US20170167073A1 - Antimicrobial textiles and methods for production of the same - Google Patents

Antimicrobial textiles and methods for production of the same Download PDF

Info

Publication number
US20170167073A1
US20170167073A1 US15/186,195 US201615186195A US2017167073A1 US 20170167073 A1 US20170167073 A1 US 20170167073A1 US 201615186195 A US201615186195 A US 201615186195A US 2017167073 A1 US2017167073 A1 US 2017167073A1
Authority
US
United States
Prior art keywords
logs
fabric
made according
solution
mrsa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/186,195
Inventor
Diana R. Cundell
Brian R. George
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philadelphia University (PhilaU)
Original Assignee
Philadelphia University (PhilaU)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/705,843 external-priority patent/US20110201265A1/en
Priority claimed from US13/052,592 external-priority patent/US20110229542A1/en
Priority claimed from US13/112,252 external-priority patent/US20110236448A1/en
Priority claimed from US14/215,197 external-priority patent/US20140273690A1/en
Application filed by Philadelphia University (PhilaU) filed Critical Philadelphia University (PhilaU)
Priority to US15/186,195 priority Critical patent/US20170167073A1/en
Publication of US20170167073A1 publication Critical patent/US20170167073A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/30Antimicrobial, e.g. antibacterial
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/16Oxygen or sulfur directly attached to an aromatic ring system with two or more oxygen or sulfur atoms directly attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/02Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fibres, slivers or rovings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • D06B3/18Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics combined with squeezing, e.g. in padding machines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/152Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen having a hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/30Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of articles, e.g. stockings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation

Definitions

  • FIG. 4 data can be seen in the photograph presented as FIG. 5 .
  • Control at 10 ⁇ 12 is shown top left, bottom left is 20 washes and bottom right ⁇ 25 washes. All quantitative fabric data are obtained using a 10 ⁇ 8 dilution of the broth, i.e. 4 logs lower than the control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Toxicology (AREA)
  • Physical Education & Sports Medicine (AREA)

Abstract

A method for making an antibacterial fabric having resistance to laundering while maintaining its antibacterial properties.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATION
  • This patent application claims the benefit of the priority under 35 USC 119 and 35 USC 120 of provisional U.S. patent application Ser. No. 61/792,261 filed 15 Mar. 2013 and entitled “Antimicrobial Textiles and Methods for Production of the Same” and the priority of provisional U.S. patent application Ser. No. 61/789,849 filed 15 Mar. 2013 and entitled “Textiles Having Antimicrobial Properties and Methods for Producing the Same”.
  • This patent application is a 35 USC 120 continuation application of U.S. utility application Ser. No. 14/935,600 entitled “Antimicrobial Textiles and Methods for Production of the Same”, filed 9 Nov. 2015, which is a continuation application of U.S. utility application Ser. No. 14/215,197 filed 17 Mar. 2014, which is a continuation-in-part of U.S. utility patent application Ser. No. 12/705,843 entitled “Methods and Apparatus for Combating Sick Building Syndrome”, filed 15 Feb. 2010, and a 35 USC 120 continuation-in-part of U.S. utility patent application Ser. No. 13/052,592, entitled “Methods for Imparting Anti-Microbial, Microbiocidal Properties to Fabrics, Yarns and Filaments, and Fabrics, Yarns and Filaments Embodying Such Properties”, filed 21 Mar. 2011, and a 35 USC 120 continuation-in-part of U.S. utility patent application Ser. No. 13/112,252, entitled “Methods and Apparatus for Passive Reduction of Nosocomial Infections in Clinical Settings, and Fabrics, Yarns, and Filaments for use in Connection Therewith”, filed 20 May 2011.
  • INCORPORATION BY REFERENCE
  • This patent application incorporates by reference the disclosures of U.S. patent application Ser. No. 14/215,197 filed 17 March 2014 and published as US 2014/0273690 on 18 Sep. 2014, U.S. patent application Ser. No. 12/705,843 filed 15 Feb. 2010 and published as US 2011/020126 A1 on 18 Aug. 2011; U.S. patent application Ser. No. 13/052,592 filed 21 Mar. 2011 and published as US 2011/0229542 A1 on 22 Sep. 2011; and U.S. patent application Ser. No. 13/112,252 filed 20 May 2011 and published as US 2011/0236448 A1 on 29 Sep. 2011.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plot of Log CFU/ml versus incubation time in hours showing that fabric treatments in accordance with the invention, produce an effective binding of the biocide, namely eugenol to fabric, as resepcting effectiveness of the fabric in controlling S aureus.
  • FIG. 2 is a plot of Log CFU/ml versus percent of biocide treatment used showing the efficacy of the fabric treatment in accordance with the invention when tested against S. aureus (MRSA).
  • FIG. 3 is a plot of Log CFU/ml versus percentage of bonding agent used, graphically depicting the efficacy of the fabric when tested against S. aureus (MRSA) strain after 5 washings, of fabric treated in accordance with the invention, in cold water and drying.
  • FIG. 4 is a plot of Log CFU/ml versus number of fabric washes, graphically depicting S. aureus (MRSA) growth rate over 25 washings of fabric treated in accordance with the invention.
  • FIG. 5 shows three petri dishes showing the growth of S. aureus (MRSA) after up to 25 washes of fabric treated in accordance with the invention. The top dish shows control (no fabric treatment) growth at 10−12, the bottom left dish shows growth at 20 washings of fabric treated in accordance with the invention and the bottom right dish shows growth at 25 washings of fabric treated in accordanc with the invention.
  • FIG. 6 shows four petri dishes showing S. agalacticae growth on blood agar. The top left dish shows the control (no treatment of the fabric) growth at 10−12, the top right dish is growth after 10 washings of fabric treated in accordance with the invention, the bottom left dish shows growth after five washings of fabric treated in accordance with the invention and the bottom right dish shows growth after no washings of fabric treated in accordance with the invention.
  • FIG. 7 shows five petri dishes showing the growth of S. aureus (MRSA). The top left dish shows control growth, i.e. no fabric treatment. The remaining four dishes show the results with fabric treatments 1-4, respectively.
  • FIG. 8 shows a petri dish showing Clostridium sporogenes growth on three fabric pieces that had been treated in accordance with the invention, one which has been washed 15 times, one which has been washed 20 times and one which has been washed 25 times.
  • FIG. 9 shows two test tubes containing growth media after 24 hour of incubation. The tube on the left is the control. The tube on the right is the fabric which has been washed 25 times.
  • FIG. 10 shows four petri dishes with growth of c sporogenes. The dish on the top left shows control growth at 10−12. The dish on the top right shows growth at 15 washings at 10−8. The dish on the bottom left shows growth at 20 washings at 10−8. The dish on the bottom right shows growth at 25 washings at 10−8.
  • DESCRIPTION OF THE INVENTION
  • 25% cotton, 75% polyester fabrics in several variations optimize antimicrobial property activity retention. These fabrics are treated with aqueous solutions including glyxol (as a bonding agent for an active natural bicidal), eugenol (as an active natural bicidal), and in most cases polyvinyl alcohol (as a second bonding agent for the active natural bicidal). Typical amounts of these reagents have been from 10 to 100 grams of glyxol, 1-10 grams of polyvinyl alcohol and 1 to 15 grams of eungenol, all per liter of water.
  • It has now been determined that of the two bonding agents initially used, namely polyvinyl alcohol and glyxol, the polyvinyl alcohol has little or no measurable effect on retention of bioactivity by the fabric. The remaining bonding component, namely glyxol, has the desirable characteristic that it can be heated and still result in a biocidally active fabric being created.
  • Some of the water component of the fabric treatment solution can be replaced with other liquids, namely either 10% ethanol or 10% ethyl acetate (both measured as parts by weight of the solution), and still retain a 4-7 log reduction in growth of S. aureus (MRSA), B. cereus (model for anthrax) and M. smegmatis (model for TB).
  • Three fabrics, namely fabric treated with a 10:10:100 ratio of polyvinyl alcohol, glyxol and water by volume, fabric treated with the same ratio of polyvinyl alcohol, glyxol and water by volume with the glyxol being heated, and fabric treated with a 10:100 ratio of glyxol to water and having no polyvinyl alcohol, were also assayed for launderability, namely whether the fabrics retained their antimicrobial properties after being laundered.
  • All three fabrics were laundered between three (3) and six (6) times without loss of antimicrobial viability.
  • 50% cotton 50% polyester fabrics were also treated using with a 10:10:100 ratio of polyvinyl alcohol, glyxol and water by volume, with some variations of the bonding components, namely polyvinyl alcohol and glyxol, including deletion (separately) of each of these components and heating of the polyvinyl alcohol prior to addition to the treatment mixture.
  • Optimization of the amount of biocide, namely eugenol, that is added to the solution applied to the fabric revealed that one gram of eugenol per liter of solution may be used without loss of antibacterial activity.
  • Based on feedback from the above bactericidal evaluations, one aspect of this treats the 25:75% cotton:polyester fabrics, while another aspect optimizes the treatment. The treatment to impart antimicrobial properties can be applied to the fabric with common textile wet processing equipment, whereas earlier treatments (as disclosed in the patent applications noted above that have been incorporated by reference) while effective utilized a 100:1 liquid mix to fabric ratio. (As used herein a “100:1 liquid mix to fabric ratio” means one (1) gram of fabric to ninety-nine (99) milliliters of treatment solution.)
  • In one of its embodiments the invention decreases that to a 10:1 ratio, with no loss of bicidal efficacy. Additionally, it is within the scope of the invention to remove one component, namely polyvinyl alcohol, from the treatment, with minimal adverse effect on the bactericidal properties of the fabric. This is beneficial, as the polyvinyl alcohol has the tendency to alter the hand and stiffness of the treated fabric. In a further aspect of the invention, the use of a single bonding agent, namely glyxol, may be reduced by 25%, namely 25 grams, (from an earlier 100% or 100 grams), with the treated fabric still retaining bicidal activity that persists over at least 25 washes using either a cold wash and cold dry cycle, or a hot wash and hot dry cycle.
  • Further, the inventive treatment has been found to kill nine separate and common hospital-acquired human pathogens namely S. aureus (MRSA), B. cereus (model for anthrax), M. smegmatis (model for TB), vancomycin-resistant Enterococcus faecalis (VRE), Pseudomonas aeruginosa, Streptococcus pneumoniae, S. agalacticae, S. pyogenes and S. epidermidis.
  • The method of the invention has been proven effective in the treatment of bioactively-coated white coats made of a 65%:35% polyester-cotton blend fabric. The treatment is retained by the coats through at least 10 washes in hot water with high heat drying. Cost of the antibacterial treatment in accordance with the invention is 50% lower than costs cited in the literature, including those treatments disclosed in the three published United States patent applications incorporated by reference above, due to the optimization of the bonding agent(s) and bioactive agent(s).
  • Antimicrobial textiles comprising cotton-polyester blends of 25-75% synthetic-cotton blend have been successful. In creating the successful 75:25 antibacterial fabric, several methods may be employed in accordance with the invention including altering the concentrations of polyvinyl alcohol and replacing the water component of the treatment with either ethanol or ethyl acetate. The invention also embraces heating the polyvinyl alcohol component prior to application to the fabric. Fabrics were also treated and tested without glyxol. As can be seen from FIG. 1 and Table 1, all treatments, except those lacking glyxol in the recipe, produced an effective binding of the biocide, namely the eugenol, to the fabric resulting in a 4-5 log reduction in growth, i.e. the fabrics were bactericidal against Staphylococcus aureus (MRSA strain), Bacillus cereus and Mycobacterium smegmatis.
  • TABLE 1
    Effect of fabric treatments on antibacterial activity of fabric
    Percentage Reduction from Control (log unit change in parentheses)
    S. aureus (MRSA B. cereus (spore M. smegmatis (TB
    Treatment
    1 strain) producer) model)
    1 99.99% (4 log units) 99.99% (5 logs) 99.99% (5 logs)
    2 99.99% (4 log units) 99.99% (5 logs) 99.99% (5 logs)
    Heated polyvinyl alcohol 99.99% (4 log units) 99.99% (5 logs) 99.99% (5 logs)
    No polyvinyl alcohol 99.99% (5 log units) 99.99% (6 logs) 99.99% (5 logs)
    10% ethanol 99.99% (4 log units) 99.99% (5 logs) 99.99% (4 logs)
    10% ethyl acetate 99.99% (4 log units) 99.99% (5 logs) 99.99% (5 logs)
    No glyxol   50% (<than 1 log unit)   31% (<than 1 log unit)   62% (<than 1 log unit)
  • The effective concentration of the eugenol biocide was tested at concentrations ranging from 1 gram of eugenol per liter of treatment solution up to 10 grams of eugenol per liter of treatment solution using the remaining bonding agent and a 50% : 50% cotton-polyester fabric. As can be seen from FIG. 2, in which the efficacy of the fabric was tested against S. aureus (MRSA) strain, all concentrations were able to reduce the normal growth of the bacterium (shown as the control or “no fabric” point) by at least 4 logs, i.e. the fabrics were bactericidal. Similar data was also obtained using B. cereus and M. smegmatis.
  • The bonding agent was tested at concentrations varying from 5% (10:0:5) to 100% (10:0:100 fabric) using the 25:75% cotton-polyester fabric and a 10 grams per liter of solution of biocide. As can be seen from FIG. 3, in which the efficacy of this created fabric was tested against S. aureus (MRSA) strain, after 5 washes in cold water and drying, all concentrations above 25% were able to reduce the normal growth of the bacterium (shown as control, i.e. no fabric present) by at least 4 logs, i.e. where bactericidal and the biological activity of the fabric could be retained through 5 washes. Concentrations of 5% and 10% were initially bactericidal but the bonding agent was of too low a level to hold the active bicidal to the fabric and so after 4 washes the activity became bacteriostatic at 10%, i.e. the fabric prevented the bacteria from multiplying.
  • Durability of 25:75% cotton-polyester textiles post laundering lead to use of the previously noted use of a solution with the 10:10:100 ratio of polyvinyl alcohol, glyxol and water by volume but without the apparently unnecessary bonding component (as previously explained). Although lower concentrations of the bonding agent may be utilized, in one preferred embodment the invention retaines the maximum concentration but decreases the biocide to a 10:1 dilution. As can be seen from Table 2, the created fabrics were laundered 10 times in hot water and high heat dried without loss of antibacterial killing efficacy against S. aureus (MRSA), B. cereus or M. smegmatis.
  • TABLE 2
    Evaluation of bacterial range of biocidal 25:75 cotton-polyester fabric
    Number of (*= No growth at a 10−7 dilution of medium)
    washes MRSA B. cer. M. smeg. P. aer. VRE S. epi. S. agal. S. pneum. S. pyo.
    0 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (unwashed) (5 logs) (7 logs) (5 logs) (7 logs) (4 logs) (5 logs (5 logs) (6 logs) (5 logs)
    1 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (4 logs) (4 logs) (5 logs) (5 logs) (5 logs) (6 logs) (5 logs) (6 logs) (5 logs)
    2 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (5 logs) (5 logs) (5 logs) (6 logs) (5 logs) (6 logs) (4 logs)
    3 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (5 logs) (4 logs) (4 logs) (4 logs) (4 logs) (5 logs) (4 logs) (4 logs)
    4 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (5 logs) (4 logs) (4 logs) (4 logs) (5 logs) (5 logs) (4 logs)
    5 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (5 logs) (4 logs) (4 logs) (4 logs) (5 logs) (6 logs) (4 logs)
    6 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (5 logs) (4 logs) (5 logs) (4 logs) (5 logs) (4 logs) (5 logs)
    7 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% *99.99%
    (5 logs) (4 logs) (5 logs) (5 logs) (5 logs) (4 logs) (4 logs) (5 logs) >7 logs
    8 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% *99.99%
    (5 logs) (4 logs) (4 logs) (5 logs) (5 logs) (5 logs) (4 logs) (4 logs) >7 logs
    9 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (5 logs) (5 logs) (4 logs) (4 logs) (5 logs) (6 logs) (4 logs)
    10  99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% *99.99%
    (5 logs) (4 logs) (5 logs) (4 logs) (4 logs) (4 logs) (5 logs) (5 logs) >7 logs
  • In accordance with the invention the number of washed may be increased to 25, without loss of activity against the normal growth (shown as control (0) point on graph) of S. aureus (MRSA), as can be seen in FIG. 4.
  • Visually the FIG. 4 data can be seen in the photograph presented as FIG. 5. Control at 10−12 is shown top left, bottom left is 20 washes and bottom right ×25 washes. All quantitative fabric data are obtained using a 10−8 dilution of the broth, i.e. 4 logs lower than the control.
  • Evaluation of narrow spectrum antimicrobial efficiency (AATCC-100 for quantitative analysis using MRSA, B.cereus and M. smegmatis) using six replicates, achieved a reduction in microbial growth of ≧99.99%.
  • Unwashed samples of three of the treated effective fabrics as identified above have each been tested on 6 separate occasions in duplicate against S. aureus (MRSA), B. cereus and M. smegmatis. Variations in the assay are small, with all effective fabrics exhibiting a range of 4-7 log inhibition of bacterial growth after a 24 hour culture, i.e. achieving bactericidal ability. Data are shown in Table 3 below as percentage as well as log reduction in bacterial growth.
  • TABLE 3
    Replication of antibacterial
    Treatment fabric assay Replicate Number
    Number 1 2 3 4 5 6
    S. aureus
    (MRSA)
    1 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (4 logs) (4 logs) (4 logs) (4 logs) (4 logs) (4 logs)
    10% ethanol 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (4 logs) (4 logs) (5 logs) (4 logs) (4 logs)
    10% ethyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    acetate (4 logs) (4 logs) (4 logs) (4 logs) (4 logs) (4 logs)
    No polyvinyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    alcohol (4 logs) (5 logs) (5 logs) (5 logs) (5 logs) (4 logs)
    B. cereus
    1 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (6 logs) (4 logs) (4 logs) (4 logs) (4 logs)
    10% ethanol 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (5 logs) (4 logs) (4 logs) (4 logs) (4 logs)
    10% ethyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    acetate (4 logs) (4 logs) (4 logs) (4 logs) (4 logs) (4 logs)
    No polyvinyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    alcohol (6 logs) (6 logs) (5 logs) (5 logs) (5 logs) (5 logs)
    M. smegmatis
    1 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (5 logs) (5 logs) (4 logs) (6 logs) (6 logs) (6 logs)
    10% ethanol 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    (4 logs) (6 logs) (6 logs) (5 logs) (5 logs) (6 logs)
    10% ethyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    acetate (5 logs) (4 logs) (4 logs) (6 logs) (5 logs) (6 logs)
    No polyvinyl 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
    alcohol (5 logs) (6 logs) (5 logs) (5 logs) (7 logs) (7 logs)
  • Evaluation of the spectrum of antimicrobial efficiency (AATCC-100 for quantitative analysis using MRSA, B.cereus, M. smegmatis, Pseudomonas aeruginosa, vancomycin-resistant Enterococcus faecalis (VRE), Streptococcus epidermidis, S. agalacticae, S. pneumoniae, S. pyogenes and Clostridium difficile) showed that all nine bacterial species investigated displayed a 4-7 log reduction in growth after 24 hours of exposure to the biocide-treated fabric, as per the data presented in Table 4.
  • TABLE 4
    Effect of fabric treatments on antibacterial activity of fabric
    Percentage Reduction from Control (log unit change in
    parentheses)
    B. cereus (spore M. smegmatis (TB
    Treatment Number S. aureus (MRSA strain) producer) model)
    1 99.99% (4 logs) 99.99% (4 log units) 99.99% (5 logs)
    2 99.99% (4 logs) 99.99% (5 log units) 99.99% (5 logs)
    3 99.99% (5 log units) 99.99% (5 log units) 99.99% (5 logs)
    No polyvinyl alcohol 99.99% (4 log units) 99.99% (5 log units) 99.99% (5 logs)
    10% ethanol 99.99% (4 log units) 99.99% (5 log units) 99.99% (5 logs)
    10% ethanol 99.99% (4 log units) 99.99% (5 log units) 99.99% (5 logs)
    No glyxol   50% (less than 1 log unit) NT NT
  • Referring to FIG. 6, S. agalacticae quantitative data on blood agar with 25% cotton fabric were washed up to 10 times on high heat and high heat drying. Active colonies are apparent as shown in FIG. 6 with clear regions around them and appear almost as “holes”. In FIG. 6 the top left is the control at 10−12, the right is washed ×10, the bottom left is fabric washed ×5 and the bottom right is unwashed. All quantitative fabric data were obtained using a 10−8 dilution of the broth i.e. 4 logs lower than the control.
  • The invention further embraces treatment and use of 50% cotton-50% polyester fabrics. The scope of the invention includes varying two bonding components of the mixture and, as can be seen similarly to the 25% cotton 75% polyester fabric, the polyvinyl alcohol component is not always necessary for effective binding of the eugenol biocide.
  • Visually, these appear as shown in FIG. 7 with S. aureus (MRSA) control plates on the upper left and fabric treatments 1-4 respectively.
  • Durability data has been obtained using treatment 1 and on 50:50 fabric created with treatment 1 and without component 1. As can be seen in Tables 5 and 6, these fabrics can be laundered in cold water and low temperature air dried up to 6 times and up to 10 times in hot water with high heat drying, respectively, without loss of activity against S. aureus (MRSA), B, cereus and M. smegmatis.
  • TABLE 5
    Launderability of treatment 1 50:50 fabric
    Percentage Reduction from Control
    (log unit change in parentheses)
    Number of S. aureus (MRSA B. cereus (spore M. smegmatis
    washes strain) producer) (TB model)
    0 (unwashed) 99.99% (4 logs) 99.99% (5 logs.) 99.99% (5 logs)
    1 99.99% (4 logs) 99.99% (5 logs) 99.99% (6 logs)
    2 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    3 99.99% (5 logs) 99.99% (5 logs) 99.99% (4 logs)
    4 99.99% (4 logs) 99.99% (5 logs) 99.99% (4 logs)
    5 Air (dry) 99.99% (5 logs) 99.99% (4 logs) 99.99% (5 logs)
    5 Low (dry) 99.99% (4 logs) 99.99% (5 logs) 99.99% (4 logs)
    6 Air (dry) 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    6 Low (dry) 99.99% (4 logs) 99.99% (5 logs) 99.99% (4 logs)
  • TABLE 6
    Launderability of 50:50 fabric created without
    component 1 Percentage Reduction from Control
    (log unit change in parentheses)
    Number of S. aureus (MRSA B. cereus (spore M. smegmatis
    washes strain) producer) (TB model)
    0 (unwashed) 99.99% (4 logs) 99.99% (5 logs) 99.99% (5 logs)
    1 99.99% (4 logs) 99.99% (4 logs) 99.99% (3 logs)
    2 99.99% (5 logs) 99.99% (4 logs) 99.99% (4 logs)
    3 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    4 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    5 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    6 99.99% (4 logs) 99.99% (4 logs) 99.99% (4 logs)
    7 99.99% (4 logs) 99.99% (4 logs) 99.99% (5 logs)
    8 99.99% (5 logs) 99.99% (4 logs) 99.99% (4 logs)
    9 99.99% (4 logs) 99.99% (5 logs) 99.99% (4 logs)
    10  99.99% (4 logs) 99.99% (4 logs) 99.99% (4 logs)
  • Lab coats containing 65% polyester were treated. Several tests have been performed as to the antibacterial stability of the coats. The first was to examine whether abrasion affected the durability of the biocide binding to the fabric. Abrasion was performed after the coat material was treated using the now standard method i.e. with only one bonding agent and using the standard ASTM-D966 abrasion treatment with 2,500, 5,000, 7,500 or 10,000 cycles. Additional fabric was also treated and not abraded. Thereafter all material samples were washed up to 10 times using a warm wash and medium heat dry, according to manufacturer's instructions. The ability of the coats to remain antibacterial has been validated in full using the S. aureus MRSA strain, to date and in part (namely with a single wash) with B. cereus and M. smegmatis. The antimicrobial property producing treatment, in the absence of abrasion, is stable to up to 10 washes, but higher numbers of abrasion cycles (>5,000 cycles) are deleterious to the fabric, changing it from bactericidal to bacteriostatic (4 logs to 3 logs in terms of growth of the bacterium). The data from this are shown in Table 7.
  • TABLE 7
    Effect of ASTM-D966 Abrasion Treatment on biocidal
    Abraded and capacity of 65:35 polyester-cotton fabric Percentage
    non-abraded Reduction from Control (log unit change in parentheses)
    fabrics S. aureus B. cereus M. smegmatis
    Abraded (MRSA strain) (spore producer) (TB model)
    Washed × 1
    2,500 cycles 99.99% (4 logs)
    5,000 cycles 99.99% (5 logs)
    7,500 cycles 99.99% (4 logs)
    10,000 cycles  99.99% (4 logs)
    Washed × 5
    2,500 cycles 99.99% (4 logs)
    5,000 cycles  99.0% (3 logs)
    7,500 cycles  99.0% (3 logs)
    10,000 cycles   99.0% (3 logs)
    Washed × 10
    2,500 cycles 99.99% (4 logs)
    5,000 cycles 99.99% (4 logs)
    7,500 cycles 99.99% (4 logs)
    10,000 cycles   99.0% (3 logs)
    Non-abraded
    Washed × 1 99.99% (5 logs) 99.99% (5 logs) 99.99% (5 logs)
    Washed × 5 99.99% (4 logs)
     Washed × 10 99.99% (4 logs)
  • FIG. 8 shows qualitative data on Clostridium sporogenes. This bacterium is a direct analog for botulism, shows 80% spore homology with C. difficile and about 60% genetic morphology. The plate shows ×15, ×20 and ×25 washes with rings of no growth around the fabric.
  • FIG. 9 shows growth media after 24 hour incubation. On the left is the control, which shows cloudiness due to the presence of bacteria in the medium. On the right is the fabric washed 25 times. You can see the fabric at the bottom of the test tube. Note the clarity of the medium compared with the control.
  • FIG. 10 shows c sporogenes quantitative data. Control at 10−12 is shown left and at right the −15 wash at 10−8. Below are ×20 washes and ×25 washes also at 10−8 dilution. All quantitative fabric data are obtained using a 10−8 dilution of the broth i.e. 4 logs lower than the control.

Claims (11)

The following is claimed:
1) A process for producing antibacterial fabric that retains its antibacterial properties over twenty-five launderings, comprising the steps of:
a) immersing the fabric in a solution of glyxol, eugenol and water;
b) squeezing the solution out of the fabric
c) curing the wetted fabric under heat; and
d) drying the cured fabric.
2) A fabric made according to claim 1 wherein the solution comprises ethanol.
3) A fabric made according to claim 1 wherein the solution comprises ethyl acetate.
4) A fabric made according to of claim 1 comprising cotton and polyester.
5) A fabric made according to claim 1 comprising a blend of cotton and polyester.
6) A fabric made according to claim 5 wherein the blend is 75% polyester.
7) A fabric made according to claim 5 wherein the blend is 50% polyester.
8) A fabric made according to claim 1 wherein the solution comprises about 10 grams of glyxol per liter of solution, and about 1 gram of eugenol per liter of solution.
9) A fabric made according to claim 2 wherein the ethanol is present in an amount of about 10 percent of the water by volume.
10) A fabric made according to claim 3 wherein the ethyl acetate is present in an amount of about 10 percent of the water by volume.
11) A process for producing a MRSA-resistant fabric that retains 4-7 log reduction in MRSA growth thereon after up to twenty-five launderings, comprising the steps of:
a) immersing the fabric in a solution of glyxol, eugenol and water;
b) squeezing the solution out of the fabric
c) curing the wetted fabric under heat; and
d) drying the cured fabric.
US15/186,195 2010-02-15 2016-06-17 Antimicrobial textiles and methods for production of the same Abandoned US20170167073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/186,195 US20170167073A1 (en) 2010-02-15 2016-06-17 Antimicrobial textiles and methods for production of the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12/705,843 US20110201265A1 (en) 2010-02-15 2010-02-15 Methods and apparatus for combating sick building syndrome
US13/052,592 US20110229542A1 (en) 2010-02-15 2011-03-21 Methods for imparting anti-microbial, microbicidal properties to fabrics, yarns and filaments, and fabrics, yarns and filaments embodying such properties
US13/112,252 US20110236448A1 (en) 2010-02-15 2011-05-20 Methods and Apparatus for Passive Reduction of Nosocomial Infections in Clinical Settings, and Fabrics, Yarns, and Filaments for Use in Connection Therewith
US201361792261P 2013-03-15 2013-03-15
US201361789849P 2013-03-15 2013-03-15
US14/215,197 US20140273690A1 (en) 2013-03-15 2014-03-17 Antimicrobial textiles and methods for production of the same
US201514935600A 2015-11-09 2015-11-09
US15/186,195 US20170167073A1 (en) 2010-02-15 2016-06-17 Antimicrobial textiles and methods for production of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201514935600A Continuation 2010-02-15 2015-11-09

Publications (1)

Publication Number Publication Date
US20170167073A1 true US20170167073A1 (en) 2017-06-15

Family

ID=59018409

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/215,907 Abandoned US20140377467A1 (en) 2010-02-15 2014-03-17 Textiles having antimicrobial properties and methods for producing the same
US15/186,195 Abandoned US20170167073A1 (en) 2010-02-15 2016-06-17 Antimicrobial textiles and methods for production of the same
US15/358,575 Abandoned US20180042320A1 (en) 2010-02-15 2016-11-22 Textiles having antimicrobial properties and methods for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/215,907 Abandoned US20140377467A1 (en) 2010-02-15 2014-03-17 Textiles having antimicrobial properties and methods for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/358,575 Abandoned US20180042320A1 (en) 2010-02-15 2016-11-22 Textiles having antimicrobial properties and methods for producing the same

Country Status (1)

Country Link
US (3) US20140377467A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377467A1 (en) * 2010-02-15 2014-12-25 Philadelphia University Textiles having antimicrobial properties and methods for producing the same
US20140273690A1 (en) * 2013-03-15 2014-09-18 Philadelphia University Antimicrobial textiles and methods for production of the same
CN107567513B (en) * 2015-02-27 2020-07-14 生活保卫股份公司 Cloth with antimicrobial properties
CN104997206B (en) * 2015-07-31 2016-07-06 界首市双鑫纺织有限公司 A kind of bamboo fiber garment fabric with bacteriostasis
US20170050870A1 (en) * 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300898A (en) * 1979-11-08 1981-11-17 Sun Chemical Corporation Compositions for treating textile fabrics
US6251381B1 (en) * 1998-11-04 2001-06-26 Inui Corporation Antibacterial and antifungal resin composition
US20110229542A1 (en) * 2010-02-15 2011-09-22 Philadelphia University Methods for imparting anti-microbial, microbicidal properties to fabrics, yarns and filaments, and fabrics, yarns and filaments embodying such properties
US20140377467A1 (en) * 2010-02-15 2014-12-25 Philadelphia University Textiles having antimicrobial properties and methods for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332787A (en) * 1998-10-23 2002-01-23 宝洁公司 Fabrid care composition and method
US20120030851A1 (en) * 2010-08-04 2012-02-09 Docfroc LLC Anti-Microbial Medical Garments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300898A (en) * 1979-11-08 1981-11-17 Sun Chemical Corporation Compositions for treating textile fabrics
US6251381B1 (en) * 1998-11-04 2001-06-26 Inui Corporation Antibacterial and antifungal resin composition
US20110229542A1 (en) * 2010-02-15 2011-09-22 Philadelphia University Methods for imparting anti-microbial, microbicidal properties to fabrics, yarns and filaments, and fabrics, yarns and filaments embodying such properties
US20140377467A1 (en) * 2010-02-15 2014-12-25 Philadelphia University Textiles having antimicrobial properties and methods for producing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Barnabas EP 1123374 B1 published on 12/28/2005 *
Chaieb et al, "The Chemical Composition and Biological Activity of Clove Essential Oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A Short Review," Phytotherapy Research, Vol. 21, Issue 6, pgs. 501-506 (2007) *
Kinder US Patent Application Publication no 2012/0030851 published 02/09/2012 *
Sarkar et al, "Bacteria-Resist Finish On Cotton Fabrics Using Natural Herbal Extracts," Indian J. Fibre & Textile Res., Vol. 28, Issue 3, pgs. 322-331 (2003). *

Also Published As

Publication number Publication date
US20180042320A1 (en) 2018-02-15
US20140377467A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
US11134686B2 (en) Disinfectant composition for textile and related substrates, and method of treating a substrate to provide disinfecting antibacterial, antiviral and antifungal, wash durable, optionally enhanced with multifunctional properties
US20170167073A1 (en) Antimicrobial textiles and methods for production of the same
Iyigundogdu et al. Developing novel antimicrobial and antiviral textile products
WO2020228808A1 (en) Borneol surface-modified antimicrobial natural textile material, and preparation method and application thereof
JP2016535179A5 (en)
JP7369467B6 (en) Durable antimicrobial treatment of textiles used in healthcare environments
Vigo et al. Antibacterial Fiber Treatments and Disinfection1
WO2016043202A1 (en) Method for producing antibacterial/antifungal processed product, and antibacterial/antifungal processed product obtained thereby
Gutarowska et al. Antimicrobial activity of textiles with selected dyes and finishing agents used in the textile industry
Goldade et al. Antimicrobial fibers for textile clothing and medicine: current state
Kut et al. Effects of Environmental Conditions on the Antibacterial Activity of Treated Cotton Knits.
US20140273690A1 (en) Antimicrobial textiles and methods for production of the same
Patel et al. Corporate uniform fabrics with antimicrobial edge: preparation and evaluation methodology
JP2000160476A (en) Production of carbon fiber and carbon fiber produced thereby
US20230407559A1 (en) Use of siliceous quaternary amines in durable antimicrobial treatment of textile for use in healthcare environment
Jamal et al. Efficacy of guava leaves treatment against washing
McCarthy Biocides for use in the textile industry
KR20210002289A (en) Method for manufacturing textile having antibiotic and deodorant
Nalankilli et al. International Multi-Disciplinary Journal, Bahir Dar, Ethiopia AFRREV Vol. 12 (2), Serial No 50, April, 2018: 143-152 ISSN 1994-9057 (Print) ISSN 2070-0083 (Online)
JPH10131044A (en) Antimicrobial fiber and its production
WO2013151569A1 (en) Sanitary curtain
KR19990083778A (en) Method for treating the textile with the inorganic antibiotics

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION