US20170191166A1 - Method for manufacturing a process apparatus and a process apparatus - Google Patents

Method for manufacturing a process apparatus and a process apparatus Download PDF

Info

Publication number
US20170191166A1
US20170191166A1 US15/309,504 US201515309504A US2017191166A1 US 20170191166 A1 US20170191166 A1 US 20170191166A1 US 201515309504 A US201515309504 A US 201515309504A US 2017191166 A1 US2017191166 A1 US 2017191166A1
Authority
US
United States
Prior art keywords
process apparatus
rubber
passivation layer
lining
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/309,504
Inventor
Mari Lindgren
Paavo LAIHONEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outotec Finland Oy
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Assigned to OUTOTEC (FINLAND) OY reassignment OUTOTEC (FINLAND) OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAIHONEN, Paavo, LINDGREN, MARI
Publication of US20170191166A1 publication Critical patent/US20170191166A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • B01F27/053Stirrers characterised by their elements, materials or mechanical properties characterised by their materials
    • B01F27/0531Stirrers characterised by their elements, materials or mechanical properties characterised by their materials with particular surface characteristics, e.g. coated or rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • C09J2421/006Presence of unspecified rubber in the substrate

Definitions

  • the invention relates to a method for manufacturing a process apparatus and a process apparatus.
  • Rubber linings are typically used for corrosion and wear protection in process apparatuses such as impellers.
  • One possible solution for aggressive environments is a combination of superduplex stainless steel and bromobutyl rubber, in which the rubber material provides for wear protection.
  • rubber linings are prone to failure due to loss of adhesion between the stainless steel and the rubber lining. This type of failure is often sudden and can cause substantial economical losses due to loss of production.
  • the adhesion between stainless steel and rubber lining is partly mechanical, assisted by surface roughness of the stainless steel, and partly chemical, typically created with the aid of so-called primers.
  • a typical procedure to apply a rubber lining is to roughen the surface of the stainless steel by shot peening and to apply a first layer of primer immediately or within a few hours at the latest. The aim is to produce a clean, oxide-free surface for the primers, as it is believed that such a surface provides the best adhesion.
  • process apparatuses lined according to such a procedure have been found to often suffer from loss of adhesion during prolonged exposure to harsh conditions.
  • the purpose of the present invention is to provide a new method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, in which highly improved adhesion between the stainless steel of the process apparatus and the rubber lining is achieved.
  • the invention discloses a method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the method comprises the step of lining a process apparatus formed of stainless steel with rubber; wherein the method further comprises the step of forming a passivation layer on a surface of the process apparatus in an acid bath prior to lining the process apparatus comprising the passivation layer with rubber.
  • the process apparatus may be suitable for use in high temperature liquid immersion such as immersion in acidic solution, e.g. sulphuric acid solution.
  • the dynamic stresses may be imposed by e.g. rotation.
  • the process apparatus may be suitable for use in liquid immersion at a temperature of at least 70° C., or at least 80° C., or at least 90° C., or at least 95° C.
  • the process apparatus may be suitable for moving or forcing liquid. It may also be suitable for use in an environment where high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • the life expectancy of such a process apparatus is preferably at least one year, or at least two years.
  • the passivation layer may be formed on one or more surfaces of the process apparatus prior to one or more optional steps and the step of lining the process apparatus with rubber. Further, the passivation layer may be formed on a part of one or more surfaces of the process apparatus prior to one or more optional steps and lining the process apparatus with rubber. Thus the passivation layer or at least a part of the passivation layer is lined with rubber.
  • the rubber lining may be performed e.g. by applying a layer or sheet of rubber, for instance a layer or sheet 12-20 mm thick, on the process apparatus and by vulcanizing or curing.
  • the conditions of the vulcanization process may be selected depending e.g. on the rubber and/or primer used. For instance, conventionally practiced vulcanization conditions at the temperatures of 120°-180° C. may be used under a suitable pressure.
  • a suitable pressure may be e.g. in the range of 1-20 bar, or in the range of 3-6 bar, for instance 5 bar.
  • the vulcanization may be performed in an autoclave.
  • the rubber is bonded to the stainless steel by vulcanizing or curing.
  • a surface of the process apparatus is roughened prior to forming the passivation layer on the roughened surface of the process apparatus.
  • the roughening may be performed using e.g. a suitable shot peening method.
  • the roughening may improve adhesion of the rubber lining to the stainless steel.
  • One or more surfaces of the process apparatus, or at least a part of one or more surfaces of the process apparatus, may be roughened.
  • a surface of the process apparatus is roughened by shot peening prior to forming the passivation layer on the roughened surface of the process apparatus.
  • a surface of the process apparatus is roughened to a roughness of at least 10 ⁇ m Rz, or at least 15 ⁇ m Rz, prior to forming the passivation layer on the roughened surface of the process apparatus.
  • Rz should be understood as referring to the average distance between highest peaks and valleys.
  • a surface of the process apparatus is roughened to a roughness of at least 20 ⁇ m Rz prior to forming the passivation layer on the roughened surface of the process apparatus.
  • 20 ⁇ m Rz represents the normal level of roughness.
  • a primer, an adhesive, or both may be applied on the passivation layer prior to lining the process apparatus.
  • Suitable primer or adhesive may be selected e.g. so that it is suitable for the rubber and the curing or vulcanization method used. Typically, at least a primer is used.
  • the term “primer” should be understood as referring to any primer or bonding agent suitable for bonding the rubber to stainless steel.
  • adheresive should be understood as referring to any adhesion promoter suitable for promoting the adhesion of the rubber to stainless steel.
  • a primer and/or an adhesive is applied on the passivation layer prior to lining the process apparatus comprising the passivation layer with rubber.
  • a passivation layer as perfect as possible is formed on the surface of the process apparatus.
  • the acid bath comprises an oxidizing acid.
  • Suitable oxidizing acids are e.g. nitric acid and citric acid.
  • the acid bath is a nitric acid bath.
  • the passivation layer may be formed in a bath of e.g. at least 15% v/v, or at least 20% v/v, or up to 50% v/v, nitric acid.
  • a nitric acid bath may also comprise sodium dichromate as an additive to promote oxidation.
  • the passivation layer may be formed by immersion in the nitric acid bath for e.g. at least 20 minutes, or 20-30 minutes, or up to 2 h.
  • the temperature of the nitric acid bath may be e.g. in the range of 20° C. to 70° C.
  • Nitric acid baths are very effective in forming the passivation layer.
  • the acid bath is a citric acid bath.
  • the passivation layer may be formed in a bath of e.g. 4-10% v/v citric acid.
  • the passivation layer may be formed by immersion in the citric acid bath for e.g. at least 20 minutes, or at least 30 minutes.
  • Citric acid is typically a milder acid bath and may be more environmentally friendly.
  • the process apparatus may be rinsed and dried after forming the passivation layer in the acid bath.
  • the drying may be performed e.g. by blowing the process apparatus with compressed air or in a vacuum chamber, or both.
  • Possible rubbers for rubber lining are in principle any rubbers that may be bonded to metal, such as hard rubbers, butyl rubbers or synthetic rubbers.
  • the requirements for chemical resistance and wear resistance govern the selection of the rubber type.
  • the rubber is a rubber suitable for bonding to the stainless steel by vulcanizing or curing.
  • the rubber is halobutyl rubber, such as chromobutyl or bromobutyl rubber.
  • the rubber is bromobutyl rubber.
  • Bromobutyl rubber is well suited for use in acidic conditions and high temperatures.
  • any stainless steel is suitable as the material of the process apparatus.
  • stainless steels typically contain at least 10.5% chromium.
  • the stainless steel is duplex stainless steel.
  • Duplex stainless steels typically have a mixed microstructure of austenite and ferrite.
  • Duplex grades include e.g. lean duplex, standard duplex, super duplex and hyper duplex stainless steel.
  • the stainless steel is super duplex stainless steel.
  • PREN % Cr+3.3 ⁇ (% Mo+0.5 ⁇ % W)+16 ⁇ % N.
  • super duplex grades, such as 2507, contain at least 25% chromium.
  • the method comprises the steps of
  • the process apparatus is an impeller, agitator or mixer.
  • the invention further relates to a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the process apparatus is formed of stainless steel and comprises a passivation layer on the surface of the stainless steel and a rubber lining on the passivation layer.
  • the process apparatus may be suitable for use in high temperature liquid immersion such as immersion in acidic solution, e.g. sulphuric acid solution.
  • the dynamic stresses may be imposed by e.g. rotation.
  • the process apparatus may be suitable for use in liquid immersion at a temperature of at least 70° C., or at least 80° C., or at least 90° C., or at least 95° C.
  • the process apparatus may be suitable for moving or forcing liquid. It may also be suitable for use in an environment where high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • the passivation layer may be disposed on one or more surfaces of the stainless steel. Further, at least a part of the passivation layer may be lined with rubber.
  • a surface of the process apparatus is roughened.
  • the surface of the process apparatus should be understood as referring to the surface of the stainless steel.
  • the passivation layer is disposed on the roughened surface of the stainless steel.
  • One or more surfaces of the process apparatus, or at least a part of one or more surfaces of the process apparatus, may be roughened.
  • a surface of the process apparatus is roughened to, i.e. has a roughness of, at least 10 ⁇ m Rz, or at least 15 ⁇ m Rz, or at least 20 ⁇ m Rz.
  • the rubber lining may be directly on the passivation layer, or one or more layers may be disposed between the passivation layer and the rubber lining.
  • the process apparatus comprises a layer of a primer and/or a layer of an adhesive between the passivation layer and the rubber lining.
  • the process apparatus may comprise one or more layers of a primer, one or more layers of an adhesive, or both.
  • the rubber lining is bonded to the steel.
  • Primers and adhesives are added to assist in bonding the rubber lining to the steel.
  • Possible rubbers are in principle any rubbers that may be bonded to metal, such as hard rubbers, butyl rubbers or synthetic rubbers.
  • the rubber is suitable for bonding to stainless steel by vulcanization or curing.
  • the rubber is halobutyl rubber, such as chromobutyl or bromobutyl rubber.
  • the rubber is bromobutyl rubber.
  • any stainless steel is suitable as the material from which the process apparatus is formed.
  • the stainless steel is duplex stainless steel.
  • the stainless steel is super duplex stainless steel.
  • the process apparatus is an impeller, agitator or mixer.
  • the invention also relates to a process apparatus obtainable by the method according to one or more embodiments of the invention.
  • the invention provides a number of benefits. Surprisingly, the adhesion between the stainless steel and the rubber lining is dramatically improved by the formation of the passivation layer. Thus the lifetime of processing apparatuses can be significantly prolonged, and losses of production due to e.g. sudden failures of process apparatuses or time required to replace failed process apparatuses can be avoided.
  • the process for manufacturing is simple, applicable to process apparatuses of various sizes and shapes and the costs involved low.
  • FIG. 1 shows an embodiment of the process apparatus
  • FIG. 2 illustrates a cross-section of the process apparatus shown in FIG. 1 .
  • FIG. 1 illustrates one embodiment of the process apparatus.
  • the process apparatus 1 formed of stainless steel, comprises a hub 4 comprising an opening 5 which may be connected to an axis.
  • the process apparatus is rotatable about the axis for moving liquid in which it may be immersed.
  • the process apparatus comprises a plurality of pitched blades 6 which extend outwardly from the hub 4 ; in general, the number, pitch and shape of blades may vary.
  • FIG. 2 is a cross-section II-II of FIG. 1 .
  • the blade 6 of the process apparatus 1 comprises a rubber lining 3 and a passivation layer 2 disposed between the blade 6 formed of stainless steel and the rubber lining 3 .
  • the passivation layer 2 is formed on the surface of the stainless steel.
  • the rubber lining 3 covers the entire surface of the passivation layer 2 .
  • Steel slabs were cut from super 2507 duplex stainless steel (60 ⁇ 24.5 mm). The surface of the slabs was roughened and a primer lining was applied on the roughened surface immediately. The steel slabs were lined with three different primer combinations and with two layers of CEMENT TC 5000 adhesive. Two steel slabs were lined with each primer combination:
  • the steel slabs lined with the primer combinations and the adhesive were rubber lined with Chemoline 13 bromobutyl rubber (Rema TipTop) and vulcanized at 140° C. for 4 h.
  • One steel slab of each of the samples 1-3 was immersed in sulphuric acid solution at 95° C. for 1000 h in a 10 1 reactor, in which the rubber lined steel slabs were placed in a vertical position.
  • the composition of the sulphuric acid solution was as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • ing And Chemical Polishing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The invention concerns a method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under aggressive chemical environment and dynamic stress, wherein the method comprises the step of lining the process apparatus formed of stainless steel with rubber, wherein the method further comprises the step of forming a passivation layer on a surface of the process apparatus in an acid bath prior to lining the process apparatus comprising the passivation layer with rubber. The invention also concerns a process apparatus.

Description

    FIELD OF THE INVENTION
  • The invention relates to a method for manufacturing a process apparatus and a process apparatus.
  • BACKGROUND OF THE INVENTION
  • Rubber linings are typically used for corrosion and wear protection in process apparatuses such as impellers. One possible solution for aggressive environments is a combination of superduplex stainless steel and bromobutyl rubber, in which the rubber material provides for wear protection. Under harsh conditions such as high temperature immersion, rubber linings are prone to failure due to loss of adhesion between the stainless steel and the rubber lining. This type of failure is often sudden and can cause substantial economical losses due to loss of production.
  • Maintaining adhesion tends to become increasingly important if process conditions become more aggressive, as the loss of adhesion can immediately cause the loss of the underlying process apparatus by corrosion. The adhesion between stainless steel and rubber lining is partly mechanical, assisted by surface roughness of the stainless steel, and partly chemical, typically created with the aid of so-called primers. A typical procedure to apply a rubber lining is to roughen the surface of the stainless steel by shot peening and to apply a first layer of primer immediately or within a few hours at the latest. The aim is to produce a clean, oxide-free surface for the primers, as it is believed that such a surface provides the best adhesion. Unfortunately process apparatuses lined according to such a procedure have been found to often suffer from loss of adhesion during prolonged exposure to harsh conditions.
  • Thus the need remains for improved methods that allow for manufacturing process apparatuses with improved adhesion and longer life span in harsh process conditions.
  • SUMMARY OF THE INVENTION
  • The purpose of the present invention is to provide a new method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, in which highly improved adhesion between the stainless steel of the process apparatus and the rubber lining is achieved.
  • The invention discloses a method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the method comprises the step of lining a process apparatus formed of stainless steel with rubber; wherein the method further comprises the step of forming a passivation layer on a surface of the process apparatus in an acid bath prior to lining the process apparatus comprising the passivation layer with rubber.
  • The process apparatus may be suitable for use in high temperature liquid immersion such as immersion in acidic solution, e.g. sulphuric acid solution. The dynamic stresses may be imposed by e.g. rotation. The process apparatus may be suitable for use in liquid immersion at a temperature of at least 70° C., or at least 80° C., or at least 90° C., or at least 95° C.
  • The process apparatus may be suitable for moving or forcing liquid. It may also be suitable for use in an environment where high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • The life expectancy of such a process apparatus is preferably at least one year, or at least two years.
  • The passivation layer may be formed on one or more surfaces of the process apparatus prior to one or more optional steps and the step of lining the process apparatus with rubber. Further, the passivation layer may be formed on a part of one or more surfaces of the process apparatus prior to one or more optional steps and lining the process apparatus with rubber. Thus the passivation layer or at least a part of the passivation layer is lined with rubber.
  • The rubber lining may be performed e.g. by applying a layer or sheet of rubber, for instance a layer or sheet 12-20 mm thick, on the process apparatus and by vulcanizing or curing. The conditions of the vulcanization process may be selected depending e.g. on the rubber and/or primer used. For instance, conventionally practiced vulcanization conditions at the temperatures of 120°-180° C. may be used under a suitable pressure. A suitable pressure may be e.g. in the range of 1-20 bar, or in the range of 3-6 bar, for instance 5 bar. The vulcanization may be performed in an autoclave.
  • In an embodiment, the rubber is bonded to the stainless steel by vulcanizing or curing.
  • In an embodiment, a surface of the process apparatus is roughened prior to forming the passivation layer on the roughened surface of the process apparatus. The roughening may be performed using e.g. a suitable shot peening method. The roughening may improve adhesion of the rubber lining to the stainless steel. One or more surfaces of the process apparatus, or at least a part of one or more surfaces of the process apparatus, may be roughened.
  • In an embodiment, a surface of the process apparatus is roughened by shot peening prior to forming the passivation layer on the roughened surface of the process apparatus.
  • In an embodiment, a surface of the process apparatus is roughened to a roughness of at least 10 μm Rz, or at least 15 μm Rz, prior to forming the passivation layer on the roughened surface of the process apparatus. Rz should be understood as referring to the average distance between highest peaks and valleys.
  • In an embodiment, a surface of the process apparatus is roughened to a roughness of at least 20 μm Rz prior to forming the passivation layer on the roughened surface of the process apparatus. 20 μm Rz represents the normal level of roughness.
  • To improve bonding of rubber to stainless steel, a primer, an adhesive, or both may be applied on the passivation layer prior to lining the process apparatus. Suitable primer or adhesive may be selected e.g. so that it is suitable for the rubber and the curing or vulcanization method used. Typically, at least a primer is used. In this context, the term “primer” should be understood as referring to any primer or bonding agent suitable for bonding the rubber to stainless steel. In this context, the term “adhesive” should be understood as referring to any adhesion promoter suitable for promoting the adhesion of the rubber to stainless steel.
  • In an embodiment, a primer and/or an adhesive is applied on the passivation layer prior to lining the process apparatus comprising the passivation layer with rubber. In an embodiment, a passivation layer as perfect as possible is formed on the surface of the process apparatus.
  • In an embodiment, the acid bath comprises an oxidizing acid. Suitable oxidizing acids are e.g. nitric acid and citric acid.
  • In an embodiment, the acid bath is a nitric acid bath.
  • The passivation layer may be formed in a bath of e.g. at least 15% v/v, or at least 20% v/v, or up to 50% v/v, nitric acid. A nitric acid bath may also comprise sodium dichromate as an additive to promote oxidation. The passivation layer may be formed by immersion in the nitric acid bath for e.g. at least 20 minutes, or 20-30 minutes, or up to 2 h. The temperature of the nitric acid bath may be e.g. in the range of 20° C. to 70° C. Nitric acid baths are very effective in forming the passivation layer.
  • In an embodiment, the acid bath is a citric acid bath.
  • The passivation layer may be formed in a bath of e.g. 4-10% v/v citric acid. The passivation layer may be formed by immersion in the citric acid bath for e.g. at least 20 minutes, or at least 30 minutes. Citric acid is typically a milder acid bath and may be more environmentally friendly.
  • The process apparatus may be rinsed and dried after forming the passivation layer in the acid bath.
  • The drying may be performed e.g. by blowing the process apparatus with compressed air or in a vacuum chamber, or both.
  • Possible rubbers for rubber lining are in principle any rubbers that may be bonded to metal, such as hard rubbers, butyl rubbers or synthetic rubbers. The requirements for chemical resistance and wear resistance govern the selection of the rubber type.
  • In an embodiment, the rubber is a rubber suitable for bonding to the stainless steel by vulcanizing or curing.
  • In an embodiment, the rubber is halobutyl rubber, such as chromobutyl or bromobutyl rubber.
  • In an embodiment, the rubber is bromobutyl rubber. Bromobutyl rubber is well suited for use in acidic conditions and high temperatures.
  • In principle, any stainless steel is suitable as the material of the process apparatus. Typically stainless steels contain at least 10.5% chromium.
  • In an embodiment, the stainless steel is duplex stainless steel. Duplex stainless steels typically have a mixed microstructure of austenite and ferrite. Duplex grades include e.g. lean duplex, standard duplex, super duplex and hyper duplex stainless steel.
  • In an embodiment, the stainless steel is super duplex stainless steel. Super duplex stainless steels are duplex stainless steels with a Pitting Resistance Equivalent Number (PREN) >40, where PREN=% Cr+3.3×(% Mo+0.5×% W)+16×% N. Usually super duplex grades, such as 2507, contain at least 25% chromium.
  • In an embodiment, the method comprises the steps of
  • roughening a surface of a process apparatus formed of stainless steel;
  • forming a passivation layer on the roughened surface of the process apparatus in an acid bath;
  • optionally applying one or more layers of a primer, one or more layers of an adhesive, or both on the passivation layer;
  • lining the process apparatus comprising the passivation layer with rubber; and
  • bonding the rubber by vulcanizing or curing.
  • In an embodiment, the process apparatus is an impeller, agitator or mixer.
  • The invention further relates to a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the process apparatus is formed of stainless steel and comprises a passivation layer on the surface of the stainless steel and a rubber lining on the passivation layer.
  • The process apparatus may be suitable for use in high temperature liquid immersion such as immersion in acidic solution, e.g. sulphuric acid solution. The dynamic stresses may be imposed by e.g. rotation. The process apparatus may be suitable for use in liquid immersion at a temperature of at least 70° C., or at least 80° C., or at least 90° C., or at least 95° C.
  • The process apparatus may be suitable for moving or forcing liquid. It may also be suitable for use in an environment where high dynamic or tensile forces such as fluid, shear, bending or compression forces or scratching, sliding or scrubbing are imposed on the process apparatus, or in an environment where the process apparatus moves or rotates in liquid.
  • The passivation layer may be disposed on one or more surfaces of the stainless steel. Further, at least a part of the passivation layer may be lined with rubber.
  • In an embodiment, a surface of the process apparatus is roughened. In this context, the surface of the process apparatus should be understood as referring to the surface of the stainless steel. The passivation layer is disposed on the roughened surface of the stainless steel. One or more surfaces of the process apparatus, or at least a part of one or more surfaces of the process apparatus, may be roughened.
  • In an embodiment, a surface of the process apparatus is roughened to, i.e. has a roughness of, at least 10 μm Rz, or at least 15 μm Rz, or at least 20 μm Rz.
  • The rubber lining may be directly on the passivation layer, or one or more layers may be disposed between the passivation layer and the rubber lining.
  • For instance, in an embodiment, the process apparatus comprises a layer of a primer and/or a layer of an adhesive between the passivation layer and the rubber lining. The process apparatus may comprise one or more layers of a primer, one or more layers of an adhesive, or both.
  • Typically, the rubber lining is bonded to the steel. Primers and adhesives are added to assist in bonding the rubber lining to the steel.
  • Possible rubbers are in principle any rubbers that may be bonded to metal, such as hard rubbers, butyl rubbers or synthetic rubbers.
  • In an embodiment, the rubber is suitable for bonding to stainless steel by vulcanization or curing.
  • In an embodiment, the rubber is halobutyl rubber, such as chromobutyl or bromobutyl rubber.
  • In an embodiment, the rubber is bromobutyl rubber.
  • In principle, any stainless steel is suitable as the material from which the process apparatus is formed. In an embodiment, the stainless steel is duplex stainless steel. In an embodiment, the stainless steel is super duplex stainless steel.
  • In an embodiment, the process apparatus is an impeller, agitator or mixer.
  • The invention also relates to a process apparatus obtainable by the method according to one or more embodiments of the invention.
  • The invention provides a number of benefits. Surprisingly, the adhesion between the stainless steel and the rubber lining is dramatically improved by the formation of the passivation layer. Thus the lifetime of processing apparatuses can be significantly prolonged, and losses of production due to e.g. sudden failures of process apparatuses or time required to replace failed process apparatuses can be avoided. The process for manufacturing is simple, applicable to process apparatuses of various sizes and shapes and the costs involved low.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and constitute a part of this specification, illustrate embodiments of the invention and together with the description help to explain the principles of the invention. In the drawings:
  • FIG. 1 shows an embodiment of the process apparatus; and
  • FIG. 2 illustrates a cross-section of the process apparatus shown in FIG. 1.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
  • For reasons of simplicity, item numbers will be maintained in the following exemplary embodiments in the case of repeating components.
  • FIG. 1 illustrates one embodiment of the process apparatus. In this embodiment, the process apparatus 1, formed of stainless steel, comprises a hub 4 comprising an opening 5 which may be connected to an axis. The process apparatus is rotatable about the axis for moving liquid in which it may be immersed. The process apparatus comprises a plurality of pitched blades 6 which extend outwardly from the hub 4; in general, the number, pitch and shape of blades may vary.
  • FIG. 2 is a cross-section II-II of FIG. 1. The blade 6 of the process apparatus 1 comprises a rubber lining 3 and a passivation layer 2 disposed between the blade 6 formed of stainless steel and the rubber lining 3. The passivation layer 2 is formed on the surface of the stainless steel. In this exemplary embodiment, the rubber lining 3 covers the entire surface of the passivation layer 2.
  • EXAMPLES Comparative Example
  • Steel slabs were cut from super 2507 duplex stainless steel (60×24.5 mm). The surface of the slabs was roughened and a primer lining was applied on the roughened surface immediately. The steel slabs were lined with three different primer combinations and with two layers of CEMENT TC 5000 adhesive. Two steel slabs were lined with each primer combination:

  • Chemosil 211+Chemosil 411 (Henkel)   Sample 1

  • HG1+HG2   Sample 2

  • PR500+S500-2   Sample 3
  • The steel slabs lined with the primer combinations and the adhesive were rubber lined with Chemoline 13 bromobutyl rubber (Rema TipTop) and vulcanized at 140° C. for 4 h.
  • One steel slab of each of the samples 1-3 was immersed in sulphuric acid solution at 95° C. for 1000 h in a 10 1 reactor, in which the rubber lined steel slabs were placed in a vertical position. The composition of the sulphuric acid solution was as follows:
  • H2SO4 75 g/l
    Fe 45 g/l
    Cu 15 g/l
    Cl 650 mg/l
  • The other steel slab of each of the samples 1-3 was not immersed. The adhesion of the rubber lining was tested by measuring the force required to rip the rubber lining off the steel slab. The results are shown in Table 1.
  • TABLE 1
    Tensile strength test results for samples that were not immersed in
    sulphuric acid solution and samples that were immersed in sulphuric acid
    solution. RH refers to adhesion strength in newtons per millimetre
    (maximum force FH divided by the width of the sample).
    RH (N/mm2)
    Immersion for
    Sample No immersion 1000 h
    1 10.4 2.0
    2 10.0 1.2
    3 10.1 1.5
  • As expected, rubber lining on steel slabs that were not immersed in sulphuric acid solution adhered very well, and a force of at least 10 N/mm2 was required to pull off the rubber lining. However, immersion for 1000 h in sulphuric acid solution at high temperature led to a significant decrease in adhesion, and a force of approx. 1.6 N/mm2 on average was required to pull off the rubber lining. Small differences in adhesion were observed between different primers used.
  • Example 1
  • Slabs of super duplex 2507 steel were roughened and passivated by immersing in a nitric acid bath containing 20% (v/v) HNO3 for 30 min at 25° C., then rinsed and dried with compressed air blow and in a vacuum chamber. A rubber lining was applied on the passivated surface of the steel slabs in a similar manner as in the comparative example. The rubber lined samples were immersed in the sulphuric acid solution for 1000 h either at room temperature (samples 1-2) or at 95° C. (samples 3-6). Tensile strength measurement results are shown in Table 2.
  • TABLE 2
    Tensile strength test results for passivated samples that were immersed
    in sulphuric acid solution at room temperature (samples 1 and 2) and
    samples that were immersed in sulphuric acid solution at 95° C.
    (samples 3-6). FH refers to the maximum force required to cause
    separation of the rubber lining.
    Sample FH (N) RH (N/mm2)
    1 211.53 8.46
    2 223.15 8.93
    3 217.40 8.70
    4 216.68 8.67
    5 231.65 9.27
    6 196.32 7.85
  • The tensile strength test demonstrated that adhesion remained significantly better in samples in which the surface of the roughened steel slab was passivated using nitric acid prior to rubber lining than in the samples of the comparative example. Further, the adhesion was only slightly lower than in samples of the comparative test which were not immersed in sulphuric acid solution. The temperature during the immersion did not appear to have a significant effect on adhesion.
  • It is obvious to a person skilled in the art that with the advancement of technology, the basic idea of the invention may be implemented in various ways. The invention and its embodiments are thus not limited to the examples described above, instead they may vary within the scope of the claims.

Claims (21)

1-15. (canceled)
16. A method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the process apparatus is an impeller, agitator or mixer, and wherein the method comprises the step of lining a process apparatus formed of stainless steel with rubber, wherein the method comprises:
roughening a surface of the process apparatus to a roughness of at least 10 μm Rz; and
forming a passivation layer on the roughened surface of the process apparatus in an acid bath prior to lining the process apparatus comprising the passivation layer with rubber.
17. The method according to claim 16, wherein a surface of the process apparatus is roughened by shot peening prior to forming the passivation layer on the roughened surface of the process apparatus.
18. The method according to claim 16, wherein a surface of the process apparatus is roughened to a roughness of at least 15 μm Rz, or at least 20 μm Rz, prior to forming the passivation layer on the roughened surface of the process apparatus.
19. The method according to claim 16, wherein a primer and/or an adhesive is applied on the passivation layer prior to lining the process apparatus comprising the passivation layer with rubber.
20. The method according to claim 16, wherein the acid bath is a nitric acid bath or a citric acid bath.
21. The method according to claim 16, wherein the rubber is halobutyl rubber, preferably bromobutyl rubber.
22. The method according to claim 16, wherein the stainless steel is super duplex stainless steel.
23. A process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, which is an impeller, agitator or mixer, and wherein the process apparatus is formed of stainless steel, wherein a surface of the process apparatus is roughened to a roughness of at least 10 μm Rz, and the process apparatus comprises a passivation layer on the roughened surface of the stainless steel, and a rubber lining on the passivation layer.
24. The process apparatus according to claim 23, wherein the surface of the process apparatus is roughened to a roughness of at least 15 μm Rz, or at least 20 μm Rz.
25. The process apparatus according to claim 23, wherein it comprises a layer of a primer and/or a layer of an adhesive between the passivation layer and the rubber lining.
26. The process apparatus according to claim 23, wherein the rubber is halobutyl rubber, preferably bromobutyl rubber.
27. The process apparatus according to claim 23, wherein the stainless steel is super duplex stainless steel.
28. The process apparatus according to claim 23 obtainable by the method for manufacturing a process apparatus for moving liquid in high temperature liquid immersion under an aggressive chemical environment and dynamic stress, wherein the process apparatus is an impeller, agitator or mixer, and wherein the method comprises the step of lining a process apparatus formed of stainless steel with rubber, wherein the method comprises:
roughening a surface of the process apparatus to a roughness of at least 10 μm Rz; and forming a passivation layer on the roughened surface of the process apparatus in an acid bath prior to lining the process apparatus comprising the passivation layer with rubber.
29. The method according to claim 17, wherein a surface of the process apparatus is roughened to a roughness of at least 15 μm Rz, or at least 20 μm Rz, prior to forming the passivation layer on the roughened surface of the process apparatus.
30. The method according to claim 17, wherein a primer and/or an adhesive is applied on the passivation layer prior to lining the process apparatus comprising the passivation layer with rubber.
31. The method according to claim 18, wherein a primer and/or an adhesive is applied on the passivation layer prior to lining the process apparatus comprising the passivation layer with rubber.
32. The method according to claim 17, wherein the acid bath is a nitric acid bath or a citric acid bath.
33. The method according to claim 18, wherein the acid bath is a nitric acid bath or a citric acid bath.
34. The method according to claim 19, wherein the acid bath is a nitric acid bath or a citric acid bath.
35. The method according to claim 17, wherein the rubber is halobutyl rubber, preferably bromobutyl rubber.
US15/309,504 2014-05-16 2015-05-11 Method for manufacturing a process apparatus and a process apparatus Abandoned US20170191166A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20145446 2014-05-16
FI20145446A FI20145446A (en) 2014-05-16 2014-05-16 A method for manufacturing a process device and a process device
PCT/FI2015/050315 WO2015173469A1 (en) 2014-05-16 2015-05-11 Method for manufacturing a process apparatus and a process apparatus

Publications (1)

Publication Number Publication Date
US20170191166A1 true US20170191166A1 (en) 2017-07-06

Family

ID=53404589

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/309,504 Abandoned US20170191166A1 (en) 2014-05-16 2015-05-11 Method for manufacturing a process apparatus and a process apparatus

Country Status (10)

Country Link
US (1) US20170191166A1 (en)
EP (1) EP3143183B1 (en)
CN (1) CN106460186A (en)
AU (1) AU2015261340B2 (en)
CA (1) CA2948233A1 (en)
CL (1) CL2016002862A1 (en)
EA (1) EA201692182A1 (en)
FI (1) FI20145446A (en)
PE (1) PE20170279A1 (en)
WO (1) WO2015173469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271601B1 (en) * 2020-01-31 2021-07-01 주식회사 정림이피 Heat Treatment Chamber for Electronic Components with Partly Surface Treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338352A (en) * 2018-12-10 2019-02-15 南通盛立德金属材料科技有限公司 A kind of process of surface treatment of stainless steel tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732364A1 (en) * 1995-03-29 1996-10-04 Michelin & Cie PROCESS FOR TREATING A STAINLESS STEEL BODY SO AS TO PROMOTE ITS ADHESION TO A RUBBER COMPOSITION
JP3486404B2 (en) * 2001-07-16 2004-01-13 日本リークレス工業株式会社 Metal gasket blank and method of manufacturing the same
JP2005042130A (en) * 2003-07-22 2005-02-17 Nippon Kinzoku Co Ltd Stainless steel sheet, its production method, and gasket made of rubber-coated stainless steel sheet
KR100836480B1 (en) * 2006-12-28 2008-06-09 주식회사 포스코 Fabrication method of surface nitriding of bipolar plate for polymer electrolyte membrane fuel cell
US9103041B2 (en) * 2006-12-28 2015-08-11 Posco Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
CN103548193A (en) * 2011-04-20 2014-01-29 托普索燃料电池股份有限公司 Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271601B1 (en) * 2020-01-31 2021-07-01 주식회사 정림이피 Heat Treatment Chamber for Electronic Components with Partly Surface Treatment

Also Published As

Publication number Publication date
EP3143183A1 (en) 2017-03-22
EP3143183B1 (en) 2018-04-11
CN106460186A (en) 2017-02-22
AU2015261340A1 (en) 2016-12-15
FI20145446A (en) 2015-11-17
CL2016002862A1 (en) 2017-02-03
PE20170279A1 (en) 2017-04-12
EA201692182A1 (en) 2017-05-31
WO2015173469A1 (en) 2015-11-19
CA2948233A1 (en) 2015-11-19
AU2015261340B2 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
CN102115542B (en) Method for adhering vulcanized rubber to metal
Calabrese et al. Failure behaviour of SPR joints after salt spray test
EP3143183B1 (en) Method for manufacturing a process apparatus and a process apparatus
TWI488974B (en) Method of manufacturing a bi-metal screw
KR101786235B1 (en) Manufacturing method of Fe-Ni based alloy strip
CN106003705A (en) Bonding method for metal workpiece with electroplated zinc-nickel alloy layer and rubber
US20060035104A1 (en) Metal part and surface treating method thereof
WO2016111388A8 (en) Super high strength plated steel sheet having tensile strength of 1300 mpa or more, and manufacturing method therefor
US11623430B2 (en) Metal surface preparation
EP1114108B1 (en) Method of bonding a chrome steel to a fibre composite
JP6375238B2 (en) Steam turbine and surface treatment method thereof
US20190001372A1 (en) Coating for Lining a Compressor Case
CN105644061B (en) A kind of manufacture method of rubber rollers
JP2003185023A (en) Metal gasket material plate
Özenç et al. Effect of surface pre-treatment and temperature on the adhesive strength of hybrid aluminum joints
CN201973038U (en) Alloying element bolt
JP2018119242A (en) Steel cord and rubber-steel cord composite
JP2014109382A (en) Composite screw and method of manufacturing the same
KR20170068429A (en) Anti-galling method for treating materials
JP6645349B2 (en) Rubber-steel cord composite
EP3196489A1 (en) Industrial roll and method for producing same
JPH0257764A (en) Gasket
JP2005178181A (en) Method for producing quake-absorbing rubber
JP2009084453A (en) Material for use in gasket, and manufacturing method thereof
RU2487229C1 (en) Tubing string

Legal Events

Date Code Title Description
AS Assignment

Owner name: OUTOTEC (FINLAND) OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LINDGREN, MARI;LAIHONEN, PAAVO;REEL/FRAME:040733/0232

Effective date: 20161117

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION