US20170114724A1 - Gas turbine engine with high speed low pressure turbine section and bearing support features - Google Patents
Gas turbine engine with high speed low pressure turbine section and bearing support features Download PDFInfo
- Publication number
- US20170114724A1 US20170114724A1 US15/399,864 US201715399864A US2017114724A1 US 20170114724 A1 US20170114724 A1 US 20170114724A1 US 201715399864 A US201715399864 A US 201715399864A US 2017114724 A1 US2017114724 A1 US 2017114724A1
- Authority
- US
- United States
- Prior art keywords
- section
- turbine section
- turbine
- fan
- fan drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000000446 fuel Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/36—Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/162—Bearing supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/06—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/107—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/02—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
- F02K3/04—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
- F02K3/06—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
- F05D2260/403—Transmission of power through the shape of the drive components
- F05D2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05D2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- This application relates to a gas turbine engine wherein the low pressure turbine section is rotating at a higher speed and centrifugal pull stress relative to the high pressure turbine section speed and centrifugal pull stress than prior art engines.
- Gas turbine engines typically include a fan delivering air into a low pressure compressor section.
- the air is compressed in the low pressure compressor section, and passed into a high pressure compressor section.
- From the high pressure compressor section the air is introduced into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over a high pressure turbine section, and then a low pressure turbine section.
- the low pressure turbine section has driven both the low pressure compressor section and a fan directly.
- fuel consumption improves with larger fan diameters relative to core diameters it has been the trend in the industry to increase fan diameters.
- the fan diameter is increased, high fan blade tip speeds may result in a decrease in efficiency due to compressibility effects.
- the fan speed and thus the speed of the low pressure compressor section and low pressure turbine section (both of which historically have been coupled to the fan via the low pressure spool), have been a design constraint.
- gear reductions have been proposed between the low pressure spool (low pressure compressor section and low pressure turbine section) and the fan.
- a turbine section of a gas turbine engine has a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- the second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is faster than the first speed.
- a first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's exit area.
- a second performance quantity is defined as the product of the second speed squared and the second area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
- the second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- the ratio is above or equal to about 0.8.
- the fan drive turbine section has at least 3 stages.
- the fan drive turbine section has up to 6 stages.
- the second turbine section has 2 or fewer stages.
- a pressure ratio across the first fan drive turbine section is greater than about 5:1.
- a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- the fan drive turbine and second turbine sections are configured to rotate in opposed directions.
- a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section.
- the turbine section includes a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- the second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed.
- a first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's area.
- a second performance quantity is defined as the product of the second turbine's speed squared and the second turbine's area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5.
- the second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- the ratio is above or equal to about 0.8.
- the compressor section includes a first and second compressor sections.
- the fan drive turbine section and the first compressor section are configured to rotate in a first direction.
- the second turbine section and the second compressor section and are configured to rotate in a second opposed direction.
- a gear reduction is included between the fan and a low spool driven by the fan drive turbine section such that the fan is configured to rotate at a lower speed than the fan drive turbine section.
- the fan rotates in the second opposed direction.
- a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- a third bearing supports the second compressor section on an outer periphery of the first shaft driven by the second turbine section.
- a fourth bearing is positioned adjacent the first compressor section, and supports an outer periphery of the second shaft which is configured to rotate with the fan drive turbine section.
- a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section.
- the turbine section includes a fan drive turbine section and a second turbine section.
- the fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed.
- a second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed.
- a first performance quantity is defined as the product of the first speed squared and the first area.
- a second performance quantity is defined as the product of the second speed squared and the second area.
- a ratio of the first performance quantity to the second performance quantity is between about 0.8 and about 1.5.
- the compressor section includes first and second compressor sections.
- the fan drive turbine section and the first compressor section will rotate in a first direction and the second turbine section and the second compressor section will rotate in a second opposed direction.
- a gear reduction is included between the fan and first compressor section, such that the fan will rotate at a lower speed than the fan drive turbine section, and rotate in the second opposed direction.
- a gear ratio of the gear reduction is greater than about 2.3.
- FIG. 1 shows a gas turbine engine
- FIG. 2 schematically shows the arrangement of the low and high spool, along with the fan drive.
- FIG. 3 shows a schematic view of a mount arrangement for an engine such as shown in FIGS. 1 and 2 .
- FIG. 1 schematically illustrates a gas turbine engine 20 .
- the gas turbine engine 20 is disclosed herein as a two-turbine turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28 .
- FIG. 1 schematically illustrates a gas turbine engine 20 .
- the gas turbine engine 20 is disclosed herein as a two-turbine turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along
- the engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38 . It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
- the low speed spool 30 generally includes an innermost shaft 40 that interconnects a fan 42 , a low pressure (or first) compressor section 44 and a low pressure (or first) turbine section 46 .
- Note turbine section 46 will also be known as a fan drive turbine section.
- the inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed fan drive turbine 46 .
- the high speed spool 32 includes a more outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and high pressure (or second) turbine section 54 .
- a combustor 56 is arranged between the high pressure compressor section 52 and the high pressure turbine section 54 .
- the high pressure turbine section experiences higher pressures than the low pressure turbine section.
- a low pressure turbine section is a section that powers a fan 42 .
- the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axis.
- the core airflow C is compressed by the low pressure compressor section 44 then the high pressure compressor section 52 , mixed and burned with fuel in the combustor 56 , then expanded over the high pressure turbine section 54 and low pressure turbine section 46 .
- the engine 20 in one example is a high-bypass geared aircraft engine.
- the bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C.
- the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10)
- the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine section 46 has a pressure ratio that is greater than about 5.
- the engine 20 bypass ratio is greater than about ten (10:1)
- the fan diameter is significantly larger than that of the low pressure compressor section 44
- the low pressure turbine section 46 has a pressure ratio that is greater than about 5:1.
- the high pressure turbine section may have two or fewer stages.
- the low pressure turbine section 46 in some embodiments, has between 3 and 6 stages. Further the low pressure turbine section 46 pressure ratio is total pressure measured prior to inlet of low pressure turbine section 46 as related to the total pressure at the outlet of the low pressure turbine section 46 prior to an exhaust nozzle.
- the geared architecture 48 may be an epicycle gear train, such as a star gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine
- the fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet.
- TSFC Thrust Specific Fuel Consumption
- TSFC is the industry standard parameter of the rate of 1 bm of fuel being burned per hour divided by 1 bf of thrust the engine produces at that flight condition.
- Low fan pressure ratio is the ratio of total pressure across the fan blade alone, before the fan exit guide vanes. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45.
- Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ram Air Temperature deg R)/518.7) ⁇ 0.5].
- the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second. Further, the fan 42 may have 26 or fewer blades.
- An exit area 400 is shown, in FIG. 1 and FIG. 2 , at the exit location for the high pressure turbine section 54 is the annular area of the last blade of turbine section 54 .
- An exit area for the low pressure turbine section is defined at exit 401 for the low pressure turbine section is the annular area defined by the last blade of that turbine section 46 .
- the turbine engine 20 may be counter-rotating. This means that the low pressure turbine section 46 and low pressure compressor section 44 rotate in one direction (“ ⁇ ”), while the high pressure spool 32 , including high pressure turbine section 54 and high pressure compressor section 52 rotate in an opposed direction (“+”).
- the gear reduction 48 which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that the fan 42 rotates in the same direction (“+”) as the high spool 32 .
- a very high speed can be provided to the low pressure spool.
- Low pressure turbine section and high pressure turbine section operation are often evaluated looking at a performance quantity which is the exit area for the turbine section multiplied by its respective speed squared.
- This performance quantity (“PQ”) is defined as:
- a 1pt is the area of the low pressure turbine section at the exit thereof (e.g., at 401), where V 1pt is the speed of the low pressure turbine section, where A hpt is the area of the high pressure turbine section at the exit thereof (e.g., at 400), and where V hpt is the speed of the high pressure turbine section.
- a ratio of the performance quantity for the low pressure turbine section compared to the performance quantify for the high pressure turbine section is:
- the areas of the low and high pressure turbine sections are 557.9 in 2 and 90.67 in 2 , respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively.
- the performance quantities for the low and high pressure turbine sections are:
- the ratio was about 0.5 and in another embodiment the ratio was about 1.5.
- PQ 1tp/ PQ hpt ratios in the 0.5 to 1.5 range a very efficient overall gas turbine engine is achieved. More narrowly, PQ 1tp/ PQ hpt ratios of above or equal to about 0.8 are more efficient. Even more narrowly, PQ 1tp/ PQ hpt ratios above or equal to 1.0 are even more efficient.
- the turbine section can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.
- the low pressure compressor section is also improved with this arrangement, and behaves more like a high pressure compressor section than a traditional low pressure compressor section. It is more efficient than the prior art, and can provide more compression in fewer stages.
- the low pressure compressor section may be made smaller in radius and shorter in length while contributing more toward achieving the overall pressure ratio design target of the engine.
- the engine as shown in FIG. 2 may be mounted such that the high pressure turbine 54 is “overhung” bearing mounted.
- the high spool and shaft 32 includes a bearing 142 which supports the high pressure turbine 54 and the high spool 32 on an outer periphery of a shaft that rotates with the high pressure turbine 54 .
- the “overhung” mount means that the bearing 142 is at an intermediate location on the spool including the shaft, the high pressure turbine 54 , and the high pressure compressor 52 . Stated another way, the bearing 142 is supported upstream of a point 501 where the shaft 32 connects to a hub 500 carrying turbine rotors associated with the high pressure turbine (second) turbine section 54 .
- the bearing 142 can be positioned inside an annulus 503 formed by the shaft 32 and the hub assembly 500 so as to be between the shaft and the feature numbered 106 and it still would be an “overhung” configuration.
- the forward end of the high spool 32 is supported by a bearing 110 at an outer periphery of the shaft 32 .
- the bearings 110 and 142 are supported on static structure 108 associated with the overall engine casings arranged to form the core of the engine as is shown in FIG. 1 .
- the shaft 30 is supported on a bearing 100 at a forward end.
- the bearing 100 is supported on static structure 102 .
- a rear end of the shaft 30 is supported on a bearing 106 which is attached to static structure 104 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5. The high pressure turbine is supported by a bearing positioned at a point where the first shaft connects to a hub carrying turbine rotors associated with the second turbine section.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/558,605, filed on Jul. 26, 2012, which is a continuation of U.S. patent application Ser. No. 13/455,235, filed on Apr. 25, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/363,154, filed on Jan. 31, 2012.
- This application relates to a gas turbine engine wherein the low pressure turbine section is rotating at a higher speed and centrifugal pull stress relative to the high pressure turbine section speed and centrifugal pull stress than prior art engines.
- Gas turbine engines are known, and typically include a fan delivering air into a low pressure compressor section. The air is compressed in the low pressure compressor section, and passed into a high pressure compressor section. From the high pressure compressor section the air is introduced into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over a high pressure turbine section, and then a low pressure turbine section.
- Traditionally, on many prior art engines the low pressure turbine section has driven both the low pressure compressor section and a fan directly. As fuel consumption improves with larger fan diameters relative to core diameters it has been the trend in the industry to increase fan diameters. However, as the fan diameter is increased, high fan blade tip speeds may result in a decrease in efficiency due to compressibility effects. Accordingly, the fan speed, and thus the speed of the low pressure compressor section and low pressure turbine section (both of which historically have been coupled to the fan via the low pressure spool), have been a design constraint. More recently, gear reductions have been proposed between the low pressure spool (low pressure compressor section and low pressure turbine section) and the fan.
- In a featured embodiment, a turbine section of a gas turbine engine has a fan drive turbine section and a second turbine section. The fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed. The second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is faster than the first speed. A first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's exit area. A second performance quantity is defined as the product of the second speed squared and the second area. A ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5. The second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- In another embodiment according to the previous embodiment, the ratio is above or equal to about 0.8.
- In another embodiment according to any of the previous embodiments, the fan drive turbine section has at least 3 stages.
- In another embodiment according to any of the previous embodiments, the fan drive turbine section has up to 6 stages.
- In another embodiment according to any of the previous embodiments, the second turbine section has 2 or fewer stages.
- In another embodiment according to any of the previous embodiments, a pressure ratio across the first fan drive turbine section is greater than about 5:1.
- In another embodiment according to any of the previous embodiments, a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- In another embodiment according to any of the previous embodiments, the fan drive turbine and second turbine sections are configured to rotate in opposed directions.
- In another embodiment according to any of the previous embodiments, there is no mid-turbine frame positioned intermediate the fan drive turbine and second turbine sections.
- In another featured embodiment, a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section. The turbine section includes a fan drive turbine section and a second turbine section. The fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed. The second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed. A first performance quantity is defined as the product of the fan drive turbine's speed squared and the fan drive turbine's area. A second performance quantity is defined as the product of the second turbine's speed squared and the second turbine's area. A ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5. The second turbine section drives a shaft which is mounted on a bearing on an outer periphery of the first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
- In another embodiment according to the previous embodiment, the ratio is above or equal to about 0.8.
- In another embodiment according to any of the previous embodiments, the compressor section includes a first and second compressor sections. The fan drive turbine section and the first compressor section are configured to rotate in a first direction. The second turbine section and the second compressor section and are configured to rotate in a second opposed direction.
- In another embodiment according to any of the previous embodiments, a gear reduction is included between the fan and a low spool driven by the fan drive turbine section such that the fan is configured to rotate at a lower speed than the fan drive turbine section.
- In another embodiment according to any of the previous embodiments, the fan rotates in the second opposed direction.
- In another embodiment according to any of the previous embodiments, a second shaft associated with the fan drive turbine is supported by a second bearing at an end of the second shaft, and downstream of the fan drive turbine.
- In another embodiment according to any of the previous embodiments, a third bearing supports the second compressor section on an outer periphery of the first shaft driven by the second turbine section.
- In another embodiment according to any of the previous embodiments, a fourth bearing is positioned adjacent the first compressor section, and supports an outer periphery of the second shaft which is configured to rotate with the fan drive turbine section.
- In another embodiment according to any of the previous embodiments, there is no mid-turbine frame positioned intermediate the first and second turbine sections.
- In another featured embodiment, a gas turbine engine has a fan, a compressor section in fluid communication with the fan, a combustion section in fluid communication with the compressor section, and a turbine section in fluid communication with the combustion section. The turbine section includes a fan drive turbine section and a second turbine section. The fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed. A second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed. A first performance quantity is defined as the product of the first speed squared and the first area. A second performance quantity is defined as the product of the second speed squared and the second area. A ratio of the first performance quantity to the second performance quantity is between about 0.8 and about 1.5. The compressor section includes first and second compressor sections. The fan drive turbine section and the first compressor section will rotate in a first direction and the second turbine section and the second compressor section will rotate in a second opposed direction. A gear reduction is included between the fan and first compressor section, such that the fan will rotate at a lower speed than the fan drive turbine section, and rotate in the second opposed direction.
- In another embodiment according to the previous embodiment, a gear ratio of the gear reduction is greater than about 2.3.
- These and other features of this disclosure will be better understood upon reading the following specification and drawings, the following of which is a brief description.
-
FIG. 1 shows a gas turbine engine. -
FIG. 2 schematically shows the arrangement of the low and high spool, along with the fan drive. -
FIG. 3 shows a schematic view of a mount arrangement for an engine such as shown inFIGS. 1 and 2 . -
FIG. 1 schematically illustrates agas turbine engine 20. Thegas turbine engine 20 is disclosed herein as a two-turbine turbofan that generally incorporates afan section 22, acompressor section 24, acombustor section 26 and aturbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. Thefan section 22 drives air along a bypass flow path B while thecompressor section 24 drives air along a core flow path C for compression and communication into thecombustor section 26 then expansion through theturbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-turbine architectures. - The
engine 20 generally includes alow speed spool 30 and ahigh speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an enginestatic structure 36 viaseveral bearing systems 38. It should be understood that various bearingsystems 38 at various locations may alternatively or additionally be provided. - The
low speed spool 30 generally includes aninnermost shaft 40 that interconnects afan 42, a low pressure (or first)compressor section 44 and a low pressure (or first)turbine section 46. Noteturbine section 46 will also be known as a fan drive turbine section. Theinner shaft 40 is connected to thefan 42 through a gearedarchitecture 48 to drive thefan 42 at a lower speed than the low speedfan drive turbine 46. Thehigh speed spool 32 includes a moreouter shaft 50 that interconnects a high pressure (or second)compressor section 52 and high pressure (or second)turbine section 54. Acombustor 56 is arranged between the highpressure compressor section 52 and the highpressure turbine section 54. As used herein, the high pressure turbine section experiences higher pressures than the low pressure turbine section. A low pressure turbine section is a section that powers afan 42. Theinner shaft 40 and theouter shaft 50 are concentric and rotate via bearingsystems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axis. - The core airflow C is compressed by the low
pressure compressor section 44 then the highpressure compressor section 52, mixed and burned with fuel in thecombustor 56, then expanded over the highpressure turbine section 54 and lowpressure turbine section 46. - The
engine 20 in one example is a high-bypass geared aircraft engine. The bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C. In a further example, theengine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10), the gearedarchitecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the lowpressure turbine section 46 has a pressure ratio that is greater than about 5. In one disclosed embodiment, theengine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the lowpressure compressor section 44, and the lowpressure turbine section 46 has a pressure ratio that is greater than about 5:1. In some embodiments, the high pressure turbine section may have two or fewer stages. In contrast, the lowpressure turbine section 46, in some embodiments, has between 3 and 6 stages. Further the lowpressure turbine section 46 pressure ratio is total pressure measured prior to inlet of lowpressure turbine section 46 as related to the total pressure at the outlet of the lowpressure turbine section 46 prior to an exhaust nozzle. The gearedarchitecture 48 may be an epicycle gear train, such as a star gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine - A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The
fan section 22 of theengine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (”TSFC″). TSFC is the industry standard parameter of the rate of 1 bm of fuel being burned per hour divided by 1 bf of thrust the engine produces at that flight condition. “Low fan pressure ratio” is the ratio of total pressure across the fan blade alone, before the fan exit guide vanes. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ram Air Temperature deg R)/518.7)̂0.5]. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second. Further, thefan 42 may have 26 or fewer blades. - An
exit area 400 is shown, inFIG. 1 andFIG. 2 , at the exit location for the highpressure turbine section 54 is the annular area of the last blade ofturbine section 54. An exit area for the low pressure turbine section is defined atexit 401 for the low pressure turbine section is the annular area defined by the last blade of thatturbine section 46. As shown inFIG. 2 , theturbine engine 20 may be counter-rotating. This means that the lowpressure turbine section 46 and lowpressure compressor section 44 rotate in one direction (“−”), while thehigh pressure spool 32, including highpressure turbine section 54 and highpressure compressor section 52 rotate in an opposed direction (“+”). Thegear reduction 48, which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that thefan 42 rotates in the same direction (“+”) as thehigh spool 32. With this arrangement, and with the other structure as set forth above, including the various quantities and operational ranges, a very high speed can be provided to the low pressure spool. Low pressure turbine section and high pressure turbine section operation are often evaluated looking at a performance quantity which is the exit area for the turbine section multiplied by its respective speed squared. This performance quantity (“PQ”) is defined as: -
PQ1tp=(A1pt×V1pt 2)Equation 1 -
PQhpt=(Ahpt×Vhpt 2) Equation 2 - where A1pt is the area of the low pressure turbine section at the exit thereof (e.g., at 401), where V1pt is the speed of the low pressure turbine section, where Ahpt is the area of the high pressure turbine section at the exit thereof (e.g., at 400), and where Vhpt is the speed of the high pressure turbine section.
- Thus, a ratio of the performance quantity for the low pressure turbine section compared to the performance quantify for the high pressure turbine section is:
-
(A1pt×V1pt 2)/(Ahpt×Vhpt 2)=PQ1tp/PQhpt Equation 3 - In one turbine embodiment made according to the above design, the areas of the low and high pressure turbine sections are 557.9 in2 and 90.67 in2, respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively. Thus, using
Equations 1 and 2 above, the performance quantities for the low and high pressure turbine sections are: -
PQ1tp=(A1pt×V1pt 2)=(557.9 in2)(10179 rpm)2=57805157673.9 in2rpm2 Equation 1 -
PQhpt=(Ahpt×Vhpt 2)=(90.67 in2)(24346 rpm)2=53742622009.72 in2rpm2 Equation 2 - and using Equation 3 above, the ratio for the low pressure turbine section to the high pressure turbine section is:
-
Ratio=PQ1tp/PQhpt=57805157673.9 in2 rpm2/53742622009.72 in2rpm2=1.075 - In another embodiment, the ratio was about 0.5 and in another embodiment the ratio was about 1.5. With PQ1tp/ PQhpt ratios in the 0.5 to 1.5 range, a very efficient overall gas turbine engine is achieved. More narrowly, PQ1tp/ PQhpt ratios of above or equal to about 0.8 are more efficient. Even more narrowly, PQ1tp/ PQhpt ratios above or equal to 1.0 are even more efficient. As a result of these PQ1tp/ PQhpt ratios, in particular, the turbine section can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.
- The low pressure compressor section is also improved with this arrangement, and behaves more like a high pressure compressor section than a traditional low pressure compressor section. It is more efficient than the prior art, and can provide more compression in fewer stages. The low pressure compressor section may be made smaller in radius and shorter in length while contributing more toward achieving the overall pressure ratio design target of the engine.
- As shown in
FIG. 3 , the engine as shown inFIG. 2 may be mounted such that thehigh pressure turbine 54 is “overhung” bearing mounted. As shown, the high spool andshaft 32 includes abearing 142 which supports thehigh pressure turbine 54 and thehigh spool 32 on an outer periphery of a shaft that rotates with thehigh pressure turbine 54. As can be appreciated, the “overhung” mount means that thebearing 142 is at an intermediate location on the spool including the shaft, thehigh pressure turbine 54, and thehigh pressure compressor 52. Stated another way, thebearing 142 is supported upstream of apoint 501 where theshaft 32 connects to ahub 500 carrying turbine rotors associated with the high pressure turbine (second)turbine section 54. Notably, it would also be downstream of thecombustor 56. Note that the bearing 142 can be positioned inside anannulus 503 formed by theshaft 32 and thehub assembly 500 so as to be between the shaft and the feature numbered 106 and it still would be an “overhung” configuration. - The forward end of the
high spool 32 is supported by abearing 110 at an outer periphery of theshaft 32. Thebearings static structure 108 associated with the overall engine casings arranged to form the core of the engine as is shown inFIG. 1 . In addition, theshaft 30 is supported on abearing 100 at a forward end. Thebearing 100 is supported onstatic structure 102. A rear end of theshaft 30 is supported on abearing 106 which is attached tostatic structure 104. - With this arrangement, there is no bearing support struts or other structure in the path of hot products of combustion passing downstream of the
high pressure turbine 54, and no bearing compartment support struts in the path of the products of combustion as they flow across to thelow pressure turbine 46. - As shown, there is no mid-turbine frame or bearings mounted in the
area 402 between theturbine sections - While this invention has been disclosed with reference to one embodiment, it should be understood that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Claims (20)
1. A turbine section of a gas turbine engine comprising:
a fan drive turbine section; and
a second turbine section,
wherein said fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed,
wherein said second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is faster than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first area,
wherein a second performance quantity is defined as the product of the second speed squared and the second area; and
wherein a ratio of the first performance quantity to the second performance quantity is between 0.8 and 1.5.
2. The turbine section as set forth in claim 1 , wherein said fan drive turbine section has at least three stages.
3. The turbine section as set forth in claim 2 , wherein said second turbine section driving a first shaft, and said first shaft being supported on a bearing, said bearing being mounted on an outer periphery of said first shaft at a location that is upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
4. The turbine section as set forth in claim 3 , wherein said fan drive turbine section has up to six stages.
5. The turbine section as set forth in claim 4 , wherein said second turbine section has two or fewer stages.
6. The turbine section as set forth in claim 5 , wherein a pressure ratio across the fan drive turbine section is greater than about 5:1.
7. The turbine section as set forth in claim 6 , wherein a second shaft associated with said fan drive turbine is supported by a second bearing at an end of said second shaft, and downstream of said fan drive turbine.
8. The turbine section as set forth in claim 7 , wherein said fan drive and second turbine sections are configured to rotate in opposed directions.
9. The turbine section as set forth in claim 8 , wherein there is no bearing support structure positioned intermediate said fan drive and second turbine sections.
10. A gas turbine engine comprising:
a fan;
a compressor section in fluid communication with the fan;
a combustion section in fluid communication with the compressor section;
a turbine section in fluid communication with the combustion section,
wherein the turbine section includes a fan drive turbine section and a second turbine section,
a gear reduction between said fan and a second shaft driven by the fan drive turbine section such that the fan rotates at a lower speed than the fan drive turbine section;
wherein said fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed,
wherein said second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first area,
wherein a second performance quantity is defined as the product of the second speed squared and the second area; and
wherein a ratio of the first performance quantity to the second performance quantity is between 0.8 and 1.5.
11. The engine as set forth in claim 10 , wherein the compressor section includes a first compressor section and a second compressor section, wherein the fan drive turbine section and the first compressor section are configured to rotate in a first direction, and wherein the second turbine section and the second compressor section are configured to rotate in a second opposed direction.
12. The engine as set forth in claim 11 , wherein said fan rotates in the second opposed direction.
13. The engine as set forth in claim 11 , wherein said second turbine section driving a first shaft, and said first shaft being mounted on a bearing, said bearing being mounted on an outer periphery of said first shaft at a location upstream of a point where the first shaft connects to a hub carrying turbine rotors associated with said second turbine section.
14. The engine as set forth in claim 13 , wherein said fan rotates in the second opposed direction.
15. The engine as set forth in claim 13 , wherein a second shaft associated with said fan drive turbine is supported by a second bearing at an end of said second shaft, and downstream of said fan drive turbine.
16. The engine as set forth in claim 15 , wherein a third bearing supports said second compressor section on an outer periphery of said first shaft driven by said second turbine section.
17. The engine as set forth in claim 16 , wherein a fourth bearing is positioned adjacent said first compressor section, and supports an outer periphery of said second shaft which is configured to rotate with said fan drive turbine section.
18. The engine as set forth in claim 13 , wherein there is no bearing support structure positioned intermediate said first and second turbine sections.
19. A gas turbine engine comprising:
a fan;
a compressor section in fluid communication with the fan;
a combustion section in fluid communication with the compressor section;
a turbine section in fluid communication with the combustion section,
wherein the turbine section includes a fan drive turbine section and a second turbine section,
wherein said fan drive turbine section has a first exit area at a first exit point and is configured to rotate at a first speed,
wherein said second turbine section has a second exit area at a second exit point and is configured to rotate at a second speed, which is higher than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first area,
wherein a second performance quantity is defined as the product of the second speed squared and the second area;
wherein a ratio of the first performance quantity to the second performance quantity is between about 1.0 and about 1.5; and
the compressor section including a first compressor section and a second compressor section, wherein the fan drive turbine section and the first compressor section will rotate in a first direction and the second turbine section and the second compressor section will rotate in a second opposed direction, a gear reduction included between said fan and first compressor section, such that the fan will rotate at a lower speed than the fan drive turbine section, and said fan will rotate in the second opposed direction.
20. The engine as set forth in claim 19 , wherein a gear ratio of said gear reduction is greater than about 2.3.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/399,864 US20170114724A1 (en) | 2012-01-31 | 2017-01-06 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US16/598,048 US11585276B2 (en) | 2012-01-31 | 2019-10-10 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US18/110,454 US20230193830A1 (en) | 2012-01-31 | 2023-02-16 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/363,154 US20130192196A1 (en) | 2012-01-31 | 2012-01-31 | Gas turbine engine with high speed low pressure turbine section |
US13/455,235 US20130192191A1 (en) | 2012-01-31 | 2012-04-25 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US13/558,605 US9540948B2 (en) | 2012-01-31 | 2012-07-26 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US15/399,864 US20170114724A1 (en) | 2012-01-31 | 2017-01-06 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/558,605 Continuation US9540948B2 (en) | 2012-01-31 | 2012-07-26 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/598,048 Continuation US11585276B2 (en) | 2012-01-31 | 2019-10-10 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170114724A1 true US20170114724A1 (en) | 2017-04-27 |
Family
ID=48869034
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/455,235 Abandoned US20130192191A1 (en) | 2012-01-31 | 2012-04-25 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US13/558,605 Active US9540948B2 (en) | 2012-01-31 | 2012-07-26 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US15/399,864 Abandoned US20170114724A1 (en) | 2012-01-31 | 2017-01-06 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US16/598,048 Active US11585276B2 (en) | 2012-01-31 | 2019-10-10 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US18/110,454 Pending US20230193830A1 (en) | 2012-01-31 | 2023-02-16 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/455,235 Abandoned US20130192191A1 (en) | 2012-01-31 | 2012-04-25 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US13/558,605 Active US9540948B2 (en) | 2012-01-31 | 2012-07-26 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/598,048 Active US11585276B2 (en) | 2012-01-31 | 2019-10-10 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US18/110,454 Pending US20230193830A1 (en) | 2012-01-31 | 2023-02-16 | Gas turbine engine with high speed low pressure turbine section and bearing support features |
Country Status (1)
Country | Link |
---|---|
US (5) | US20130192191A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130192191A1 (en) | 2012-01-31 | 2013-08-01 | Frederick M. Schwarz | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US9816442B2 (en) * | 2012-01-31 | 2017-11-14 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section |
US20150345426A1 (en) | 2012-01-31 | 2015-12-03 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US9222417B2 (en) * | 2012-01-31 | 2015-12-29 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US10287914B2 (en) | 2012-01-31 | 2019-05-14 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US10309232B2 (en) * | 2012-02-29 | 2019-06-04 | United Technologies Corporation | Gas turbine engine with stage dependent material selection for blades and disk |
US10125693B2 (en) | 2012-04-02 | 2018-11-13 | United Technologies Corporation | Geared turbofan engine with power density range |
US9752500B2 (en) * | 2013-03-14 | 2017-09-05 | Pratt & Whitney Canada Corp. | Gas turbine engine with transmission and method of adjusting rotational speed |
WO2015126793A1 (en) * | 2014-02-19 | 2015-08-27 | United Technologies Corporation | Gas turbine engine airfoil |
EP3163033A1 (en) * | 2015-10-26 | 2017-05-03 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
EP3165754A1 (en) * | 2015-11-03 | 2017-05-10 | United Technologies Corporation | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US11090600B2 (en) * | 2017-01-04 | 2021-08-17 | General Electric Company | Particle separator assembly for a turbine engine |
FR3088967B1 (en) * | 2018-11-27 | 2020-11-06 | Safran Aircraft Engines | Double-flow turbojet arrangement with epicyclic or planetary reduction gear |
US11655768B2 (en) | 2021-07-26 | 2023-05-23 | General Electric Company | High fan up speed engine |
US11767790B2 (en) | 2021-08-23 | 2023-09-26 | General Electric Company | Object direction mechanism for turbofan engine |
US11739689B2 (en) | 2021-08-23 | 2023-08-29 | General Electric Company | Ice reduction mechanism for turbofan engine |
US11480063B1 (en) | 2021-09-27 | 2022-10-25 | General Electric Company | Gas turbine engine with inlet pre-swirl features |
US12116929B2 (en) | 2022-01-19 | 2024-10-15 | General Electric Company | Bleed flow assembly for a gas turbine engine |
US11788465B2 (en) | 2022-01-19 | 2023-10-17 | General Electric Company | Bleed flow assembly for a gas turbine engine |
US11808281B2 (en) | 2022-03-04 | 2023-11-07 | General Electric Company | Gas turbine engine with variable pitch inlet pre-swirl features |
US11725526B1 (en) | 2022-03-08 | 2023-08-15 | General Electric Company | Turbofan engine having nacelle with non-annular inlet |
Family Cites Families (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2078958A (en) * | 1930-03-24 | 1937-05-04 | Milo Ab | Gas turbine system |
US2258792A (en) | 1941-04-12 | 1941-10-14 | Westinghouse Electric & Mfg Co | Turbine blading |
US2608821A (en) * | 1949-10-08 | 1952-09-02 | Gen Electric | Contrarotating turbojet engine having independent bearing supports for each turbocompressor |
US3021731A (en) | 1951-11-10 | 1962-02-20 | Wilhelm G Stoeckicht | Planetary gear transmission |
US2936655A (en) | 1955-11-04 | 1960-05-17 | Gen Motors Corp | Self-aligning planetary gearing |
US3194487A (en) | 1963-06-04 | 1965-07-13 | United Aircraft Corp | Noise abatement method and apparatus |
US3287906A (en) | 1965-07-20 | 1966-11-29 | Gen Motors Corp | Cooled gas turbine vanes |
US3352178A (en) | 1965-11-15 | 1967-11-14 | Gen Motors Corp | Planetary gearing |
US3412560A (en) | 1966-08-03 | 1968-11-26 | Gen Motors Corp | Jet propulsion engine with cooled combustion chamber, fuel heater, and induced air-flow |
GB1135129A (en) * | 1967-09-15 | 1968-11-27 | Rolls Royce | Gas turbine engine |
US3664612A (en) | 1969-12-22 | 1972-05-23 | Boeing Co | Aircraft engine variable highlight inlet |
GB1350431A (en) | 1971-01-08 | 1974-04-18 | Secr Defence | Gearing |
US3892358A (en) | 1971-03-17 | 1975-07-01 | Gen Electric | Nozzle seal |
US3765623A (en) | 1971-10-04 | 1973-10-16 | Mc Donnell Douglas Corp | Air inlet |
US3747343A (en) | 1972-02-10 | 1973-07-24 | United Aircraft Corp | Low noise prop-fan |
GB1418905A (en) | 1972-05-09 | 1975-12-24 | Rolls Royce | Gas turbine engines |
US3861139A (en) | 1973-02-12 | 1975-01-21 | Gen Electric | Turbofan engine having counterrotating compressor and turbine elements and unique fan disposition |
US3843277A (en) | 1973-02-14 | 1974-10-22 | Gen Electric | Sound attenuating inlet duct |
US3988889A (en) | 1974-02-25 | 1976-11-02 | General Electric Company | Cowling arrangement for a turbofan engine |
US3932058A (en) | 1974-06-07 | 1976-01-13 | United Technologies Corporation | Control system for variable pitch fan propulsor |
US3935558A (en) | 1974-12-11 | 1976-01-27 | United Technologies Corporation | Surge detector for turbine engines |
US4130872A (en) | 1975-10-10 | 1978-12-19 | The United States Of America As Represented By The Secretary Of The Air Force | Method and system of controlling a jet engine for avoiding engine surge |
GB1516041A (en) | 1977-02-14 | 1978-06-28 | Secr Defence | Multistage axial flow compressor stators |
US4240250A (en) | 1977-12-27 | 1980-12-23 | The Boeing Company | Noise reducing air inlet for gas turbine engines |
GB2041090A (en) | 1979-01-31 | 1980-09-03 | Rolls Royce | By-pass gas turbine engines |
US4284174A (en) | 1979-04-18 | 1981-08-18 | Avco Corporation | Emergency oil/mist system |
US4220171A (en) | 1979-05-14 | 1980-09-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Curved centerline air intake for a gas turbine engine |
US4289360A (en) | 1979-08-23 | 1981-09-15 | General Electric Company | Bearing damper system |
DE2940446C2 (en) | 1979-10-05 | 1982-07-08 | B. Braun Melsungen Ag, 3508 Melsungen | Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels |
US4478551A (en) | 1981-12-08 | 1984-10-23 | United Technologies Corporation | Turbine exhaust case design |
US4611464A (en) | 1984-05-02 | 1986-09-16 | United Technologies Corporation | Rotor assembly for a gas turbine engine and method of disassembly |
DE3532456A1 (en) | 1985-09-11 | 1987-03-19 | Mtu Muenchen Gmbh | INTERMEDIATE SHAFT (INTERSHAFT) BEARING WITH SQUEEZE FILM DAMPING WITH OR WITHOUT SQUIRREL CAGE |
US4722357A (en) | 1986-04-11 | 1988-02-02 | United Technologies Corporation | Gas turbine engine nacelle |
US4696156A (en) | 1986-06-03 | 1987-09-29 | United Technologies Corporation | Fuel and oil heat management system for a gas turbine engine |
GB8630754D0 (en) | 1986-12-23 | 1987-02-04 | Rolls Royce Plc | Turbofan gas turbine engine |
GB2207191B (en) * | 1987-07-06 | 1992-03-04 | Gen Electric | Gas turbine engine |
US4916894A (en) | 1989-01-03 | 1990-04-17 | General Electric Company | High bypass turbofan engine having a partially geared fan drive turbine |
FR2644844B1 (en) * | 1989-03-23 | 1994-05-06 | Snecma | SUSPENSION OF THE LOW PRESSURE TURBINE ROTOR OF A DOUBLE BODY TURBOMACHINE |
US4979362A (en) | 1989-05-17 | 1990-12-25 | Sundstrand Corporation | Aircraft engine starting and emergency power generating system |
US5058617A (en) | 1990-07-23 | 1991-10-22 | General Electric Company | Nacelle inlet for an aircraft gas turbine engine |
US5141400A (en) | 1991-01-25 | 1992-08-25 | General Electric Company | Wide chord fan blade |
US5102379A (en) | 1991-03-25 | 1992-04-07 | United Technologies Corporation | Journal bearing arrangement |
US5317877A (en) | 1992-08-03 | 1994-06-07 | General Electric Company | Intercooled turbine blade cooling air feed system |
US5447411A (en) | 1993-06-10 | 1995-09-05 | Martin Marietta Corporation | Light weight fan blade containment system |
US5466198A (en) | 1993-06-11 | 1995-11-14 | United Technologies Corporation | Geared drive system for a bladed propulsor |
US5361580A (en) | 1993-06-18 | 1994-11-08 | General Electric Company | Gas turbine engine rotor support system |
US5307622A (en) * | 1993-08-02 | 1994-05-03 | General Electric Company | Counterrotating turbine support assembly |
US5524847A (en) | 1993-09-07 | 1996-06-11 | United Technologies Corporation | Nacelle and mounting arrangement for an aircraft engine |
RU2082824C1 (en) | 1994-03-10 | 1997-06-27 | Московский государственный авиационный институт (технический университет) | Method of protection of heat-resistant material from effect of high-rapid gaseous flow of corrosive media (variants) |
US5433674A (en) | 1994-04-12 | 1995-07-18 | United Technologies Corporation | Coupling system for a planetary gear train |
US5778659A (en) | 1994-10-20 | 1998-07-14 | United Technologies Corporation | Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems |
US5915917A (en) | 1994-12-14 | 1999-06-29 | United Technologies Corporation | Compressor stall and surge control using airflow asymmetry measurement |
JP2969075B2 (en) | 1996-02-26 | 1999-11-02 | ジャパンゴアテックス株式会社 | Degassing device |
US5634767A (en) | 1996-03-29 | 1997-06-03 | General Electric Company | Turbine frame having spindle mounted liner |
US5857836A (en) | 1996-09-10 | 1999-01-12 | Aerodyne Research, Inc. | Evaporatively cooled rotor for a gas turbine engine |
US5975841A (en) | 1997-10-03 | 1999-11-02 | Thermal Corp. | Heat pipe cooling for turbine stators |
US5985470A (en) | 1998-03-16 | 1999-11-16 | General Electric Company | Thermal/environmental barrier coating system for silicon-based materials |
US6209311B1 (en) * | 1998-04-13 | 2001-04-03 | Nikkiso Company, Ltd. | Turbofan engine including fans with reduced speed |
US6517341B1 (en) | 1999-02-26 | 2003-02-11 | General Electric Company | Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments |
US6410148B1 (en) | 1999-04-15 | 2002-06-25 | General Electric Co. | Silicon based substrate with environmental/ thermal barrier layer |
US6315815B1 (en) | 1999-12-16 | 2001-11-13 | United Technologies Corporation | Membrane based fuel deoxygenator |
US6223616B1 (en) | 1999-12-22 | 2001-05-01 | United Technologies Corporation | Star gear system with lubrication circuit and lubrication method therefor |
US6318070B1 (en) | 2000-03-03 | 2001-11-20 | United Technologies Corporation | Variable area nozzle for gas turbine engines driven by shape memory alloy actuators |
US6444335B1 (en) | 2000-04-06 | 2002-09-03 | General Electric Company | Thermal/environmental barrier coating for silicon-containing materials |
US6647707B2 (en) | 2000-09-05 | 2003-11-18 | Sudarshan Paul Dev | Nested core gas turbine engine |
US6506022B2 (en) | 2001-04-27 | 2003-01-14 | General Electric Company | Turbine blade having a cooled tip shroud |
US6708482B2 (en) | 2001-11-29 | 2004-03-23 | General Electric Company | Aircraft engine with inter-turbine engine frame |
US6732502B2 (en) | 2002-03-01 | 2004-05-11 | General Electric Company | Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor |
US6619030B1 (en) | 2002-03-01 | 2003-09-16 | General Electric Company | Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors |
US6607165B1 (en) | 2002-06-28 | 2003-08-19 | General Electric Company | Aircraft engine mount with single thrust link |
US6814541B2 (en) | 2002-10-07 | 2004-11-09 | General Electric Company | Jet aircraft fan case containment design |
US7021042B2 (en) | 2002-12-13 | 2006-04-04 | United Technologies Corporation | Geartrain coupling for a turbofan engine |
US6709492B1 (en) | 2003-04-04 | 2004-03-23 | United Technologies Corporation | Planar membrane deoxygenator |
GB0406174D0 (en) | 2004-03-19 | 2004-04-21 | Rolls Royce Plc | Turbine engine arrangement |
DE102004016246A1 (en) | 2004-04-02 | 2005-10-20 | Mtu Aero Engines Gmbh | Turbine, in particular low-pressure turbine, a gas turbine, in particular an aircraft engine |
US7328580B2 (en) | 2004-06-23 | 2008-02-12 | General Electric Company | Chevron film cooled wall |
GB0502324D0 (en) | 2005-03-14 | 2005-03-16 | Rolls Royce Plc | A multi-shaft arrangement for a turbine engine |
GB0506685D0 (en) | 2005-04-01 | 2005-05-11 | Hopkins David R | A design to increase and smoothly improve the throughput of fluid (air or gas) through the inlet fan (or fans) of an aero-engine system |
US7374403B2 (en) | 2005-04-07 | 2008-05-20 | General Electric Company | Low solidity turbofan |
DE102005018139A1 (en) | 2005-04-20 | 2006-10-26 | Mtu Aero Engines Gmbh | Jet engine |
US8772398B2 (en) | 2005-09-28 | 2014-07-08 | Entrotech Composites, Llc | Linerless prepregs, composite articles therefrom, and related methods |
US7685808B2 (en) * | 2005-10-19 | 2010-03-30 | General Electric Company | Gas turbine engine assembly and methods of assembling same |
US7591754B2 (en) | 2006-03-22 | 2009-09-22 | United Technologies Corporation | Epicyclic gear train integral sun gear coupling design |
BE1017135A3 (en) | 2006-05-11 | 2008-03-04 | Hansen Transmissions Int | A GEARBOX FOR A WIND TURBINE. |
US7600370B2 (en) | 2006-05-25 | 2009-10-13 | Siemens Energy, Inc. | Fluid flow distributor apparatus for gas turbine engine mid-frame section |
US20080003096A1 (en) | 2006-06-29 | 2008-01-03 | United Technologies Corporation | High coverage cooling hole shape |
JP4911344B2 (en) | 2006-07-04 | 2012-04-04 | 株式会社Ihi | Turbofan engine |
US8585538B2 (en) | 2006-07-05 | 2013-11-19 | United Technologies Corporation | Coupling system for a star gear train in a gas turbine engine |
US7926260B2 (en) | 2006-07-05 | 2011-04-19 | United Technologies Corporation | Flexible shaft for gas turbine engine |
US7694505B2 (en) | 2006-07-31 | 2010-04-13 | General Electric Company | Gas turbine engine assembly and method of assembling same |
US7632064B2 (en) | 2006-09-01 | 2009-12-15 | United Technologies Corporation | Variable geometry guide vane for a gas turbine engine |
US7662059B2 (en) | 2006-10-18 | 2010-02-16 | United Technologies Corporation | Lubrication of windmilling journal bearings |
US7926259B2 (en) | 2006-10-31 | 2011-04-19 | General Electric Company | Turbofan engine assembly and method of assembling same |
US8020665B2 (en) | 2006-11-22 | 2011-09-20 | United Technologies Corporation | Lubrication system with extended emergency operability |
US8017188B2 (en) | 2007-04-17 | 2011-09-13 | General Electric Company | Methods of making articles having toughened and untoughened regions |
US7950237B2 (en) | 2007-06-25 | 2011-05-31 | United Technologies Corporation | Managing spool bearing load using variable area flow nozzle |
US20120124964A1 (en) | 2007-07-27 | 2012-05-24 | Hasel Karl L | Gas turbine engine with improved fuel efficiency |
US8844265B2 (en) | 2007-08-01 | 2014-09-30 | United Technologies Corporation | Turbine section of high bypass turbofan |
US8256707B2 (en) | 2007-08-01 | 2012-09-04 | United Technologies Corporation | Engine mounting configuration for a turbofan gas turbine engine |
US8205432B2 (en) | 2007-10-03 | 2012-06-26 | United Technologies Corporation | Epicyclic gear train for turbo fan engine |
US8511986B2 (en) | 2007-12-10 | 2013-08-20 | United Technologies Corporation | Bearing mounting system in a low pressure turbine |
US7762086B2 (en) * | 2008-03-12 | 2010-07-27 | United Technologies Corporation | Nozzle extension assembly for ground and flight testing |
US8128021B2 (en) | 2008-06-02 | 2012-03-06 | United Technologies Corporation | Engine mount system for a turbofan gas turbine engine |
US7997868B1 (en) | 2008-11-18 | 2011-08-16 | Florida Turbine Technologies, Inc. | Film cooling hole for turbine airfoil |
US8061969B2 (en) | 2008-11-28 | 2011-11-22 | Pratt & Whitney Canada Corp. | Mid turbine frame system for gas turbine engine |
US8091371B2 (en) | 2008-11-28 | 2012-01-10 | Pratt & Whitney Canada Corp. | Mid turbine frame for gas turbine engine |
US8307626B2 (en) | 2009-02-26 | 2012-11-13 | United Technologies Corporation | Auxiliary pump system for fan drive gear system |
US8181441B2 (en) | 2009-02-27 | 2012-05-22 | United Technologies Corporation | Controlled fan stream flow bypass |
US8172716B2 (en) | 2009-06-25 | 2012-05-08 | United Technologies Corporation | Epicyclic gear system with superfinished journal bearing |
US8500392B2 (en) | 2009-10-01 | 2013-08-06 | Pratt & Whitney Canada Corp. | Sealing for vane segments |
US9170616B2 (en) | 2009-12-31 | 2015-10-27 | Intel Corporation | Quiet system cooling using coupled optimization between integrated micro porous absorbers and rotors |
US8905713B2 (en) | 2010-05-28 | 2014-12-09 | General Electric Company | Articles which include chevron film cooling holes, and related processes |
US9631558B2 (en) | 2012-01-03 | 2017-04-25 | United Technologies Corporation | Geared architecture for high speed and small volume fan drive turbine |
US8297917B1 (en) | 2011-06-08 | 2012-10-30 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9133729B1 (en) | 2011-06-08 | 2015-09-15 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9938898B2 (en) | 2011-07-29 | 2018-04-10 | United Technologies Corporation | Geared turbofan bearing arrangement |
US20130192201A1 (en) | 2012-01-31 | 2013-08-01 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US20130192191A1 (en) | 2012-01-31 | 2013-08-01 | Frederick M. Schwarz | Gas turbine engine with high speed low pressure turbine section and bearing support features |
US20130192266A1 (en) | 2012-01-31 | 2013-08-01 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US20130192258A1 (en) | 2012-01-31 | 2013-08-01 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US8756908B2 (en) | 2012-05-31 | 2014-06-24 | United Technologies Corporation | Fundamental gear system architecture |
US10267228B2 (en) | 2013-10-31 | 2019-04-23 | United Technologies Corporation | Geared turbofan arrangement with core split power ratio |
US20160032826A1 (en) | 2014-08-04 | 2016-02-04 | MTU Aero Engines AG | Turbofan aircraft engine |
-
2012
- 2012-04-25 US US13/455,235 patent/US20130192191A1/en not_active Abandoned
- 2012-07-26 US US13/558,605 patent/US9540948B2/en active Active
-
2017
- 2017-01-06 US US15/399,864 patent/US20170114724A1/en not_active Abandoned
-
2019
- 2019-10-10 US US16/598,048 patent/US11585276B2/en active Active
-
2023
- 2023-02-16 US US18/110,454 patent/US20230193830A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20130192191A1 (en) | 2013-08-01 |
US11585276B2 (en) | 2023-02-21 |
US20200049077A1 (en) | 2020-02-13 |
US20230193830A1 (en) | 2023-06-22 |
US9540948B2 (en) | 2017-01-10 |
US20130195621A1 (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11585276B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9816442B2 (en) | Gas turbine engine with high speed low pressure turbine section | |
US9611859B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9845726B2 (en) | Gas turbine engine with high speed low pressure turbine section | |
CA2889618C (en) | Gas turbine engine with mount for low pressure turbine section | |
US20130192196A1 (en) | Gas turbine engine with high speed low pressure turbine section | |
CA2853839C (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US11913349B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3708792A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US9835052B2 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160115865A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160053679A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160053634A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
US20160053631A1 (en) | Gas turbine engine with mount for low pressure turbine section | |
US20160047306A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3163062A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3163033A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3165755A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
EP3165754A1 (en) | Gas turbine engine with high speed low pressure turbine section and bearing support features | |
CA2945264A1 (en) | Gas turbine engine with mount for low pressure turbine section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |