US20170233918A1 - Drum type washing machine - Google Patents

Drum type washing machine Download PDF

Info

Publication number
US20170233918A1
US20170233918A1 US15/265,673 US201615265673A US2017233918A1 US 20170233918 A1 US20170233918 A1 US 20170233918A1 US 201615265673 A US201615265673 A US 201615265673A US 2017233918 A1 US2017233918 A1 US 2017233918A1
Authority
US
United States
Prior art keywords
cooling water
washing machine
air
flow path
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/265,673
Inventor
Sung Myoun LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiniaDaewoo Co Ltd
Original Assignee
Dongbu Daewoo Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu Daewoo Electronics Corp filed Critical Dongbu Daewoo Electronics Corp
Assigned to DONGBU DAEWOO ELECTRONICS CORPORATION reassignment DONGBU DAEWOO ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, SUNG MYOUN
Publication of US20170233918A1 publication Critical patent/US20170233918A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/08Partitions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/02Domestic laundry dryers having dryer drums rotating about a horizontal axis
    • D06F58/04Details 

Definitions

  • the present disclosure relates to washing machines, and, more particularly, to drying assemblies in drum type washing machines.
  • a washing machine is an apparatus used for washing and cleaning laundry by friction between the laundry and washing water in combination with emulsification provided by detergent. Typically a pulsator rotates to produce a water flow which impacts on a washing object.
  • a full automatic washing machine is capable of automatically performing a series of processes including washing, rinsing and dewatering responsive to a single user command.
  • Washing machines may be classified into top-loading type and drum type washing machine.
  • a top-loading washing machine has an upstanding washing tub with its opening generally facing the top of the washing machine.
  • a drum type washing machine has a laid-down washing tub with its opening generally facing the front of the washing machine.
  • a drum type washing machine has reduced overall height and larger washing capacity, and rarely causes fabric twist problems.
  • the market demand for drum type washing machines has been increasing.
  • a drum type washing machine may include a tub which contains washing water and a drum inside the tub to accommodate laundry or other washing objects. The rotation of the drum causes the laundry to be lifted and dropped which generates friction between the laundry and the washing water, thereby cleaning the laundry.
  • a drum type washing machine may include a drying assembly capable of drying the washed laundry by supplying hot air to the drum.
  • the hot air is likely humidified once in contact with the laundry in the drum and thus becomes humidified air.
  • the humidified air flowing through the drum and the laundry is then introduced back to the drying assembly.
  • the humidified air flows into the drying assembly which contains cooling water.
  • the drying assembly vapor in the humidified air is condensed and removed from the humidified air due to the cooling effect provided by the cooling water. Thereby the humidified air is dried. Dried air is then heated by a heating member and supplied back to the drum to dry the laundry.
  • cooling water makes direct contact with air flowing from the tub. Cooling water may be scattered by the air flow that typically flows at a high flow velocity and adds to the humidity of the air, which counteracts the drying efficiency. Moreover, water drops scattered onto the hardware components in the drying assembly may lead to corrosion of these components.
  • Embodiments of the present disclosure provide a drum type washing machine capable of increasing drying efficiency and preventing corrosion of washing machine components.
  • a drum type washing machine includes: a tub with a drum inside; a drying duct configured to supply hot air to the tub or the drum; and a condensing duct configured to receive a humidified air passing through the tub or the drum and to supply dry air to the drying duct after moisture contained in the humidified air is condensed by heat exchange of the humidified air with cooling water.
  • the condensing duct includes a partition member configured to partition and divide an internal space of the condensing duct so that the cooling water does not make direct contact with the humidified air, the partition member configured to provide a cooling water flow path through which the cooling water may flow independently.
  • the condensing duct includes: a housing; an air flow path formed so that the air flows toward one side of the housing through the air flow path; a cooling water flow path formed so that the cooling water flows toward the other side of the housing through the cooling water flow path; a partition member installed inside the housing in order to partition and divide the air flow path and the cooling water flow path; a water inflow port formed in the housing so that the cooling water flows into the cooling water flow path through the water inflow port; and a water outflow port formed in the housing so that the cooling water passing through the cooling water flow path flows out through the water outflow port.
  • the partition member includes a first wave portion formed in a wavy shape in an air contact region in order to increase an air contact area.
  • the housing includes a second wave portion formed in the same shape as the first wave portion in a position facing the first wave portion in a region which defines the cooling water flow path.
  • the partition member has a lower end spaced apart from the housing so as to allow the cooling water to flow out.
  • a drain portion is formed in the lower end of the partition member so that the cooling water is drained through the drain portion.
  • the partition member is made of iron or copper having high heat conductivity.
  • a drum type washing machine includes a drying duct configured to supply hot air to a tub or a drum; and a condensing duct configured to receive humidified air passing through the tub or the drum and to supply dry air to the drying duct after moisture contained in the humidified air is condensed by heat exchange of the humidified air with cooling water.
  • the condensing duct includes a housing; an air flow path formed so that the air flows toward one side of the housing through the air flow path; a cooling water flow path formed so that the cooling water flows toward the other side of the housing through the cooling water flow path; a partition member installed inside the housing in order to partition and divide the air flow path and the cooling water flow path; a water inflow port formed in the housing so that the cooling water flows into the cooling water flow path through the water inflow port; and a water outflow port formed in the housing so that the cooling water passing through the cooling water flow path flows out through the water outflow port.
  • the partition member includes a first wave portion formed in a substantially wavy shape in an air contact region in order to increase an air contact area.
  • the housing includes a second wave portion formed in an analogous shape as the first wave portion in a position facing the first wave portion in a region which defines the cooling water flow path.
  • the partition member has a lower end spaced apart from the housing so as to allow the cooling water to flow out.
  • drain portion is formed in the lower end of the partition member so that the cooling water is drained through the drain portion.
  • Embodiments of the present disclosure provide increased air drying efficiency by keeping humidified air from making direct contact with cooling water. Embodiments of the present disclosure also prevent cooling water from scattering onto hardware components in the air flow path, thereby preventing corrosion of these components.
  • FIG. 1 is a perspective view illustrating an exemplary drum type washing machine according to one embodiment of the present disclosure.
  • FIG. 2 is a configuration diagram illustrating a drum type washing machine installed with an exemplary drying assembly according to one embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view illustrating an exemplary condensing duct as illustrated in FIG. 2 .
  • FIG. 4 is an assembled perspective view illustrating an assembled state of the exemplary condensing duct illustrated in FIG. 3 .
  • FIG. 5 is a side view illustrating a structure of an exemplary partition member according to one embodiment of the present disclosure.
  • the exemplary embodiments of the present disclosure illustrate ideal exemplary embodiments of the present disclosure in more detail. As a result, various modifications of the drawings are expected. Accordingly, the exemplary embodiments are not limited to a specific form of the illustrated region, and for example, include a modification of a form by manufacturing.
  • FIG. 1 is a perspective view illustrating an exemplary drum type washing machine 10 according to one embodiment of the present disclosure.
  • FIG. 2 illustrates the configuration of a drum type washing machine having an exemplary drying assembly with a condensing duct according to one embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view illustrating an exemplary condensing duct that is also illustrated in FIG. 2 .
  • FIG. 4 is a perspective view illustrating an assembled state of the exemplary condensing duct that is also illustrated in FIG. 3 .
  • FIG. 5 is a side view illustrating the structure of an exemplary partition member according to one embodiment of the present disclosure.
  • the drum type washing machine 10 may include a tub 100 , a drying duct 200 and a condensing duct 300 .
  • the drying duct 200 and the condensing duct 300 are components of a drying assembly in the drum type washing machine 10 .
  • the tub 100 can contain washing water.
  • the tub 100 is coupled to the drying duct 200 .
  • hot air flows to the tub 100 through the drying duct 200 .
  • the drum type washing machine 10 may include a tub 100 located on the outer circumferential surface of the machine 10 and a drum 110 having a plurality of water flow paths for guiding water flow in the tub 100 .
  • the drum 110 is installed inside the tub 100 for holding washing objects (e.g., laundry).
  • the tub 100 is spaced apart from the outer circumferential surface of the drum 110 . After a washing process, washing water is discharged from the tub 100 to the outside in a dewater process. In a drying process, hot air supplied from the drying duct 200 enters the tub 100 and the drum 110 to dry the washing object inside the drum 110 .
  • the drying duct 200 may include a circulation member 210 and a heating member 220 .
  • the circulation member 210 can drive air from the outside into the washing machine through the drying duct 200 and can circulate air inside the drum type washing machine 10 .
  • the circulation member 210 may be a fan.
  • the heating member 220 may heat the air passing through the drying duct 200 .
  • the heating member 220 may also heat the air inside the drum type washing machine 10 .
  • the heating member 220 may be an electric heater with temperature control. Heated air is supplied to the tub 100 or the drum 110 through the drying duct 200 .
  • the condensing duct 300 may receive humidified air from the tub 100 or the drum 110 and transport the humidified air to the drying duct 200 .
  • the condensing duct 300 contains cooling water supplied from an external source. The cooling water dries the humidifier air by causing condensation of vapor in the humidified air.
  • the condensing duct 300 supplies dried air to the drying duct 200 .
  • the condensing duct 300 may drain condensed water to the outside of the condensing duct 300 .
  • the condensing duct 300 uses the cooling water to cool down the hot humidified air to condense the moisture contained in the hot humidified air coming from the tub 100 or the drum 110 .
  • the condensing duct 300 may drain the condensed water and re-introduce the dried air into the drying duct 200 .
  • the air re-introduced into the drying duct 200 is drier than the air entering the condensing duct 300 .
  • the condensing duct 300 may be disposed between the tub 100 and the drying duct 200 .
  • the condensing duct 300 may include a partition member 340 as illustrated in FIGS. 3 to 5 .
  • the partition member 340 may partition the internal space of the condensing duct 300 so that the cooling water supplied into the condensing duct 300 does not make direct contact with the air discharged from the tub 100 or the drum 110 .
  • the partition member 340 may provide a cooling water flow path 330 so that the cooling water can flow within the condensing duct 300 without making direct contact with air discharged from the tub 100 or the drum 110 .
  • the condensing duct 300 may include a housing 310 , an air flow path 320 , a cooling water flow path 330 , a partition member 340 , a water inflow port 350 and a water outflow port 360 .
  • the housing 310 forms an overall outer shell of the condensing duct 300 .
  • the humidified air passing through the tub 100 or the drum 110 may flow into the housing 310 .
  • the cooling water may flow into the housing 310 from an external water source.
  • the air flow path 320 is configured for air exiting the tub 100 or the drum 110 to flow toward one side of the housing 310 .
  • the air flow path 320 is enclosed except the top and the bottom portion.
  • the cooling water flow path 330 is configured such that the cooling water can travel across the housing 310 .
  • the cooling water flow path 330 contains the cooling water flowing into the housing 310 so that the cooling water does not directly contact the air flowing through the air flow path 320 .
  • the partition member 340 separates the air flow path 320 from the cooling water flow path 330 . As illustrated in FIGS. 3 and 4 , the partition member 340 may be installed between the air flow path 320 and the cooling water flow path 330 and inside the housing 310 .
  • Cooling water flows into the cooling water flow path 330 through the water inflow port 350 in the housing 310 .
  • the water inflow port 350 receives the cooling water supplied from the outside. More specifically the cooling water flow path 330 is located inside the housing 310 . For example, the water inflow port 350 may be located at the top portion of the housing 310 .
  • the water outflow port 360 in the housing 310 allows cooling water passing through the cooling water flow path 330 to be discharged to the outside of the housing 310 .
  • the water outflow port 360 may be located at the bottom portion of the housing 310 .
  • the partition member 340 may cool and condense vapor in hot humidified air through heat transfer, thereby reducing the humidity of the air and producing dry air. Due to the wavy shape, the first wave portion 341 of the partition member 340 provides adequate contact area between the air and the cooling water inside the housing 310 despite the limited volume of the housing. This significantly and advantageously enhances the drying efficiency of the humidified air coming from the tub 100 or the drum 110 .
  • the housing 310 may also include a wavy portion, shown as a second wave portion 311 which is formed in a predetermined position in a region that defines the cooling water flow path 330 .
  • the second wave portion 311 may be formed in the housing 310 in a position which faces the first wave portion 341 .
  • the second wave portion 311 may be substantially identical in shape with the first wave portion 341 .
  • the lower end of the partition member 340 may be spaced apart by a predetermined height from the housing 310 so that the cooling water flowing through the cooling water flow path 330 can be discharged.
  • a separate drain portion 342 may be formed at the lower end of the partition member 340 so that the cooling water can be drained through the drain portion 342 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

A washing machine having a condensing duct with its internal space divided into a cooling water path and an air flow path. In a drying process, heated air is blown into the tub to dry the laundry and then becomes humidified. The humidified air is dried at the condensing duct and supplied back to the tub. In the condensing duct, cooling water causes condensation of the vapor in the humidified air and thereby dries the air. The condensing duct includes a partition member that isolates the cooling water path and air flow path and serves as a common wall between the two paths. With the two paths isolated from each other, the cooling water does not make direct contact with the humidified air, thereby improving air dry efficiency of the washing machine.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based on and claims priority from Korean Patent Application No. 10-2016-0017567, filed on Feb. 16, 2016, the disclosure of which is incorporated herein in its entirety by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to washing machines, and, more particularly, to drying assemblies in drum type washing machines.
  • BACKGROUND
  • A washing machine is an apparatus used for washing and cleaning laundry by friction between the laundry and washing water in combination with emulsification provided by detergent. Typically a pulsator rotates to produce a water flow which impacts on a washing object. A full automatic washing machine is capable of automatically performing a series of processes including washing, rinsing and dewatering responsive to a single user command.
  • Washing machines may be classified into top-loading type and drum type washing machine. A top-loading washing machine has an upstanding washing tub with its opening generally facing the top of the washing machine. A drum type washing machine has a laid-down washing tub with its opening generally facing the front of the washing machine. As compared with the top-loading type, a drum type washing machine has reduced overall height and larger washing capacity, and rarely causes fabric twist problems. Thus, the market demand for drum type washing machines has been increasing.
  • A drum type washing machine may include a tub which contains washing water and a drum inside the tub to accommodate laundry or other washing objects. The rotation of the drum causes the laundry to be lifted and dropped which generates friction between the laundry and the washing water, thereby cleaning the laundry.
  • A drum type washing machine may include a drying assembly capable of drying the washed laundry by supplying hot air to the drum. The hot air is likely humidified once in contact with the laundry in the drum and thus becomes humidified air. The humidified air flowing through the drum and the laundry is then introduced back to the drying assembly.
  • The humidified air flows into the drying assembly which contains cooling water. In the drying assembly, vapor in the humidified air is condensed and removed from the humidified air due to the cooling effect provided by the cooling water. Thereby the humidified air is dried. Dried air is then heated by a heating member and supplied back to the drum to dry the laundry.
  • However, in a conventional drying assembly, cooling water makes direct contact with air flowing from the tub. Cooling water may be scattered by the air flow that typically flows at a high flow velocity and adds to the humidity of the air, which counteracts the drying efficiency. Moreover, water drops scattered onto the hardware components in the drying assembly may lead to corrosion of these components.
  • PRIOR ART DOCUMENTS Patent Documents
    • Patent Document: Korean Patent Application Publication No. 10-2015-0073395 (published on Jul. 1, 2015)
    SUMMARY
  • Embodiments of the present disclosure provide a drum type washing machine capable of increasing drying efficiency and preventing corrosion of washing machine components.
  • According to an embodiment of the present invention, a drum type washing machine includes: a tub with a drum inside; a drying duct configured to supply hot air to the tub or the drum; and a condensing duct configured to receive a humidified air passing through the tub or the drum and to supply dry air to the drying duct after moisture contained in the humidified air is condensed by heat exchange of the humidified air with cooling water. The condensing duct includes a partition member configured to partition and divide an internal space of the condensing duct so that the cooling water does not make direct contact with the humidified air, the partition member configured to provide a cooling water flow path through which the cooling water may flow independently.
  • Further, the condensing duct includes: a housing; an air flow path formed so that the air flows toward one side of the housing through the air flow path; a cooling water flow path formed so that the cooling water flows toward the other side of the housing through the cooling water flow path; a partition member installed inside the housing in order to partition and divide the air flow path and the cooling water flow path; a water inflow port formed in the housing so that the cooling water flows into the cooling water flow path through the water inflow port; and a water outflow port formed in the housing so that the cooling water passing through the cooling water flow path flows out through the water outflow port.
  • Further, the partition member includes a first wave portion formed in a wavy shape in an air contact region in order to increase an air contact area.
  • Further, the housing includes a second wave portion formed in the same shape as the first wave portion in a position facing the first wave portion in a region which defines the cooling water flow path.
  • Further, the partition member has a lower end spaced apart from the housing so as to allow the cooling water to flow out.
  • Further, a drain portion is formed in the lower end of the partition member so that the cooling water is drained through the drain portion.
  • Further, the partition member is made of iron or copper having high heat conductivity.
  • Also in one embodiment, a drum type washing machine includes a drying duct configured to supply hot air to a tub or a drum; and a condensing duct configured to receive humidified air passing through the tub or the drum and to supply dry air to the drying duct after moisture contained in the humidified air is condensed by heat exchange of the humidified air with cooling water. The condensing duct includes a housing; an air flow path formed so that the air flows toward one side of the housing through the air flow path; a cooling water flow path formed so that the cooling water flows toward the other side of the housing through the cooling water flow path; a partition member installed inside the housing in order to partition and divide the air flow path and the cooling water flow path; a water inflow port formed in the housing so that the cooling water flows into the cooling water flow path through the water inflow port; and a water outflow port formed in the housing so that the cooling water passing through the cooling water flow path flows out through the water outflow port.
  • Further, the partition member includes a first wave portion formed in a substantially wavy shape in an air contact region in order to increase an air contact area.
  • Further, the housing includes a second wave portion formed in an analogous shape as the first wave portion in a position facing the first wave portion in a region which defines the cooling water flow path.
  • Further, the partition member has a lower end spaced apart from the housing so as to allow the cooling water to flow out.
  • Further, the drain portion is formed in the lower end of the partition member so that the cooling water is drained through the drain portion.
  • Embodiments of the present disclosure provide increased air drying efficiency by keeping humidified air from making direct contact with cooling water. Embodiments of the present disclosure also prevent cooling water from scattering onto hardware components in the air flow path, thereby preventing corrosion of these components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view illustrating an exemplary drum type washing machine according to one embodiment of the present disclosure.
  • FIG. 2 is a configuration diagram illustrating a drum type washing machine installed with an exemplary drying assembly according to one embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view illustrating an exemplary condensing duct as illustrated in FIG. 2.
  • FIG. 4 is an assembled perspective view illustrating an assembled state of the exemplary condensing duct illustrated in FIG. 3.
  • FIG. 5 is a side view illustrating a structure of an exemplary partition member according to one embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • One or more exemplary embodiments of the present disclosure will be described more fully hereinafter with reference to the accompanying drawings, in which one or more exemplary embodiments of the disclosure can be easily determined by those skilled in the art. As those skilled in the art will realize, the described exemplary embodiments may be modified in various different ways, all without departing from the spirit or scope of the present disclosure, which is not limited to the exemplary embodiments described herein.
  • It is noted that the drawings are schematic and are not necessarily dimensionally illustrated. Relative sizes and proportions of parts in the drawings may be exaggerated or reduced in their sizes, and a predetermined size is just exemplificative and not limitative. The same reference numerals designate the same structures, elements, or parts illustrated in two or more drawings in order to exhibit similar characteristics.
  • The exemplary embodiments of the present disclosure illustrate ideal exemplary embodiments of the present disclosure in more detail. As a result, various modifications of the drawings are expected. Accordingly, the exemplary embodiments are not limited to a specific form of the illustrated region, and for example, include a modification of a form by manufacturing.
  • FIG. 1 is a perspective view illustrating an exemplary drum type washing machine 10 according to one embodiment of the present disclosure. FIG. 2 illustrates the configuration of a drum type washing machine having an exemplary drying assembly with a condensing duct according to one embodiment of the present disclosure. FIG. 3 is an exploded perspective view illustrating an exemplary condensing duct that is also illustrated in FIG. 2. FIG. 4 is a perspective view illustrating an assembled state of the exemplary condensing duct that is also illustrated in FIG. 3. FIG. 5 is a side view illustrating the structure of an exemplary partition member according to one embodiment of the present disclosure.
  • Referring to FIGS. 1 and 2, the drum type washing machine 10 according to one embodiment of the present disclosure may include a tub 100, a drying duct 200 and a condensing duct 300. In this regard, the drying duct 200 and the condensing duct 300 are components of a drying assembly in the drum type washing machine 10.
  • The tub 100 can contain washing water. The tub 100 is coupled to the drying duct 200. In a drying process, hot air flows to the tub 100 through the drying duct 200.
  • More specifically, the drum type washing machine 10 may include a tub 100 located on the outer circumferential surface of the machine 10 and a drum 110 having a plurality of water flow paths for guiding water flow in the tub 100. The drum 110 is installed inside the tub 100 for holding washing objects (e.g., laundry).
  • The tub 100 is spaced apart from the outer circumferential surface of the drum 110. After a washing process, washing water is discharged from the tub 100 to the outside in a dewater process. In a drying process, hot air supplied from the drying duct 200 enters the tub 100 and the drum 110 to dry the washing object inside the drum 110.
  • The drying duct 200 may include a circulation member 210 and a heating member 220. The circulation member 210 can drive air from the outside into the washing machine through the drying duct 200 and can circulate air inside the drum type washing machine 10. For example, the circulation member 210 may be a fan.
  • The heating member 220 may heat the air passing through the drying duct 200. In a drying process, the heating member 220 may also heat the air inside the drum type washing machine 10. For example, the heating member 220 may be an electric heater with temperature control. Heated air is supplied to the tub 100 or the drum 110 through the drying duct 200.
  • The condensing duct 300 may receive humidified air from the tub 100 or the drum 110 and transport the humidified air to the drying duct 200. The condensing duct 300 contains cooling water supplied from an external source. The cooling water dries the humidifier air by causing condensation of vapor in the humidified air. The condensing duct 300 supplies dried air to the drying duct 200. In addition, the condensing duct 300 may drain condensed water to the outside of the condensing duct 300.
  • In other words, the condensing duct 300 uses the cooling water to cool down the hot humidified air to condense the moisture contained in the hot humidified air coming from the tub 100 or the drum 110. The condensing duct 300 may drain the condensed water and re-introduce the dried air into the drying duct 200. Thus, the air re-introduced into the drying duct 200 is drier than the air entering the condensing duct 300. The condensing duct 300 may be disposed between the tub 100 and the drying duct 200.
  • The condensing duct 300 according to the present embodiment may include a partition member 340 as illustrated in FIGS. 3 to 5. The partition member 340 may partition the internal space of the condensing duct 300 so that the cooling water supplied into the condensing duct 300 does not make direct contact with the air discharged from the tub 100 or the drum 110.
  • Furthermore, the partition member 340 may provide a cooling water flow path 330 so that the cooling water can flow within the condensing duct 300 without making direct contact with air discharged from the tub 100 or the drum 110.
  • The condensing duct 300 may include a housing 310, an air flow path 320, a cooling water flow path 330, a partition member 340, a water inflow port 350 and a water outflow port 360.
  • The housing 310 forms an overall outer shell of the condensing duct 300. The humidified air passing through the tub 100 or the drum 110 may flow into the housing 310. The cooling water may flow into the housing 310 from an external water source.
  • The air flow path 320 is configured for air exiting the tub 100 or the drum 110 to flow toward one side of the housing 310. The air flow path 320 is enclosed except the top and the bottom portion.
  • The cooling water flow path 330 is configured such that the cooling water can travel across the housing 310. The cooling water flow path 330 contains the cooling water flowing into the housing 310 so that the cooling water does not directly contact the air flowing through the air flow path 320.
  • The partition member 340 separates the air flow path 320 from the cooling water flow path 330. As illustrated in FIGS. 3 and 4, the partition member 340 may be installed between the air flow path 320 and the cooling water flow path 330 and inside the housing 310.
  • Cooling water flows into the cooling water flow path 330 through the water inflow port 350 in the housing 310. The water inflow port 350 receives the cooling water supplied from the outside. More specifically the cooling water flow path 330 is located inside the housing 310. For example, the water inflow port 350 may be located at the top portion of the housing 310.
  • The water outflow port 360 in the housing 310 allows cooling water passing through the cooling water flow path 330 to be discharged to the outside of the housing 310. For example, the water outflow port 360 may be located at the bottom portion of the housing 310.
  • More specifically, as illustrated in FIGS. 3 and 5, the partition member 340 may include a first wave portion 341 having a substantially wavy shape in the air contact region in order to increase the contact area with the air flow.
  • One side of the partition member 340 directly contacts with the air, and the other side contacts the cooling water. The partition member 340 may cool and condense vapor in hot humidified air through heat transfer, thereby reducing the humidity of the air and producing dry air. Due to the wavy shape, the first wave portion 341 of the partition member 340 provides adequate contact area between the air and the cooling water inside the housing 310 despite the limited volume of the housing. This significantly and advantageously enhances the drying efficiency of the humidified air coming from the tub 100 or the drum 110.
  • As illustrated in FIGS. 3 and 4, the housing 310 may also include a wavy portion, shown as a second wave portion 311 which is formed in a predetermined position in a region that defines the cooling water flow path 330. The second wave portion 311 may be formed in the housing 310 in a position which faces the first wave portion 341. The second wave portion 311 may be substantially identical in shape with the first wave portion 341.
  • As illustrated in FIG. 4, the lower end of the partition member 340 may be spaced apart by a predetermined height from the housing 310 so that the cooling water flowing through the cooling water flow path 330 can be discharged. As an alternative example, a separate drain portion 342 may be formed at the lower end of the partition member 340 so that the cooling water can be drained through the drain portion 342.
  • In this regard, the partition member 340 may be made of a material having high heat conductivity, such as iron or copper, so that the air and the cooling water can exchange heat with high efficiency. In this case, the iron may be plated with zinc in order to prevent corrosion.
  • Although exemplary embodiments of the present disclosure are described above with reference to the accompanying drawings, those skilled in the art will understand that the present disclosure may be implemented in various ways without changing the necessary features or the spirit of the present disclosure.
  • Therefore, it should be understood that the exemplary embodiments described above are not limiting, but only an example in all respects. The scope of the present disclosure is expressed by claims below, not the detailed description, and it should be construed that all changes and modifications achieved from the meanings and scope of claims and equivalent concepts are included in the scope of the present disclosure.
  • From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. The exemplary embodiments disclosed in the specification of the present disclosure do not limit the present disclosure. The scope of the present disclosure will be interpreted by the claims below, and it will be construed that all techniques within the scope equivalent thereto belong to the scope of the present disclosure.

Claims (20)

What is claimed is:
1. A washing machine comprising:
a tub;
a drum disposed inside the tub;
a drying duct configured to supply heated air to the tub or the drum; and
a condensing duct configured to: receive an air flow exiting from the tub or the drum; and cool the air flow by using cooling water, wherein the condensing duct comprises a partition member configured to partition an internal space of the condensing duct and isolate cooling water in the condensing duct from the air flow.
2. The washing machine of claim 1, wherein the partition member forms a wall of a cooling water flow path containing the cooling water.
3. The washing machine of claim 1, wherein the air flow exiting the condensing duct is supplied back to the drying duct.
4. The washing machine of claim 1, wherein the condensing duct further comprises:
a housing;
an air flow path configured to transport the air flow across the housing; and
a cooling water flow path configured to transport a cooling water flow across the housing.
5. The washing machine of claim 4, wherein the partition member is disposed inside the housing and separates the air flow path from the cooling water flow path.
6. The washing machine of claim 1, wherein the housing comprising:
a water inflow port for the cooling water to enter the condensing duct; and
a water outflow port for the cooling water to exit the condensing duct.
7. The washing machine of claim 4, wherein the partition member comprises a first wave-shaped portion through which the air flow and the cooling water exchange heat.
8. The washing machine of claim 7, wherein the housing comprises a second wave-shaped portion.
9. The washing machine of claim 8, wherein the cooling water flow path comprises the first wave-shaped portion of the partition member and the second wave-shaped portion of the housing.
10. The washing machine of claim 8, wherein the second wave-shaped portion comprises an analogous profile as the first wave-shaped portion.
11. The washing machine of claim 8, wherein an end of the partition member in combination with an end of the housing forms an opening that allows the cooling water to flow out of the condensing duct.
12. The washing machine of claim 1, wherein a drain portion is formed in a lower end of the partition member for draining the cooling water from the condensing duct.
13. The washing machine of claim 1, wherein the partition member comprises iron or copper.
14. A washing machine comprising:
a drying duct configured to supply heated air to a tub or a drum; and
a condensing duct configured to receive humidified air passing through the tub or the drum and to supply dry air to the drying duct after moisture contained in the humidified air is condensed by heat exchange with cooling water,
wherein the condensing duct comprises:
a housing;
an air flow path for air to flow across the condensing duct;
a cooling water flow path for the cooling water to flow across the condensing duct; and
a partition member disposed inside the housing and configured to separate the air flow path from the cooling water flow path, wherein the partition member is shared by the air flow path and the cooling water path.
15. The washing machine of claim 14, wherein the condensing duct further comprises: a water inflow port formed on the housing for the cooling water to enter the cooling water flow path; and
a water outflow port formed on the housing for the cooling water to exit the cooling water flow path.
16. The washing machine of claim 14, wherein the partition member comprises a first wave portion formed in a substantially wavy shape, wherein the first wave portion is in contact with the air flowing through the condensing duct.
17. The washing machine of claim 16, wherein the housing comprises a second wave portion having an analogous shape as the first wave portion, where the first wave portion and the second wave portion form walls of the cooling water flow path.
18. The washing machine of claim 14, wherein the partition member has a lower end spaced apart from the housing for the cooling water to flow out of the condensing duct.
19. The washing machine of claim 18, wherein a drain portion is formed in the lower end of the partition member, and wherein the cooling water is drained from the condensing duct through the drain portion.
20. The washing machine of claim 14, wherein the drying duct is coupled to a heater and a fan.
US15/265,673 2016-02-16 2016-09-14 Drum type washing machine Abandoned US20170233918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0017567 2016-02-16
KR1020160017567A KR20170096328A (en) 2016-02-16 2016-02-16 Drum type washing machine

Publications (1)

Publication Number Publication Date
US20170233918A1 true US20170233918A1 (en) 2017-08-17

Family

ID=59559580

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/265,673 Abandoned US20170233918A1 (en) 2016-02-16 2016-09-14 Drum type washing machine

Country Status (3)

Country Link
US (1) US20170233918A1 (en)
KR (1) KR20170096328A (en)
CN (1) CN107083640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038811A1 (en) * 2020-08-20 2022-02-24 日立グローバルライフソリューションズ株式会社 Washing/drying machine
JP2022035140A (en) * 2020-08-20 2022-03-04 日立グローバルライフソリューションズ株式会社 Washing and drying machine
JP7422049B2 (en) 2020-10-23 2024-01-25 日立グローバルライフソリューションズ株式会社 Washing and drying machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136795A (en) * 2017-06-15 2018-12-26 주식회사 대우전자 Wall mounted drum type washing machine
CN108589166A (en) * 2018-05-15 2018-09-28 珠海格力电器股份有限公司 Clothes washer-dryer
CN113684644A (en) * 2021-09-27 2021-11-23 北京小米移动软件有限公司 Washing machine
WO2024046210A1 (en) * 2022-08-31 2024-03-07 深圳洛克创新科技有限公司 All-in-one washer and dryer combo

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712849B1 (en) * 2005-02-03 2007-05-02 엘지전자 주식회사 Condensing structure of washer with dryer and dryer
KR20140109119A (en) * 2013-03-05 2014-09-15 삼성전자주식회사 Laundry Treating Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038811A1 (en) * 2020-08-20 2022-02-24 日立グローバルライフソリューションズ株式会社 Washing/drying machine
JP2022035140A (en) * 2020-08-20 2022-03-04 日立グローバルライフソリューションズ株式会社 Washing and drying machine
JP7422049B2 (en) 2020-10-23 2024-01-25 日立グローバルライフソリューションズ株式会社 Washing and drying machine

Also Published As

Publication number Publication date
KR20170096328A (en) 2017-08-24
CN107083640A (en) 2017-08-22

Similar Documents

Publication Publication Date Title
US20170233918A1 (en) Drum type washing machine
US20190024279A1 (en) Drum type washing machine with improved drying efficiency
KR102127383B1 (en) Laundry Machine
US9695546B2 (en) Drying assembly and manufacturing method for the same
US20140250710A1 (en) Laundry treating apparatus
CN104711833B (en) Dryer
KR20060107037A (en) Washing machine with dryer
KR102100473B1 (en) Clothes treating apparatus with a waste heat recovery means
JP2022009739A (en) Clothing treatment device
KR101555759B1 (en) Drum type washing machine
CN105200747A (en) Clothes dryer
JP2002239284A (en) Pulsator system washing and drying machine
KR101492986B1 (en) Drum type washing machine
JP4023418B2 (en) Drum type washer / dryer
CN106676855B (en) Drying washing machine
CN106676854B (en) Drying washing machine
KR101840795B1 (en) Laundry treatment apparatus
JP2012179268A (en) Drum washing/drying machine
KR102616494B1 (en) Laundry Treating Machine
JP2014018393A (en) Clothing treatment apparatus
JP2009297282A (en) Clothes dryer or washing and drying machine
JP6183633B2 (en) Drying equipment
JP2013085682A (en) Laundry drying machine
WO2014024357A1 (en) Dryer
CN106676853B (en) Drying washing machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: DONGBU DAEWOO ELECTRONICS CORPORATION, KOREA, REPU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, SUNG MYOUN;REEL/FRAME:039743/0124

Effective date: 20160912

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION