinese Patent No. CN102514443, CN102905909, CN103282212 and CN103229078 jointly, the content of which is included in the present invention.
  • the characteristics of the multi-layer structured coating 103 on a flat surface include characteristics in two aspects: its color and color change with viewing angle.
  • the color characteristic provided by the multi-layer structured coating 103 is not changed in actual by the combination of the optical reflection facet 1022 and the multi-layer structured coating 103 , i.e., the multi-layer structured coating has the same selective absorption and reflection characteristics as a multi-layer structured coating formed on a flat surface; for a specific light source, only the direction of emergent light is modified corresponding to each optical reflection facet; hence, in actual, the distribution of the viewing angle of the color change characteristic of the multi-layer structured coating 103 on the two-dimensional surface in the region B is modified.
  • the region A and the region B are different from each other in color characteristic and color change characteristic.
  • the sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 can be transferred onto the surface of the substrate 101 by producing a master mask by holographic interferometry, laser photolithography, or electron-beam lithography, producing a work mask through an electroforming process, and then through a mold pressing or UV duplication process, etc.
  • the sub-wavelength surface micro-structure and the optical reflection facet have different requirements for the photoresist material of the master mask or the manufacturing process of the master mask. Actually, it is quite difficult to combine them on the same master mask or work mask through the same process. In actual practice, for example, the combination can be accomplished through two steps: First, producing the sub-wavelength surface micro-structure by holographic interferometry; then, producing the optical reflection facet by laser direct writing through a registration photoetching process.
  • the multi-layer structured coating 103 generally can be formed through an vacuum coating process, such as thermal evaporation, electron beam evaporation, high-frequency sputtering, magnetron sputtering, ion sputtering, reactive sputtering, or ion coating, etc., or some of the layers can be formed through a chemical plating, electroplating, or spreading process, etc.
  • an vacuum coating process such as thermal evaporation, electron beam evaporation, high-frequency sputtering, magnetron sputtering, ion sputtering, reactive sputtering, or ion coating, etc.
  • the multi-layer structured coating covering the sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 is generally formed in the same process, for the sake of simplifying the production process. Therefore, the parameters of the multi-layer structured coating on the surface of the sub-wavelength surface micro-structure 1021 are essentially the same as those of the multi-layer structured coating on the surface of the optical reflection facet 1022 .
  • the optical reflection facet 1022 has an optical scattering characteristic provided by substantially random change distributed in a two-dimensional plane in which the optical reflection facet 1022 lies, and the region B can be perceived by the observer as a surface that protrudes forward and/or backward relative to its actual spatial shape according to the selected orientation of the optical reflection facet 1022 .
  • FIG. 2( b ) shows that the optical reflection facet 1022 is utilized to simulate a curved surface 1022 ′ and thereby forms a characteristic of protruding from the surface 102 in the region B.
  • any optical reflection facet in the two-dimensional plane has substantially similar normal direction as the simulated curved surface 1022 ° at that position.
  • FIG. 3 shows an embodiment in which a region C and associated anti-counterfeiting characteristics are further added on the basis of the optical anti-counterfeiting component 1 according to the present invention, wherein, the sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 are overlapped to form the region C on the upper surface 102 of the substrate 101 .
  • the anti-counterfeiting characteristics include the two anti-counterfeiting characteristics mentioned above, i.e., the anti-counterfeiting characteristic obtained by virtue of the combination of the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103 and the anti-counterfeiting characteristic obtained by virtue of the combination of the optical reflection facet 1022 and the multi-layer structured coating 103 .
  • the anti-counterfeiting characteristics of the region C have the color and color change characteristics formed by the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103 different from those of the multi-layer structured coating, as well as the optical scattering characteristic resulted from random distribution of the optical reflection facets 1022 on the two-dimensional surface of the region C and/or the characteristic of a surface protruding forward and/or backward relative to the surface of the region C as perceived by the observer.
  • the sub-wavelength surface micro-structure 1021 has sinusoidal groove shape, 300 nm period, and 95 nm depth, and is in orthogonal two-dimensional grid distribution
  • the multi-layer structured coating 103 includes sequentially arranged Al (40 nm)/SiO 2 (370 nm)/Cr (5 nm) layers (on a flat surface, the multi-layer structured coating that has the above-mentioned parameter has a characteristic that it exhibits a golden yellow color when it is viewed from the front side and exhibits a green color when it is viewed obliquely).
  • the region A exhibits a red color when it is viewed from the front side, and exhibits a yellow color when it is viewed inclined;
  • the region B has the characteristic of color change from golden yellow to green provided by the multi-layer structured coating and the optical scattering characteristic and/or protruding characteristic provided by the optical reflection facet;
  • the region C has the characteristic of color change from red to yellow formed by the sub-wavelength surface micro-structure and the multi-layer structured coating jointly and the optical scattering characteristic and/or protruding characteristic provided by the optical reflection facet.
  • the three regions A, B and C have their respective visual characteristics and form a strong visual contrast to each other; thus, the optical anti-counterfeiting component 1 has strong anti-counterfeiting capability.
  • the coverage of the multi-layer structured coating is patterned, and thereby forms an hollowed-out feature.
  • the entire multi-layer structured coating can be patterned, or one or more layers of the multi-layer structured coating can be patterned respectively.
  • a patterned protective layer is applied after the multi-layer structured coating is formed by printing, and then the coating outside of the protective area is etched with a chemical solvent (e.g., alkaline liquor).
  • a stripping layer is formed before the multi-layer structured coating is formed, and the coating on the stripping layer is removed by soaking with a liquid (e.g., water) to form a hollowed-out pattern after the multi-layer structured coating is formed.
  • the hollowed-out pattern 1031 of the multi-layer structured coating 103 (uncovered region of the multi-layer structured coating) has a strict position correspondence relationship with the sub-wavelength surface micro-structure 1021 and/or optical reflection facet 1022 ; thus, the optical anti-counterfeiting component according to the present invention can be identified more easily and has stronger forgery prevention capability.
  • A, B, C correspond to the three regions A, B and C in FIG.
  • CBPM and ZSST have a color characteristic and a characteristic of color change with viewing angle, which are formed by the sub-wavelength surface micro-structure and the multi-layer structured coating formed on the surface of the sub-wavelength surface micro-structure jointly and are different from those in the region B and region C;
  • the region B has an optical scattering characteristic and a characteristic of color change with viewing angle, which are formed by the optical reflection facet and the multi-layer structured coating formed on the surface of the optical reflection facet jointly;
  • region C has a characteristic of surface protruding forward relative to the actual spatial shape and a characteristic of color change with viewing angle, which are resulted from the optical reflection facet and the multi-layer structured coating formed on the surface of the optical reflection facet.
  • a sinusoidal optical grating is formed in the region 1031 , the period of the sinusoidal optical grating is 350 nm, and the deep of the sinusoidal optical grating is 300 nm (suppose the depth-width ratio of that structure is greater than that of the surface micro-structure outside of the region 1031 ), Then, an Al layer in 5 nm thickness and a SiO 2 layer in 250 nm thickness are deposited on the top surface 102 ; next, the optical anti-counterfeiting component 1 is soaked in 10% NaOH solution, till that the Al layer in the region 1031 completely disappears rightly; at this point, the surface outside of the region 1031 is still covered by the Al layer and SiO 2 layer.
  • an Al layer in 40 nm thickness is deposited on the SiO 2 layer, and a SiO 2 layer in 50 nm thickness is deposited on the surface of the new Al layer; next, the optical anti-counterfeiting component 1 is soaked in 5% NaOH solution, till the Al layer in the region 1031 completely disappears rightly. At this point, when the optical anti-counterfeiting component 1 is viewed from the side of the lower surface of the region 1031 , it is seen that a multi-layer structured coating is provided in the area outside of the region 1031 . In addition, a hollowed-out pattern is formed in the region 1031 , because there is no coating in the region.
  • cylindrical mirrors are formed in the region 1031 , the width of the cylindrical mirror is 30 ⁇ m, the clearance between the cylindrical mirrors is 2 ⁇ m, and the height of the cylindrical mirror is 10 ⁇ m (greater than the 1.5 ⁇ m height of the optical reflection facet); an Al layer in 40 nm thickness (thickness in the flat area), a SiO 2 layer in 250 nm thickness, and a Cr layer in 5 nm thickness are deposited sequentially on the surface 102 , and then a protective layer (polyester material) in 1 ⁇ m thickness (thickness of the flat surface) is formed through a spreading process.
  • a protective layer polyyester material
  • the optical anti-counterfeiting component is soaked in 10% NaOH solution at 40° C., till the Al/SiO 2 /Cr coating in the region 1031 just completely disappears; at this point, the area outside of the region 1031 is stilled covered by the Al/SiO 2 /Cr coating; thus, the optical anti-counterfeiting component is prepared.
  • a multi-layer structured coating is provided by the sequentially stacked Al/SiO2/Cr layers in the area outside of the region 1031 , and a hollowed-out pattern is formed in the region 1031 .
  • one or more of diffraction optical variable feature, micro-nano structural feature, printing feature, fluorescent feature, and magnetic, optical, electrical, or radioactive feature for machine reading can be formed in the substrate 101 and on the upper and lower surfaces of the substrate 101 , and/or in and on the sub-wavelength surface micro-structure and optical reflection facet.
  • optical anti-counterfeiting component according to the present invention can be used as a tag, logo, wide strip, transparent window, or overlaying film, etc., and can be bonded to different articles by means of different bonding mechanisms, For example, it can be transferred onto high-security products and high added-value products, such as bank notes and credit cards, etc.
  • the present invention provides a product with the optical anti-counterfeiting component, which includes, but is not limited to various high-security products and high added-value products such as bank notes, credit cards, passports, valuable securities, etc., and various packing paper and packing boxes, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The present invention discloses an optical anti-counterfeiting component and an optical anti-counterfeiting product. The optical anti-counterfeiting component comprises: a substrate; a sub-wavelength surface micro-structure and an optical reflection facet formed on an upper surface of the substrate; and a multi-layer structured coating formed on the sub-wavelength surface micro-structure and the optical reflection facet. In the case where the same multi-layer structured coating is used, a contrasting optical characteristic is formed between the region in which the sub-wavelength surface micro-structure and the multi-layer structured coating lie and the region in which the optical reflection facet and the multi-layer structured coating lie, so that the optical anti-counterfeiting component or the optical anti-counterfeiting product that includes the optical anti-counterfeiting component can be identified easily and has high anti-counterfeiting capability.

Description

    FIELD of the INVENTION
  • The present invention relates to the optical anti-counterfeiting field, in particular to an optical anti-counterfeiting component and an optical anti-counterfeiting product.
  • BACKGROUND OF THE INVENTION
  • To prevent forgery of various high-security or high added-value prints, such as banknotes, certificates, and product packages, etc., a multi-layer structured coating technique is widely applied. The multi-layer structured coating technique can present different color characteristics or present different colors at different viewing angles, which can't be imitated or duplicated by means of electronic devices such as cameras, scanners, and printers, etc.; therefore, it has high anti-counterfeiting capability. However, the requirements in the anti-counterfeiting field can't be satisfied well by multi-layer coating technique solely nowadays.
  • In the prior art, optical variable magnetic ink (OVMI) is formed by adding a magnetic layer in an optical variable structure, and the OVMI particles can be induced by the magnetic field to align directionally in the directions of the magnetic induction lines, so that specific graphic and text structures can be formed. However, owing to the fact that the optical variable magnetic particles rely on a magnetic field to achieve a directional alignment, the shape can't be designed freely under the constraints of the shape of the magnetic field; in addition, special orientation equipment and process are required to achieve directional alignment of the optical variable magnetic particles. Moreover, a technical integration solution that combines interferential multi-layer coating with holographic technique, and color matching technique, etc. is complex, and the corresponding effect is not ideal. Therefore, with such a technical integration solution, the improvement of anti-counterfeiting capability of the interferential multi-layer coating is still limited.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to provide an optical anti-counterfeiting component and an optical anti-counterfeiting product, in order to improve performance of the anti-counterfeiting products.
  • The present invention provides an optical anti-counterfeiting component, comprising: a substrate; a sub-wavelength surface micro-structure and an optical reflection facet formed on an upper surface of the substrate; and a multi-layer structured coating formed on the sub-wavelength surface micro-structure and the optical reflection facet.
  • Preferably, the sub-wavelength surface micro-structure and the optical reflection facet overlap with each other partially.
  • Preferably, the multi-layer structured coating forms a Fabry-Perot resonant cavity.
  • Preferably, the multi-layer structured coating forms a hollowed-out pattern.
  • Preferably, the hollowed-out pattern has a registration relationship with the sub-wavelength surface micro-structure and/or the optical reflection facet.
  • Preferably, the sub-wavelength surface micro-structure is an one-dimensional grating or a two-dimensional grating; a groove shape of the sub-wavelength surface micro-structure is sinusoidal, rectangular, or zigzag shape, or a shape joined or combined from at least two of sinusoidal, rectangular, and zigzag shapes.
  • Preferably, a groove depth of the sub-wavelength surface micro-structure is 10 nm-500 nm.
  • Preferably, the groove depth of the sub-wavelength surface micro-structure is 50 nm-300 nm.
  • Preferably, a characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 50 nm-500 nm.
  • Preferably, the characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 200 nm-400 nm.
  • Preferably, a characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 1 μm-300 μm.
  • Preferably, the characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 3 μm-100 μm.
  • Preferably, the characteristic dimension of the optical reflection facet in at least one dimension in a two-dimensional plane in which the optical reflection facet lies is 5 μm-30 μm.
  • Preferably, at least one of diffraction optical variable feature, micro-nano structural feature, printing feature, fluorescent feature, and magnetic, optical, electrical, or radioactive feature for machine reading is formed on at least one of the substrate, the sub-wavelength surface micro-structure, and the optical reflection facet.
  • Preferably, the multi-layer structured coating consists of an absorbing layer, a dielectric layer, and a reflecting layer.
  • The present invention further provides an optical anti-counterfeiting product, which includes the optical anti-counterfeiting component.
  • In the case where the same multi-layer structured coating is used, a contrasting optical characteristic is formed between the region in which the sub-wavelength surface micro-structure and the multi-layer structured coating lie and the region in which the optical reflection facet and the multi-layer structured coating lie, so that the optical anti-counterfeiting component or the optical anti-counterfeiting product that includes the optical anti-counterfeiting component can be identified easily and has high anti-counterfeiting capability.
  • Other features and advantages of the present invention will be further detailed in the embodiments hereunder.
  • DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are provided here to facilitate further understanding on the present invention, and constitute a part of this document. They are used in conjunction with the following embodiments to explain the present invention, but shall not be comprehended as constituting any limitation to the present invention. Among the drawings:
  • FIG. 1 is a sectional view of the optical anti-counterfeiting component according to an embodiment of the present invention;
  • FIGS. 2(a) and 2(b) are sectional views of the optical anti-counterfeiting component according to another embodiment of the present invention;
  • FIG. 3 is a sectional view of the optical anti-counterfeiting component according to yet another embodiment of the present invention;
  • FIG. 4 is a top view of the optical anti-counterfeiting component according to yet another embodiment of the present invention.
  • Description of the Symbols
  •  101 Substrate
     102 Upper surface
     103 Multi-layer structured coating
    1021 Sub-wavelength surface
    micro-structure
    1022 Optical reflection facet
     1022′ Curved surface
       1 Optical anti-counterfeiting component
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereunder some embodiments of the present invention will be detailed with reference to the accompanying drawings. It should be appreciated that the embodiments described here are only provided to describe and explain the present invention, but shall not be deemed as constituting any limitation to the present invention.
  • The present invention provides an optical anti-counterfeiting component 1. As shown in FIG. 1, the optical anti-counterfeiting component 1 comprises: a substrate 101, a sub-wavelength surface micro-structure 1021, an optical reflection facet 1022, and a multi-layer structured coating 103, wherein, the sub-wavelength surface micro-structure 1021 is formed on an upper surface 102 of the substrate 101, and the sub-wavelength surface micro-structure 1021 at least partially cover the upper surface 102; the optical reflection facet 1022 is formed on the upper surface 102 of the substrate 101, and the optical reflection facet 1021 at least partially covers the upper surface 102; a region in which the sub-wavelength surface micro-structure 1021 lies is denoted as region A, and a region in which the optical reflection facet 1022 lies is denoted as region B; the multi-layer structured coating 103 at least partially covers the region A and the region B. Since the multi-layer structured coating 103 covers the region A and the region B, the region A and the region B are different from each other in color; moreover, the region B has an optical scattering characteristic provided by substantially random change distributed in a two-dimensional plane in which the optical facet lies according to the orientation of the optical facet, and/or the region B can be perceived by the observer as a surface protruding forward and/or backward relative to its actual spatial shape according to the selected orientation of the optical facet.
  • The sub-wavelength surface micro-structure can be a one-dimensional grating or two-dimensional grating, and the groove shape of the sub-wavelength surface micro-structure can be sinusoidal, rectangular, or zigzag shape, etc.; the grating distribution of the two-dimensional grating can be in an orthogonal structure, honeycomb structure, two-dimensional Bravais lattice structure, or random structure, etc. It should be understood that the structure of the sub-wavelength surface micro-structure is not limited to the above-mentioned structures; moreover, a structure joined or combined from those structures can be used for the sub-wavelength surface micro-structure in the actual optical anti-counterfeiting component. By designing the sub-wavelength surface micro-structure, patterns such as text and logo, etc. required for anti-counterfeiting can be realized.
  • Preferably, the groove depth of the sub-wavelength surface micro-structure is 10 nm-500 nm, and more preferably is 50 nm-300 nm. In addition, the characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 50 nm-500 nm, and preferably is 200 nm-400 nm. Preferably, if the characteristic dimension in one direction meets that requirement, the characteristic dimension in other direction is not limited.
  • Preferably, the period and the groove depth of the sub-wavelength surface micro-structure have a certain matching relationship with each other, that matching relationship can be represented by a depth-width ratio (i.e., ratio of groove depth to period), which can be calculated by strict coupled wave theoretical design according to the specific reproduction effect. Preferably, the range of the depth-width ratio generally is 0.3-2, and more preferably is 0.4-1.
  • Preferably, the duty cycle of the sub-wavelength surface micro-structure (i.e., ratio of grating ridge width to period) is also an important parameter that has an influence on the optical effect. The duty cycle mainly has an influence on the brightness and contrast of the optical anti-counterfeiting component. Generally, the duty cycle should be 0.3-0.7, and preferably is 0.4-0.6.
  • Hereunder the structure of the multi-layer structured coating 103 employed in the optical anti-counterfeiting component 1 according to the present invention will be described.
  • The multi-layer structured coating 103 can be in a multi-layer dielectric film structure, i.e., consisting of different dielectric layers that have high or low refractivity. Such structure is generally designed with a λ/4 film system. The materials of the dielectric layers can be one or more of inorganic coating film materials such as MgF2, SiO2, Al2O3, MgO, HfO2, TiO2, ZnS, and ZnO, etc. Alternatively, the dielectric layers can employ high molecular polymers, or employ the combination of inorganic coating film materials and high molecular polymers.
  • Alternatively, the structure of the multi-layer structured coating 103 can be a metal/dielectric multi-layer film structure, and generally employs three-layer structure or five-layer structure. For example, the structure of the multi-layer structured coating 103 can comprise at least one of the following structures:
  • a. a reflecting layer, a dielectric layer and an absorbing layer formed orderly on the sub-wavelength surface micro-structure, or formed in a reversed order;
  • b. an absorbing layer, a dielectric layer and an absorbing layer formed orderly on the sub-wavelength surface micro-structure, or formed in a reversed order;
  • c. an absorbing layer, a dielectric layer, a reflecting layer, a dielectric layer, and an absorbing layer formed orderly on the sub-wavelength surface micro-structure;
  • d. an absorbing layer, a dielectric layer, an absorbing layer, a dielectric layer, and an absorbing layer formed orderly on the sub-wavelength surface micro-structure.
  • In brief, a multi-layer structured coating in a three-layer structure consists of a reflecting layer, a dielectric layer and an absorbing layer, or consists of an absorbing layer, a dielectric layer and an absorbing layer, wherein, the former has an optical variable effect on one side only, while the latter has an optical variable effect on both sides. A multi-layer structured coating in a five-layer structure consists of an absorbing layer, a dielectric layer, a reflecting layer, a dielectric layer and an absorbing layer, or consists of an absorbing layer, a dielectric layer, an absorbing layer, a dielectric layer and an absorbing layer. The multi-layer structured coating in a five-layer structure has optical variable effects in both sides, and the optical variable effects can be designed as being identical to each other or different from each other, depending on the parameters and materials of the reflecting layer, dielectric layer, and absorbing layer.
  • The above-mentioned reflecting layer generally is a metal layer in larger thickness that is generally greater than 20 nm, and the material of the reflecting layer can be one or more of Au, Ag, Al, Fe, Sn, Zn, Ni, and Cr, etc. The above-mentioned dielectric layers can be single-layer dielectric layers, the dielectric materials of the dielectric layers can be selected from inorganic coating film materials such as MgF2, SiO2, Al2O3, MgO, PMMA, HfO2, TiO2, ZnS, and ZnO or the like and high molecular polymers, and the thickness generally is 10 nm-1000 nm, and preferably is 50 nm-800 nm, depending on the optical effect to be achieved and the refractivity of material. Of course, the dielectric layers can be multi-layer dielectric layers, the dielectric materials of the dielectric layers can be selected from commonly used inorganic coating film materials such as MgF2, SiO2, Al2O3, MgO, PMMA, HfO2, TiO2, ZnS, and ZnO or the like, and the multi-layered dielectric films are generally used with a λ/4 film system design of high and low refractivity. The materials of the absorbing layers can be one or more of metal materials such as Au, Ag, Cu, Al, Fe, Sn, Zn, Ni, and Cr and the like or metallic compounds, the thickness generally doesn't exceed 20 nm, and preferably is 5-10 nm, for the purpose of partial reflection, partial transmission, and partial absorption of the illumination light.
  • It should be understood that the structure of the multi-layer structured coating 103 according to the present invention is not limited to the above-mentioned. structure; for example, a two-layer structure (i.e., a reflecting layer and a dielectric layer), a four-layer structure (i.e., an absorbing layer, a dielectric layer, a reflecting layer, and a dielectric layer), etc., are also permitted.
  • The multi-layer structured coating 103 can form a Fabry-Perot resonant cavity, which has a selective absorption and reflection effect for incident white light, so that the exiting light only contains specific wave bands, and thereby specific colors are formed; when the incident angle or exit angle of the light changes, the corresponding light path will change, and the interference wave band will change too, resulting in change of the colors presented to the observer, and thereby an optical variable effect in specific colors is created.
  • As for the optical characteristics obtained from a combination of the sub-wavelength surface micro-structure and the multi-layer structured coating, the parameter matching relationship, specific principle, and optical characteristics have been defined specifically in the Chinese Patent No. CN10251443, the content of which is included in the present invention. In summary, by virtue of a combination of the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103, a color change characteristic that the color changes with the viewing angle is created, and is different from a color characteristic solely provided by a multi-layer structured coating with a flat or smooth surface; thus, a unique color change characteristic that the color changes with the viewing angle is created.
  • Hereunder the optical characteristics provided by virtue of a combination of the optical reflection facet 1022 and the multi-layer structured coating 103 will be described with reference to FIG. 1.
  • The characteristic dimension or period of the optical reflection facet 1022 in at least one dimension of a two-dimensional plane in which the optical reflection facet 1022 lies (the facet can be formed to be periodic or aperiodic) is 1 μm-300 μm preferably is 3 μm-100 μm, and particularly preferably is 5 μm-30 μm. The depth of the optical reflection facet is smaller than 10 μm, and preferably is 1 μm-5 μm. Thus, the facet has no light diffraction effect in the visible wavelength range.
  • The orientation of the optical reflection facet can be determined according to its inclination angle and/or azimuth angle.
  • As for the optical characteristics obtained from a combination of the optical reflection facet 1022 and the multi-layer structured coating 103, the specific parameter setting, principle, and optical characteristics have been defined by Chinese Patent No. CN102514443, CN102905909, CN103282212 and CN103229078 jointly, the content of which is included in the present invention.
  • The characteristics of the multi-layer structured coating 103 on a flat surface include characteristics in two aspects: its color and color change with viewing angle. The color characteristic provided by the multi-layer structured coating 103 is not changed in actual by the combination of the optical reflection facet 1022 and the multi-layer structured coating 103, i.e., the multi-layer structured coating has the same selective absorption and reflection characteristics as a multi-layer structured coating formed on a flat surface; for a specific light source, only the direction of emergent light is modified corresponding to each optical reflection facet; hence, in actual, the distribution of the viewing angle of the color change characteristic of the multi-layer structured coating 103 on the two-dimensional surface in the region B is modified.
  • Owing to the above-mentioned result, in a case where the same multi-layer structured coating 103 is used, the region A and the region B are different from each other in color characteristic and color change characteristic.
  • The sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 can be transferred onto the surface of the substrate 101 by producing a master mask by holographic interferometry, laser photolithography, or electron-beam lithography, producing a work mask through an electroforming process, and then through a mold pressing or UV duplication process, etc.
  • Since the dimension parameters of the sub-wavelength surface micro-structure are greatly different by orders of magnitude from those of the optical reflection facet, the sub-wavelength surface micro-structure and the optical reflection facet have different requirements for the photoresist material of the master mask or the manufacturing process of the master mask. Actually, it is quite difficult to combine them on the same master mask or work mask through the same process. In actual practice, for example, the combination can be accomplished through two steps: First, producing the sub-wavelength surface micro-structure by holographic interferometry; then, producing the optical reflection facet by laser direct writing through a registration photoetching process.
  • The multi-layer structured coating 103 generally can be formed through an vacuum coating process, such as thermal evaporation, electron beam evaporation, high-frequency sputtering, magnetron sputtering, ion sputtering, reactive sputtering, or ion coating, etc., or some of the layers can be formed through a chemical plating, electroplating, or spreading process, etc.
  • It should be noted that the multi-layer structured coating covering the sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 is generally formed in the same process, for the sake of simplifying the production process. Therefore, the parameters of the multi-layer structured coating on the surface of the sub-wavelength surface micro-structure 1021 are essentially the same as those of the multi-layer structured coating on the surface of the optical reflection facet 1022. Hence, an overall consideration should be made in the structural design of the film system of the multi-layer structured coating 103 and the structural design calculation of the sub-wavelength surface micro-structure 1021 and optical reflection facet 1022, so that the optical characteristics in the region A have a strong color contrast to the optical characteristics in the region B, and thereby the purpose of easy identification and forgery prevention for the anti-counterfeiting component is achieved.
  • Hereunder the optical characteristics of the optical anti-counterfeiting component will be described with reference to FIGS. 2(a) and 2(b) respectively. In the optical anti-counterfeiting component 1 according to the present invention, the optical reflection facet 1022 has an optical scattering characteristic provided by substantially random change distributed in a two-dimensional plane in which the optical reflection facet 1022 lies, and the region B can be perceived by the observer as a surface that protrudes forward and/or backward relative to its actual spatial shape according to the selected orientation of the optical reflection facet 1022. The structure of the optical reflection facet 1022 that has different parameters in the region B in FIG. 2(a) has a random or pseudo-random alignment in a two-dimensional plane where the structure is, and the structural parameters include the depth, width, inclination angle, and azimuth angle of the optical reflection facet; thus, after the incident light is selectively absorbed and reflected by the multi-layer structured coating on the surface of the optical reflection facet, the reflected light has a random or pseudo-random exit direction, and thereby forms an optical scattering characteristic. FIG. 2(b) shows that the optical reflection facet 1022 is utilized to simulate a curved surface 1022′ and thereby forms a characteristic of protruding from the surface 102 in the region B. Here, any optical reflection facet in the two-dimensional plane has substantially similar normal direction as the simulated curved surface 1022° at that position.
  • FIG. 3 shows an embodiment in which a region C and associated anti-counterfeiting characteristics are further added on the basis of the optical anti-counterfeiting component 1 according to the present invention, wherein, the sub-wavelength surface micro-structure 1021 and the optical reflection facet 1022 are overlapped to form the region C on the upper surface 102 of the substrate 101. The anti-counterfeiting characteristics include the two anti-counterfeiting characteristics mentioned above, i.e., the anti-counterfeiting characteristic obtained by virtue of the combination of the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103 and the anti-counterfeiting characteristic obtained by virtue of the combination of the optical reflection facet 1022 and the multi-layer structured coating 103. That is to say, the anti-counterfeiting characteristics of the region C have the color and color change characteristics formed by the sub-wavelength surface micro-structure 1021 and the multi-layer structured coating 103 different from those of the multi-layer structured coating, as well as the optical scattering characteristic resulted from random distribution of the optical reflection facets 1022 on the two-dimensional surface of the region C and/or the characteristic of a surface protruding forward and/or backward relative to the surface of the region C as perceived by the observer.
  • For example, in FIG. 3, the sub-wavelength surface micro-structure 1021 has sinusoidal groove shape, 300 nm period, and 95 nm depth, and is in orthogonal two-dimensional grid distribution, and the multi-layer structured coating 103 includes sequentially arranged Al (40 nm)/SiO2 (370 nm)/Cr (5 nm) layers (on a flat surface, the multi-layer structured coating that has the above-mentioned parameter has a characteristic that it exhibits a golden yellow color when it is viewed from the front side and exhibits a green color when it is viewed obliquely). Thus, owing to the existence of the sub-wavelength surface micro-structure 1021, the region A exhibits a red color when it is viewed from the front side, and exhibits a yellow color when it is viewed inclined; the region B has the characteristic of color change from golden yellow to green provided by the multi-layer structured coating and the optical scattering characteristic and/or protruding characteristic provided by the optical reflection facet; the region C has the characteristic of color change from red to yellow formed by the sub-wavelength surface micro-structure and the multi-layer structured coating jointly and the optical scattering characteristic and/or protruding characteristic provided by the optical reflection facet. In summary, the three regions A, B and C have their respective visual characteristics and form a strong visual contrast to each other; thus, the optical anti-counterfeiting component 1 has strong anti-counterfeiting capability.
  • Preferably, in the optical anti-counterfeiting component according to the present invention, the coverage of the multi-layer structured coating is patterned, and thereby forms an hollowed-out feature. The entire multi-layer structured coating can be patterned, or one or more layers of the multi-layer structured coating can be patterned respectively. For example, a patterned protective layer is applied after the multi-layer structured coating is formed by printing, and then the coating outside of the protective area is etched with a chemical solvent (e.g., alkaline liquor). Alternatively, a stripping layer is formed before the multi-layer structured coating is formed, and the coating on the stripping layer is removed by soaking with a liquid (e.g., water) to form a hollowed-out pattern after the multi-layer structured coating is formed.
  • Preferably, as shown in FIG. 4, i.e., a top view of an embodiment of the optical anti-counterfeiting component according to the present invention, the hollowed-out pattern 1031 of the multi-layer structured coating 103 (uncovered region of the multi-layer structured coating) has a strict position correspondence relationship with the sub-wavelength surface micro-structure 1021 and/or optical reflection facet 1022; thus, the optical anti-counterfeiting component according to the present invention can be identified more easily and has stronger forgery prevention capability. Wherein, A, B, C correspond to the three regions A, B and C in FIG. 3, i.e., “CBPM” and “ZSST” have a color characteristic and a characteristic of color change with viewing angle, which are formed by the sub-wavelength surface micro-structure and the multi-layer structured coating formed on the surface of the sub-wavelength surface micro-structure jointly and are different from those in the region B and region C; the region B has an optical scattering characteristic and a characteristic of color change with viewing angle, which are formed by the optical reflection facet and the multi-layer structured coating formed on the surface of the optical reflection facet jointly; region C has a characteristic of surface protruding forward relative to the actual spatial shape and a characteristic of color change with viewing angle, which are resulted from the optical reflection facet and the multi-layer structured coating formed on the surface of the optical reflection facet.
  • Hereunder an exemplary method for forming the hollowed-out region 1031 is provided: a sinusoidal optical grating is formed in the region 1031, the period of the sinusoidal optical grating is 350 nm, and the deep of the sinusoidal optical grating is 300 nm (suppose the depth-width ratio of that structure is greater than that of the surface micro-structure outside of the region 1031), Then, an Al layer in 5 nm thickness and a SiO2 layer in 250 nm thickness are deposited on the top surface 102; next, the optical anti-counterfeiting component 1 is soaked in 10% NaOH solution, till that the Al layer in the region 1031 completely disappears rightly; at this point, the surface outside of the region 1031 is still covered by the Al layer and SiO2 layer. Then, an Al layer in 40 nm thickness is deposited on the SiO2 layer, and a SiO2 layer in 50 nm thickness is deposited on the surface of the new Al layer; next, the optical anti-counterfeiting component 1 is soaked in 5% NaOH solution, till the Al layer in the region 1031 completely disappears rightly. At this point, when the optical anti-counterfeiting component 1 is viewed from the side of the lower surface of the region 1031, it is seen that a multi-layer structured coating is provided in the area outside of the region 1031. In addition, a hollowed-out pattern is formed in the region 1031, because there is no coating in the region.
  • Hereunder another exemplary method for forming the hollowed-out region 1031 is provided: cylindrical mirrors are formed in the region 1031, the width of the cylindrical mirror is 30 μm, the clearance between the cylindrical mirrors is 2 μm, and the height of the cylindrical mirror is 10 μm (greater than the 1.5 μm height of the optical reflection facet); an Al layer in 40 nm thickness (thickness in the flat area), a SiO2 layer in 250 nm thickness, and a Cr layer in 5 nm thickness are deposited sequentially on the surface 102, and then a protective layer (polyester material) in 1 μm thickness (thickness of the flat surface) is formed through a spreading process. The optical anti-counterfeiting component is soaked in 10% NaOH solution at 40° C., till the Al/SiO2/Cr coating in the region 1031 just completely disappears; at this point, the area outside of the region 1031 is stilled covered by the Al/SiO2/Cr coating; thus, the optical anti-counterfeiting component is prepared. At this point, when the optical anti-counterfeiting component is viewed from the side of the top surface 102, it is seen that a multi-layer structured coating is provided by the sequentially stacked Al/SiO2/Cr layers in the area outside of the region 1031, and a hollowed-out pattern is formed in the region 1031.
  • In preferred embodiments according to the present invention, one or more of diffraction optical variable feature, micro-nano structural feature, printing feature, fluorescent feature, and magnetic, optical, electrical, or radioactive feature for machine reading can be formed in the substrate 101 and on the upper and lower surfaces of the substrate 101, and/or in and on the sub-wavelength surface micro-structure and optical reflection facet.
  • The optical anti-counterfeiting component according to the present invention can be used as a tag, logo, wide strip, transparent window, or overlaying film, etc., and can be bonded to different articles by means of different bonding mechanisms, For example, it can be transferred onto high-security products and high added-value products, such as bank notes and credit cards, etc.
  • In another aspect, the present invention provides a product with the optical anti-counterfeiting component, which includes, but is not limited to various high-security products and high added-value products such as bank notes, credit cards, passports, valuable securities, etc., and various packing paper and packing boxes, etc.
  • While some preferred embodiments of the present invention are described above with reference to the accompanying drawings, the present invention is not limited to the details in those embodiments. Those skilled in the art can make modifications and variations to the technical scheme of the present invention, without departing from the spirit of the present invention. However, all these modifications and variations shall be deemed as falling into the protected scope of the present invention.
  • In addition, it should be understood that the technical features described in the above embodiments can be combined in any appropriate manner, provided that there is no conflict among the technical features in the combination. To avoid unnecessary iteration, such possible combinations are not described here in the present invention.
  • Moreover, different embodiments of the present invention can be combined freely as required, as long as the combinations don't deviate from the ideal and spirit of the present invention. However, such combinations shall also be deemed as falling into the scope disclosed in the present invention.

Claims (16)

1. An optical anti-counterfeiting component, comprising:
a substrate;
a multi-layer structured coating formed on the sub-wavelength surface micro-structure and the optical reflection facet.
2. The optical anti-counterfeiting component according to claim 1, wherein, the sub-wavelength surface micro-structure and the optical reflection facet overlap with each other partially.
3. The optical anti-counterfeiting component according to claim 1, wherein, the multi-layer structured coating forms a Fabry-Perot resonant cavity.
4. The optical anti-counterfeiting component according to claim 1, wherein, the multi-layer structured coating forms a hollowed-out pattern.
5. The optical anti-counterfeiting component according to claim 4, wherein, the hollowed-out pattern has a registration relationship with the sub-wavelength surface micro-structure and/or the optical reflection facet.
6. The optical anti-counterfeiting component according to claim 1, wherein, the sub-wavelength surface micro-structure is an one-dimensional grating or a two-dimensional grating; a groove shape of the sub-wavelength surface micro-structure is sinusoidal, rectangular, or zigzag shape, or a shape joined or combined from at least two of sinusoidal, rectangular, and zigzag shapes.
7. The optical anti-counterfeiting component according to claim 6, wherein, a groove depth of the sub-wavelength surface micro-structure is 10 nm-500 nm.
8. The optical anti-counterfeiting component according to claim 7, wherein, the groove depth of the sub-wavelength surface micro-structure is 50 nm-300 nm.
9. The optical anti-counterfeiting component according to claim 1, wherein, a characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 50 nm-500 nm.
10. The optical anti-counterfeiting component according to claim 9, wherein, the characteristic dimension of the sub-wavelength surface micro-structure in a two-dimensional plane in which the sub-wavelength surface micro-structure lies is 200 nm-400 nm.
11. The optical anti-counterfeiting component according to claim 1, wherein, a characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 1 μm-300 μm.
12. The optical anti-counterfeiting component according to claim 11, wherein, the characteristic dimension of the optical reflection facet in at least one dimension of a two-dimensional plane in which the optical reflection facet lies is 3 μm-100 μm.
13. The optical anti-counterfeiting component according to claim 12, wherein, the characteristic dimension of the optical reflection facet in at least one dimension in a two-dimensional plane in which the optical reflection facet lies is 5 μm-30 μm.
14. The optical anti-counterfeiting component according to claim 1, wherein, at least one of diffraction optical variable feature, micro-nano structural feature, printing feature, fluorescent feature, and magnetic, optical, electrical, or radioactive feature for machine reading is formed on at least one of the substrate, the sub-wavelength surface micro-structure, and the optical reflection facet.
15. The optical anti-counterfeiting component according to claim 1, wherein, the multi-layer structured coating consists of at least two of an absorbing layer, a dielectric layer, and a reflecting layer, or the multi-layer structured coating consists of dielectric layers.
16. An optical anti-counterfeiting product, comprising the optical anti-counterfeiting component of claim 1.
US15/518,794 2014-10-16 2015-09-11 Optical anti-counterfeiting component and optical anti-counterfeiting product Active 2035-10-21 US10421308B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410548750.2A CN104385800B (en) 2014-10-16 2014-10-16 Optical anti-counterfeit element and optical anti-counterfeiting product
CN201410548750 2014-10-16
CN201410548750.2 2014-10-16
PCT/CN2015/089408 WO2016058465A1 (en) 2014-10-16 2015-09-11 Optical anti-counterfeiting element and optical anti-counterfeiting product

Publications (2)

Publication Number Publication Date
US20170239972A1 true US20170239972A1 (en) 2017-08-24
US10421308B2 US10421308B2 (en) 2019-09-24

Family

ID=52603795

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/518,794 Active 2035-10-21 US10421308B2 (en) 2014-10-16 2015-09-11 Optical anti-counterfeiting component and optical anti-counterfeiting product

Country Status (5)

Country Link
US (1) US10421308B2 (en)
EP (1) EP3208099B1 (en)
CN (1) CN104385800B (en)
RU (1) RU2670078C1 (en)
WO (1) WO2016058465A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191233B2 (en) * 2017-03-29 2019-01-29 Applied Optoelectronics, Inc. Mirror device with visual indicator to enable identification of highly-reflective region to ensure correct orientation of the same when disposed in an optical subassembly
US10838218B2 (en) 2017-10-05 2020-11-17 Wavefront Technology, Inc. Optical structures providing dichroic effects
US11198316B2 (en) 2019-04-04 2021-12-14 Wavefront Technology, Inc. Optical structures providing dichroic effects
DE102021002599A1 (en) 2021-05-18 2022-11-24 Giesecke+Devrient Currency Technology Gmbh Optically variable display element
DE102021003185A1 (en) 2021-06-21 2022-12-22 Giesecke+Devrient Currency Technology Gmbh Optically variable security element and document of value with the optically variable security element
DE102021123069A1 (en) 2021-09-07 2023-03-09 Ovd Kinegram Ag Functional element, a method for manufacturing a functional element and a product
WO2023039167A1 (en) * 2021-09-09 2023-03-16 Meta Materials Inc. Optical security device providing color switching or image switching effect
US11836558B2 (en) * 2018-08-20 2023-12-05 Iq Structures S.R.O. Gramophone plate with recorded image

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385800B (en) * 2014-10-16 2017-10-24 中钞特种防伪科技有限公司 Optical anti-counterfeit element and optical anti-counterfeiting product
CN104875523B (en) * 2015-05-22 2016-06-29 中钞特种防伪科技有限公司 Optical anti-counterfeit element and product and the method and apparatus preparing optical anti-counterfeit element
WO2017181391A1 (en) * 2016-04-21 2017-10-26 深圳市樊溪电子有限公司 Optical anti-counterfeiting element and optical anti-counterfeiting product using same
CN108318945B (en) * 2017-01-18 2020-05-19 昇印光电(昆山)股份有限公司 Optical film and mold for manufacturing same
CN108656782B (en) * 2017-03-28 2020-07-10 中钞特种防伪科技有限公司 Optical anti-counterfeiting element, product using optical anti-counterfeiting element and preparation method of optical anti-counterfeiting element
CN108790469B (en) * 2017-04-27 2020-06-30 中钞特种防伪科技有限公司 Optical anti-counterfeiting element and anti-counterfeiting product
CN110738065B (en) * 2018-07-18 2023-09-19 中国移动通信集团设计院有限公司 Anti-counterfeiting system and method
CN110936750A (en) * 2018-09-21 2020-03-31 中钞特种防伪科技有限公司 Optical anti-counterfeiting element and anti-counterfeiting product
CN111845148B (en) * 2019-04-24 2022-04-05 中钞特种防伪科技有限公司 Optical anti-counterfeiting element and manufacturing method thereof
CN110588201A (en) * 2019-08-12 2019-12-20 浙江上峰包装新材料有限公司 Green and environment-friendly micro-nano structure color packaging product and preparation method thereof
CN112389111A (en) * 2019-08-19 2021-02-23 中钞特种防伪科技有限公司 Optical anti-counterfeiting element and optical anti-counterfeiting product
CN112572018B (en) * 2019-09-29 2022-06-14 中钞特种防伪科技有限公司 Multilayer optical anti-counterfeiting element and manufacturing method thereof
CN112572015B (en) * 2019-09-30 2023-06-06 中钞特种防伪科技有限公司 Optical anti-counterfeiting element and anti-counterfeiting product
CN114891367A (en) * 2021-01-26 2022-08-12 中钞特种防伪科技有限公司 Flaky optical pigment, preparation method thereof and anti-counterfeiting element
EP4306330A1 (en) * 2022-07-15 2024-01-17 Hueck Folien Gesellschaft m.b.H. Safety element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228860A1 (en) * 2009-11-19 2012-09-13 Giesecke & Devrient Gmbh Security element having a microstructure
US20120235399A1 (en) * 2009-12-04 2012-09-20 Hans Lochbihler Security element having a color filter, document of value having such a security element and production method for such a security element

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815292A (en) * 1996-02-21 1998-09-29 Advanced Deposition Technologies, Inc. Low cost diffraction images for high security application
DE10216561B4 (en) 2002-04-05 2010-01-07 Ovd Kinegram Ag Security element with macrostructures
DE10308305A1 (en) 2003-02-26 2004-09-09 Giesecke & Devrient Gmbh security element
DE102007063275A1 (en) 2007-12-27 2009-07-02 Giesecke & Devrient Gmbh Security feature for high tilt angles
DE102008046128B4 (en) 2008-09-05 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Optically variable security element with matt area
DE112010003249T5 (en) 2009-08-10 2013-05-02 Securency International Pty Ltd Optically variable devices and methods of manufacture
DE102009056934A1 (en) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Security element, value document with such a security element and manufacturing method of a security element
DE102010047250A1 (en) 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Security element, value document with such a security element and manufacturing method of a security element
FR2959830B1 (en) 2010-05-07 2013-05-17 Hologram Ind OPTICAL AUTHENTICATION COMPONENT AND METHOD FOR MANUFACTURING THE SAME
DE102010025775A1 (en) * 2010-07-01 2012-01-05 Giesecke & Devrient Gmbh Security element and value document with such a security element
DE102010049600A1 (en) 2010-10-26 2012-01-19 Giesecke & Devrient Gmbh Security element with optically variable surface pattern
DE102010049617A1 (en) 2010-10-26 2012-04-26 Giesecke & Devrient Gmbh Security element with optically variable surface pattern
DE102010049832A1 (en) 2010-10-27 2012-05-03 Giesecke & Devrient Gmbh Optically variable surface pattern
DE102011014114B3 (en) 2011-03-15 2012-05-10 Ovd Kinegram Ag Multi-layer body and method for producing a multi-layer body
DE102011108242A1 (en) 2011-07-21 2013-01-24 Giesecke & Devrient Gmbh Optically variable element, in particular security element
CN102514443B (en) * 2011-12-09 2015-04-29 中钞特种防伪科技有限公司 Optical anti-counterfeiting element
CN103576216B (en) 2012-08-02 2016-03-23 中钞特种防伪科技有限公司 A kind of optical anti-counterfeit element and adopt the anti-fake product of this optical anti-counterfeit element
CN103625154B (en) * 2012-08-21 2016-05-18 中钞特种防伪科技有限公司 A kind of optical anti-counterfeit element and use the product of this optical anti-counterfeit element
DE102012020550A1 (en) 2012-10-19 2014-04-24 Giesecke & Devrient Gmbh Optically variable surface pattern
CN103832114B (en) * 2012-11-27 2017-10-24 中钞特种防伪科技有限公司 A kind of optical anti-counterfeit element and the product using the optical anti-counterfeit element
CN103847289B (en) * 2012-11-29 2016-03-23 中钞特种防伪科技有限公司 There is the optical anti-counterfeit element reproducing hidden image and the product made with it
DE102013021358A1 (en) 2013-12-16 2015-06-18 Giesecke & Devrient Gmbh Security element for security papers
CN104385800B (en) 2014-10-16 2017-10-24 中钞特种防伪科技有限公司 Optical anti-counterfeit element and optical anti-counterfeiting product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228860A1 (en) * 2009-11-19 2012-09-13 Giesecke & Devrient Gmbh Security element having a microstructure
US20120235399A1 (en) * 2009-12-04 2012-09-20 Hans Lochbihler Security element having a color filter, document of value having such a security element and production method for such a security element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191233B2 (en) * 2017-03-29 2019-01-29 Applied Optoelectronics, Inc. Mirror device with visual indicator to enable identification of highly-reflective region to ensure correct orientation of the same when disposed in an optical subassembly
US10838218B2 (en) 2017-10-05 2020-11-17 Wavefront Technology, Inc. Optical structures providing dichroic effects
US11675203B2 (en) 2017-10-05 2023-06-13 Wavefront Technology, Inc. Optical structures providing dichroic effects
US11836558B2 (en) * 2018-08-20 2023-12-05 Iq Structures S.R.O. Gramophone plate with recorded image
US11198316B2 (en) 2019-04-04 2021-12-14 Wavefront Technology, Inc. Optical structures providing dichroic effects
US11840112B2 (en) 2019-04-04 2023-12-12 Wavefront Technology, Inc. Optical structures providing dichroic effects
DE102021002599A1 (en) 2021-05-18 2022-11-24 Giesecke+Devrient Currency Technology Gmbh Optically variable display element
DE102021003185A1 (en) 2021-06-21 2022-12-22 Giesecke+Devrient Currency Technology Gmbh Optically variable security element and document of value with the optically variable security element
DE102021123069A1 (en) 2021-09-07 2023-03-09 Ovd Kinegram Ag Functional element, a method for manufacturing a functional element and a product
DE102021123069B4 (en) 2021-09-07 2023-07-06 Ovd Kinegram Ag Functional element, a method for manufacturing a functional element and a product
WO2023039167A1 (en) * 2021-09-09 2023-03-16 Meta Materials Inc. Optical security device providing color switching or image switching effect

Also Published As

Publication number Publication date
CN104385800B (en) 2017-10-24
EP3208099A4 (en) 2018-04-18
WO2016058465A1 (en) 2016-04-21
EP3208099A1 (en) 2017-08-23
RU2670078C1 (en) 2018-10-17
US10421308B2 (en) 2019-09-24
EP3208099B1 (en) 2020-02-19
CN104385800A (en) 2015-03-04

Similar Documents

Publication Publication Date Title
US10421308B2 (en) Optical anti-counterfeiting component and optical anti-counterfeiting product
US10207533B2 (en) Security element having a color filter, document of value having such a security element and production method for such a security element
US9415622B2 (en) Security element with optically variable element
US8534710B2 (en) Security element and method for manufacturing the same
US11398166B2 (en) Display and method of producing display
JP5938963B2 (en) Display and labeled goods
US10598833B2 (en) Display
CN102903298B (en) There is the coat of metal anti false film of surface micro relief structure
US20180037049A1 (en) Optically Variable Transparent Security Element
CN104647936B (en) A kind of optical anti-counterfeit element and the optical anti-counterfeiting product using the optical anti-counterfeit element
JPS6023040B2 (en) Authentication device and products using it
JP5741125B2 (en) Display and labeled goods
CN102497996A (en) Thin-layer element having an interference layer structure
CN105319628B (en) A kind of optical anti-counterfeit element
WO2013177829A1 (en) Optical anti-counterfeit element and preparation method thereof
JP2018528486A (en) Security element with subwavelength diffraction grating
WO2017181442A1 (en) Optical anti-counterfeiting element and optical anti-counterfeiting product
JP6379547B2 (en) Image display body and information medium
JP7307853B2 (en) Multilayer optical anti-counterfeit element and method for manufacturing the same
JP2010078821A (en) Display body, adhesive label, and labeled article
KR101785467B1 (en) Dual color-shifting security element and method for producing it, security product comprising it
JP7204075B2 (en) Security element and its manufacturing method
JP2016173596A (en) Display body and labeled article
JP2015014780A (en) Display body and printed matter

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHINA BANKNOTE PRINTING AND MINTING CORP., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, BAOLI;ZHANG, WEIWEI;SUN, KAI;SIGNING DATES FROM 20170627 TO 20170628;REEL/FRAME:042896/0530

Owner name: ZHONGCHAO SPECIAL SECURITY TECHNOLOGY CO., LTD, CH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, BAOLI;ZHANG, WEIWEI;SUN, KAI;SIGNING DATES FROM 20170627 TO 20170628;REEL/FRAME:042896/0530

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4