US20170169996A1 - Plasma processing apparatus and plasma processing methdo - Google Patents

Plasma processing apparatus and plasma processing methdo Download PDF

Info

Publication number
US20170169996A1
US20170169996A1 US15/441,781 US201715441781A US2017169996A1 US 20170169996 A1 US20170169996 A1 US 20170169996A1 US 201715441781 A US201715441781 A US 201715441781A US 2017169996 A1 US2017169996 A1 US 2017169996A1
Authority
US
United States
Prior art keywords
electrode
substrate
electrode elements
low
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/441,781
Inventor
Akio Ui
Hisataka Hayashi
Kazuhiro Tomioka
Hiroshi Yamamoto
Tsubasa IMAMURA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US15/441,781 priority Critical patent/US20170169996A1/en
Publication of US20170169996A1 publication Critical patent/US20170169996A1/en
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE POSTAL CODE PREVIOUSLY RECORDED AT REEL: 042865 FRAME: 0583. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: KABUSHIKI KAISHA TOSHIBA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3341Reactive etching

Definitions

  • Embodiments described herein relate generally to a plasma processing apparatus and a plasma processing method.
  • a plasma processing apparatus generates plasma, and makes ions in the plasma to be incident on a substrate (semiconductor wafer, for example), to thereby process the substrate.
  • a substrate semiconductor wafer, for example
  • incident ions when incident ions perform etching on a substrate, a trench, a via hole, a projecting portion and the like are formed.
  • the sidewall of trench is not vertically formed, and is tapered, for example.
  • the present invention has an object to provide a plasma processing apparatus and a plasma processing method which make it easy to perform fine control of processing shape.
  • a plasma processing apparatus of an embodiment includes: a chamber; an introducing part; a counter electrode; a high-frequency power source; and a plurality of low-frequency power sources.
  • a substrate electrode is disposed in the chamber, a substrate is directly or indirectly placed on the substrate electrode, and the substrate electrode has a plurality of electrode element groups.
  • the introducing part introduces process gas into the chamber.
  • the high-frequency power source outputs a high-frequency voltage for ionizing the process gas to generate plasma.
  • the plurality of low-frequency power sources apply a plurality of low-frequency voltages of 20 MHz or less with mutually different phases for introducing ions from the plasma, to each of the plurality of electrode element groups.
  • the plasma processing apparatus and the plasma processing method according to embodiments make it easy to perform fine control of processing shape.
  • FIG. 1 is a schematic configuration diagram of a plasma processing apparatus 10 according to a first embodiment.
  • FIG. 2 is a perspective view illustrating one example of a configuration of a substrate electrode 15 .
  • FIG. 3 is a diagram illustrating one example of voltage waveforms RF 1 , RF 2 applied to electrode elements E 1 , E 2 .
  • FIG. 4 is a schematic diagram illustrating one example of ions II which are incident on a wafer W.
  • FIG. 5 is a schematic configuration diagram of a plasma processing apparatus 10 x according to a comparative example.
  • FIG. 6 is a diagram illustrating one example of a voltage waveform RF applied to a substrate electrode 15 x.
  • FIG. 7 is a schematic sectional diagram illustrating a state of wafer W before processing.
  • FIG. 8 is a schematic sectional diagram illustrating one example of a state of wafer W after being subjected to processing in the plasma processing apparatus 10 x.
  • FIG. 9 is a schematic sectional diagram illustrating one example of a state of wafer W after being subjected to processing in the plasma processing apparatus 10 x.
  • FIG. 10 is a schematic sectional diagram illustrating one example of a state of wafer Wafter being subjected to processing in the plasma processing apparatus 10 .
  • FIG. 11 is a schematic configuration diagram of a plasma processing apparatus 10 a according to a modified example 1.
  • FIG. 12 is a schematic configuration diagram of a plasma processing apparatus 10 b according to a modified example 2.
  • FIG. 13 is a plan view illustrating an induction coil 27 .
  • FIG. 14 is a schematic configuration diagram of a plasma processing apparatus 10 c according to a second embodiment.
  • FIG. 15 is a perspective view illustrating one example of a configuration of a substrate electrode 15 a.
  • FIG. 16 is a diagram illustrating one example of voltage waveforms RF 1 to RF 4 applied to electrode elements E 1 to E 4 .
  • FIG. 17 is a schematic configuration diagram of a plasma processing apparatus 10 d according to a third embodiment.
  • FIG. 18 is a diagram illustrating a state where plasma processing is performed on sidewalls of trenches.
  • FIG. 19 is a diagram illustrating a state where plasma processing is performed on a sidewall of via.
  • FIG. 20 is a partial configuration diagram of a plasma processing apparatus 10 e according to a modified example 4.
  • FIG. 21 is a partial configuration diagram of a plasma processing apparatus 10 f according to a modified example 5.
  • FIG. 22 is a partial configuration diagram of a plasma processing apparatus 10 g according to a modified example 6.
  • FIG. 23 and FIG. 24 are diagrams each illustrating one example of an electrostatic chuck 42 .
  • FIG. 25 is a schematic configuration diagram of a plasma processing apparatus 10 h according to a fourth embodiment.
  • FIG. 26 is a perspective view illustrating one example of a configuration of a substrate electrode 15 c.
  • FIG. 27 is a schematic configuration diagram of a plasma processing apparatus 10 i according to a fifth embodiment.
  • FIG. 28 is a plan view illustrating one example of a configuration of a substrate electrode 15 d.
  • FIG. 29A to FIG. 29D are plan views each illustrating one example of a selection state of the substrate electrode 15 d.
  • FIG. 30A to FIG. 30C are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 31A and FIG. 31B are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 32 is a schematic diagram illustrating positions P 1 to P 6 on the wafer W.
  • FIG. 33A to FIG. 33C are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 34A to FIG. 34E are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 35 is a schematic diagram illustrating a positional relationship of electrode elements E and the electrostatic chuck 42 .
  • FIG. 1 is a schematic configuration diagram of a plasma processing apparatus 10 according to a first embodiment.
  • the plasma processing apparatus 10 is a parallel plate type RIE (Reactive Ion Etching) apparatus.
  • the plasma processing apparatus 10 makes ions II in plasma PL to be incident on a wafer W to perform etching on the wafer W, thereby forming a trench, a via hole, a projecting portion and the like.
  • the wafer W is a substrate, which is, for example, a substrate of semiconductor (Si, GaAs or the like).
  • the plasma processing apparatus 10 is common to an ion implantation apparatus that implants ions, in a point that the ions II are made to be incident on the wafer W, but, the both pieces of apparatus are different in the next point.
  • an energy of incident ions is lower than that in the ion implantation (about 10 k to about 500 keV in the ion implantation, and about 0 to about 2000 eV in the plasma processing).
  • the plasma processing does not require a particular accelerator, and in the plasma processing, ions II from plasma PL are introduced by a bias potential applied to a substrate electrode 15 . For this reason, the plasma PL and the substrate electrode 15 come close to each other in the plasma processing apparatus 10 , compared to those in the ion implantation (about 10 cm or more in the ion implantation, and about several cm or less in the plasma processing).
  • the plasma processing apparatus 10 has a chamber 11 , an exhaust port 12 , a process gas introduction pipe 13 , a susceptor 14 , a substrate electrode 15 , a counter electrode 16 , capacitors 17 a , 17 b , an RF high-frequency power source 21 , RF low-frequency power sources 22 a , 22 b , filters 23 a , 23 b , 24 a , 24 b , and a phase adjuster 25 .
  • the chamber 11 maintains an environment required to perform processing on a wafer W.
  • the exhaust port 12 is connected to not-illustrated pressure regulating valve and exhaust pump. Gas in the chamber 11 is exhausted from the exhaust port 12 , resulting in that the inside of the chamber 11 is maintained in a high-vacuum state. Further, when process gas is introduced from the process gas introduction pipe 13 , a flow rate of gas flowed in through the process gas introduction pipe 13 and a flow rate of gas flowed out through the exhaust port 12 are balanced, resulting in that a pressure in the chamber 11 is kept constant.
  • the process gas introduction pipe 13 introduces process gas required to perform processing on the wafer W, into the chamber 11 .
  • the process gas is used for forming plasma PL.
  • the process gas is ionized to be turned into plasma PL, and ions II in the plasma PL are used for performing etching on the wafer W.
  • the process gas it is possible to appropriately use SF 6 , CF 4 , C 2 F 6 , C 4 F 8 , C 5 F 8 , C 4 F 6 , Cl 2 , HBr, SiH 4 , SiF 4 or the like, other than gas of Ar, Kr, Xe, N 2 , O 2 , CO, H 2 or the like.
  • the process gas can be classified into deposition-type gas and depositionless-type gas.
  • the depositionless-type gas is gas that performs only an etching operation when performing processing on the wafer W.
  • the deposition-type gas performs not only the etching operation but also an operation of forming a coating film (protective film) when performing processing on the wafer W.
  • the deposition-type gas as the process gas, it is possible to improve a selection ratio of etching between an etching mask and an etching target (the wafer W or the like). Specifically, when the deposition-type gas is used, the etching proceeds during which a coating film is formed on the etching mask. As a result of this, an etching rate of the etching mask is reduced, and the selection ratio can be improved.
  • deposition type and depositionless type are not always an absolute one.
  • Rare gas Ar, Kr, Xe
  • the other gas can perform the operation of forming the coating film in any way.
  • a magnitude relation between the etching operation and the operation of forming the coating film can be changed, based on a relation of a material and a shape of the etching mask and the etching target, a process pressure and the like.
  • Ar, Kr, Xe, H 2 and the like can be cited as the depositionless-type gas.
  • C 2 F 6 , C 4 F 6 , C 4 F 8 , C 5 F 8 , SF 6 , Cl 2 , HBr can be cited as the deposition-type gas.
  • N 2 , O 2 , CO, and CF 4 As an intermediate kind of gas between the deposition-type gas and the depositionless-type gas, there can be cited N 2 , O 2 , CO, and CF 4 .
  • the susceptor 14 is a holding part holding the wafer W, and has a chuck for holding the wafer W.
  • a mechanical chuck which dynamically holds the wafer W, or an electrostatic chuck that holds the wafer W with the use of an electrostatic force can be used. Note that explanation will be made on details of the electrostatic chuck in later-described modified examples 6, 7.
  • the substrate electrode 15 is an approximately plate-shaped electrode disposed on the susceptor 14 and having an upper surface which is close to or brought into contact with a lower surface of the wafer W. Specifically, the wafer W (substrate) is placed on the substrate electrode 15 indirectly (the both are close to each other) or directly (the both are brought into contact with each other).
  • FIG. 2 is a perspective view illustrating one example of a configuration of the substrate electrode 15 .
  • the substrate electrode 15 corresponds to divided electrodes formed by being divided in a plurality of pieces, and configured by two groups of electrode elements E 1 , E 2 (first and second electrode element groups) which are alternately arranged.
  • each of the two groups of electrode elements E 1 , E 2 has a center axis along an axial direction A and an approximately column shape with a diameter of R, and the electrode elements E 1 , E 2 are arranged in approximately parallel to each other with an interval D (distance between center axes) provided therebetween.
  • the shape of each of the electrode elements E 1 , E 2 is not limited to the approximately column shape, and the shape may also be an approximately prism shape (approximately rectangular prism shape, for example).
  • the interval D (the diameter R as well) is (are) small to some degree (for example, the interval D is set to 5 mm or less).
  • an incident amount of ions II has a positional dependence. It can be considered that the incident amount of ions II varies in a period corresponding to the interval D, under the influence of a periodic arrangement of the electrode elements E 1 , E 2 . For this reason, by reducing the interval D (the diameter R as well) to some degree, the uniformity of plasma processing is improved (period of variation in the incident amount of ions II is reduced).
  • an RF high-frequency voltage V 1 and RF low-frequency voltages V 2 a , V 2 b are applied from an RF high-frequency power source 21 and RF low-frequency power sources 22 a , 22 b.
  • a voltage waveform RF 1 in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 a are superimposed is applied.
  • a voltage waveform RF 2 in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 b are superimposed is applied.
  • the RF high-frequency voltage V 1 is an alternating voltage of relatively high frequency which is applied to both of the electrode elements E 1 , E 2 , and used for generating plasma PL.
  • the RF low-frequency voltages V 2 a , V 2 b are alternating voltages of relatively low frequency which are applied to the electrode elements E 1 , E 2 , respectively, and used for introducing the ions II from the plasma PL.
  • the ions II can be diagonally incident on the wafer W from the plasma PL.
  • the counter electrode 16 is disposed to face the substrate electrode 15 in the chamber 11 , and one end thereof is set to a ground potential.
  • the counter electrode 16 and the substrate electrode 15 form a parallel plate electrode.
  • the capacitors 17 a , 17 b indicate combined capacitances as a result of combining capacitances on a path from the RF high-frequency power source 21 , the RF low-frequency power sources 22 a , 22 b to the wafer W. These combined capacitances correspond to ones as a result of combining capacitances of the respective filters 23 a , 23 b , 24 a , 24 b , matching device (not illustrated), and electrostatic chuck (not illustrated).
  • the RF high-frequency power source 21 generates the RF high-frequency voltage V 1 which is applied to the substrate electrode 15 .
  • a frequency fh of the RF high-frequency voltage V 1 is not less than 40 MHz nor more than 1000 MHz, and is more preferably not less than 40 MHz nor more than 500 MHz (100 MHz, for example).
  • the RF low-frequency power sources 22 a , 22 b generate the RF low-frequency voltages V 2 a , V 2 b which are applied to the substrate electrode 15 .
  • a frequency fl of the RF low-frequency voltages V 2 a , V 2 b is not less than 0.1 MHz nor more than 20 MHz, and is more preferably not less than 0.5 MHz nor more than 14 MHz (1 MHz, for example).
  • the RF low-frequency voltages V 2 a , V 2 b have approximately the same frequency, and have a phase difference ⁇ ( ⁇ /2, ⁇ , for example).
  • the not-illustrated matching device matches the impedance of the RF high-frequency power source 21 and the RF low-frequency power sources 22 a , 22 b to that of the plasma PL.
  • sine waveforms represented by the following expression (1) can be used.
  • V 1 V 01 ⁇ sin(2 ⁇ fh ⁇ t )
  • V 2 a V 02 ⁇ sin(2 ⁇ fl ⁇ t )
  • V 2 b V 02 ⁇ sin(2 ⁇ fl ⁇ t+ ⁇ ) expression (1)
  • the filters 23 a , 23 b (HPF (High Pass Filter)) prevent the RF low-frequency voltages V 2 a , V 2 b from the RF low-frequency power sources 22 a , 22 b from being input into the RF high-frequency power source 21 .
  • the filters 24 a , 24 b (LPF (Low Pass Filter)) prevent the RF high-frequency voltage V 1 from the RF high-frequency power source 21 from being input into the RF low-frequency power sources 22 a , 22 b.
  • the phase adjuster 25 adjusts the phase difference ⁇ of the RF low-frequency voltages V 2 a , V 2 b from the RF low-frequency power sources 22 a , 22 b . It can be considered that ⁇ /2 or ⁇ , for example, is set as the phase difference ⁇ . Note that to set the phase difference ⁇ to 3 ⁇ /2 and to set the phase difference ⁇ to ⁇ /2 are substantially the same, when the periodicity of the RF low-frequency voltages V 2 a , V 2 b is considered.
  • FIG. 3 is a diagram illustrating one example of the voltage waveforms RF 1 , RF 2 which are applied to the electrode elements E 1 , E 2 (phase difference of ⁇ /2).
  • the wafer W is carried by a not-illustrated carrying mechanism. Next, the wafer W is held by the susceptor 14 with the use of the chuck. At this time, the substrate electrode 15 is close to or brought into contact with the wafer W.
  • the process gas required to perform the processing on the wafer W is introduced from the process gas introduction pipe 13 .
  • the process gas introduced into the chamber 11 is exhausted at a predetermined rate from the exhaust port 12 by the not-illustrated pressure regulating valve and exhaust pump.
  • the pressure in the chamber 11 is kept constant (about 1.0 to about 6.0 Pa, for example).
  • the RF high-frequency voltage V 1 , and the RF low-frequency voltages V 2 a , V 2 b from the RF high-frequency power source 21 , and the RF low-frequency power sources 22 a , 22 b are applied to the substrate electrode 15 .
  • the voltage waveform RF 1 in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 a are superimposed is applied.
  • the voltage waveform RF 2 in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 b are superimposed is applied.
  • a density of the plasma PL is controlled by the RF high-frequency voltage V 1 from the RF high-frequency power source 21 .
  • An incident energy of ions II which are incident on the wafer W is controlled by the RF low-frequency voltages V 2 a , V 2 b from the RF low-frequency power sources 22 a , 22 b .
  • the wafer W is etched by the ions II having the energy with a value which is equal to or more than a threshold value in the etching process of the wafer W.
  • FIG. 4 is a schematic diagram illustrating one example of ions II which are incident on the wafer W.
  • the RF low-frequency voltages V 2 a , V 2 b are applied to the electrode elements E 1 , E 2 (substrate electrode 15 ).
  • the RF low-frequency voltages V 2 a , V 2 b are applied between the substrate electrode 15 and the counter electrode 16 , there is generated an electric field (vertical electric field) in a direction Ap which is perpendicular to a plane of the substrate electrode 15 (wafer W) (refer to FIG. 2 ).
  • the ions II in the plasma PL are introduced into the substrate electrode 15 (wafer W).
  • the RF low-frequency voltages V 2 a , V 2 b which are applied to the electrode elements E 1 , E 2 have the phase difference ⁇ .
  • an electric field F in a direction parallel to the plane of the substrate electrode 15 (wafer W) and parallel to a direction Ah which is orthogonal to the axial direction A of the electrode elements E 1 , E 2 , in addition to the vertical electric field (refer to FIG. 2 , FIG. 4 ).
  • the ions II are incident to have an incident angle ⁇ (diagonally incident) with respect to the vertical direction.
  • the ions II are diagonally incident, it becomes possible to perform the etching on the wafer W with high precision. Note that details of this will be described later.
  • the electric field F is oscillated in accordance with the period of the RF low-frequency voltages V 2 a , V 2 b .
  • the incident angle ⁇ of ions II is periodically oscillated in accordance with the period of the RF low-frequency voltages V 2 a , V 2 b.
  • the ion with the incident angle ⁇ in the positive direction and the ion with the incident angle ⁇ in the negative direction are alternately incident on the wafer W along the axial direction A. Specifically, in the present embodiment, the following becomes possible.
  • the ions II can be diagonally incident on the wafer W at the incident angle ⁇ . As will be described later, by using the diagonally incident ions II, it becomes possible to perform processing with high precision when forming the trench or the projecting portion, while reducing the taper.
  • the amount of ions II which are incident on a sidewall of the trench or the like is increased, resulting in that the taper can be reduced.
  • the ions II can be diagonally incident on both sides of the trench or the projecting portion along the axial direction A. As a result of this, it is possible to reduce the taper on both sidewalls of the trench.
  • FIG. 5 is a schematic configuration diagram of a plasma processing apparatus 10 x according to a comparative example.
  • the plasma processing apparatus 10 x has the chamber 11 , the exhaust port 12 , the process gas introduction pipe 13 , a susceptor 14 x , a substrate electrode 15 x , the counter electrode 16 , a capacitor 17 , the RF high-frequency power source 21 , and an RF low-frequency power source 22 x.
  • the substrate electrode 15 x is different from the substrate electrode 15 , and has a plate shape with no electrode elements provided thereto (the substrate electrode 15 x is not divided).
  • FIG. 6 is a diagram illustrating one example of a voltage waveform RF which is applied to the substrate electrode 15 x .
  • the RF high-frequency voltage V 1 from the RF high-frequency power source 21 and an RF low-frequency voltage V 2 from the RF low-frequency power source 22 x are superimposed to be applied to the substrate electrode 15 x , which generates plasma PL and introduces ions II.
  • the substrate electrode 15 x is not divided, in the plasma processing apparatus 10 x , no electric field F parallel to the plane of the wafer W is generated. For this reason, the ions II are incident, from the plasma PL, only in a direction perpendicular to the plane of the wafer W, and basically, little ions II which are diagonally incident exist due to thermal fluctuation. As a result of this, it is difficult to perform precision processing using the diagonally incident ions II.
  • FIG. 7 is an enlarged sectional diagram illustrating a part of wafer W before being subjected to processing in a plasma processing apparatus.
  • layers 31 , 32 , and a mask 33 are formed on the wafer W.
  • Materials of the layers 31 , 32 are different materials, which are, for example, SiO 2 and Si.
  • a material of the mask 33 is, for example, a resist or SiO 2 , which is difficult to be etched, compared to the layer 32 .
  • FIG. 8 and FIG. 9 are enlarged sectional diagrams each illustrating a state after such a wafer W is etched in the plasma processing apparatus 10 x .
  • FIG. 8 illustrates a case where the depositionless-type gas is used as the process gas
  • FIG. 9 illustrates a case where the deposition-type gas is used as the process gas.
  • the selection ratio between the mask 33 and the layer 32 becomes large, resulting in that the etching amount of the mask 33 becomes small.
  • the layer 32 is easily etched in the diagonal direction (the etched side surface is tapered). This is because a protective film is formed on the side surface due to the deposition-type gas, and meanwhile, the side surface is difficult to be subjected to the etching operation performed by ions II which are vertically incident.
  • the deposition-type gas in particular, it becomes possible to increase the selection ratio, but, it is difficult to perform vertical processing (precision processing).
  • the number of ions II which hit against the etched side surface is small, so that a residue or adherent is easily deposited, which also makes it difficult to perform the precision processing.
  • FIG. 10 is an enlarged sectional diagram illustrating a state after the wafer W is etched in the plasma processing apparatus 10 .
  • the deposition-type gas is used as the process gas.
  • the selection ratio between the mask 33 and the layer 32 becomes large, resulting in that the etching amount of the mask 33 is small.
  • the layer 32 is vertically etched (the etched side surface is not tapered).
  • the ions II are diagonally incident on both sides of the etched side surface (sidewall of trench), so that the taper on the side surface is reduced.
  • the phase adjuster 25 adjusts the phase ⁇ in accordance with the progress of the plasma processing process. Note that details thereof will be described in third and fourth embodiments.
  • the ions II can be diagonally incident on the wafer W at the incident angle ⁇ . As a result of this, it becomes possible to perform the precision etching processing in which the vertical processing on the sidewall is easily performed, and the residue is difficult to be remained on the sidewall.
  • FIG. 11 is a schematic configuration diagram of a plasma processing apparatus 10 a according to a modified example 1.
  • the plasma processing apparatus 10 a has the chamber 11 , the exhaust port 12 , a process gas introduction pipe 13 a , the susceptor 14 , the substrate electrode 15 , a counter electrode 16 a , the capacitors 17 a , 17 b , the RF high-frequency power source 21 , the RF low-frequency power sources 22 a , 22 b , filters 23 , 24 a , 24 b , and the phase adjuster 25 .
  • the counter electrode 16 a is a so-called showerhead, and has an internal space and a plurality of openings.
  • Process gas is introduced from the process gas introduction pipe 13 a to pass through the inside of the counter electrode 16 a , and is then introduced into the chamber 11 from the plurality of openings of the counter electrode 16 a .
  • the counter electrode 16 a functions as an introducing part introducing the process gas into the chamber 11 .
  • the modified example 1 is different from the first embodiment in that the RF high-frequency power source 21 is electrically connected not to the substrate electrode 15 but to the counter electrode 16 a .
  • the substrate electrode 15 rather serves to generate the plasma PL in the first embodiment
  • the counter electrode 16 a serves to generate the plasma PL in the modified example 1.
  • the modified example 1 is not largely different from the first embodiment in the other points, so that the other explanation thereof will be omitted.
  • FIG. 12 is a schematic configuration diagram of a plasma processing apparatus 10 b according to a modified example 2.
  • the plasma processing apparatus 10 b has a chamber 11 b , the exhaust port 12 , the process gas introduction pipe 13 , the susceptor 14 , the substrate electrode 15 , the capacitors 17 a , 17 b , the RF high-frequency power source 21 , the RF low-frequency power sources 22 a , 22 b , the filters 23 , 24 a , 24 b , the phase adjuster 25 , a window 111 , and an induction coil 27 .
  • FIG. 13 illustrates a state where the induction coil 27 is seen from the above in FIG. 12 .
  • the plasma processing apparatus 10 b is different from the plasma processing apparatus 10 a in that it does not have the counter electrode 16 but has the window 111 and the induction coil 27 .
  • the window 111 isolates the inside of the chamber 11 b from the atmosphere, and a magnetic field from the induction coil 27 is passed through the window 111 .
  • a plate of nonmagnetic material such as quartz, for example, is used.
  • the induction coil 27 is disposed on the outside of the chamber 11 b .
  • a varying magnetic field is generated, resulting in that the process gas in the chamber 11 b is ionized, and the plasma PL is generated.
  • the modified example 2 is not largely different from the first embodiment in the other points, so that the other explanation thereof will be omitted.
  • each of the first embodiment and the modified examples 1, 2 it is possible to ionize the process gas to generate the plasma, with the use of the RF high-frequency voltage V 1 of 40 MHz or more. Specifically, even in a case where the plasma PL is generated without applying the RF high-frequency voltage V 1 to the substrate electrode 15 , as illustrated in the modified examples 1, 2, it is possible to control the incident angle ⁇ of the ions II by using the substrate electrode 15 .
  • FIG. 14 is a schematic configuration diagram of a plasma processing apparatus 10 c according to a second embodiment.
  • the plasma processing apparatus 10 c has the chamber 11 , the exhaust port 12 , the process gas introduction pipe 13 , a susceptor 14 a , a substrate electrode 15 a , the counter electrode 16 , capacitors 17 a to 17 d , the RF high-frequency power source 21 , RF low-frequency power sources 22 a to 22 d , filters 23 a to 23 d , and 24 a to 24 d , and a phase adjuster 25 a.
  • FIG. 15 is a perspective view illustrating one example of a configuration of the substrate electrode 15 a.
  • the substrate electrode 15 is formed of the two groups of electrode elements E 1 , E 2 .
  • the substrate electrode 15 a is formed of four groups of electrode elements E 1 to E 4 (first to fourth electrode element groups).
  • the RF low-frequency power sources 22 a to 22 d apply RF low-frequency voltages V 2 a to V 2 d to the electrode elements E 1 to E 4 , respectively.
  • the RF low-frequency voltages V 2 a to V 2 d have phase differences ⁇ 1 , ⁇ 2 , ⁇ 3 , on the basis of the RF low-frequency voltage V 2 a.
  • sine waveforms represented by the following expression (2) can be used.
  • V 1 V 01 ⁇ sin(2 ⁇ fh ⁇ t )
  • V 2 a V 02 ⁇ sin(2 ⁇ fl ⁇ t )
  • V 2 b V 02 ⁇ sin(2 ⁇ fl ⁇ t+ ⁇ 1)
  • V 2 c V 02 ⁇ sin(2 ⁇ fl ⁇ t+ ⁇ 2)
  • V 2 d V 02 ⁇ sin(2 ⁇ fl ⁇ t+ ⁇ 3) expression (2)
  • the filters 24 a to 24 d prevent the RF high-frequency voltage V 1 from the RF high-frequency power source 21 from being input into the RF low-frequency power sources 22 a to 22 d.
  • the filters 23 a to 23 d (HPF (High Pass Filter)) prevent the RF low-frequency voltages V 2 a to V 2 d from the RF low-frequency power sources 22 a to 22 d from being input into the RF high-frequency power source 21 .
  • the phase adjuster 25 a adjusts the phase differences ⁇ 1 , ⁇ 2 , ⁇ 3 of the RF low-frequency voltages V 2 a to V 2 d from the RF low-frequency power sources 22 a to 22 d . It can be considered that as the phase differences ⁇ 1 , ⁇ 2 , ⁇ 3 , for example, a combination of “ ⁇ /2, ⁇ , 3 ⁇ /2” or “ ⁇ /2, ⁇ , ⁇ 3 ⁇ /2” is employed.
  • FIG. 16 is a diagram illustrating one example of voltage waveforms RF 1 to RF 4 which are applied to the electrode elements E 1 to E 4 .
  • the voltage waveform RF 1 is a waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 a are superimposed
  • the voltage waveform RF 2 is a waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 b are superimposed
  • the voltage waveform RF 3 is a waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 c are superimposed
  • the voltage waveform RF 4 is a waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 d are superimposed.
  • the substrate electrodes 15 , 15 a are formed of the two groups of electrode elements E and the four groups of electrode elements E, respectively, and to the respective groups, the RF low-frequency voltages V 2 a to V 2 d having the phase differences are applied.
  • the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements E. Even in this case, by applying the RF low-frequency voltages V 2 having the phase differences to the respective groups of electrode elements, it becomes possible to form the electric field F and to make the ions II to be diagonally incident.
  • the substrate electrode 15 is formed of n groups of electrode elements E 1 to En (first to n-th electrode element groups) (n: integer of 2 or more). At this time, the electrode elements E 1 to En are repeatedly arranged in ascending order, for example. Further, first to n-th low-frequency voltages having different phases from first to n-th low-frequency power sources are applied to the electrode elements E 1 to En, respectively.
  • FIG. 17 is a schematic configuration diagram of a plasma processing apparatus 10 d according to a third embodiment.
  • the plasma processing apparatus 10 d has the chamber 11 , the exhaust port 12 , the process gas introduction pipe 13 , a susceptor 14 b , the substrate electrode 15 , the counter electrode 16 , the capacitors 17 a , 17 b , a wafer rotating mechanism 18 , a termination detector 19 , the RF high-frequency power source 21 , the RF low-frequency power sources 22 a , 22 b , the filters 23 a , 23 b , 24 a , 24 b , the phase adjuster 25 , and a control unit 26 .
  • the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements, and the RF low-frequency voltages V 2 having the phase differences are applied to the respective groups of electrode elements, as in the second embodiment and the modified examples.
  • the wafer rotating mechanism 18 Compared to the plasma processing apparatus 10 , to the plasma processing apparatus 10 d , the wafer rotating mechanism 18 , the termination detector 19 , and the control unit 26 are added.
  • the wafer rotating mechanism 18 relatively rotates the wafer W with respect to the substrate electrode 15 , to thereby change a direction of the wafer W with respect to the axial direction A of the electrode elements E 1 , E 2 of the substrate electrode 15 .
  • the rotation may be either a temporary rotation or a continuous rotation.
  • the termination detector 19 detects the termination of etching, based on a change in emission spectrum of the plasma PL, for example.
  • the emission spectrum of the plasma PL is changed due to the difference in these composing materials, resulting in that the termination of etching of the layer 32 (exposure of the layer 31 ) can be detected.
  • the control unit 26 controls the wafer rotating mechanism 18 , and the phase adjuster 25 in accordance with the transition of process (detection result in the termination detector 19 or time shift).
  • the control unit 26 can control the wafer rotating mechanism 18 in a manner as in the following a) and b).
  • FIG. 18 illustrates a state where sidewalls of trenches are processed
  • FIG. 19 illustrates a state where a sidewall of via is processed.
  • the layer 32 and the mask 33 are formed on the wafer W.
  • the mask 33 has a plurality of rectangular openings 331 along an axis Ay.
  • the mask 33 has a plurality of circular openings 331 .
  • a trench Tr is formed in FIG. 18
  • a via hole Bh is formed in FIG. 19 .
  • the trench Tr is formed in FIG. 18
  • the via hole Bh is formed in FIG. 19 due to the difference in shapes of the openings 331 formed on the mask 33 .
  • the wafer W is not rotated in FIG. 18 , by corresponding to the first and second embodiments.
  • the wafer W is rotated in FIG. 19 , by corresponding to the third embodiment.
  • the axis Ay coincides with the axis of the electrode element E illustrated in FIG. 2 and FIG. 15 .
  • the incident angle ⁇ of the ions II is changed in which the axis Ay is set as a rotation axis.
  • the ions II are efficiently incident on the sidewall of the trench Tr.
  • the axis of the opening 331 of the trench Tr and the axis of the electrode element E are made to coincide with each other, and the wafer W is not rotated.
  • the control unit 26 can control the phase adjuster 25 in the following manner.
  • the phase difference ⁇ between the RF low-frequency voltages V 2 a and V 2 b from the RF low-frequency power sources 22 a , 22 b is set to 0 up to the middle of the formation of the trench, and thereafter, the phase difference ⁇ is set to a value other than 0 ( ⁇ /2, for example).
  • the phase adjuster 25 is controlled in accordance with the progress of the plasma processing process, and the incident direction of the ions II is switched from the direction of vertical incidence to the direction of diagonal incidence.
  • etching rate when the diagonal incidence occurs is smaller than that when the vertical incidence occurs. This is because, when the diagonal incidence occurs, an area on the wafer W on which the ions are incident becomes large, and the number of incident ions per unit area is reduced, compared to the time in which the vertical incidence occurs.
  • the detection of termination of etching of the layer 32 detected by the termination detector 19 or the passage of predetermined processing time can be utilized.
  • modified examples of the second embodiment (modified examples 4 to 6) will be described.
  • the modified examples 4 to 6 are for specifically explaining a mechanism that relatively rotates between the wafer W and the substrate electrode 15 . Accordingly, each of the modified examples is illustrated by a partial configuration diagram which omits apart other than apart of the rotating mechanism.
  • FIG. 20 is a partial configuration diagram of a plasma processing apparatus 10 e according to the modified example 4.
  • the plasma processing apparatus 10 e has a susceptor 141 , a substrate electrode block 142 , and a motor 41 , in place of the susceptor 14 b , and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • the motor 41 is provided for rotating the susceptor 141 , and has a rotating shaft 411 , a rotor 412 , a stator 413 , a side plate 414 , and a bottom plate 415 .
  • the rotating shaft 411 , the rotor 412 , and the stator 413 forma rotating mechanism.
  • the rotating shaft 411 is connected to the susceptor 141 .
  • the rotating shaft 411 is formed in a cylindrical shape, and in the inside thereof, a shaft of the substrate electrode block 142 is disposed.
  • the rotor 412 is a magnet disposed on a side surface of the rotating shaft 411 .
  • the stator 413 is an electromagnet disposed on the outside of the side plate 414 so as to approximate to the rotor 412 with the sideplate 414 therebetween.
  • the rotor 412 rotates with respect to the stator 413 .
  • the rotating shaft 411 and the rotor 412 in the chamber 11 (vacuum side), and the stator 413 on the outside of the chamber 11 (atmosphere side) are separated from each another.
  • the rotor 412 uses the permanent magnet and the stator 413 uses the electromagnet, but, it is also possible that the rotor 412 uses the electromagnet and the stator 413 uses the permanent magnet, or both of the rotor 412 and the stator 413 use the electromagnet.
  • the susceptor 141 is connected to the rotating shaft 411 in a state of holding the wafer W on its upper surface, and is rotated by the rotating mechanism. As a result of this, the wafer W is rotated by the rotating mechanism.
  • the susceptor 141 has an internal space for holding the substrate electrode block 142 .
  • the substrate electrode block 142 is disposed in the inside of the susceptor 141 , and is not rated by being fixed to the bottom plate 415 .
  • the voltage waveforms RF 1 , RF 2 (the voltage waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 a are superimposed, and the voltage waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 b are superimposed) are supplied to the substrate electrode 15 in the chamber 11 from the RF high-frequency power source 21 and the RF low-frequency power sources 22 a , 22 b disposed on the outside of the chamber 11 .
  • FIG. 21 is a partial configuration diagram of a plasma processing apparatus 10 f according to the modified example 5.
  • the plasma processing apparatus 10 f has a susceptor 141 a , a substrate electrode block 142 a , and a motor 41 a , in place of the susceptor 14 b and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • the motor 41 a is provided for rotating the substrate electrode block 142 a , and has a rotating shaft 411 a , the rotor 412 , the stator 413 , the side plate 414 , the bottom plate 415 , ring electrodes 416 , and brush electrodes 417 .
  • the rotating shaft 411 a , the rotor 412 , and the stator 413 form a rotating mechanism.
  • the rotating shaft 411 a is connected to the substrate electrode block 142 a .
  • the rotor 412 is a magnet disposed on a side surface of the rotating shaft 411 a .
  • the stator 413 is an electromagnet disposed on the outside of the side plate 414 so as to approximate to the rotor 412 with the side plate 414 therebetween.
  • the rotor 412 rotates with respect to the stator 413 .
  • the rotating shaft 411 a and the rotor 412 in the chamber 11 (vacuum side), and the stator 413 on the outside of the chamber 11 (atmosphere side) are separated from each another.
  • the ring electrode 416 and the brush electrode 417 are provided for securing an electrical connection with respect to the substrate electrode 15 during the rotation of the rotating shaft 411 a , by being brought into contact with each other in a state where they are slid relative to each other.
  • the ring electrode 416 is a ring-shaped electrode disposed by being fixed to an outer periphery of the rotating shaft 411 a .
  • the brush electrode 417 is a brush-shaped electrode which is brought into contact with the ring electrode 416 by sliding relative to the ring electrode 416 , during the rotation of the rotating shaft 411 a.
  • the voltage waveforms RF 1 , RF 2 (the voltage waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 a are superimposed, and the voltage waveform in which the RF high-frequency voltage V 1 and the RF low-frequency voltage V 2 b are superimposed) are supplied to the substrate electrode 15 in the chamber 11 from the RF high-frequency power source 21 and the RF low-frequency power sources 22 a , 22 b disposed on the outside of the chamber 11 via the brush electrodes 417 and the ring electrodes 416 .
  • the susceptor 141 a has an internal space for holding the substrate electrode block 142 a .
  • the susceptor 141 a is not rotated by being fixed to the chamber 11 .
  • the substrate electrode block 142 a is disposed in the inside of the susceptor 141 a .
  • the substrate electrode block 142 a is connected to the rotating shaft 411 a , and is rotated by the rotating mechanism. As a result of this, the substrate electrode 15 is rotated by the rotating mechanism.
  • the plasma processing apparatus 10 f may have an electrostatic chuck.
  • a DC voltage is supplied to the electrostatic chuck via the brush electrode, as will be described in the next modified example 6.
  • FIG. 22 is a partial configuration diagram of a plasma processing apparatus 10 g according to the modified example 6.
  • the plasma processing apparatus 10 g has a susceptor 141 b , a substrate electrode block 142 b , a motor 41 b , an electrostatic chuck 42 , a DC power source 43 , and a cooling medium supply unit 44 , in place of the susceptor 14 b and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • the motor 41 b is provided for rotating the susceptor 141 , and has the rotating shaft 411 , the rotor 412 , the stator 413 , the side plate 414 , the bottom plate 415 , a ring electrode 416 a , a brush electrode 417 a , and an opening 418 .
  • the rotating shaft 411 , the rotor 412 , and the stator 413 forma rotating mechanism.
  • the configuration, the operation and the like of the rotating mechanism are substantially similar to those of the modified example 4, so that detailed explanation thereof will be omitted.
  • the ring electrode 416 a and the brush electrode 417 a are provided for securing an electrical connection with respect to an internal electrode of the electrostatic chuck 42 during the rotation of the rotating shaft 411 , by being brought into contact with each other in a state where they are slid relative to each other.
  • the ring electrode 416 a is a ring-shaped electrode disposed by being fixed to an outer periphery of the rotating shaft 411 .
  • the brush electrode 417 a is a brush-shaped electrode which is brought into contact with the ring electrode 416 a by sliding relative to the ring electrode 416 a , during the rotation of the rotating shaft 411 .
  • the electrostatic chuck 42 is provided for electrostatically attracting the wafer W, and has a plurality of openings 421 .
  • the internal electrode of the electrostatic chuck 42 is a kind of mesh-shaped electrode, and functions as an attraction electrode having a plurality of openings.
  • FIG. 23 and FIG. 24 are plan views each illustrating one example of the internal electrode of the electrostatic chuck 42 .
  • square-shaped openings (air gaps) 421 are arranged in lines in the vertical and horizontal two directions (a kind of mesh-shaped electrode).
  • rectangular (line-shaped) openings (air gaps) 421 are arranged in lines (a kind of line-shaped electrode).
  • the rectangular openings are arranged in two directions and in one direction, respectively.
  • the line-shaped openings 421 illustrated in FIG. 24 are suitable for a case where the susceptor 14 , the substrate electrode 15 and the like are not rotated as described in the first and second embodiments.
  • an axis of the opening 421 is preferably made to coincide with the axis of the electrode element E (refer to FIG. 2 , FIG. 5 and FIG. 18 ).
  • the shape of the opening 421 is set to a rectangular shape, but, it is also possible to employ a circular opening, an elliptical opening and the like, in place of the rectangular opening.
  • the opening 421 has a width G.
  • the width G is preferably 2 to 5 mm.
  • the DC power source 43 supplies a DC voltage to the internal electrode of the electrostatic chuck 42 , thereby making the electrostatic chuck 42 electrostatically attract the wafer W.
  • the DC voltage from the DC power source 43 is supplied to the internal electrode of the electrostatic chuck 42 in the susceptor 141 b via the brush electrode 417 a and the ring electrode 416 a.
  • the cooling medium supply unit 44 supplies a cooling medium C for cooling the wafer W. From the point of view of inertness, thermal conductivity and the like, it is preferable to use He, for example, as the cooling medium C.
  • the susceptor 141 b has openings 421 for introducing the cooling medium C.
  • the bottom plate 415 has the opening 418 for introducing the cooling medium C into the susceptor 141 b .
  • the cooling medium C supplied from the cooling medium supply unit 44 passes through the opening 418 and the inside of the susceptor 141 b to be supplied to a rear surface of the wafer W through the openings 143 , thereby cooling the wafer W.
  • the cooling medium C after cooling the wafer W is released in the chamber 11 , and is exhausted to the outside from the exhaust port 12 .
  • the low-frequency voltages for introducing ions and the DC voltage for electrostatic attraction are superimposed to be applied to the substrate electrode 15 .
  • a DC voltage from one DC power source is superimposed on the low-frequency voltages to be applied to the substrate electrode 15 .
  • the substrate electrode 15 functions also as an internal electrode for electrostatic chuck, and accordingly, the electrostatic chuck 42 illustrated in FIG. 22 is not required.
  • the RF low-frequency voltages V 2 a to V 2 d from the RF low-frequency power sources 22 a to 22 d illustrated in FIG. 14 flow, via the DC power source, into the electrode elements E 1 to E 4 of the other groups.
  • a filter mechanism which cuts an AC component, to the DC power source.
  • the filter mechanism can be formed of a capacitance and an inductance, for example.
  • the electrode for electrostatic attraction (the internal electrode of the electrostatic chuck 42 ) in the vicinity of the wafer W, as described in the modified example 6.
  • FIG. 25 is a schematic configuration diagram of a plasma processing apparatus 10 h according to a fourth embodiment.
  • the plasma processing apparatus 10 h has the chamber 11 , the exhaust port 12 , the process gas introduction pipe 13 , a susceptor 14 c , a substrate electrode 15 c , the counter electrode 16 , the termination detector 19 , the RF high-frequency power source 21 , the RF low-frequency power sources 22 a , 22 b , the filters 23 a , 23 b , 24 a , 24 b , the phase adjuster 25 , a control unit 26 c , and switches SW 1 , SW 2 . Note that the illustration of capacitors is omitted for easier view.
  • the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements, and the RF low-frequency voltages V 2 having the phase differences are applied to the respective groups of electrode elements, as in the second embodiment and the modified examples.
  • the plasma processing apparatus 10 h does not have the wafer rotating mechanism 18 , and uses the substrate electrode 15 c , in place of the substrate electrode 15 .
  • FIG. 26 is a perspective view illustrating one example of a configuration of the substrate electrode 15 c .
  • the substrate electrode 15 c is formed of electrode elements E 11 , E 12 , and electrode elements E 21 , E 22 , in which the former are arranged on the latter.
  • the electrode elements E 11 , E 12 form a first substrate electrode
  • the electrode elements E 21 , E 22 forma second substrate electrode.
  • the substrate electrode 15 c has these first and second substrate electrodes.
  • the electrode elements E 11 , E 12 correspond to the electrode elements E 1 , E 2 in the first embodiment, and are alternately arranged along an axial direction A 1 .
  • the electrode elements E 21 , E 22 are alternately arranged along an axial direction A 2 under the electrode elements E 11 , E 12 .
  • These axial directions A 1 , A 2 are mutually different (the directions are perpendicular to each other, for example).
  • the control unit 26 c can make the switches SW 1 , SW 2 switch the destination of input of the RF high-frequency voltage V 1 and the RF low-frequency voltages V 2 a , V 2 b from the RF high-frequency power source 21 and the RF low-frequency power sources 22 a , 22 b to either the electrode elements E 11 , E 12 or the electrode elements E 21 , E 22 . Specifically, the switching is made to set either the electrode elements E 11 , E 12 or the electrode elements E 21 , E 22 as a substantial substrate electrode.
  • the switches SW 1 , SW 2 apply the RF high-frequency voltage V 1 and the plurality of RF low-frequency voltages V 2 a , V 2 by switching the first and second substrate electrodes (the electrode elements E 11 , E 12 , and the electrode elements E 21 , E 22 ). This means that the switches SW 1 , SW 2 function as a switching unit.
  • the axial direction A 1 of the electrode elements E 11 , E 12 is different from the axial direction A 2 of the electrode elements E 21 , E 22 , it becomes possible to relatively rotate the wafer Wand the incident direction of ions II, although the wafer rotating mechanism 18 is not provided. Specifically, it becomes possible to deal with precision processing (vertical processing) of a sidewall of via hole.
  • FIG. 27 is a schematic configuration diagram of a plasma processing apparatus 10 i according to a fifth embodiment.
  • the plasma processing apparatus 10 i has the chamber 11 , the exhaust port 12 , the process gas introduction pipe 13 , a susceptor 14 d , a substrate electrode 15 d , the counter electrode 16 , a shift register 51 , a control unit 52 , the capacitors 17 a to 17 d , the RF high-frequency power source 21 , the RF low-frequency power sources 22 a to 22 d , the filters 23 a to 23 d , and 24 a to 24 d , and the phase adjuster 25 a.
  • FIG. 28 is a plan view illustrating a state where the substrate electrode 15 d is seen from the above.
  • the substrate electrode 15 d has electrode elements Exy which are arranged in lines in the vertical and horizontal two directions.
  • the electrode elements Exy are arranged in the vertical and horizontal two directions, which are orthogonal to each other, the directions are not necessarily required to be orthogonal to each other. There is no problem if the electrode elements Exy are arranged in lines in mutually different first and second directions.
  • the electrode element Exy has a rectangular shape (square shape) when seen from the above, but, it may also be formed to have a circular shape.
  • the shift register 51 selects the electrode elements Exy so that the electrode elements Exy are classified into four groups G 1 to G 4 (line-shaped groups) which are parallel to one another (arranged in approximately the same direction ⁇ ).
  • the shift register 51 functions as a selecting unit that selects, from a plurality of electrode elements, the plurality of electrode element groups arranged along one direction.
  • the four groups G 1 to G 4 are connected to the RF low-frequency power sources 22 a to 22 d .
  • As the four groups G 1 to G 4 a plurality of groups G 11 to G 14 , G 21 to G 24 , . . . , Gn 1 to Gn 4 in accordance with the direction ⁇ can be selected.
  • FIG. 29A to FIG. 29D illustrate cases where the electrode elements Exy are classified into (selected as) groups G 11 to G 14 , groups G 21 to G 24 , groups G 31 to G 34 , and groups G 41 to G 44 , in which the direction ⁇ corresponds to 0°, 45°, 90°, and 135°, respectively.
  • the shift register 51 selects any of first to fourth electrode element groups (the groups G 11 to G 14 , the groups G 21 to G 24 , the groups G 31 to G 34 , and the groups G 41 to G 44 ) which are arranged along a first direction (0° direction), a second direction (90° direction), a third direction being an intermediate direction between the first and second directions (45° direction), and a fourth direction being an intermediate direction between the second and first directions (135° direction), respectively.
  • first to fourth electrode element groups the groups G 11 to G 14 , the groups G 21 to G 24 , the groups G 31 to G 34 , and the groups G 41 to G 44 .
  • the third direction is set to the direction which is right between the first and second directions, it is also possible to set an arbitrary intermediate direction between the first and second directions. Further, it is also possible to set an arbitrary intermediate direction between the second and first directions, as the fourth direction. Further, it is also possible to set a plurality of intermediate directions between the first and second directions.
  • the control unit 52 controls the shift register 51 to change the grouping of the electrode elements Exy so that the direction ⁇ sequentially rotates. For example, it is set that the groups G 11 to G 14 , the groups G 21 to G 24 , the groups G 31 to G 34 , and the groups G 41 to G 44 in FIG. 29A to FIG. 29D are periodically and repeatedly selected. This means that the direction ⁇ in which the electrode elements Exy are grouped rotates.
  • the groups G 11 to G 14 correspond to both cases where ⁇ equals to 0° and where ⁇ equals to 180°, so that when the groups G 11 to G 14 are selected after the selection of the groups G 41 to G 44 , this means that the electric field from the substrate electrode 15 d is rotated.
  • FIG. 30A to FIG. 30C , FIG. 31A , and FIG. 31B are graphs each illustrating a result of plasma simulation of an angle distribution of ions II which are incident on the wafer W in the plasma processing apparatus 10 .
  • the above-described simulation is conducted by using a commercially available software (VizGlow). Incident amounts of ions II over one period of the RF low-frequency voltage are integrated to calculate the angle distribution of the ions incident on the substrate.
  • FIG. 32 is a schematic sectional diagram illustrating positions P 1 to P 6 (incident positions of ions II) on the wafer W.
  • the wafer W having a radius r 0 of 150 mm was used, and as the substrate electrode 15 , the electrode elements E each having a diameter R of 4 mm and an approximately column shape were arranged with an interval D (distance between center axes) of 5 mm provided therebetween.
  • Distances L from a center C of the wafer W to the respective positions P 1 to P 6 on the wafer W are 70, 71, 72, 73, 74, and 75 mm.
  • the positions P 1 , P 6 are respectively positioned on the axes of the two electrode elements E, and the other positions P 2 to P 5 are disposed between the positions P 1 and P 6 .
  • a portion at which the distance L is 72.5 mm is a portion in which the distances from these electrode elements to the portion are equal, and is at an intermediate position between the positions P 3 and P 4 .
  • the angle distribution of ions in other electrode elements E is similar to that when the distances L are 70 to 75 mm. Specifically, it can be considered that the angle distribution of ions varies in a period corresponding to the interval D by reflecting the periodicity of arrangement of the electrode elements E. Accordingly, the uniformity on the wafer W of the incident angle distribution is indicated, by setting the result of analysis at the positions P 1 to P 6 as a representative.
  • the electrode elements E are classified into two groups which are alternately arranged, and the RF low-frequency voltages V 2 a , V 2 b having the phase difference ⁇ of 0, ⁇ /2, or ⁇ are applied.
  • the electrode elements E are classified into three groups which are sequentially arranged, and RF low-frequency voltages V 2 a , V 2 b , V 2 c having phase differences ⁇ 1 , ⁇ 2 of 2 ⁇ /3, 4 ⁇ /3 are applied.
  • the electrode elements E are classified into four groups which are sequentially arranged, and RF low-frequency voltages V 2 a to V 2 d having phase differences ⁇ 1 to ⁇ 3 of ⁇ /2, ⁇ , 3 ⁇ /2 are applied.
  • the RF low-frequency voltages V 2 having the same phase are applied to all of the electrode elements.
  • the incident angle ⁇ of ions II is approximately 0 at all of the positions P 1 to P 6 (the ions II are approximately vertically incident).
  • the result is similar to that obtained in the plasma processing apparatus 10 x illustrated in FIG. 5 (normal plate electrode RIE (Reactive Ion Etching) apparatus).
  • the reason why the incident angle ⁇ of the ions II has a distribution of about ⁇ 2 to about 2° is because there is an influence of thermal fluctuation (the ions II have random thermal velocity components).
  • the phase difference ⁇ is ⁇ /2 in the two groups of electrode elements, the vertically incident ions II are reduced at the positions P 2 to P 5 , and the ions II are alternately incident at positive and negative incident angles ⁇ (about ⁇ 15 to about) 15°). It can be considered that this is because, since there is the phase difference between the electrode elements, the electric field F in a direction perpendicular to the axial direction A is generated.
  • the vertically incident ions II are reduced at the positions P 1 , P 6 (on center axes of the electrode elements), when compared to FIG. 30A .
  • the positions P 1 , P 6 are sort of singular points in which the amount of diagonal incidence of ions II is small.
  • electric fields F in the opposite directions act between the respective electrode elements E in the left-hand neighbor and the right-hand neighbor. It can be considered that the electric fields F in the opposite directions are balanced at a position right above the axes of the electrode elements E, resulting in that the electric field F in the direction Ah perpendicular to the axial direction A (refer to FIG. 2 ) is difficult to be generated. If the electric field F is not generated, the diagonal incidence of ions II except for the thermal fluctuation component does not virtually occur (only the vertical incidence occurs).
  • the vertically incident ions II are reduced at the positions P 2 to P 5 , and the ions II are alternately incident at positive and negative incident angles ⁇ (about ⁇ 30 to about) 30°.
  • the incident angle ⁇ is greater than the incident angle in the case of FIG. 30B .
  • the vertically incident ions II are reduced at all of the positions P 1 to P 6 .
  • the positions P 1 , P 6 (on the center axes of the electrode elements) are also not the singular points.
  • the ions II are approximately alternately incident at the positive and negative incident angles ⁇ (about ⁇ 8 to about 8°).
  • the vertically incident ions II are reduced at all of the positions P 1 to P 6 .
  • the positions P 1 , P 6 (on the center axes of the electrode elements) are also not the singular points.
  • the ions II are approximately alternately incident at the positive and negative incident angles ⁇ (about ⁇ 10 to about 10°).
  • the singular points in which the number of diagonally incident ions II is small are generated, but, when the number of groups is three or more, the tendency is lowered.
  • the uniform diagonal incidence can occur on the wafer W having a diameter of 300 mm (radius r 0 of 150 mm), as described in the examples.
  • FIG. 33A to FIG. 33 C are graphs illustrating results of plasma simulation of angle distributions of the ions II which are incident on the wafer W in the plasma processing apparatus 10 when the voltage V 02 is set to 2000 V, 1000 V, 500 V, in the four groups of electrode elements.
  • the incident angle ⁇ of ions II is increased.
  • the incident angle ⁇ is changed from about 2 to 3° to about 10°, when the voltage V 02 from 500 V to 2000 V is applied.
  • the incident angle ⁇ of the ions II can be changed.
  • the result when the wafer W and the like are rotated is approximately similar to the averaged result when the wafer W is not rotated ( FIG. 30A to FIG. 30C , FIG. 31A , FIG. 31B , FIG. 33A to FIG. 33C ).
  • FIG. 34A to FIG. 34E are graphs illustrating results of plasma simulation of angle distributions of the ions II which are incident on the wafer W in the plasma processing apparatus 10 when the air gap size (the width of the opening 421 ) G of the internal electrode of the electrostatic chuck 42 (the width of the internal electrode) is changed.
  • FIG. 34A to FIG. 34E correspond to cases where the internal electrode of the electrostatic chuck 42 is not provided, and the air gap sizes G are 4, 2, 1, 0 mm (correspond to the internal electrode sizes 1, 3, 4, 5 mm), respectively.
  • FIG. 35 is a schematic sectional diagram illustrating the electrostatic chuck 42 on the wafer W at this time.
  • the electrode element E of the substrate electrode 15 is arranged on the center of the opening 421 of the electrostatic chuck 42 .
  • the interval D between the electrode elements E is set to 5 mm or less, for example.
  • the air gap size (the width of the opening 421 ) G of the electrostatic chuck 42 is set to 2 mm to 5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

In one embodiment, a plasma processing apparatus includes: a chamber; an introducing part; a counter electrode; a high-frequency power source; and a plurality of low-frequency power sources. A substrate electrode is disposed in the chamber, a substrate is directly or indirectly placed on the substrate electrode, and the substrate electrode has a plurality of electrode element groups. The introducing part introduces process gas into the chamber. The high-frequency power source outputs a high-frequency voltage for ionizing the process gas to generate plasma. The plurality of low-frequency power sources apply a plurality of low-frequency voltages of 20 MHz or less with mutually different phases for introducing ions from the plasma, to each of the plurality of electrode element groups.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2012-212726 filed on Sep. 26, 2012 and Japanese Patent Application No. 2013-109462, filed on May 24, 2013; the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments described herein relate generally to a plasma processing apparatus and a plasma processing method.
  • BACKGROUND
  • A plasma processing apparatus generates plasma, and makes ions in the plasma to be incident on a substrate (semiconductor wafer, for example), to thereby process the substrate. In a process of manufacturing a semiconductor device, when incident ions perform etching on a substrate, a trench, a via hole, a projecting portion and the like are formed.
  • Here, in the process of manufacturing the semiconductor device, it is important to perform fine control of processing shape, particularly vertical processing of a sidewall of trench for securing electrical performance of the semiconductor device.
  • However, it is not always easily to perform the fine control of processing shape, and it is usually the case that the sidewall of trench is not vertically formed, and is tapered, for example.
  • The present invention has an object to provide a plasma processing apparatus and a plasma processing method which make it easy to perform fine control of processing shape.
  • SUMMARY
  • A plasma processing apparatus of an embodiment includes: a chamber; an introducing part; a counter electrode; a high-frequency power source; and a plurality of low-frequency power sources. A substrate electrode is disposed in the chamber, a substrate is directly or indirectly placed on the substrate electrode, and the substrate electrode has a plurality of electrode element groups. The introducing part introduces process gas into the chamber. The high-frequency power source outputs a high-frequency voltage for ionizing the process gas to generate plasma. The plurality of low-frequency power sources apply a plurality of low-frequency voltages of 20 MHz or less with mutually different phases for introducing ions from the plasma, to each of the plurality of electrode element groups.
  • The plasma processing apparatus and the plasma processing method according to embodiments make it easy to perform fine control of processing shape.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic configuration diagram of a plasma processing apparatus 10 according to a first embodiment.
  • FIG. 2 is a perspective view illustrating one example of a configuration of a substrate electrode 15.
  • FIG. 3 is a diagram illustrating one example of voltage waveforms RF1, RF2 applied to electrode elements E1, E2.
  • FIG. 4 is a schematic diagram illustrating one example of ions II which are incident on a wafer W.
  • FIG. 5 is a schematic configuration diagram of a plasma processing apparatus 10 x according to a comparative example.
  • FIG. 6 is a diagram illustrating one example of a voltage waveform RF applied to a substrate electrode 15 x.
  • FIG. 7 is a schematic sectional diagram illustrating a state of wafer W before processing.
  • FIG. 8 is a schematic sectional diagram illustrating one example of a state of wafer W after being subjected to processing in the plasma processing apparatus 10 x.
  • FIG. 9 is a schematic sectional diagram illustrating one example of a state of wafer W after being subjected to processing in the plasma processing apparatus 10 x.
  • FIG. 10 is a schematic sectional diagram illustrating one example of a state of wafer Wafter being subjected to processing in the plasma processing apparatus 10.
  • FIG. 11 is a schematic configuration diagram of a plasma processing apparatus 10 a according to a modified example 1.
  • FIG. 12 is a schematic configuration diagram of a plasma processing apparatus 10 b according to a modified example 2.
  • FIG. 13 is a plan view illustrating an induction coil 27.
  • FIG. 14 is a schematic configuration diagram of a plasma processing apparatus 10 c according to a second embodiment.
  • FIG. 15 is a perspective view illustrating one example of a configuration of a substrate electrode 15 a.
  • FIG. 16 is a diagram illustrating one example of voltage waveforms RF1 to RF4 applied to electrode elements E1 to E4.
  • FIG. 17 is a schematic configuration diagram of a plasma processing apparatus 10 d according to a third embodiment.
  • FIG. 18 is a diagram illustrating a state where plasma processing is performed on sidewalls of trenches.
  • FIG. 19 is a diagram illustrating a state where plasma processing is performed on a sidewall of via.
  • FIG. 20 is a partial configuration diagram of a plasma processing apparatus 10 e according to a modified example 4.
  • FIG. 21 is a partial configuration diagram of a plasma processing apparatus 10 f according to a modified example 5.
  • FIG. 22 is a partial configuration diagram of a plasma processing apparatus 10 g according to a modified example 6.
  • FIG. 23 and FIG. 24 are diagrams each illustrating one example of an electrostatic chuck 42.
  • FIG. 25 is a schematic configuration diagram of a plasma processing apparatus 10 h according to a fourth embodiment.
  • FIG. 26 is a perspective view illustrating one example of a configuration of a substrate electrode 15 c.
  • FIG. 27 is a schematic configuration diagram of a plasma processing apparatus 10 i according to a fifth embodiment.
  • FIG. 28 is a plan view illustrating one example of a configuration of a substrate electrode 15 d.
  • FIG. 29A to FIG. 29D are plan views each illustrating one example of a selection state of the substrate electrode 15 d.
  • FIG. 30A to FIG. 30C are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 31A and FIG. 31B are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 32 is a schematic diagram illustrating positions P1 to P6 on the wafer W.
  • FIG. 33A to FIG. 33C are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 34A to FIG. 34E are graphs each illustrating an example of incident angle distribution of ions II which are incident on the wafer W.
  • FIG. 35 is a schematic diagram illustrating a positional relationship of electrode elements E and the electrostatic chuck 42.
  • DETAILED DESCRIPTION
  • Hereinafter, embodiments will be described in detail with reference to the drawings.
  • First Embodiment
  • FIG. 1 is a schematic configuration diagram of a plasma processing apparatus 10 according to a first embodiment. The plasma processing apparatus 10 is a parallel plate type RIE (Reactive Ion Etching) apparatus.
  • The plasma processing apparatus 10 makes ions II in plasma PL to be incident on a wafer W to perform etching on the wafer W, thereby forming a trench, a via hole, a projecting portion and the like. The wafer W is a substrate, which is, for example, a substrate of semiconductor (Si, GaAs or the like).
  • Note that the plasma processing apparatus 10 is common to an ion implantation apparatus that implants ions, in a point that the ions II are made to be incident on the wafer W, but, the both pieces of apparatus are different in the next point. In the plasma processing, an energy of incident ions is lower than that in the ion implantation (about 10 k to about 500 keV in the ion implantation, and about 0 to about 2000 eV in the plasma processing). Compared to the ion implantation, the plasma processing does not require a particular accelerator, and in the plasma processing, ions II from plasma PL are introduced by a bias potential applied to a substrate electrode 15. For this reason, the plasma PL and the substrate electrode 15 come close to each other in the plasma processing apparatus 10, compared to those in the ion implantation (about 10 cm or more in the ion implantation, and about several cm or less in the plasma processing).
  • The plasma processing apparatus 10 has a chamber 11, an exhaust port 12, a process gas introduction pipe 13, a susceptor 14, a substrate electrode 15, a counter electrode 16, capacitors 17 a, 17 b, an RF high-frequency power source 21, RF low- frequency power sources 22 a, 22 b, filters 23 a, 23 b, 24 a, 24 b, and a phase adjuster 25.
  • The chamber 11 maintains an environment required to perform processing on a wafer W.
  • The exhaust port 12 is connected to not-illustrated pressure regulating valve and exhaust pump. Gas in the chamber 11 is exhausted from the exhaust port 12, resulting in that the inside of the chamber 11 is maintained in a high-vacuum state. Further, when process gas is introduced from the process gas introduction pipe 13, a flow rate of gas flowed in through the process gas introduction pipe 13 and a flow rate of gas flowed out through the exhaust port 12 are balanced, resulting in that a pressure in the chamber 11 is kept constant.
  • The process gas introduction pipe 13 introduces process gas required to perform processing on the wafer W, into the chamber 11. The process gas is used for forming plasma PL. By an electric discharge, the process gas is ionized to be turned into plasma PL, and ions II in the plasma PL are used for performing etching on the wafer W.
  • As the process gas, it is possible to appropriately use SF6, CF4, C2F6, C4F8, C5F8, C4F6, Cl2, HBr, SiH4, SiF4 or the like, other than gas of Ar, Kr, Xe, N2, O2, CO, H2 or the like.
  • Here, the process gas can be classified into deposition-type gas and depositionless-type gas. The depositionless-type gas is gas that performs only an etching operation when performing processing on the wafer W. On the other hand, the deposition-type gas performs not only the etching operation but also an operation of forming a coating film (protective film) when performing processing on the wafer W.
  • By using the deposition-type gas as the process gas, it is possible to improve a selection ratio of etching between an etching mask and an etching target (the wafer W or the like). Specifically, when the deposition-type gas is used, the etching proceeds during which a coating film is formed on the etching mask. As a result of this, an etching rate of the etching mask is reduced, and the selection ratio can be improved.
  • The classification of deposition type and depositionless type is not always an absolute one. Rare gas (Ar, Kr, Xe) does not perform the operation of forming the coating film almost at all, and thus it can be considered as pure depositionless-type gas, but, the other gas can perform the operation of forming the coating film in any way. Further, a magnitude relation between the etching operation and the operation of forming the coating film can be changed, based on a relation of a material and a shape of the etching mask and the etching target, a process pressure and the like.
  • Generally, Ar, Kr, Xe, H2 and the like can be cited as the depositionless-type gas.
  • Further, C2F6, C4F6, C4F8, C5F8, SF6, Cl2, HBr can be cited as the deposition-type gas.
  • As an intermediate kind of gas between the deposition-type gas and the depositionless-type gas, there can be cited N2, O2, CO, and CF4.
  • The susceptor 14 is a holding part holding the wafer W, and has a chuck for holding the wafer W. As the chuck, a mechanical chuck which dynamically holds the wafer W, or an electrostatic chuck that holds the wafer W with the use of an electrostatic force can be used. Note that explanation will be made on details of the electrostatic chuck in later-described modified examples 6, 7.
  • The substrate electrode 15 is an approximately plate-shaped electrode disposed on the susceptor 14 and having an upper surface which is close to or brought into contact with a lower surface of the wafer W. Specifically, the wafer W (substrate) is placed on the substrate electrode 15 indirectly (the both are close to each other) or directly (the both are brought into contact with each other).
  • FIG. 2 is a perspective view illustrating one example of a configuration of the substrate electrode 15. As illustrated in FIG. 2, the substrate electrode 15 corresponds to divided electrodes formed by being divided in a plurality of pieces, and configured by two groups of electrode elements E1, E2 (first and second electrode element groups) which are alternately arranged.
  • Here, each of the two groups of electrode elements E1, E2 has a center axis along an axial direction A and an approximately column shape with a diameter of R, and the electrode elements E1, E2 are arranged in approximately parallel to each other with an interval D (distance between center axes) provided therebetween. Note that the shape of each of the electrode elements E1, E2 is not limited to the approximately column shape, and the shape may also be an approximately prism shape (approximately rectangular prism shape, for example).
  • At this time, it is preferable that the interval D (the diameter R as well) is (are) small to some degree (for example, the interval D is set to 5 mm or less). As will be explained in later-described examples, an incident amount of ions II has a positional dependence. It can be considered that the incident amount of ions II varies in a period corresponding to the interval D, under the influence of a periodic arrangement of the electrode elements E1, E2. For this reason, by reducing the interval D (the diameter R as well) to some degree, the uniformity of plasma processing is improved (period of variation in the incident amount of ions II is reduced).
  • To the substrate electrode 15, an RF high-frequency voltage V1 and RF low-frequency voltages V2 a, V2 b are applied from an RF high-frequency power source 21 and RF low- frequency power sources 22 a, 22 b.
  • To the electrode element E1, a voltage waveform RF1 in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 a are superimposed is applied.
  • To the electrode element E2, a voltage waveform RF2 in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 b are superimposed is applied.
  • The RF high-frequency voltage V1 is an alternating voltage of relatively high frequency which is applied to both of the electrode elements E1, E2, and used for generating plasma PL. The RF low-frequency voltages V2 a, V2 b are alternating voltages of relatively low frequency which are applied to the electrode elements E1, E2, respectively, and used for introducing the ions II from the plasma PL. As will be described later, since there is a phase difference between the RF low-frequency voltages V2 a and V2 b, the ions II can be diagonally incident on the wafer W from the plasma PL.
  • The counter electrode 16 is disposed to face the substrate electrode 15 in the chamber 11, and one end thereof is set to a ground potential. The counter electrode 16 and the substrate electrode 15 form a parallel plate electrode.
  • The capacitors 17 a, 17 b indicate combined capacitances as a result of combining capacitances on a path from the RF high-frequency power source 21, the RF low- frequency power sources 22 a, 22 b to the wafer W. These combined capacitances correspond to ones as a result of combining capacitances of the respective filters 23 a, 23 b, 24 a, 24 b, matching device (not illustrated), and electrostatic chuck (not illustrated).
  • The RF high-frequency power source 21 generates the RF high-frequency voltage V1 which is applied to the substrate electrode 15. A frequency fh of the RF high-frequency voltage V1 is not less than 40 MHz nor more than 1000 MHz, and is more preferably not less than 40 MHz nor more than 500 MHz (100 MHz, for example).
  • The RF low- frequency power sources 22 a, 22 b generate the RF low-frequency voltages V2 a, V2 b which are applied to the substrate electrode 15. A frequency fl of the RF low-frequency voltages V2 a, V2 b is not less than 0.1 MHz nor more than 20 MHz, and is more preferably not less than 0.5 MHz nor more than 14 MHz (1 MHz, for example). The RF low-frequency voltages V2 a, V2 b have approximately the same frequency, and have a phase difference α (π/2, π, for example).
  • The not-illustrated matching device matches the impedance of the RF high-frequency power source 21 and the RF low- frequency power sources 22 a, 22 b to that of the plasma PL.
  • As the RF high-frequency voltage V1, and the RF low-frequency voltages V2 a, V2 b, sine waveforms represented by the following expression (1) can be used.

  • V1=V01·sin(2π·fh·t)

  • V2a=V02·sin(2π·fl·t)

  • V2b=V02·sin(2π·fl·t+α)  expression (1)
  • The filters 23 a, 23 b (HPF (High Pass Filter)) prevent the RF low-frequency voltages V2 a, V2 b from the RF low- frequency power sources 22 a, 22 b from being input into the RF high-frequency power source 21. The filters 24 a, 24 b (LPF (Low Pass Filter)) prevent the RF high-frequency voltage V1 from the RF high-frequency power source 21 from being input into the RF low- frequency power sources 22 a, 22 b.
  • The phase adjuster 25 adjusts the phase difference α of the RF low-frequency voltages V2 a, V2 b from the RF low- frequency power sources 22 a, 22 b. It can be considered that π/2 or π, for example, is set as the phase difference α. Note that to set the phase difference α to 3π/2 and to set the phase difference α to π/2 are substantially the same, when the periodicity of the RF low-frequency voltages V2 a, V2 b is considered.
  • FIG. 3 is a diagram illustrating one example of the voltage waveforms RF1, RF2 which are applied to the electrode elements E1, E2 (phase difference of π/2).
  • (Operation of Plasma Processing Apparatus 10)
  • In the chamber 11 in which an evacuation is conducted and a pressure reaches a predetermined pressure (0.01 Pa or less, for example), the wafer W is carried by a not-illustrated carrying mechanism. Next, the wafer W is held by the susceptor 14 with the use of the chuck. At this time, the substrate electrode 15 is close to or brought into contact with the wafer W.
  • Next, the process gas required to perform the processing on the wafer W is introduced from the process gas introduction pipe 13. At this time, the process gas introduced into the chamber 11 is exhausted at a predetermined rate from the exhaust port 12 by the not-illustrated pressure regulating valve and exhaust pump. As a result of this, the pressure in the chamber 11 is kept constant (about 1.0 to about 6.0 Pa, for example).
  • Next, the RF high-frequency voltage V1, and the RF low-frequency voltages V2 a, V2 b from the RF high-frequency power source 21, and the RF low- frequency power sources 22 a, 22 b are applied to the substrate electrode 15. To the electrode element E1, the voltage waveform RF1 in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 a are superimposed is applied. To the electrode element E2, the voltage waveform RF2 in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 b are superimposed is applied.
  • A density of the plasma PL is controlled by the RF high-frequency voltage V1 from the RF high-frequency power source 21. An incident energy of ions II which are incident on the wafer W is controlled by the RF low-frequency voltages V2 a, V2 b from the RF low- frequency power sources 22 a, 22 b. The wafer W is etched by the ions II having the energy with a value which is equal to or more than a threshold value in the etching process of the wafer W.
  • FIG. 4 is a schematic diagram illustrating one example of ions II which are incident on the wafer W.
  • The RF low-frequency voltages V2 a, V2 b are applied to the electrode elements E1, E2 (substrate electrode 15). When the RF low-frequency voltages V2 a, V2 b are applied between the substrate electrode 15 and the counter electrode 16, there is generated an electric field (vertical electric field) in a direction Ap which is perpendicular to a plane of the substrate electrode 15 (wafer W) (refer to FIG. 2). As a result of this, the ions II in the plasma PL are introduced into the substrate electrode 15 (wafer W).
  • Here, the RF low-frequency voltages V2 a, V2 b which are applied to the electrode elements E1, E2 have the phase difference α. For this reason, there is generated an electric field F in a direction parallel to the plane of the substrate electrode 15 (wafer W) and parallel to a direction Ah which is orthogonal to the axial direction A of the electrode elements E1, E2, in addition to the vertical electric field (refer to FIG. 2, FIG. 4). As a result of this, by corresponding to the electric field F, the ions II are incident to have an incident angle θ (diagonally incident) with respect to the vertical direction. When the ions II are diagonally incident, it becomes possible to perform the etching on the wafer W with high precision. Note that details of this will be described later.
  • The electric field F is oscillated in accordance with the period of the RF low-frequency voltages V2 a, V2 b. As a result of this, the incident angle θ of ions II is periodically oscillated in accordance with the period of the RF low-frequency voltages V2 a, V2 b.
  • As described above, the ion with the incident angle θ in the positive direction and the ion with the incident angle θ in the negative direction are alternately incident on the wafer W along the axial direction A. Specifically, in the present embodiment, the following becomes possible.
  • (1) The ions II can be diagonally incident on the wafer W at the incident angle θ. As will be described later, by using the diagonally incident ions II, it becomes possible to perform processing with high precision when forming the trench or the projecting portion, while reducing the taper.
  • In particular, when forming the trench or the projecting portion along the axial direction A, the amount of ions II which are incident on a sidewall of the trench or the like is increased, resulting in that the taper can be reduced. Specifically, it is preferable to make a direction of the trench or the projecting portion (direction of processing line on the wafer W) and the axial direction A of the electrode elements E1, E2 coincide with each other.
  • (2) The ions II can be diagonally incident on both sides of the trench or the projecting portion along the axial direction A. As a result of this, it is possible to reduce the taper on both sidewalls of the trench.
  • Comparative Example
  • FIG. 5 is a schematic configuration diagram of a plasma processing apparatus 10 x according to a comparative example. The plasma processing apparatus 10 x has the chamber 11, the exhaust port 12, the process gas introduction pipe 13, a susceptor 14 x, a substrate electrode 15 x, the counter electrode 16, a capacitor 17, the RF high-frequency power source 21, and an RF low-frequency power source 22 x.
  • The substrate electrode 15 x is different from the substrate electrode 15, and has a plate shape with no electrode elements provided thereto (the substrate electrode 15 x is not divided). FIG. 6 is a diagram illustrating one example of a voltage waveform RF which is applied to the substrate electrode 15 x. The RF high-frequency voltage V1 from the RF high-frequency power source 21 and an RF low-frequency voltage V2 from the RF low-frequency power source 22 x are superimposed to be applied to the substrate electrode 15 x, which generates plasma PL and introduces ions II.
  • Since the substrate electrode 15 x is not divided, in the plasma processing apparatus 10 x, no electric field F parallel to the plane of the wafer W is generated. For this reason, the ions II are incident, from the plasma PL, only in a direction perpendicular to the plane of the wafer W, and basically, little ions II which are diagonally incident exist due to thermal fluctuation. As a result of this, it is difficult to perform precision processing using the diagonally incident ions II.
  • Comparison Between Embodiment and Comparative Example
  • Hereinafter, a difference in the result of etching in the plasma processing apparatus 10 according to the embodiment and the plasma processing apparatus 10 x according to the comparative example will be described.
  • FIG. 7 is an enlarged sectional diagram illustrating a part of wafer W before being subjected to processing in a plasma processing apparatus. On the wafer W, layers 31, 32, and a mask 33 are formed. Materials of the layers 31, 32 are different materials, which are, for example, SiO2 and Si. A material of the mask 33 is, for example, a resist or SiO2, which is difficult to be etched, compared to the layer 32.
  • FIG. 8 and FIG. 9 are enlarged sectional diagrams each illustrating a state after such a wafer W is etched in the plasma processing apparatus 10 x. FIG. 8 illustrates a case where the depositionless-type gas is used as the process gas, and FIG. 9 illustrates a case where the deposition-type gas is used as the process gas.
  • As illustrated in FIG. 8, when the depositionless-type gas is used as the process gas, since the selection ratio between the mask 33 and the layer 32 is small, an etching amount of the mask 33 is large, and it becomes difficult to perform precision processing on the layer 32.
  • As illustrated in FIG. 9, when the deposition-type gas is used as the process gas, the selection ratio between the mask 33 and the layer 32 becomes large, resulting in that the etching amount of the mask 33 becomes small. However, the layer 32 is easily etched in the diagonal direction (the etched side surface is tapered). This is because a protective film is formed on the side surface due to the deposition-type gas, and meanwhile, the side surface is difficult to be subjected to the etching operation performed by ions II which are vertically incident. As described above, when the deposition-type gas is used, in particular, it becomes possible to increase the selection ratio, but, it is difficult to perform vertical processing (precision processing).
  • Further, the number of ions II which hit against the etched side surface (sidewall of trench) is small, so that a residue or adherent is easily deposited, which also makes it difficult to perform the precision processing.
  • FIG. 10 is an enlarged sectional diagram illustrating a state after the wafer W is etched in the plasma processing apparatus 10. Here, a case where the deposition-type gas is used as the process gas, is illustrated. By using the deposition-type gas as the process gas, the selection ratio between the mask 33 and the layer 32 becomes large, resulting in that the etching amount of the mask 33 is small.
  • Further, the layer 32 is vertically etched (the etched side surface is not tapered). The ions II are diagonally incident on both sides of the etched side surface (sidewall of trench), so that the taper on the side surface is reduced.
  • Here, there is no need to use the diagonally incident ions II in all of the processes of the formation of trench. It is also possible that the ions II are vertically incident up to the middle of the formation of trench, and thereafter, the ions II are diagonally incident. Specifically, it is also possible that the phase adjuster 25 adjusts the phase α in accordance with the progress of the plasma processing process. Note that details thereof will be described in third and fourth embodiments.
  • As described above, in the present embodiment, the ions II can be diagonally incident on the wafer W at the incident angle θ. As a result of this, it becomes possible to perform the precision etching processing in which the vertical processing on the sidewall is easily performed, and the residue is difficult to be remained on the sidewall.
  • Modified Example 1
  • FIG. 11 is a schematic configuration diagram of a plasma processing apparatus 10 a according to a modified example 1. The plasma processing apparatus 10 a has the chamber 11, the exhaust port 12, a process gas introduction pipe 13 a, the susceptor 14, the substrate electrode 15, a counter electrode 16 a, the capacitors 17 a, 17 b, the RF high-frequency power source 21, the RF low- frequency power sources 22 a, 22 b, filters 23, 24 a, 24 b, and the phase adjuster 25.
  • The counter electrode 16 a is a so-called showerhead, and has an internal space and a plurality of openings. Process gas is introduced from the process gas introduction pipe 13 a to pass through the inside of the counter electrode 16 a, and is then introduced into the chamber 11 from the plurality of openings of the counter electrode 16 a. Specifically, the counter electrode 16 a functions as an introducing part introducing the process gas into the chamber 11.
  • The modified example 1 is different from the first embodiment in that the RF high-frequency power source 21 is electrically connected not to the substrate electrode 15 but to the counter electrode 16 a. Specifically, although the substrate electrode 15 rather serves to generate the plasma PL in the first embodiment, the counter electrode 16 a serves to generate the plasma PL in the modified example 1.
  • The modified example 1 is not largely different from the first embodiment in the other points, so that the other explanation thereof will be omitted.
  • Modified Example 2
  • FIG. 12 is a schematic configuration diagram of a plasma processing apparatus 10 b according to a modified example 2. The plasma processing apparatus 10 b has a chamber 11 b, the exhaust port 12, the process gas introduction pipe 13, the susceptor 14, the substrate electrode 15, the capacitors 17 a, 17 b, the RF high-frequency power source 21, the RF low- frequency power sources 22 a, 22 b, the filters 23, 24 a, 24 b, the phase adjuster 25, a window 111, and an induction coil 27. FIG. 13 illustrates a state where the induction coil 27 is seen from the above in FIG. 12.
  • The plasma processing apparatus 10 b is different from the plasma processing apparatus 10 a in that it does not have the counter electrode 16 but has the window 111 and the induction coil 27.
  • The window 111 isolates the inside of the chamber 11 b from the atmosphere, and a magnetic field from the induction coil 27 is passed through the window 111. As the window 111, a plate of nonmagnetic material such as quartz, for example, is used.
  • The induction coil 27 is disposed on the outside of the chamber 11 b. When the high-frequency voltage from the RF high-frequency power source 21 is applied to the induction coil 27, a varying magnetic field is generated, resulting in that the process gas in the chamber 11 b is ionized, and the plasma PL is generated.
  • The modified example 2 is not largely different from the first embodiment in the other points, so that the other explanation thereof will be omitted.
  • In each of the first embodiment and the modified examples 1, 2, it is possible to ionize the process gas to generate the plasma, with the use of the RF high-frequency voltage V1 of 40 MHz or more. Specifically, even in a case where the plasma PL is generated without applying the RF high-frequency voltage V1 to the substrate electrode 15, as illustrated in the modified examples 1, 2, it is possible to control the incident angle θ of the ions II by using the substrate electrode 15.
  • Second Embodiment
  • FIG. 14 is a schematic configuration diagram of a plasma processing apparatus 10 c according to a second embodiment. The plasma processing apparatus 10 c has the chamber 11, the exhaust port 12, the process gas introduction pipe 13, a susceptor 14 a, a substrate electrode 15 a, the counter electrode 16, capacitors 17 a to 17 d, the RF high-frequency power source 21, RF low-frequency power sources 22 a to 22 d, filters 23 a to 23 d, and 24 a to 24 d, and a phase adjuster 25 a.
  • FIG. 15 is a perspective view illustrating one example of a configuration of the substrate electrode 15 a.
  • In the plasma processing apparatus 10, the substrate electrode 15 is formed of the two groups of electrode elements E1, E2. On the contrary, in the plasma processing apparatus 10 c, the substrate electrode 15 a is formed of four groups of electrode elements E1 to E4 (first to fourth electrode element groups). By classifying the electrode elements forming the substrate electrode 15 a into smaller groups, it is possible to more finely control the electric field F, and to control the incident of ions II.
  • The RF low-frequency power sources 22 a to 22 d apply RF low-frequency voltages V2 a to V2 d to the electrode elements E1 to E4, respectively. The RF low-frequency voltages V2 a to V2 d have phase differences α1, α2, α3, on the basis of the RF low-frequency voltage V2 a.
  • As the RF high-frequency voltage V1, and the RF low-frequency voltages V2 a to V2 d, sine waveforms represented by the following expression (2) can be used.

  • V1=V01·sin(2π·fh·t)

  • V2a=V02·sin(2π·fl·t)

  • V2b=V02·sin(2π·fl·t+α1)

  • V2c=V02·sin(2π·fl·t+α2)

  • V2d=V02·sin(2π·fl·t+α3)  expression (2)
  • The filters 24 a to 24 d (LPF (Low Pass Filter)) prevent the RF high-frequency voltage V1 from the RF high-frequency power source 21 from being input into the RF low-frequency power sources 22 a to 22 d.
  • The filters 23 a to 23 d (HPF (High Pass Filter)) prevent the RF low-frequency voltages V2 a to V2 d from the RF low-frequency power sources 22 a to 22 d from being input into the RF high-frequency power source 21.
  • The phase adjuster 25 a adjusts the phase differences α1, α2, α3 of the RF low-frequency voltages V2 a to V2 d from the RF low-frequency power sources 22 a to 22 d. It can be considered that as the phase differences α1, α2, α3, for example, a combination of “π/2, π, 3π/2” or “−π/2, −π, −3π/2” is employed.
  • FIG. 16 is a diagram illustrating one example of voltage waveforms RF1 to RF4 which are applied to the electrode elements E1 to E4. The voltage waveform RF1 is a waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 a are superimposed, the voltage waveform RF2 is a waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 b are superimposed, the voltage waveform RF3 is a waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 c are superimposed, and the voltage waveform RF4 is a waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 d are superimposed.
  • Modified Example 3
  • In the above-described embodiments, the substrate electrodes 15, 15 a are formed of the two groups of electrode elements E and the four groups of electrode elements E, respectively, and to the respective groups, the RF low-frequency voltages V2 a to V2 d having the phase differences are applied.
  • On the contrary, it is also possible that the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements E. Even in this case, by applying the RF low-frequency voltages V2 having the phase differences to the respective groups of electrode elements, it becomes possible to form the electric field F and to make the ions II to be diagonally incident.
  • If the above is generalized, it can be considered that the substrate electrode 15 is formed of n groups of electrode elements E1 to En (first to n-th electrode element groups) (n: integer of 2 or more). At this time, the electrode elements E1 to En are repeatedly arranged in ascending order, for example. Further, first to n-th low-frequency voltages having different phases from first to n-th low-frequency power sources are applied to the electrode elements E1 to En, respectively.
  • At this time, to make phases between low-frequency voltages applied to adjacent electrode elements to be different by (2π/n) (phase αi=(2π/n)·i) contributes to the uniform plasma processing on the wafer W (refer to examples).
  • Third Embodiment
  • FIG. 17 is a schematic configuration diagram of a plasma processing apparatus 10 d according to a third embodiment. The plasma processing apparatus 10 d has the chamber 11, the exhaust port 12, the process gas introduction pipe 13, a susceptor 14 b, the substrate electrode 15, the counter electrode 16, the capacitors 17 a, 17 b, a wafer rotating mechanism 18, a termination detector 19, the RF high-frequency power source 21, the RF low- frequency power sources 22 a, 22 b, the filters 23 a, 23 b, 24 a, 24 b, the phase adjuster 25, and a control unit 26.
  • Note that it is also possible that the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements, and the RF low-frequency voltages V2 having the phase differences are applied to the respective groups of electrode elements, as in the second embodiment and the modified examples.
  • Compared to the plasma processing apparatus 10, to the plasma processing apparatus 10 d, the wafer rotating mechanism 18, the termination detector 19, and the control unit 26 are added.
  • The wafer rotating mechanism 18 relatively rotates the wafer W with respect to the substrate electrode 15, to thereby change a direction of the wafer W with respect to the axial direction A of the electrode elements E1, E2 of the substrate electrode 15. The rotation may be either a temporary rotation or a continuous rotation.
  • The termination detector 19 detects the termination of etching, based on a change in emission spectrum of the plasma PL, for example. When composing materials of the layers 32, 31 are different, the emission spectrum of the plasma PL is changed due to the difference in these composing materials, resulting in that the termination of etching of the layer 32 (exposure of the layer 31) can be detected.
  • The control unit 26 controls the wafer rotating mechanism 18, and the phase adjuster 25 in accordance with the transition of process (detection result in the termination detector 19 or time shift).
  • (1) The control unit 26 can control the wafer rotating mechanism 18 in a manner as in the following a) and b).
  • a) The wafer W is rotated so that the direction of trench and the axial direction A of the electrode elements E1, E2 illustrated in FIG. 2 coincide with each other (the directions are approximately parallel to each other). By performing, after that, the plasma processing, it is possible to improve the processing precision of the trench.
  • b) The wafer W is continuously rotated during the plasma processing. By designing as above, it is possible to improve the processing precision without depending on the direction of trench. Specifically, the precision processing and vertical processing of a sidewall of via hole are realized.
  • FIG. 18 illustrates a state where sidewalls of trenches are processed, and FIG. 19 illustrates a state where a sidewall of via is processed. The layer 32 and the mask 33 are formed on the wafer W. In FIG. 18, the mask 33 has a plurality of rectangular openings 331 along an axis Ay. In FIG. 19, the mask 33 has a plurality of circular openings 331.
  • By making the ions II to be incident from above the wafer W, a trench Tr is formed in FIG. 18, and a via hole Bh is formed in FIG. 19. Basically, the trench Tr is formed in FIG. 18, and the via hole Bh is formed in FIG. 19 due to the difference in shapes of the openings 331 formed on the mask 33.
  • Here, it is set that the wafer W is not rotated in FIG. 18, by corresponding to the first and second embodiments. On the other hand, it is set that the wafer W is rotated in FIG. 19, by corresponding to the third embodiment. Further, it is set that in FIG. 18, the axis Ay coincides with the axis of the electrode element E illustrated in FIG. 2 and FIG. 15.
  • At this time, in FIG. 18, the incident angle θ of the ions II is changed in which the axis Ay is set as a rotation axis. As a result of this, the ions II are efficiently incident on the sidewall of the trench Tr. As described above, in order to efficiently form the trench Tr, it is preferable that the axis of the opening 331 of the trench Tr and the axis of the electrode element E are made to coincide with each other, and the wafer W is not rotated.
  • On the contrary, in FIG. 19, the wafer W is rotated, and the incident angle of the ions II with respect to the axis Ax and that with respect to the axis Ay are symmetric (the ions II are diagonally incident from all directions). As a result of this, it is possible to easily form the via holes Bh symmetric with respect to a vertical axis Az of the wafer W. As described above, in order to form the via hole Bh with good shape, it is preferable to rotate the wafer W.
  • Note that, as will be described in later-described fifth embodiment, a similar effect can be achieved by rotating the electric field without changing a relative angle between the wafer W and the substrate electrode 15.
  • (2) The control unit 26 can control the phase adjuster 25 in the following manner.
  • The phase difference α between the RF low-frequency voltages V2 a and V2 b from the RF low- frequency power sources 22 a, 22 b is set to 0 up to the middle of the formation of the trench, and thereafter, the phase difference α is set to a value other than 0 (π/2, for example). Specifically, the phase adjuster 25 is controlled in accordance with the progress of the plasma processing process, and the incident direction of the ions II is switched from the direction of vertical incidence to the direction of diagonal incidence.
  • By designing as above, it becomes possible to realize both of the securement of etching rate in a depth direction when the vertical incidence occurs and the reduction in taper when the diagonal incidence occurs. The etching rate when the diagonal incidence occurs is smaller than that when the vertical incidence occurs. This is because, when the diagonal incidence occurs, an area on the wafer W on which the ions are incident becomes large, and the number of incident ions per unit area is reduced, compared to the time in which the vertical incidence occurs.
  • Note that for switching the time when the vertical incidence occurs and the time when the diagonal incidence occurs, the detection of termination of etching of the layer 32 detected by the termination detector 19 or the passage of predetermined processing time can be utilized.
  • Modified Examples 4 to 6
  • Hereinafter, modified examples of the second embodiment (modified examples 4 to 6) will be described. The modified examples 4 to 6 are for specifically explaining a mechanism that relatively rotates between the wafer W and the substrate electrode 15. Accordingly, each of the modified examples is illustrated by a partial configuration diagram which omits apart other than apart of the rotating mechanism.
  • (1) Modified Example 4
  • FIG. 20 is a partial configuration diagram of a plasma processing apparatus 10 e according to the modified example 4. The plasma processing apparatus 10 e has a susceptor 141, a substrate electrode block 142, and a motor 41, in place of the susceptor 14 b, and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • The motor 41 is provided for rotating the susceptor 141, and has a rotating shaft 411, a rotor 412, a stator 413, a side plate 414, and a bottom plate 415.
  • The rotating shaft 411, the rotor 412, and the stator 413 forma rotating mechanism. The rotating shaft 411 is connected to the susceptor 141. The rotating shaft 411 is formed in a cylindrical shape, and in the inside thereof, a shaft of the substrate electrode block 142 is disposed. The rotor 412 is a magnet disposed on a side surface of the rotating shaft 411. The stator 413 is an electromagnet disposed on the outside of the side plate 414 so as to approximate to the rotor 412 with the sideplate 414 therebetween. By a magnetic force generated by periodically changing the north pole and the south pole of the magnetic field of the stator 413, the rotor 412 rotates with respect to the stator 413. As a result of this, the rotating shaft 411 and the rotor 412 in the chamber 11 (vacuum side), and the stator 413 on the outside of the chamber 11 (atmosphere side) are separated from each another.
  • Note that in this case, the rotor 412 uses the permanent magnet and the stator 413 uses the electromagnet, but, it is also possible that the rotor 412 uses the electromagnet and the stator 413 uses the permanent magnet, or both of the rotor 412 and the stator 413 use the electromagnet. The same applies to the following modified examples 5, 6.
  • The susceptor 141 is connected to the rotating shaft 411 in a state of holding the wafer W on its upper surface, and is rotated by the rotating mechanism. As a result of this, the wafer W is rotated by the rotating mechanism.
  • The susceptor 141 has an internal space for holding the substrate electrode block 142.
  • The substrate electrode block 142 is disposed in the inside of the susceptor 141, and is not rated by being fixed to the bottom plate 415.
  • The voltage waveforms RF1, RF2 (the voltage waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 a are superimposed, and the voltage waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 b are superimposed) are supplied to the substrate electrode 15 in the chamber 11 from the RF high-frequency power source 21 and the RF low- frequency power sources 22 a, 22 b disposed on the outside of the chamber 11.
  • By rotating the wafer W, diagonal ions are incident on the wafer W from all directions.
  • (2) Modified Example 5
  • FIG. 21 is a partial configuration diagram of a plasma processing apparatus 10 f according to the modified example 5. The plasma processing apparatus 10 f has a susceptor 141 a, a substrate electrode block 142 a, and a motor 41 a, in place of the susceptor 14 b and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • The motor 41 a is provided for rotating the substrate electrode block 142 a, and has a rotating shaft 411 a, the rotor 412, the stator 413, the side plate 414, the bottom plate 415, ring electrodes 416, and brush electrodes 417.
  • The rotating shaft 411 a, the rotor 412, and the stator 413 form a rotating mechanism. The rotating shaft 411 a is connected to the substrate electrode block 142 a. The rotor 412 is a magnet disposed on a side surface of the rotating shaft 411 a. The stator 413 is an electromagnet disposed on the outside of the side plate 414 so as to approximate to the rotor 412 with the side plate 414 therebetween. By a magnetic force generated by periodically changing the north pole and the south pole of the magnetic field of the stator 413, the rotor 412 rotates with respect to the stator 413. As a result of this, the rotating shaft 411 a and the rotor 412 in the chamber 11 (vacuum side), and the stator 413 on the outside of the chamber 11 (atmosphere side) are separated from each another.
  • The ring electrode 416 and the brush electrode 417 are provided for securing an electrical connection with respect to the substrate electrode 15 during the rotation of the rotating shaft 411 a, by being brought into contact with each other in a state where they are slid relative to each other. The ring electrode 416 is a ring-shaped electrode disposed by being fixed to an outer periphery of the rotating shaft 411 a. The brush electrode 417 is a brush-shaped electrode which is brought into contact with the ring electrode 416 by sliding relative to the ring electrode 416, during the rotation of the rotating shaft 411 a.
  • The voltage waveforms RF1, RF2 (the voltage waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 a are superimposed, and the voltage waveform in which the RF high-frequency voltage V1 and the RF low-frequency voltage V2 b are superimposed) are supplied to the substrate electrode 15 in the chamber 11 from the RF high-frequency power source 21 and the RF low- frequency power sources 22 a, 22 b disposed on the outside of the chamber 11 via the brush electrodes 417 and the ring electrodes 416.
  • The susceptor 141 a has an internal space for holding the substrate electrode block 142 a. The susceptor 141 a is not rotated by being fixed to the chamber 11.
  • The substrate electrode block 142 a is disposed in the inside of the susceptor 141 a. The substrate electrode block 142 a is connected to the rotating shaft 411 a, and is rotated by the rotating mechanism. As a result of this, the substrate electrode 15 is rotated by the rotating mechanism.
  • By rotating the substrate electrode 15, an electric field distribution generated on the wafer W is rotated, resulting in that diagonal ions are incident on the wafer W from all directions.
  • Note that the plasma processing apparatus 10 f may have an electrostatic chuck. In this case, a DC voltage is supplied to the electrostatic chuck via the brush electrode, as will be described in the next modified example 6.
  • (3) Modified Example 6
  • FIG. 22 is a partial configuration diagram of a plasma processing apparatus 10 g according to the modified example 6. The plasma processing apparatus 10 g has a susceptor 141 b, a substrate electrode block 142 b, a motor 41 b, an electrostatic chuck 42, a DC power source 43, and a cooling medium supply unit 44, in place of the susceptor 14 b and the wafer rotating mechanism 18 in the plasma processing apparatus 10 d.
  • The motor 41 b is provided for rotating the susceptor 141, and has the rotating shaft 411, the rotor 412, the stator 413, the side plate 414, the bottom plate 415, a ring electrode 416 a, a brush electrode 417 a, and an opening 418.
  • The rotating shaft 411, the rotor 412, and the stator 413 forma rotating mechanism. The configuration, the operation and the like of the rotating mechanism are substantially similar to those of the modified example 4, so that detailed explanation thereof will be omitted.
  • The ring electrode 416 a and the brush electrode 417 a are provided for securing an electrical connection with respect to an internal electrode of the electrostatic chuck 42 during the rotation of the rotating shaft 411, by being brought into contact with each other in a state where they are slid relative to each other. The ring electrode 416 a is a ring-shaped electrode disposed by being fixed to an outer periphery of the rotating shaft 411. The brush electrode 417 a is a brush-shaped electrode which is brought into contact with the ring electrode 416 a by sliding relative to the ring electrode 416 a, during the rotation of the rotating shaft 411.
  • The electrostatic chuck 42 is provided for electrostatically attracting the wafer W, and has a plurality of openings 421. The internal electrode of the electrostatic chuck 42 is a kind of mesh-shaped electrode, and functions as an attraction electrode having a plurality of openings.
  • FIG. 23 and FIG. 24 are plan views each illustrating one example of the internal electrode of the electrostatic chuck 42. In FIG. 23, square-shaped openings (air gaps) 421 are arranged in lines in the vertical and horizontal two directions (a kind of mesh-shaped electrode). In FIG. 24, rectangular (line-shaped) openings (air gaps) 421 are arranged in lines (a kind of line-shaped electrode). In FIG. 23 and FIG. 24, the rectangular openings are arranged in two directions and in one direction, respectively.
  • The line-shaped openings 421 illustrated in FIG. 24 are suitable for a case where the susceptor 14, the substrate electrode 15 and the like are not rotated as described in the first and second embodiments. In this case, an axis of the opening 421 is preferably made to coincide with the axis of the electrode element E (refer to FIG. 2, FIG. 5 and FIG. 18).
  • In this case, the shape of the opening 421 is set to a rectangular shape, but, it is also possible to employ a circular opening, an elliptical opening and the like, in place of the rectangular opening.
  • As illustrated in FIG. 23 and FIG. 24, the opening 421 has a width G. As will be described later, the width G is preferably 2 to 5 mm.
  • The DC power source 43 supplies a DC voltage to the internal electrode of the electrostatic chuck 42, thereby making the electrostatic chuck 42 electrostatically attract the wafer W. The DC voltage from the DC power source 43 is supplied to the internal electrode of the electrostatic chuck 42 in the susceptor 141 b via the brush electrode 417 a and the ring electrode 416 a.
  • The cooling medium supply unit 44 supplies a cooling medium C for cooling the wafer W. From the point of view of inertness, thermal conductivity and the like, it is preferable to use He, for example, as the cooling medium C.
  • The susceptor 141 b has openings 421 for introducing the cooling medium C. The bottom plate 415 has the opening 418 for introducing the cooling medium C into the susceptor 141 b. The cooling medium C supplied from the cooling medium supply unit 44 passes through the opening 418 and the inside of the susceptor 141 b to be supplied to a rear surface of the wafer W through the openings 143, thereby cooling the wafer W. The cooling medium C after cooling the wafer W is released in the chamber 11, and is exhausted to the outside from the exhaust port 12.
  • (4) Modified Example 7
  • It can also be considered that, in order to make the susceptor 14 hold the wafer W, the low-frequency voltages for introducing ions and the DC voltage for electrostatic attraction are superimposed to be applied to the substrate electrode 15. For example, in the first to third embodiments, a DC voltage from one DC power source is superimposed on the low-frequency voltages to be applied to the substrate electrode 15. In this case, the substrate electrode 15 functions also as an internal electrode for electrostatic chuck, and accordingly, the electrostatic chuck 42 illustrated in FIG. 22 is not required.
  • At this time, for example, there is a possibility that the RF low-frequency voltages V2 a to V2 d from the RF low-frequency power sources 22 a to 22 d illustrated in FIG. 14 flow, via the DC power source, into the electrode elements E1 to E4 of the other groups. In order to prevent the inflow, it is preferable to add a filter mechanism which cuts an AC component, to the DC power source. The filter mechanism can be formed of a capacitance and an inductance, for example.
  • Note that when relatively rotating between the wafer W and the substrate electrode 15 as described in the modified examples 4 to 6, it becomes difficult to attract the wafer W by using the substrate electrode 15. In this case, it is preferable to provide the electrode for electrostatic attraction (the internal electrode of the electrostatic chuck 42) in the vicinity of the wafer W, as described in the modified example 6.
  • Fourth Embodiment
  • FIG. 25 is a schematic configuration diagram of a plasma processing apparatus 10 h according to a fourth embodiment. The plasma processing apparatus 10 h has the chamber 11, the exhaust port 12, the process gas introduction pipe 13, a susceptor 14 c, a substrate electrode 15 c, the counter electrode 16, the termination detector 19, the RF high-frequency power source 21, the RF low- frequency power sources 22 a, 22 b, the filters 23 a, 23 b, 24 a, 24 b, the phase adjuster 25, a control unit 26 c, and switches SW1, SW2. Note that the illustration of capacitors is omitted for easier view.
  • Note that it is also possible that the substrate electrode 15 is formed of three groups of or five groups or more of electrode elements, and the RF low-frequency voltages V2 having the phase differences are applied to the respective groups of electrode elements, as in the second embodiment and the modified examples.
  • Compared to the plasma processing apparatus 10 d, the plasma processing apparatus 10 h does not have the wafer rotating mechanism 18, and uses the substrate electrode 15 c, in place of the substrate electrode 15.
  • FIG. 26 is a perspective view illustrating one example of a configuration of the substrate electrode 15 c. The substrate electrode 15 c is formed of electrode elements E11, E12, and electrode elements E21, E22, in which the former are arranged on the latter. Here, it can be considered that the electrode elements E11, E12 form a first substrate electrode, and the electrode elements E21, E22 forma second substrate electrode. Specifically, the substrate electrode 15 c has these first and second substrate electrodes.
  • The electrode elements E11, E12 correspond to the electrode elements E1, E2 in the first embodiment, and are alternately arranged along an axial direction A1.
  • The electrode elements E21, E22 are alternately arranged along an axial direction A2 under the electrode elements E11, E12. These axial directions A1, A2 are mutually different (the directions are perpendicular to each other, for example).
  • The control unit 26 c can make the switches SW1, SW2 switch the destination of input of the RF high-frequency voltage V1 and the RF low-frequency voltages V2 a, V2 b from the RF high-frequency power source 21 and the RF low- frequency power sources 22 a, 22 b to either the electrode elements E11, E12 or the electrode elements E21, E22. Specifically, the switching is made to set either the electrode elements E11, E12 or the electrode elements E21, E22 as a substantial substrate electrode.
  • As described above, the switches SW1, SW2 apply the RF high-frequency voltage V1 and the plurality of RF low-frequency voltages V2 a, V2 by switching the first and second substrate electrodes (the electrode elements E11, E12, and the electrode elements E21, E22). This means that the switches SW1, SW2 function as a switching unit.
  • Since the axial direction A1 of the electrode elements E11, E12 is different from the axial direction A2 of the electrode elements E21, E22, it becomes possible to relatively rotate the wafer Wand the incident direction of ions II, although the wafer rotating mechanism 18 is not provided. Specifically, it becomes possible to deal with precision processing (vertical processing) of a sidewall of via hole.
  • Fifth Embodiment
  • FIG. 27 is a schematic configuration diagram of a plasma processing apparatus 10 i according to a fifth embodiment. The plasma processing apparatus 10 i has the chamber 11, the exhaust port 12, the process gas introduction pipe 13, a susceptor 14 d, a substrate electrode 15 d, the counter electrode 16, a shift register 51, a control unit 52, the capacitors 17 a to 17 d, the RF high-frequency power source 21, the RF low-frequency power sources 22 a to 22 d, the filters 23 a to 23 d, and 24 a to 24 d, and the phase adjuster 25 a.
  • FIG. 28 is a plan view illustrating a state where the substrate electrode 15 d is seen from the above. The substrate electrode 15 d has electrode elements Exy which are arranged in lines in the vertical and horizontal two directions. Here, although the electrode elements Exy are arranged in the vertical and horizontal two directions, which are orthogonal to each other, the directions are not necessarily required to be orthogonal to each other. There is no problem if the electrode elements Exy are arranged in lines in mutually different first and second directions.
  • Here, the electrode element Exy has a rectangular shape (square shape) when seen from the above, but, it may also be formed to have a circular shape.
  • The shift register 51 selects the electrode elements Exy so that the electrode elements Exy are classified into four groups G1 to G4 (line-shaped groups) which are parallel to one another (arranged in approximately the same direction θ). The shift register 51 functions as a selecting unit that selects, from a plurality of electrode elements, the plurality of electrode element groups arranged along one direction. The four groups G1 to G4 are connected to the RF low-frequency power sources 22 a to 22 d. As the four groups G1 to G4, a plurality of groups G11 to G14, G21 to G24, . . . , Gn1 to Gn4 in accordance with the direction θ can be selected.
  • FIG. 29A to FIG. 29D illustrate cases where the electrode elements Exy are classified into (selected as) groups G11 to G14, groups G21 to G24, groups G31 to G34, and groups G41 to G44, in which the direction θ corresponds to 0°, 45°, 90°, and 135°, respectively.
  • In this case, the shift register 51 selects any of first to fourth electrode element groups (the groups G11 to G14, the groups G21 to G24, the groups G31 to G34, and the groups G41 to G44) which are arranged along a first direction (0° direction), a second direction (90° direction), a third direction being an intermediate direction between the first and second directions (45° direction), and a fourth direction being an intermediate direction between the second and first directions (135° direction), respectively.
  • Here, although the third direction is set to the direction which is right between the first and second directions, it is also possible to set an arbitrary intermediate direction between the first and second directions. Further, it is also possible to set an arbitrary intermediate direction between the second and first directions, as the fourth direction. Further, it is also possible to set a plurality of intermediate directions between the first and second directions.
  • The control unit 52 controls the shift register 51 to change the grouping of the electrode elements Exy so that the direction θ sequentially rotates. For example, it is set that the groups G11 to G14, the groups G21 to G24, the groups G31 to G34, and the groups G41 to G44 in FIG. 29A to FIG. 29D are periodically and repeatedly selected. This means that the direction θ in which the electrode elements Exy are grouped rotates. The groups G11 to G14 correspond to both cases where θ equals to 0° and where θ equals to 180°, so that when the groups G11 to G14 are selected after the selection of the groups G41 to G44, this means that the electric field from the substrate electrode 15 d is rotated.
  • By rotating the line-shaped groups, the electric field distribution generated on the wafer W is rotated, resulting in that diagonal ions are incident on the wafer W from all directions. Specifically, it becomes possible to achieve an effect similar to that achieved when the wafer W is rotated.
  • EXAMPLES
  • Examples will be described. FIG. 30A to FIG. 30C, FIG. 31A, and FIG. 31B are graphs each illustrating a result of plasma simulation of an angle distribution of ions II which are incident on the wafer W in the plasma processing apparatus 10. The above-described simulation is conducted by using a commercially available software (VizGlow). Incident amounts of ions II over one period of the RF low-frequency voltage are integrated to calculate the angle distribution of the ions incident on the substrate. FIG. 32 is a schematic sectional diagram illustrating positions P1 to P6 (incident positions of ions II) on the wafer W.
  • As illustrated in FIG. 32, in this case, the wafer W having a radius r0 of 150 mm was used, and as the substrate electrode 15, the electrode elements E each having a diameter R of 4 mm and an approximately column shape were arranged with an interval D (distance between center axes) of 5 mm provided therebetween. Distances L from a center C of the wafer W to the respective positions P1 to P6 on the wafer W are 70, 71, 72, 73, 74, and 75 mm. The positions P1, P6 are respectively positioned on the axes of the two electrode elements E, and the other positions P2 to P5 are disposed between the positions P1 and P6. A portion at which the distance L is 72.5 mm is a portion in which the distances from these electrode elements to the portion are equal, and is at an intermediate position between the positions P3 and P4.
  • Note that the angle distribution of ions in other electrode elements E is similar to that when the distances L are 70 to 75 mm. Specifically, it can be considered that the angle distribution of ions varies in a period corresponding to the interval D by reflecting the periodicity of arrangement of the electrode elements E. Accordingly, the uniformity on the wafer W of the incident angle distribution is indicated, by setting the result of analysis at the positions P1 to P6 as a representative.
  • In each of FIG. 30A to FIG. 30C, the electrode elements E are classified into two groups which are alternately arranged, and the RF low-frequency voltages V2 a, V2 b having the phase difference α of 0, π/2, or π are applied. In FIG. 31A, the electrode elements E are classified into three groups which are sequentially arranged, and RF low-frequency voltages V2 a, V2 b, V2 c having phase differences α1, α2 of 2π/3, 4π/3 are applied. In FIG. 31B, the electrode elements E are classified into four groups which are sequentially arranged, and RF low-frequency voltages V2 a to V2 d having phase differences α1 to α3 of π/2, π, 3π/2 are applied.
  • (1) when the Phase Difference α is 0 in the Two Groups of Electrode Elements (FIG. 30A)
  • When the phase difference α is 0 in the two groups of electrode elements, the RF low-frequency voltages V2 having the same phase are applied to all of the electrode elements. In this case, the incident angle θ of ions II is approximately 0 at all of the positions P1 to P6 (the ions II are approximately vertically incident). In this case, a result which is approximately similar to that when the substrate electrode 15 is not divided, is obtained. Specifically, the result is similar to that obtained in the plasma processing apparatus 10 x illustrated in FIG. 5 (normal plate electrode RIE (Reactive Ion Etching) apparatus).
  • Note that the reason why the incident angle θ of the ions II has a distribution of about −2 to about 2° is because there is an influence of thermal fluctuation (the ions II have random thermal velocity components).
  • (2) When the Phase Difference α is π/2 in the Two Groups of Electrode Elements (FIG. 30B)
  • When the phase difference α is π/2 in the two groups of electrode elements, the vertically incident ions II are reduced at the positions P2 to P5, and the ions II are alternately incident at positive and negative incident angles θ (about −15 to about) 15°). It can be considered that this is because, since there is the phase difference between the electrode elements, the electric field F in a direction perpendicular to the axial direction A is generated.
  • On the contrary, it is difficult to say that the vertically incident ions II are reduced at the positions P1, P6 (on center axes of the electrode elements), when compared to FIG. 30A. Specifically, the positions P1, P6 are sort of singular points in which the amount of diagonal incidence of ions II is small.
  • The reason thereof can be considered as follows. Specifically, in this case, electric fields F in the opposite directions act between the respective electrode elements E in the left-hand neighbor and the right-hand neighbor. It can be considered that the electric fields F in the opposite directions are balanced at a position right above the axes of the electrode elements E, resulting in that the electric field F in the direction Ah perpendicular to the axial direction A (refer to FIG. 2) is difficult to be generated. If the electric field F is not generated, the diagonal incidence of ions II except for the thermal fluctuation component does not virtually occur (only the vertical incidence occurs).
  • (3) When the Phase Difference α is π in the Two Groups of Electrode Elements (FIG. 30C)
  • When the phase difference α is n in the two groups of electrode elements, the vertically incident ions II are reduced at the positions P2 to P5, and the ions II are alternately incident at positive and negative incident angles θ (about −30 to about) 30°. The incident angle θ is greater than the incident angle in the case of FIG. 30B.
  • On the contrary, it is difficult to say that the vertically incident ions II are reduced at the positions P1, P6 (on the center axes of the electrode elements), similar to FIG. 30B. It can be considered that the reason thereof is because the electric fields F in the opposite directions are balanced at a position right above the axes of the electrode elements E, similar to (2).
  • (4) In the Case of Three Groups of Electrode Elements (FIG. 31A)
  • In the case of three groups of electrode elements, the vertically incident ions II are reduced at all of the positions P1 to P6. The positions P1, P6 (on the center axes of the electrode elements) are also not the singular points. The ions II are approximately alternately incident at the positive and negative incident angles θ (about −8 to about 8°).
  • (5) In the Case of Four Groups of Electrode Elements (FIG. 31B)
  • In the case of four groups of electrode elements, the vertically incident ions II are reduced at all of the positions P1 to P6. The positions P1, P6 (on the center axes of the electrode elements) are also not the singular points. The ions II are approximately alternately incident at the positive and negative incident angles θ (about −10 to about 10°).
  • As described above, by increasing the number of groups of the electrode elements (number of division of the substrate electrode 15) to 2, 3, 4, and by applying the RF low-frequency voltages V2 having the phase difference, it becomes possible that the ions II are diagonally incident from both directions of the trench at all the positions on the wafer.
  • When the number of groups is two, there are generated, on the center axes of the electrode elements, the singular points in which the number of diagonally incident ions II is small, but, when the number of groups is three or more, the tendency is lowered. Specifically, in order to eliminate the singular points, it is particularly desirable to set the number of groups to three or more. The uniform diagonal incidence can occur on the wafer W having a diameter of 300 mm (radius r0 of 150 mm), as described in the examples.
  • When the number of groups is four, the dependence of positions P1 to P6 of the distribution of ions II is further reduced. It can be considered that the larger the number of the groups, the smaller the positional dependence of the distribution of ions II.
  • (6) When the Voltage is Changed in the Case of Four Groups of Electrode Elements (FIG. 33A to FIG. 33C)
  • Cases where the voltage V02 of the RF low-frequency voltages (refer to expression (2)) is changed in the case of four groups of electrode elements, will be described. FIG. 33A to FIG. 33C are graphs illustrating results of plasma simulation of angle distributions of the ions II which are incident on the wafer W in the plasma processing apparatus 10 when the voltage V02 is set to 2000 V, 1000 V, 500 V, in the four groups of electrode elements.
  • As illustrated in FIG. 33A to FIG. 33C, there is a tendency that when the voltage V02 is increased, the incident angle θ of ions II is increased. The incident angle θ is changed from about 2 to 3° to about 10°, when the voltage V02 from 500 V to 2000 V is applied. Specifically, by controlling the voltage V02 of the RF low-frequency power sources 22 a to 22 d, the incident angle θ of the ions II can be changed.
  • (7) When the Wafer W is Relatively Rotated with Respect to the Substrate Electrode 15
  • A case where the wafer W is relatively rotated with respect to the substrate electrode 15 will be described. As described above, it can be said that in the third to fifth embodiments and the modified examples 4 to 6, the wafer W is relatively rotated with respect to the substrate electrode 15. In the fourth and fifth embodiments, the substrate electrode 15 and the wafer W themselves are not rotated, but, since the direction of electric field applied to the wafer W is changed, this case is substantially similar to the case where the substrate electrode 15 is rotated.
  • Although not illustrated, according to the simulation, the result when the wafer W and the like are rotated is approximately similar to the averaged result when the wafer W is not rotated (FIG. 30A to FIG. 30C, FIG. 31A, FIG. 31B, FIG. 33A to FIG. 33C).
  • (8) Influence of Air Gap Size (Width of Opening 421) G of the Internal Electrode of the Electrostatic Chuck 42.
  • FIG. 34A to FIG. 34E are graphs illustrating results of plasma simulation of angle distributions of the ions II which are incident on the wafer W in the plasma processing apparatus 10 when the air gap size (the width of the opening 421) G of the internal electrode of the electrostatic chuck 42 (the width of the internal electrode) is changed.
  • FIG. 34A to FIG. 34E correspond to cases where the internal electrode of the electrostatic chuck 42 is not provided, and the air gap sizes G are 4, 2, 1, 0 mm (correspond to the internal electrode sizes 1, 3, 4, 5 mm), respectively. FIG. 35 is a schematic sectional diagram illustrating the electrostatic chuck 42 on the wafer W at this time. Here, the electrode element E of the substrate electrode 15 is arranged on the center of the opening 421 of the electrostatic chuck 42.
  • As illustrated in FIG. 34A to FIG. 34E, when the air gap size G of the electrostatic chuck 42 becomes 2 mm or less, the distribution of the incident angles θ of the ions II is deteriorated. There is no large difference between the case where the air gap size G is up to 2 mm and the case where the electrostatic chuck (DC electrode) 42 is not provided.
  • As described above, it is preferable that the interval D between the electrode elements E is set to 5 mm or less, for example. When this is taken into consideration, it is preferable to set the air gap size (the width of the opening 421) G of the electrostatic chuck 42 to 2 mm to 5 mm.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims (17)

1.-20. (canceled)
21. A plasma processing apparatus comprising:
a chamber;
an introducing part configured to introduce process gas into the chamber;
a high-frequency power source configured to output a high-frequency voltage for ionizing the process gas to generate plasma;
a substrate electrode disposed in the chamber and comprising a plurality of first electrode elements to a plurality of second electrode elements, each of the first electrode elements and each of the second electrode elements being alternately arranged;
a substrate holder configured to hold a substrate between the substrate electrode and the plasma;
a first and a second low-frequency power source configured to apply a first and a second low-frequency voltage of 20 MHz or less respectively to the first electrode elements and the second electrode elements to introduce ions in the plasma to the substrate, the first and second voltages having phases different from each other; and
a rotator configured to rotate the substrate relatively to the substrate electrode; and
a controller configured to control the rotator to rotate the substrate while the ions in the plasma are introduced to the substrate.
22. The apparatus according to claim 21,
wherein each of the first and second electrode elements has a column shape.
23. The apparatus according to claim 21,
wherein the phase differences is approximately π/2 or −π/2.
24. The apparatus according to claim 21,
wherein the substrate electrode further comprises a plurality of third electrode elements having a column shape with an axis in parallel to the axes of the first and second electrode elements and to the main surface of the substrate, each of the first electrode elements to each of the third electrode elements are sequentially arranged,
wherein the apparatus comprises the third low-frequency power source to apply a third low-frequency voltage of 20 MHz or less to the third electrode elements, the first to the third low-frequency voltage have phases different from each other,
wherein phase differences between the low-frequency voltages applied to adjacent electrode element are approximately 2π/3 or −2π/3.
25. The apparatus according to claim 21,
wherein the substrate electrode further comprises a plurality of fourth electrode elements having a column shape with an axis in parallel to the axes of the first to third electrode elements and to the main surface of the substrate, each of the first electrode elements to each of fourth third electrode elements are sequentially arranged,
wherein the apparatus comprises the fourth low-frequency power source to apply a fourth low-frequency voltage of 20 MHz or less to the third electrode elements, the first to the fourth low-frequency voltage have phases different from each other,
wherein phases of the first to fourth low-frequency voltages are 0, +π/2, −π, and +3π/2, or 0, −π/2, −π, and −3π/2, respectively.
26. The apparatus according to claim 21,
wherein intervals between adjacent electrode elements are 5 mm or less.
27. The apparatus according to claim 21,
wherein the first and second electrode elements have axes along a direction in parallel to the substrate.
28. The apparatus according to claim 27, further comprising:
a second substrate electrode comprising a plurality of electrode elements having axes along a second direction different from the direction; and
a switch configured to select the substrate electrode or the second substrate electrode and apply the low-frequency voltages to the selected substrate electrode.
29. The apparatus according to claim 21, further comprising
a phase adjuster configured to shift phases of the low-frequency voltages in accordance with a progress of a plasma processing process.
30. The apparatus according to claim 21,
wherein the substrate holder comprises:
an attraction electrode disposed between the substrate and the substrate electrode, and comprising a plurality of openings, and
a direct-current power source configured to apply a direct-current voltage to the attraction electrode to make the attraction electrode attract the substrate.
31. The apparatus according to claim 30,
wherein a width of each of the plurality of openings is not less than 2 mm nor more than 5 mm.
32. The apparatus according to claim 30, further comprising
a cooling medium supply configured to supply a cooling medium to cool the substrate through the openings.
33. The apparatus according to claim 21,
wherein the high-frequency power source applies the high-frequency voltage of 40 MHz or more to the substrate electrode.
34. The apparatus according to claim 21, further comprising
an induction coil to which the high-frequency voltage is applied.
35. The apparatus according to claim 21, further comprising
a counter electrode to which the high-frequency voltage is applied.
36. A plasma processing method, comprising:
placing a substrate directly or indirectly on a substrate electrode in a chamber, the substrate electrode comprising a plurality of first electrode elements to a plurality of second electrode elements, each of the first electrode elements and each of the second electrode elements being sequentially arranged;
introducing process gas into the chamber;
ionizing the process gas in the chamber to generate plasma on the side of the substrate opposite from the substrate electrode;
applying a first and a second low-frequency voltage of 20 MHz or less respectively to the first electrode elements and the second electrode elements to introduce ions in the plasma to the substrate, the first and second voltages having phases different from each other; and
rotating the substrate relatively to the substrate electrode while the ions in the plasma are introduced to the substrate.
US15/441,781 2012-09-26 2017-02-24 Plasma processing apparatus and plasma processing methdo Abandoned US20170169996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/441,781 US20170169996A1 (en) 2012-09-26 2017-02-24 Plasma processing apparatus and plasma processing methdo

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012212726 2012-09-26
JP2012-212726 2012-09-26
JP2013-109462 2013-05-24
JP2013109462A JP6207880B2 (en) 2012-09-26 2013-05-24 Plasma processing apparatus and plasma processing method
US14/036,588 US10381198B2 (en) 2012-09-26 2013-09-25 Plasma processing apparatus and plasma processing method
US15/441,781 US20170169996A1 (en) 2012-09-26 2017-02-24 Plasma processing apparatus and plasma processing methdo

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/036,588 Division US10381198B2 (en) 2012-09-26 2013-09-25 Plasma processing apparatus and plasma processing method

Publications (1)

Publication Number Publication Date
US20170169996A1 true US20170169996A1 (en) 2017-06-15

Family

ID=50318413

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/036,588 Active US10381198B2 (en) 2012-09-26 2013-09-25 Plasma processing apparatus and plasma processing method
US15/441,781 Abandoned US20170169996A1 (en) 2012-09-26 2017-02-24 Plasma processing apparatus and plasma processing methdo

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/036,588 Active US10381198B2 (en) 2012-09-26 2013-09-25 Plasma processing apparatus and plasma processing method

Country Status (5)

Country Link
US (2) US10381198B2 (en)
JP (1) JP6207880B2 (en)
KR (1) KR101497234B1 (en)
CN (1) CN103681196A (en)
TW (1) TWI482194B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083977A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Plasma processing apparatus and plasma processing method
US20190088452A1 (en) * 2017-09-20 2019-03-21 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US20190088522A1 (en) * 2017-09-20 2019-03-21 Applied Materials, Inc. System for coupling a voltage to spatially segmented portions of the wafer with variable voltage
US10448494B1 (en) 2018-05-10 2019-10-15 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US10703654B2 (en) * 2018-11-07 2020-07-07 Pear Labs Llc Non-thermal multiple plasma gate devices
US10755897B2 (en) 2018-01-30 2020-08-25 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US10916408B2 (en) 2019-01-22 2021-02-09 Applied Materials, Inc. Apparatus and method of forming plasma using a pulsed waveform
US20220076921A1 (en) * 2018-12-28 2022-03-10 Tokyo Electron Limited Plasma processing apparatus and control method
US11355315B2 (en) 2016-09-16 2022-06-07 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11561089B2 (en) 2019-07-04 2023-01-24 Hitachi High-Tech Corporation Three-dimensional shape detection apparatus, three-dimensional shape detection method and plasma processing apparatus
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US12087556B2 (en) 2014-07-22 2024-09-10 Kioxia Corporation Plasma processing apparatus and plasma processing method
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US12111341B2 (en) 2022-10-05 2024-10-08 Applied Materials, Inc. In-situ electric field detection method and apparatus
US12148595B2 (en) 2021-06-09 2024-11-19 Applied Materials, Inc. Plasma uniformity control in pulsed DC plasma chamber
US12272524B2 (en) 2022-09-19 2025-04-08 Applied Materials, Inc. Wideband variable impedance load for high volume manufacturing qualification and on-site diagnostics
US12315732B2 (en) 2022-06-10 2025-05-27 Applied Materials, Inc. Method and apparatus for etching a semiconductor substrate in a plasma etch chamber
US12374528B2 (en) 2022-06-07 2025-07-29 Hitachi High-Tech Corporation Plasma processing apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913985B1 (en) * 2014-10-29 2018-10-31 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Radical gas generation system
CN106033786B (en) * 2015-03-13 2018-07-06 聚日(苏州)科技有限公司 The manufacturing method of solar cell
US10153139B2 (en) * 2015-06-17 2018-12-11 Applied Materials, Inc. Multiple electrode substrate support assembly and phase control system
KR102649333B1 (en) * 2015-12-07 2024-03-18 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for clamping and declamping substrates using electrostatic chucks
JP6645921B2 (en) * 2016-07-07 2020-02-14 キオクシア株式会社 Plasma processing apparatus and plasma processing method
KR102371870B1 (en) * 2017-03-09 2022-03-07 에베 그룹 에. 탈너 게엠베하 Capacitive substrate holder
US11289355B2 (en) 2017-06-02 2022-03-29 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
JP7138497B2 (en) * 2017-08-23 2022-09-16 東京エレクトロン株式会社 Measuring device, measuring method and plasma processing device
US10720313B2 (en) * 2017-08-23 2020-07-21 Tokyo Electron Limited Measuring device, measurement method, and plasma processing device
US11469084B2 (en) 2017-09-05 2022-10-11 Lam Research Corporation High temperature RF connection with integral thermal choke
US11990360B2 (en) 2018-01-31 2024-05-21 Lam Research Corporation Electrostatic chuck (ESC) pedestal voltage isolation
US11086233B2 (en) 2018-03-20 2021-08-10 Lam Research Corporation Protective coating for electrostatic chucks
CN108682611B (en) * 2018-05-17 2020-03-13 大连理工大学 Electrode for improving uniformity of process plasma
US11183368B2 (en) 2018-08-02 2021-11-23 Lam Research Corporation RF tuning systems including tuning circuits having impedances for setting and adjusting parameters of electrodes in electrostatic chucks
CN111092008A (en) * 2018-10-24 2020-05-01 江苏鲁汶仪器有限公司 Inductively coupled plasma etching equipment and etching method
KR20220038717A (en) 2019-07-29 2022-03-29 에이이에스 글로벌 홀딩스 피티이 리미티드 Multiplexed Power Generator Outputs with Channel Offset for Pulse Driving Multiple Loads
JP2021093504A (en) * 2019-12-12 2021-06-17 東京エレクトロン株式会社 Control method and plasma treatment device
WO2021158451A1 (en) * 2020-02-04 2021-08-12 Lam Research Corporation Radiofrequency signal filter arrangement for plasma processing system

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930130B2 (en) * 1979-09-20 1984-07-25 富士通株式会社 Vapor phase growth method
US4464223A (en) * 1983-10-03 1984-08-07 Tegal Corp. Plasma reactor apparatus and method
US4585516A (en) * 1985-03-04 1986-04-29 Tegal Corporation Variable duty cycle, multiple frequency, plasma reactor
JPH07118463B2 (en) * 1988-01-12 1995-12-18 三菱重工業株式会社 Plasma CVD equipment
JPH01230782A (en) * 1988-03-08 1989-09-14 Mitsubishi Heavy Ind Ltd Plasma cvd device
DE68912400T2 (en) * 1988-05-23 1994-08-18 Nippon Telegraph & Telephone Plasma etching device.
US5286297A (en) * 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
JPH07169745A (en) * 1993-12-16 1995-07-04 Sharp Corp Parallel plate type dry etching system
JPH07226395A (en) * 1994-02-15 1995-08-22 Matsushita Electric Ind Co Ltd Vacuum plasma processing device
JPH07238843A (en) 1994-02-25 1995-09-12 Hino Motors Ltd Exhaust brake device
US5641375A (en) * 1994-08-15 1997-06-24 Applied Materials, Inc. Plasma etching reactor with surface protection means against erosion of walls
JPH10326772A (en) * 1997-05-26 1998-12-08 Ricoh Co Ltd Dry etching equipment
US6642149B2 (en) * 1998-09-16 2003-11-04 Tokyo Electron Limited Plasma processing method
JP2000269196A (en) * 1999-03-19 2000-09-29 Toshiba Corp Plasma processing method and plasma processing apparatus
US6741944B1 (en) * 1999-07-20 2004-05-25 Tokyo Electron Limited Electron density measurement and plasma process control system using a microwave oscillator locked to an open resonator containing the plasma
US6228438B1 (en) * 1999-08-10 2001-05-08 Unakis Balzers Aktiengesellschaft Plasma reactor for the treatment of large size substrates
JP2002009043A (en) * 2000-06-23 2002-01-11 Hitachi Ltd Etching apparatus and method for manufacturing semiconductor device using the same
JP2003031504A (en) * 2001-07-13 2003-01-31 Sharp Corp Plasma processing apparatus, plasma processing method, and semiconductor device manufactured using them
US6642661B2 (en) * 2001-08-28 2003-11-04 Tokyo Electron Limited Method to affect spatial distribution of harmonic generation in a capacitive discharge reactor
JP2003234331A (en) * 2001-12-05 2003-08-22 Tokyo Electron Ltd Plasma etching method and plasma etching apparatus
JP3643580B2 (en) * 2002-11-20 2005-04-27 株式会社東芝 Plasma processing apparatus and semiconductor manufacturing apparatus
JP3816081B2 (en) 2004-03-10 2006-08-30 松下電器産業株式会社 Plasma etching apparatus and plasma etching method
US7342361B2 (en) * 2005-05-11 2008-03-11 Dublin City University Plasma source
IES20050301A2 (en) * 2005-05-11 2006-11-15 Univ Dublin City Plasma source
JP2007026781A (en) 2005-07-13 2007-02-01 Sharp Corp Plasma processing equipment
US7629548B2 (en) * 2005-07-14 2009-12-08 Access Business Group International Llc Control panel assembly
US7264688B1 (en) 2006-04-24 2007-09-04 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and toroidal plasma sources
JP2008027816A (en) * 2006-07-24 2008-02-07 Canon Inc Plasma processing apparatus and plasma processing method
US7851367B2 (en) 2006-08-31 2010-12-14 Kabushiki Kaisha Toshiba Method for plasma processing a substrate
JP2008060429A (en) * 2006-08-31 2008-03-13 Toshiba Corp Substrate plasma processing apparatus and plasma processing method
JP4714166B2 (en) 2006-08-31 2011-06-29 株式会社東芝 Substrate plasma processing apparatus and plasma processing method
KR20080044657A (en) * 2006-11-17 2008-05-21 삼성전자주식회사 Plasma Etching Equipment
JP2008193024A (en) * 2007-02-08 2008-08-21 Toppan Printing Co Ltd Dry etching equipment
JP4660498B2 (en) * 2007-03-27 2011-03-30 株式会社東芝 Substrate plasma processing equipment
CN101287327B (en) * 2007-04-13 2011-07-20 中微半导体设备(上海)有限公司 Radio frequency power source system and plasma reaction chamber using the radio frequency power source system
KR20080111801A (en) * 2007-06-20 2008-12-24 삼성전자주식회사 Plasma processing apparatus and method
CN101978461B (en) * 2008-03-20 2013-09-11 波鸿-鲁尔大学 Method for controlling ion energy in radio frequency plasma
JP2010010417A (en) * 2008-06-27 2010-01-14 Panasonic Corp Plasma doping method and plasma doping device
JP5496568B2 (en) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5916056B2 (en) * 2010-08-23 2016-05-11 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
JP5835985B2 (en) * 2010-09-16 2015-12-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
US20120164834A1 (en) * 2010-12-22 2012-06-28 Kevin Jennings Variable-Density Plasma Processing of Semiconductor Substrates
US20120186747A1 (en) * 2011-01-26 2012-07-26 Obama Shinji Plasma processing apparatus
KR101839776B1 (en) * 2011-02-18 2018-03-20 삼성디스플레이 주식회사 Plazma treatment apparatus
US20130122711A1 (en) * 2011-11-10 2013-05-16 Alexei Marakhtanov System, method and apparatus for plasma sheath voltage control
US8652298B2 (en) * 2011-11-21 2014-02-18 Lam Research Corporation Triode reactor design with multiple radiofrequency powers
JP6207880B2 (en) * 2012-09-26 2017-10-04 東芝メモリ株式会社 Plasma processing apparatus and plasma processing method
US9293926B2 (en) * 2012-11-21 2016-03-22 Lam Research Corporation Plasma processing systems having multi-layer segmented electrodes and methods therefor

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381198B2 (en) * 2012-09-26 2019-08-13 Toshiba Memory Corporation Plasma processing apparatus and plasma processing method
US20140083977A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Plasma processing apparatus and plasma processing method
US12087556B2 (en) 2014-07-22 2024-09-10 Kioxia Corporation Plasma processing apparatus and plasma processing method
US11355315B2 (en) 2016-09-16 2022-06-07 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
CN109524288A (en) * 2017-09-20 2019-03-26 株式会社日立高新技术 Plasma processing apparatus and method of plasma processing
WO2019060061A1 (en) * 2017-09-20 2019-03-28 Applied Materials, Inc. System for coupling a voltage to spatially segmented portions of the wafer with variable voltage
US12198966B2 (en) 2017-09-20 2025-01-14 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US20190088522A1 (en) * 2017-09-20 2019-03-21 Applied Materials, Inc. System for coupling a voltage to spatially segmented portions of the wafer with variable voltage
US10510575B2 (en) 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US11094512B2 (en) * 2017-09-20 2021-08-17 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US10699884B2 (en) * 2017-09-20 2020-06-30 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US10937678B2 (en) 2017-09-20 2021-03-02 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US20190088452A1 (en) * 2017-09-20 2019-03-21 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
US10763150B2 (en) * 2017-09-20 2020-09-01 Applied Materials, Inc. System for coupling a voltage to spatially segmented portions of the wafer with variable voltage
TWI703632B (en) * 2017-09-20 2020-09-01 日商日立全球先端科技股份有限公司 Plasma processing device and plasma processing method
US10755897B2 (en) 2018-01-30 2020-08-25 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US10791617B2 (en) 2018-05-10 2020-09-29 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US10448495B1 (en) 2018-05-10 2019-10-15 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US10448494B1 (en) 2018-05-10 2019-10-15 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US10703654B2 (en) * 2018-11-07 2020-07-07 Pear Labs Llc Non-thermal multiple plasma gate devices
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US20220076921A1 (en) * 2018-12-28 2022-03-10 Tokyo Electron Limited Plasma processing apparatus and control method
US11742183B2 (en) * 2018-12-28 2023-08-29 Tokyo Electron Limited Plasma processing apparatus and control method
US12057292B2 (en) 2019-01-22 2024-08-06 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US10923321B2 (en) 2019-01-22 2021-02-16 Applied Materials, Inc. Apparatus and method of generating a pulsed waveform
US10916408B2 (en) 2019-01-22 2021-02-09 Applied Materials, Inc. Apparatus and method of forming plasma using a pulsed waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11561089B2 (en) 2019-07-04 2023-01-24 Hitachi High-Tech Corporation Three-dimensional shape detection apparatus, three-dimensional shape detection method and plasma processing apparatus
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US12237148B2 (en) 2020-07-31 2025-02-25 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US12183557B2 (en) 2020-11-16 2024-12-31 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US12347647B2 (en) 2021-06-02 2025-07-01 Applied Materials, Inc. Plasma excitation with ion energy control
US12148595B2 (en) 2021-06-09 2024-11-19 Applied Materials, Inc. Plasma uniformity control in pulsed DC plasma chamber
US12394596B2 (en) 2021-06-09 2025-08-19 Applied Materials, Inc. Plasma uniformity control in pulsed DC plasma chamber
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US12125673B2 (en) 2021-06-23 2024-10-22 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12261019B2 (en) 2021-08-24 2025-03-25 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US12374528B2 (en) 2022-06-07 2025-07-29 Hitachi High-Tech Corporation Plasma processing apparatus
US12368020B2 (en) 2022-06-08 2025-07-22 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12315732B2 (en) 2022-06-10 2025-05-27 Applied Materials, Inc. Method and apparatus for etching a semiconductor substrate in a plasma etch chamber
US12272524B2 (en) 2022-09-19 2025-04-08 Applied Materials, Inc. Wideband variable impedance load for high volume manufacturing qualification and on-site diagnostics
US12111341B2 (en) 2022-10-05 2024-10-08 Applied Materials, Inc. In-situ electric field detection method and apparatus

Also Published As

Publication number Publication date
JP6207880B2 (en) 2017-10-04
JP2014082449A (en) 2014-05-08
US20140083977A1 (en) 2014-03-27
KR20140040640A (en) 2014-04-03
TW201417137A (en) 2014-05-01
CN103681196A (en) 2014-03-26
TWI482194B (en) 2015-04-21
KR101497234B1 (en) 2015-02-27
US10381198B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
US10381198B2 (en) Plasma processing apparatus and plasma processing method
US12087556B2 (en) Plasma processing apparatus and plasma processing method
US10074545B2 (en) Plasma processing apparatus and plasma processing method
KR0159197B1 (en) Plasma process apparatus
TWI505354B (en) Dry etching apparatus and dry etching method
US8092605B2 (en) Magnetic confinement of a plasma
US20040168771A1 (en) Plasma reactor coil magnet
US20130081761A1 (en) Radical passing device and substrate processing apparatus
KR100390540B1 (en) Magnetron plasma etching apparatus
US10410889B2 (en) Systems and methods for electrical and magnetic uniformity and skew tuning in plasma processing reactors
KR101853167B1 (en) Plasma etching method and plasma etching apparatus
KR101890519B1 (en) Plasma processing apparatus and plasma processing method
US20200319356A1 (en) Ion filter using aperture plate with plurality of zones
JP2015185770A (en) Manufacturing method of semiconductor device
JPH03162583A (en) Vacuum process device
KR101533688B1 (en) Capacitively coupled plasma chamber having reversed and non-reversed power supply
KR20250135290A (en) Plasma uniformity control systems and methods
KR19980067112A (en) Plasma generator

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:042865/0583

Effective date: 20170619

AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE POSTAL CODE PREVIOUSLY RECORDED AT REEL: 042865 FRAME: 0583. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043415/0255

Effective date: 20170619

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION