US20170114113A1 - Polypeptides as apelin inhibitors and uses thereof - Google Patents
Polypeptides as apelin inhibitors and uses thereof Download PDFInfo
- Publication number
- US20170114113A1 US20170114113A1 US15/391,893 US201615391893A US2017114113A1 US 20170114113 A1 US20170114113 A1 US 20170114113A1 US 201615391893 A US201615391893 A US 201615391893A US 2017114113 A1 US2017114113 A1 US 2017114113A1
- Authority
- US
- United States
- Prior art keywords
- apelin
- polypeptide
- substituted
- sequence
- deleted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 75
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 69
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 69
- 108010052412 Apelin Proteins 0.000 title abstract description 73
- 102000018746 Apelin Human genes 0.000 title abstract description 70
- BWVPHIKGXQBZPV-QKFDDRBGSA-N apelin Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N1[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=2NC=NC=2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=2NC=NC=2)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CCSC)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(O)=O)CCC1 BWVPHIKGXQBZPV-QKFDDRBGSA-N 0.000 title abstract description 68
- 239000003112 inhibitor Substances 0.000 title abstract description 9
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 claims abstract description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 26
- 201000010099 disease Diseases 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 239000013598 vector Substances 0.000 claims description 18
- 229940024606 amino acid Drugs 0.000 claims description 15
- 235000001014 amino acid Nutrition 0.000 claims description 15
- 150000001413 amino acids Chemical class 0.000 claims description 15
- 230000002491 angiogenic effect Effects 0.000 claims description 9
- 108020004707 nucleic acids Proteins 0.000 claims description 8
- 150000007523 nucleic acids Chemical class 0.000 claims description 8
- 102000039446 nucleic acids Human genes 0.000 claims description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 7
- 230000001225 therapeutic effect Effects 0.000 claims description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004471 Glycine Substances 0.000 claims description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004473 Threonine Substances 0.000 claims description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 2
- 239000006035 Tryptophane Substances 0.000 claims description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 2
- 229960003767 alanine Drugs 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- 229960001230 asparagine Drugs 0.000 claims description 2
- 235000009582 asparagine Nutrition 0.000 claims description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 2
- 229960002743 glutamine Drugs 0.000 claims description 2
- 229960002449 glycine Drugs 0.000 claims description 2
- 229960000310 isoleucine Drugs 0.000 claims description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 2
- 229960003136 leucine Drugs 0.000 claims description 2
- 229930182817 methionine Natural products 0.000 claims description 2
- 229960004452 methionine Drugs 0.000 claims description 2
- 229960005190 phenylalanine Drugs 0.000 claims description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 2
- 229960002429 proline Drugs 0.000 claims description 2
- 229960001153 serine Drugs 0.000 claims description 2
- 229960002898 threonine Drugs 0.000 claims description 2
- 229960004799 tryptophan Drugs 0.000 claims description 2
- 229960004441 tyrosine Drugs 0.000 claims description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 2
- 229960004295 valine Drugs 0.000 claims description 2
- 239000004474 valine Substances 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 41
- 108090000623 proteins and genes Proteins 0.000 description 17
- 102400000251 Apelin-36 Human genes 0.000 description 15
- 101800001808 Apelin-36 Proteins 0.000 description 15
- BVTLGARMSLXAHI-VDEROMQGSA-N apelin-36 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)CNC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)C(C)C)C1=CN=CN1 BVTLGARMSLXAHI-VDEROMQGSA-N 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 102100030949 Apelin receptor Human genes 0.000 description 14
- 102400000252 Apelin-13 Human genes 0.000 description 14
- XXCCRHIAIBQDPX-PEWBXTNBSA-N apelin-13 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCC(N)=O)C1=CN=CN1 XXCCRHIAIBQDPX-PEWBXTNBSA-N 0.000 description 14
- 108010040480 apelin-13 peptide Proteins 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 14
- 239000002202 Polyethylene glycol Substances 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 208000032843 Hemorrhage Diseases 0.000 description 11
- 230000000740 bleeding effect Effects 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 102000006437 Proprotein Convertases Human genes 0.000 description 10
- 108010044159 Proprotein Convertases Proteins 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 8
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 102000004961 Furin Human genes 0.000 description 7
- 108090001126 Furin Proteins 0.000 description 7
- 230000033115 angiogenesis Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 206010012289 Dementia Diseases 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108090000190 Thrombin Proteins 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 229960004072 thrombin Drugs 0.000 description 6
- 108091008803 APLNR Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- SVWSKJCJNAIKNH-MJZUAXFLSA-N apelin-17 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](N)CCCCN)C1=CN=CN1 SVWSKJCJNAIKNH-MJZUAXFLSA-N 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 210000004623 platelet-rich plasma Anatomy 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 208000007536 Thrombosis Diseases 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 206010029113 Neovascularisation Diseases 0.000 description 3
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 3
- 101710180552 Proprotein convertase subtilisin/kexin type 6 Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 3
- 108010004977 Vasopressins Proteins 0.000 description 3
- 102000002852 Vasopressins Human genes 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 210000001508 eye Anatomy 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 208000030159 metabolic disease Diseases 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 229960003726 vasopressin Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- KWPACVJPAFGBEQ-IKGGRYGDSA-N (2s)-1-[(2r)-2-amino-3-phenylpropanoyl]-n-[(3s)-1-chloro-6-(diaminomethylideneamino)-2-oxohexan-3-yl]pyrrolidine-2-carboxamide Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)CCl)C1=CC=CC=C1 KWPACVJPAFGBEQ-IKGGRYGDSA-N 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000771523 Homo sapiens Apelin Proteins 0.000 description 2
- 206010020710 Hyperphagia Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010053198 Inappropriate antidiuretic hormone secretion Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 102000016978 Orphan receptors Human genes 0.000 description 2
- 108070000031 Orphan receptors Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000005374 Poisoning Diseases 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 108010022052 Proprotein Convertase 5 Proteins 0.000 description 2
- 102100036365 Proprotein convertase subtilisin/kexin type 5 Human genes 0.000 description 2
- 102100038950 Proprotein convertase subtilisin/kexin type 7 Human genes 0.000 description 2
- 101710180647 Proprotein convertase subtilisin/kexin type 7 Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000001275 ca(2+)-mobilization Effects 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000006274 endogenous ligand Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 102000013373 fibrillar collagen Human genes 0.000 description 2
- 108060002894 fibrillar collagen Proteins 0.000 description 2
- -1 for example Chemical class 0.000 description 2
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 2
- VPSRLGDRGCKUTK-UHFFFAOYSA-N fura-2-acetoxymethyl ester Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=C(C)C=C1OCCOC(C(=C1)N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=CC2=C1OC(C=1OC(=CN=1)C(=O)OCOC(C)=O)=C2 VPSRLGDRGCKUTK-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 102000048606 human APLN Human genes 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 108010093297 tetrapeptide carbamate Proteins 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 206010000050 Abdominal adhesions Diseases 0.000 description 1
- 206010000599 Acromegaly Diseases 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000003120 Angiofibroma Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 102100029459 Apelin Human genes 0.000 description 1
- 102000016555 Apelin receptors Human genes 0.000 description 1
- 102000007347 Apyrase Human genes 0.000 description 1
- 108010007730 Apyrase Proteins 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 208000000104 Arthus reaction Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000003732 Cat-scratch disease Diseases 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010011017 Corneal graft rejection Diseases 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000001287 Galactorrhea Diseases 0.000 description 1
- 206010017600 Galactorrhoea Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 206010018265 Gigantism Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000621371 Homo sapiens WD and tetratricopeptide repeats protein 1 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 101000892274 Human adenovirus C serotype 2 Adenovirus death protein Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 206010029333 Neurosis Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010034912 Phobia Diseases 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 206010050661 Platelet aggregation inhibition Diseases 0.000 description 1
- 208000004880 Polyuria Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 101000820656 Rattus norvegicus Seminal vesicle secretory protein 4 Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 208000007135 Retinal Neovascularization Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 208000010112 Spinocerebellar Degenerations Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 208000037132 Subdural Chronic Hematoma Diseases 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- 208000026928 Turner syndrome Diseases 0.000 description 1
- 108010062481 Type 1 Angiotensin Receptor Proteins 0.000 description 1
- 206010053614 Type III immune complex mediated reaction Diseases 0.000 description 1
- 102100026803 Type-1 angiotensin II receptor Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002744 anti-aggregatory effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002686 anti-diuretic effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 208000013677 cerebrovascular dementia Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 238000001085 differential centrifugation Methods 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000035619 diuresis Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000004590 drinking behavior Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 208000030172 endocrine system disease Diseases 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 201000005577 familial hyperlipidemia Diseases 0.000 description 1
- 210000005002 female reproductive tract Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 230000007661 gastrointestinal function Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000003884 gestational trophoblastic disease Diseases 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 208000031424 hyperprolactinemia Diseases 0.000 description 1
- 208000006575 hypertriglyceridemia Diseases 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 201000008284 inappropriate ADH syndrome Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000004041 inotropic agent Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000035168 lymphangiogenesis Effects 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000005001 male reproductive tract Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 208000037843 metastatic solid tumor Diseases 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 201000003142 neovascular glaucoma Diseases 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 208000015238 neurotic disease Diseases 0.000 description 1
- 235000003715 nutritional status Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 208000019899 phobic disease Diseases 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 208000022530 polyphagia Diseases 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- GMVPRGQOIOIIMI-DWKJAMRDSA-N prostaglandin E1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DWKJAMRDSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000003741 urothelium Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 208000002670 vitamin B12 deficiency Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to polypeptides and their uses as apelin inhibitors.
- the orphan receptor APJ (putative receptor protein related to angiotensin II type 1 receptor or ATI) is a G-protein coupled receptor with seven transmembrane domains, constituted of 380 amino acids.
- a peptide called apelin AJ endogenous ligand
- the apelin polypeptide is initially produced as a 77 amino acid protein (called preproapelin) that is cleaved to produce cleavage products of 36 amino acids (proapelin), 17 amino acids, and 13 amino acids, each of them having a high affinity (in the nM range) for the APJ receptor.
- preproapelin 77 amino acid protein
- proapelin 36 amino acids
- 13 amino acids 13 amino acids
- the peptide size of apelin-17 and apelin-13 are necessary and sufficient for the ability of an apelin polypeptide to interact with APJ.
- apelin precursor proapelin or apelin-36
- Apelin and APJ receptors are both widely distributed in the brain but are particularly highly expressed in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Dual labelling studies demonstrate that within these two nuclei, apelin and its receptor are colocalized with vasopressin (AVP) in a subset of magnocellular neurons.
- AVP vasopressin
- lactating rats characterized by increases in both synthesis and release of AVP
- central injection of apelin inhibits the phasic electrical activity of AVP neurons, decreases systemic AVP release inducing aqueous diuresis.
- apelin is a natural inhibitor of the antidiuretic effect of AVP.
- apelin systemically administered reduces arterial blood pressure, increases cardiac contractility and reduces cardiac loading.
- the present invention relates to a polypeptide comprising the sequence as set forth in SEQ ID NO:1 [APELIN-36] wherein at least one arginine residue at position 18, 19, 22 or 23 has been substituted or deleted.
- the present invention relates to a polypeptide comprising the sequence as set forth in SEQ ID NO:1 [APELIN-36] wherein at least one arginine residue at position 18, 19, 22 or 23 has been substituted or deleted.
- the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:2 [APELIN-77] wherein at least one arginine residue at position 59,60, 63, or 64 has been substituted or deleted.
- 1, 2, 3, or 4 arginine residues are substituted or deleted.
- the Arginine residue substitution(s) may be performed with any amino acid that leads to the deletion of the cleavage site and the generation of unprocessed form of apelin.
- the arginine residue(s) may be substituted independently by a neutral amino acid selected from the group consisting of asparagine, glutamine, serine, threonine, tyrosine, glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophane.
- the arginine residues are independently substituted by a serine residue and in another particular embodiment all arginine residues are substituted by a serine residue.
- polypeptides of the invention may be produced by any technique known per se in the art, such as, without limitation, any chemical, biological, genetic or enzymatic technique, either alone or in combination.
- polypeptides can be synthesized using well-known solid phase method, preferably using a commercially available peptide synthesis apparatus (such as that made by Applied Biosystems, Foster City, Calif.) and following the manufacturer's instructions.
- polypeptides of the invention can be synthesized by recombinant DNA techniques as is now well-known in the art.
- these fragments can be obtained as DNA expression products after incorporation of DNA sequences encoding the desired (poly)peptide into expression vectors and introduction of such vectors into suitable eukaryotic or prokaryotic hosts that will express the desired polypeptide, from which they can be later isolated using well-known techniques.
- a further object of the present invention encompasses function-conservative variants of the polypeptides of the present invention, providing that the at least one arginine residue at position 18, 19, 22 or 23 remains deleted or substituted.
- “Function-conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like).
- Amino acids other than those indicated as conserved may differ in a protein so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm.
- a “function-conservative variant” also includes a polypeptide which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein to which it is compared.
- polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:1 providing that the arginine residues at position 18, 19, 22 or 23 has been substituted or deleted.
- the polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:2 providing that the arginine residues at position 59,60, 63, or 64 has been substituted or deleted.
- the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:3 (Apelin-77 mouse) wherein at least one arginine residue at position 59,60, 63, or 64 has been substituted or deleted.
- the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:4 (Apelin-77 rat) wherein at least one arginine residue at position 59,60, 63, or 64 has been substituted or deleted.
- the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:5 (Apelin-77 beef) wherein at least one arginine residue at position 59,60, 63, or 64 has been substituted or deleted.
- polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:8 (LVQPRGSRNGPGPWQGGSSKFSSQRPRLSHKGPMPF).
- polypeptide of the invention consists or comprises a sequence as set forth in SEQ ID NO:8 (LVQPRGSRNGPGPWQGGSSKFSSQRPRLSHKGPMPF).
- Polypeptides of the invention can be use in an isolated (e.g., purified) form or contained in a vector, such as a membrane or lipid vesicle (e.g. a liposome).
- a vector such as a membrane or lipid vesicle (e.g. a liposome).
- a further object of the invention relates to a nucleic acid comprising a sequence encoding for a polypeptide of the invention.
- said nucleic acid is a DNA or RNA molecule, which may be included in any suitable vector, such as a plasmid, cosmid, episome, artificial chromosome, phage or a viral vector.
- vector plasmid, cosmid, episome, artificial chromosome, phage or a viral vector.
- vector cloning vector
- expression vector mean the vehicle by which a DNA or RNA sequence (e.g. a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g. transcription and translation) of the introduced sequence.
- a further object of the invention relates to a vector comprising a nucleic acid of the invention.
- Such vectors may comprise regulatory elements, such as a promoter, enhancer, terminator and the like, to cause or direct expression of said polypeptide upon administration to a subject.
- the vectors may further comprise one or several origins of replication and/or selectable markers.
- the promoter region may be homologous or heterologous with respect to the coding sequence, and provide for ubiquitous, constitutive, regulated and/or tissue specific expression, in any appropriate host cell, including for in vivo use. Examples of promoters include bacterial promoters (T7, pTAC, Trp promoter, etc.), viral promoters (LTR, TK, CMV-IE, etc.), mammalian gene promoters (albumin, PGK, etc), and the like.
- plasmids include replicating plasmids comprising an origin of replication, or integrative plasmids, such as for instance pUC, pcDNA, pBR, and the like.
- viral vector include adenoviral, retroviral, herpes virus and AAV vectors.
- Such recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses.
- a further object of the present invention relates to a cell which has been transfected, infected or transformed by a nucleic acid and/or a vector according to the invention.
- transformation means the introduction of a “foreign” (i.e. extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence.
- a host cell that receives and expresses introduced DNA or RNA bas been “transformed”.
- the nucleic acids of the invention may be used to produce a recombinant polypeptide of the invention in a suitable expression system.
- expression system means a host cell and compatible vector under suitable conditions, e.g. for the expression of a protein coded for by foreign DNA carried by the vector and introduced to the host cell.
- Common expression systems include E. coli host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors.
- Other examples of host cells include, without limitation, prokaryotic cells (such as bacteria) and eukaryotic cells (such as yeast cells, mammalian cells, insect cells, plant cells, etc.). Specific examples include E.
- mammalian cell lines e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.
- primary or established mammalian cell cultures e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.
- the present invention also relates to a method for producing a recombinant host cell expressing a polypeptide according to the invention, said method comprising the steps consisting of: (i) introducing in vitro or ex vivo a recombinant nucleic acid or a vector as described above into a competent host cell, (ii) culturing in vitro or ex vivo the recombinant host cell obtained and (iii), optionally, selecting the cells which express and/or secrete said polypeptide.
- recombinant host cells can be used for the production of polypeptides according to the present invention, as previously described.
- the invention further relates to a method of producing a polypeptide according to the invention, which method comprises the steps consisting of: (i) culturing a transformed host cell according to the invention under conditions suitable to allow expression of said polypeptide; and (ii) recovering the expressed polypeptide.
- polypeptides of the invention may be modified in order to improve their therapeutic efficacy.
- modification may be used to decrease toxicity, increase circulatory time, or modify biodistribution.
- the toxicity of potentially important therapeutic compounds can be decreased significantly by combination with a variety of drug carrier vehicles that modify biodistribution.
- a strategy for improving drug viability is the utilization of water-soluble polymers.
- Various water-soluble polymers have been shown to modify biodistribution, improve the mode of cellular uptake, change the permeability through physiological barriers; and modify the rate of clearance from the body.
- water-soluble polymers have been synthesized that contain drug moieties as terminal groups, as part of the backbone, or as pendent groups on the polymer chain.
- PEG Polyethylene glycol
- Attachment to various drugs, proteins, and liposomes has been shown to improve residence time and decrease toxicity.
- PEG can be coupled to active agents through the hydroxyl groups at the ends of the chain and via other chemical methods; however, PEG itself is limited to at most two active agents per molecule.
- copolymers of PEG and amino acids may also be suitable because they retain the biocompatibility properties of PEG, but they have the added advantage of numerous attachment points per molecule (providing greater drug loading), and which could be synthetically designed to suit a variety of applications.
- Those of skill in the art are aware of PEGylation techniques for the effective modification of drugs.
- drug delivery polymers that consist of alternating polymers of PEG and tri-functional monomers such as lysine have been used.
- the PEG chains typically 2000 daltons or less
- Such copolymers retain the desirable properties of PEG, while providing reactive pendent groups (the carboxylic acid groups of lysine) at strictly controlled and predetermined intervals along the polymer chain.
- the reactive pendent groups can be used for derivatization, cross-linking, or conjugation with other molecules.
- These polymers are useful in producing stable, long-circulating pro-drugs by varying the molecular weight of the polymer, the molecular weight of the PEG segments, and the cleavable linkage between the drug and the polymer.
- the molecular weight of the PEG segments affects the spacing of the drug/linking group complex and the amount of drug per molecular weight of conjugate (smaller PEG segments provides greater drug loading).
- increasing the overall molecular weight of the block co-polymer conjugate will increase the circulatory half-life of the conjugate. Nevertheless, the conjugate must either be readily degradable or have a molecular weight below the threshold-limiting glomular filtration (e.g., less than 45 kDa).
- a further object of the invention relates to a polypeptide of the invention as an apelin inhibitor.
- polypeptides according to the invention may be suitable for the modulation of central nervous system function (vasopressin neuron activity and systemic vasopressin release, drinking behaviour, food intake), cardiovascular function (blood pressure, myocardium contractibility), immune function, gastrointestinal function, metabolic function, reproductive function, etc. . . . , and therefore, can be used as a therapeutic and/or prophylactic agent for a variety of diseases.
- central nervous system function vasopressin neuron activity and systemic vasopressin release, drinking behaviour, food intake
- cardiovascular function blood pressure, myocardium contractibility
- immune function gastrointestinal function
- metabolic function metabolic function
- reproductive function etc. . . .
- the present invention thus a method for treating and/or preventing a disease, condition or disorder mediated by the apelin in mammals, such method involving the step of administering to a mammal in need thereof a therapeutically effective amount of a polypeptide of the present invention or a pharmaceutical composition thereof.
- the polypeptide of the invention may be used as a postoperative nutritional status improving agent or as an inotropic agent, vasodilatator or an aqueous diuretic.
- polypeptide of the invention may used for the inhibition of the anti-aggregant function of apelin.
- polypeptide of the invention may be used for the treatment of angiogenic diseases.
- angiogenic disease is a disease associated with unregulated angiogenesis.
- angiogenic diseases include but are not limited to primary and metastatic solid tumors, including carcinomas of breast, colon, rectum, lung, oropharynx, hypopharynx, esophagus, stomach, pancreas, liver, gallbladder and bile ducts, small intestine, kidney, bladder, urothelium, female genital tract, (including cervix, uterus, and ovaries as well as choriocarcinoma and gestational trophoblastic disease), male genital tract (including prostate, seminal vesicles, testes and germ cell tumors), endocrine glands (including the thyroid, adrenal, and pituitary glands), and skin, as well as hemangiomas, melanomas, sarcomas (including those arising from bone and soft tissues as well as Kaposi's sarcoma) and tumors of the brain, nerve
- Angiogenic diseases also relate to tumors arising from hematopoietic malignancies such as leukemias as well both Hodgkin's and non-Hodgkin's lymphomas. Angiogenic diseases also pertain to rheumatoid, immune and degenerative arthritis; various ocular diseases such as diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, retrolental fibroplasia, neovascular glaucoma, rubeosis, retinal neovascularization due to macular degeneration (e.g. age-related macular degeneration), hypoxia, angiogenesis in the eye associated with infection or surgical intervention, and other abnormal neovascularization conditions of the eye.
- macular degeneration e.g. age-related macular degeneration
- Angiogenic diseases further include skin diseases such as psoriasis; blood vessel diseases such as hemagiomas, and capillary proliferation within atherosclerotic plaques; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliacjoints'; angiofibroma; and wound granulation.
- Other angiogenic diseases include diseases characterized by excessive or abnormal stimulation of endothelial cells, including but not limited to intestinal adhesions, Crohn's disease, atherosclerosis, scleroderma, and hypertrophic scars, i.e. keloids, diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele ninalia quintosa) and ulcers ( Helicobacter pylori ).
- the polypeptide of the invention is used for the reduction of angiogenesis.
- the amount effective to reduce angiogenesis correspond to at least a reduction of about 15%-80%, or more, when compared to control untreated subject or a placebo-treated control.
- the polypeptide of the invention may be used for the treatment of both primary and metastatic tumors where the angiogenesis is a crucial process. Accordingly, the polypeptide of the invention may be useful for metastases inhibition that are originated from the tumors described above.
- the polypeptide of the invention may be used alone or in combination with adjunct therapy including radiotherapy and/or chemotherapy.
- the polypeptide of the invention may be used in combination with any therapeutical agent.
- the polypeptide of the invention may be administered with one or more other therapeutic agents, such as cancer chemotherapeutic agent; VEGF antagonist.
- the polypeptide may be administered prior to, concurrently, or after other substance or therapy.
- the polypeptide may be administered as an adjuvant therapy to a standard cancer therapy such as surgery, radiation, bone marrow transplantation, chemotherapeutic treatment.
- polypeptide of the invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form pharmaceutical compositions.
- the active principle in the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, can be administered in a unit administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings.
- Suitable unit administration forms comprise oral-route forms such as tablets, gel capsules, powders, granules and oral suspensions or solutions, sublingual and buccal administration forms, aerosols, implants, subcutaneous, transdermal, topical, intraperitoneal, intramuscular, intravenous, subdermal, transdermal, intrathecal and intranasal administration forms and rectal administration forms.
- the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the polypeptides can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- the carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active polypeptides in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- solutions Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
- aqueous solutions For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure.
- one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
- the polypeptides may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses can also be administered.
- the dose of the polypeptide that will be used depends on the severity of the disease, the age and the weight of the patient and the routes of administration and the duration of the treatment.
- the frequency of administration of the polypeptide may vary depending on the severity of the disease. For example, the polypeptide is administered once every 3 months, once every 3 months, once every 2 months, once every month, twice per month or three times per month.
- the polypeptide can be also administrated daily, twice a day, or more. Under certain conditions the polypeptide is administered continuously.
- the period of time over which the polypeptide is administered can vary, depending on any of a variety of factors, e.g., severity of the diseases, age of patient and response of the patient to the treatment.
- parenteral administration such as intravenous or intramuscular injection
- other pharmaceutically acceptable forms include, e.g. tablets or other solids for oral administration; liposomal formulations; time release capsules; and any other form currently used.
- FIGS. 1A and 1B shows the schematic representation of Apelin-77, Apelin-36, Apelin-17 and Apelin-13 (A) and the sequences of Apelin-77 in various animal species (B).
- FIG. 2 Human apelin cDNA encodes a protein of 77 amino acid residues.
- Newly synthesized apelin is a preproprotein that is proteolytically processed in order to generate mature 36, 17 and 13 amino acid forms.
- two dibasic motifs were recognized by the proprotein convertases (PCs) (RRK and FRRQR) suggesting the involvement of these convertases in the maturation of apelin.
- PCs proprotein convertases
- FIG. 3 Expression in HEK293 cells apelin and/or PCs inhibitors the PCs prosegments (profurin, proPC5) and the furin-motif variants of ⁇ 1-antitrypsin ( ⁇ 1-PDX) indicates that the expression in HEK293 cells with apelin alone resulted in 100% processing, whereas, cotransfection of cells with apelin and PCs inhibitors inhabited the processing of apelin.
- FIG. 4 HEK293 cells were transfected with wild-type or mutants apelin (mut1, mut 2), and media derived from these cells were analyzed by Western blotting.
- the mutation 1 (mut1) indicates a mutation at the first cleavage site of Apelin (RR60K) and the mutation 2 (mut2) indicates a mutation at the second cleavage site of apelin (RR64QR).
- RR60K first cleavage site of Apelin
- mut2 indicates a mutation at the second cleavage site of apelin
- RR64QR the mutation at the second cleavage site of apelin
- FIG. 5 APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin.
- FIG. 6 APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin.
- FIG. 7 APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin.
- F13A 500 nmol/kg; ⁇
- apelin 50 nmol/kg; ⁇
- F13A 500 nmol/kg plus apelin (50 nmol/kg) ( ⁇ ).
- FIG. 8 APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin.
- APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin.
- FIG. 9 HUVEC proliferation and motility. HUVEC were serum deprived overnight and then treated for 24 h with or without VEGF in the presence of apelin wild-type (10 ng/ml) and/or apelin mut-36 (10 ng/ml). Cell proliferation was assessed using Cell Titer96 non-radioactive cell proliferation assay.
- the unprocessed mutant of apelin (apelin-DM) was synthesized by Eurogentec. During peptide synthesis the two cleavage sites of proapelin ( 18 RRKFRR) were replaced by 18 SSKFSS amino acid sequence to generate the apelin-DM mutant peptide:
- Platelet-rich plasma was obtained by centrifugation (120 g; 15 minutes; 20° C.) and platelets were isolated by differential centrifugation as previously described 15 .
- the platelet pellet was resuspended in modified Tyrode-HEPES buffer without CaCl 2 (137 mM NaCl, 2 mM KCl, 0.3 mM NaH 2 PO 4 , 5.5 mM glucose, 5 mM Hepes, 12 mM NaHCO 3 , pH 7.3).
- mice were anesthetized by intraperitoneal injection of sodium pentobarbital (60 mg/kg).
- Xylocain® (0.5% v/v) was used as a local analgesic.
- Whole blood was collected by cardiac puncture and mixed with 80 ⁇ M PPACK and 10% (v/v) ACD-C buffer (124 mM sodium citrate, 130 mM citric acid, 110 mM dextrose, pH 6.5) to prevent coagulation.
- Platelet-rich plasma (PRP) was obtained by centrifugation whole blood for 7 minutes at 160 g.
- Platelets were obtained from PRP by centrifugation for 10 minutes at 670 g and washed in the presence of apyrase (100 mU/mL) and PGE 1 (1 ⁇ M) to minimize platelet activation, then resuspended in modified Tyrode-HEPES buffer without CaCl 2 16 .
- Platelet aggregation was monitored by measuring light transmission through the stirred suspension of washed platelets (3 ⁇ 10 8 /mL) at 37° C. in presence of 1 mM CaCl 2 using a Chronolog aggregometer (Chrono-log Corporation, USA). When mentioned, platelets were first incubated with apelin-13, apelin-36, apelin-DM or F13A for 3 minutes at 37° C. Platelet aggregation was triggered by adding collagen, thrombin, or ADP. Representative traces for aggregation were obtained from at least three independent experiments. Results are expressed as the percent change in light transmission with respect to the blank (buffer without platelets), set at 100%.
- Thrombus formation was evaluated in a whole-blood perfusion assay on a fibrillar collagen matrix under arterial shear conditions (shear rate of 1000 s ⁇ 1 ) as previously described 16 .
- glass microcapillary tubes (Vitrocom Hollow Rectangle capillaries; Fiber Optic Center, New Bedford, Mass.) were coated with fibrillar collagen (50 ⁇ g/mL; overnight; 4° C.).
- Blood samples were collected in 80 ⁇ M PPACK, fluorescently labelled with rhodamine 6G (10 ⁇ g/mL) and incubated for 5 minutes with PBS or apelin-13.
- HEPES-buffered saline 145 mM NaCl, 10 mM HEPES, 10 mM D-glucose, 5 mM KCl, 1 mM MgSO 4 , pH 7.4
- HEPES-buffered saline 145 mM NaCl, 10 mM HEPES, 10 mM D-glucose, 5 mM KCl, 1 mM MgSO 4 , pH 7.4
- BSA 0.1%
- Apelin Identified as the endogenous ligand of APJ, a ubiquitously expressed G protein coupled receptor; Apelin exerts multiple physiological effects in the cardiovascular system, fluid homeostasis, and adipoinsular axis. Deregulation of Apelin expression and/or activity was linked to various diseases, including heart failure, atherosclerosis, type 2 diabetes, and obesity. However, the mechanism and function of Apelin precursor (proApelin) conversion to mature Apelin peptides namely: apelin-36, apelin-17 and apelin-13 are not well known ( FIG. 1 ). After removal of the signal peptide, the proteolytic cleavages of proApelin occur within basic motifs, suggesting the involvement of proprotein convertase (PC) family members in this process.
- PC proprotein convertase
- proApelin was found to be inhibited by the Furin inhibitors serpin alpha1-antitrypsin (alpha1-PDX) and prosegment proFurin (ppFurin) and proPC5 (ppPCS).
- Site-directed mutagenesis analysis confirmed the RR(60)KF and KFRR(64)QR preApelin cleavage sites ( FIG. 1A ).
- the lack of proApelin processing found in the PC activity-deficient cell line LoVo was restored by the expression of Furin, but not by paired basic amino acid cleaving enzyme 4 (PACE4), PC5 or PC7 ( FIG. 2 ).
- mice tail-bleed assay we found that intravenous injection of apelin-13 or Apelin-36 induced a significant increase in bleeding time. This effect was inhibited by F13A and Apelin-DM ( FIG. 5 ).
- the use of RT-PCR and immunoblotting analysis revealed that human platelet express apelin and its receptor APJ, at the RNA and protein levels. In these cells the furin was also expressed.
- Our findings demonstrate the processing of Apelin by furin and highlight the potential use of unprocessed mutant Apelin peptide as agent for metabolic disorders treatment through platelet aggregation inhibition that possess a functional apelin/APJ system.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Endocrinology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- The present invention relates to polypeptides and their uses as apelin inhibitors.
- The orphan receptor APJ (putative receptor protein related to angiotensin II
type 1 receptor or ATI) is a G-protein coupled receptor with seven transmembrane domains, constituted of 380 amino acids. In the search for an endogenous ligand of the orphan receptor APJ, a peptide called apelin (APJ endogenous ligand) was first isolated from bovine stomach extracts and the corresponding human protein was deduced from this discovery. - The apelin polypeptide is initially produced as a 77 amino acid protein (called preproapelin) that is cleaved to produce cleavage products of 36 amino acids (proapelin), 17 amino acids, and 13 amino acids, each of them having a high affinity (in the nM range) for the APJ receptor. The peptide size of apelin-17 and apelin-13 are necessary and sufficient for the ability of an apelin polypeptide to interact with APJ. Currently, the mechanism and function of apelin precursor (proapelin or apelin-36) conversion to mature apelin peptides (apelin-17 or apelin-13) are not well known.
- Apelin and APJ receptors are both widely distributed in the brain but are particularly highly expressed in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Dual labelling studies demonstrate that within these two nuclei, apelin and its receptor are colocalized with vasopressin (AVP) in a subset of magnocellular neurons. In lactating rats, characterized by increases in both synthesis and release of AVP, central injection of apelin inhibits the phasic electrical activity of AVP neurons, decreases systemic AVP release inducing aqueous diuresis. Taken together, these data suggest that apelin is a natural inhibitor of the antidiuretic effect of AVP. Moreover apelin systemically administered reduces arterial blood pressure, increases cardiac contractility and reduces cardiac loading.
- The present invention relates to a polypeptide comprising the sequence as set forth in SEQ ID NO:1 [APELIN-36] wherein at least one arginine residue at position 18, 19, 22 or 23 has been substituted or deleted.
- The present invention relates to a polypeptide comprising the sequence as set forth in SEQ ID NO:1 [APELIN-36] wherein at least one arginine residue at position 18, 19, 22 or 23 has been substituted or deleted.
- In one embodiment, the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:2 [APELIN-77] wherein at least one arginine residue at
59,60, 63, or 64 has been substituted or deleted.position - According to one embodiment, 1, 2, 3, or 4 arginine residues are substituted or deleted.
- The Arginine residue substitution(s) may be performed with any amino acid that leads to the deletion of the cleavage site and the generation of unprocessed form of apelin. Typically, the arginine residue(s) may be substituted independently by a neutral amino acid selected from the group consisting of asparagine, glutamine, serine, threonine, tyrosine, glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophane. In a particular embodiment, the arginine residues are independently substituted by a serine residue and in another particular embodiment all arginine residues are substituted by a serine residue.
- The polypeptides of the invention may be produced by any technique known per se in the art, such as, without limitation, any chemical, biological, genetic or enzymatic technique, either alone or in combination.
- Knowing the amino acid sequence of the desired sequence, one skilled in the art can readily produce said polypeptides, by standard techniques for production of polypeptides. For instance, they can be synthesized using well-known solid phase method, preferably using a commercially available peptide synthesis apparatus (such as that made by Applied Biosystems, Foster City, Calif.) and following the manufacturer's instructions.
- Alternatively, the polypeptides of the invention can be synthesized by recombinant DNA techniques as is now well-known in the art. For example, these fragments can be obtained as DNA expression products after incorporation of DNA sequences encoding the desired (poly)peptide into expression vectors and introduction of such vectors into suitable eukaryotic or prokaryotic hosts that will express the desired polypeptide, from which they can be later isolated using well-known techniques.
- A further object of the present invention encompasses function-conservative variants of the polypeptides of the present invention, providing that the at least one arginine residue at position 18, 19, 22 or 23 remains deleted or substituted. “Function-conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like). Amino acids other than those indicated as conserved may differ in a protein so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm. A “function-conservative variant” also includes a polypeptide which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein to which it is compared.
- In a particular embodiment, the polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:1 providing that the arginine residues at position 18, 19, 22 or 23 has been substituted or deleted.
- In a particular embodiment, the polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:2 providing that the arginine residues at
59,60, 63, or 64 has been substituted or deleted.position - In one embodiment, the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:3 (Apelin-77 mouse) wherein at least one arginine residue at
59,60, 63, or 64 has been substituted or deleted.position - In one embodiment, the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:4 (Apelin-77 rat) wherein at least one arginine residue at
59,60, 63, or 64 has been substituted or deleted.position - In one embodiment, the polypeptide according to the invention comprises a sequence as set forth in SEQ ID NO:5 (Apelin-77 beef) wherein at least one arginine residue at
59,60, 63, or 64 has been substituted or deleted.position - In one embodiment, the polypeptide of the invention consists or comprises a sequence having at least 90% amino acid identity with SEQ ID NO:8 (LVQPRGSRNGPGPWQGGSSKFSSQRPRLSHKGPMPF).
- In one embodiment, the polypeptide of the invention consists or comprises a sequence as set forth in SEQ ID NO:8 (LVQPRGSRNGPGPWQGGSSKFSSQRPRLSHKGPMPF).
- Polypeptides of the invention can be use in an isolated (e.g., purified) form or contained in a vector, such as a membrane or lipid vesicle (e.g. a liposome).
- A further object of the invention relates to a nucleic acid comprising a sequence encoding for a polypeptide of the invention.
- Typically, said nucleic acid is a DNA or RNA molecule, which may be included in any suitable vector, such as a plasmid, cosmid, episome, artificial chromosome, phage or a viral vector. The terms “vector”, “cloning vector” and “expression vector” mean the vehicle by which a DNA or RNA sequence (e.g. a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g. transcription and translation) of the introduced sequence.
- So, a further object of the invention relates to a vector comprising a nucleic acid of the invention.
- Such vectors may comprise regulatory elements, such as a promoter, enhancer, terminator and the like, to cause or direct expression of said polypeptide upon administration to a subject. The vectors may further comprise one or several origins of replication and/or selectable markers. The promoter region may be homologous or heterologous with respect to the coding sequence, and provide for ubiquitous, constitutive, regulated and/or tissue specific expression, in any appropriate host cell, including for in vivo use. Examples of promoters include bacterial promoters (T7, pTAC, Trp promoter, etc.), viral promoters (LTR, TK, CMV-IE, etc.), mammalian gene promoters (albumin, PGK, etc), and the like.
- Examples of plasmids include replicating plasmids comprising an origin of replication, or integrative plasmids, such as for instance pUC, pcDNA, pBR, and the like. Examples of viral vector include adenoviral, retroviral, herpes virus and AAV vectors. Such recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses.
- A further object of the present invention relates to a cell which has been transfected, infected or transformed by a nucleic acid and/or a vector according to the invention. The term “transformation” means the introduction of a “foreign” (i.e. extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence. A host cell that receives and expresses introduced DNA or RNA bas been “transformed”.
- The nucleic acids of the invention may be used to produce a recombinant polypeptide of the invention in a suitable expression system. The term “expression system” means a host cell and compatible vector under suitable conditions, e.g. for the expression of a protein coded for by foreign DNA carried by the vector and introduced to the host cell.
- Common expression systems include E. coli host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors. Other examples of host cells include, without limitation, prokaryotic cells (such as bacteria) and eukaryotic cells (such as yeast cells, mammalian cells, insect cells, plant cells, etc.). Specific examples include E. coli, Kluyveromyces or Saccharomyces yeasts, mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.).
- The present invention also relates to a method for producing a recombinant host cell expressing a polypeptide according to the invention, said method comprising the steps consisting of: (i) introducing in vitro or ex vivo a recombinant nucleic acid or a vector as described above into a competent host cell, (ii) culturing in vitro or ex vivo the recombinant host cell obtained and (iii), optionally, selecting the cells which express and/or secrete said polypeptide. Such recombinant host cells can be used for the production of polypeptides according to the present invention, as previously described.
- The invention further relates to a method of producing a polypeptide according to the invention, which method comprises the steps consisting of: (i) culturing a transformed host cell according to the invention under conditions suitable to allow expression of said polypeptide; and (ii) recovering the expressed polypeptide.
- In specific embodiments, it is contemplated that the polypeptides of the invention may be modified in order to improve their therapeutic efficacy. Such modification may be used to decrease toxicity, increase circulatory time, or modify biodistribution. For example, the toxicity of potentially important therapeutic compounds can be decreased significantly by combination with a variety of drug carrier vehicles that modify biodistribution.
- A strategy for improving drug viability is the utilization of water-soluble polymers. Various water-soluble polymers have been shown to modify biodistribution, improve the mode of cellular uptake, change the permeability through physiological barriers; and modify the rate of clearance from the body. To achieve either a targeting or sustained-release effect, water-soluble polymers have been synthesized that contain drug moieties as terminal groups, as part of the backbone, or as pendent groups on the polymer chain.
- Polyethylene glycol (PEG) has been widely used as a drug carrier, given its high degree of biocompatibility and ease of modification. Attachment to various drugs, proteins, and liposomes has been shown to improve residence time and decrease toxicity. PEG can be coupled to active agents through the hydroxyl groups at the ends of the chain and via other chemical methods; however, PEG itself is limited to at most two active agents per molecule. In a different approach, copolymers of PEG and amino acids may also be suitable because they retain the biocompatibility properties of PEG, but they have the added advantage of numerous attachment points per molecule (providing greater drug loading), and which could be synthetically designed to suit a variety of applications. Those of skill in the art are aware of PEGylation techniques for the effective modification of drugs. For example, drug delivery polymers that consist of alternating polymers of PEG and tri-functional monomers such as lysine have been used. The PEG chains (typically 2000 daltons or less) are linked to the a- and e-amino groups of lysine through stable urethane linkages. Such copolymers retain the desirable properties of PEG, while providing reactive pendent groups (the carboxylic acid groups of lysine) at strictly controlled and predetermined intervals along the polymer chain. The reactive pendent groups can be used for derivatization, cross-linking, or conjugation with other molecules. These polymers are useful in producing stable, long-circulating pro-drugs by varying the molecular weight of the polymer, the molecular weight of the PEG segments, and the cleavable linkage between the drug and the polymer. The molecular weight of the PEG segments affects the spacing of the drug/linking group complex and the amount of drug per molecular weight of conjugate (smaller PEG segments provides greater drug loading). In general, increasing the overall molecular weight of the block co-polymer conjugate will increase the circulatory half-life of the conjugate. Nevertheless, the conjugate must either be readily degradable or have a molecular weight below the threshold-limiting glomular filtration (e.g., less than 45 kDa).
- A further object of the invention relates to a polypeptide of the invention as an apelin inhibitor.
- The role of apelin in the pathophysiology of various diseases has been described in Pitkin S L, Maguire J J, Bonner T I, Davenport A P. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev. 2010 September; 62(3):331-42. Epub 2010 Jul. 6. Review.
- Accordingly, the polypeptides according to the invention may be suitable for the modulation of central nervous system function (vasopressin neuron activity and systemic vasopressin release, drinking behaviour, food intake), cardiovascular function (blood pressure, myocardium contractibility), immune function, gastrointestinal function, metabolic function, reproductive function, etc. . . . , and therefore, can be used as a therapeutic and/or prophylactic agent for a variety of diseases.
- The present invention thus a method for treating and/or preventing a disease, condition or disorder mediated by the apelin in mammals, such method involving the step of administering to a mammal in need thereof a therapeutically effective amount of a polypeptide of the present invention or a pharmaceutical composition thereof.
- Diseases, conditions and/or disorders which could be treated or prevented by the administration of a polypeptide of the invention are for example:
-
- Inappropriate vasopressin secretions (SIADH) including pathologies like neurogenic diabetes mellitus (e.g. diabetic complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, etc.), lung cancer, septic choc, thirst troubles;
- Cardiovascular diseases: Heart failure, diseases of kidney (e.g. renal failure, nephritis, etc.) hypertension, cirrhosis, arteriosclerosis, pulmonary emphysema, pulmonary oedema;
- Metabolic diseases: Obesity, anorexia, hyperphagia, polyphagia, hypercholesterolemia, hyperglyceridemia, hyperlipemia;
- Various types of dementia such as senile dementia, cerebrovascular dementia, dementia due to genealogical denaturation degenerative diseases (e.g. Alzheimer's disease, Parkinson's disease, Pick's disease, Huntington's disease, etc.), dementia resulting from infectious diseases (e.g. delayed virus infections such as Creutzfeldt-Jakob disease), dementia associated with endocrine diseases, metabolic diseases, or poisoning (e.g. hypothyroidism, vitamin B12 deficiency, alcoholism, poisoning caused by various drugs, metals, or organic compounds), dementia caused by tumors (e.g. brain tumor), and dementia due to traumatic diseases (e.g. chronic subdural hematoma), depression, hyperactive child syndrome (microencephalopathy), disturbance of consciousness, anxiety disorder, schizophrenia, phobia;
- Growth hormone secretory disorder (e.g. gigantism, acromegaly, etc.), hyperprolactinemia. galactorrhea.
- Cancer (e.g. mammary cancer, lymphocytic leukemia, bladder cancer, ovary cancer, carcinoma of prostate, etc.);
- And pancreatitis, Turner's syndrome, neurosis, rheumatoid arthritis, spinal cord injury, transient brain ischemia, amyotrophic lateral sclerosis, spinocerebellar degeneration, bone fracture, wounds, atopic dermatitis, osteoporosis, asthma, epilepsy, sterility.
- The polypeptide of the invention may be used as a postoperative nutritional status improving agent or as an inotropic agent, vasodilatator or an aqueous diuretic.
- In a particular embodiment, the polypeptide of the invention may used for the inhibition of the anti-aggregant function of apelin.
- In another embodiment, the polypeptide of the invention may be used for the treatment of angiogenic diseases.
- An “angiogenic disease” is a disease associated with unregulated angiogenesis. Typically, angiogenic diseases include but are not limited to primary and metastatic solid tumors, including carcinomas of breast, colon, rectum, lung, oropharynx, hypopharynx, esophagus, stomach, pancreas, liver, gallbladder and bile ducts, small intestine, kidney, bladder, urothelium, female genital tract, (including cervix, uterus, and ovaries as well as choriocarcinoma and gestational trophoblastic disease), male genital tract (including prostate, seminal vesicles, testes and germ cell tumors), endocrine glands (including the thyroid, adrenal, and pituitary glands), and skin, as well as hemangiomas, melanomas, sarcomas (including those arising from bone and soft tissues as well as Kaposi's sarcoma) and tumors of the brain, nerves, eyes, such as astrocytomas, gliomas, glioblastomas, retinoblastomas, neuromas, neuroblastomas, Schwannomas, and meningiomas. Angiogenic diseases also relate to tumors arising from hematopoietic malignancies such as leukemias as well both Hodgkin's and non-Hodgkin's lymphomas. Angiogenic diseases also pertain to rheumatoid, immune and degenerative arthritis; various ocular diseases such as diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, retrolental fibroplasia, neovascular glaucoma, rubeosis, retinal neovascularization due to macular degeneration (e.g. age-related macular degeneration), hypoxia, angiogenesis in the eye associated with infection or surgical intervention, and other abnormal neovascularization conditions of the eye. Angiogenic diseases further include skin diseases such as psoriasis; blood vessel diseases such as hemagiomas, and capillary proliferation within atherosclerotic plaques; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliacjoints'; angiofibroma; and wound granulation. Other angiogenic diseases include diseases characterized by excessive or abnormal stimulation of endothelial cells, including but not limited to intestinal adhesions, Crohn's disease, atherosclerosis, scleroderma, and hypertrophic scars, i.e. keloids, diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele ninalia quintosa) and ulcers (Helicobacter pylori).
- The polypeptide of the invention is used for the reduction of angiogenesis. The amount effective to reduce angiogenesis correspond to at least a reduction of about 15%-80%, or more, when compared to control untreated subject or a placebo-treated control.
- For cancer treatments, the polypeptide of the invention may be used for the treatment of both primary and metastatic tumors where the angiogenesis is a crucial process. Accordingly, the polypeptide of the invention may be useful for metastases inhibition that are originated from the tumors described above. The polypeptide of the invention may be used alone or in combination with adjunct therapy including radiotherapy and/or chemotherapy.
- The polypeptide of the invention may be used in combination with any therapeutical agent. For example the polypeptide of the invention may be administered with one or more other therapeutic agents, such as cancer chemotherapeutic agent; VEGF antagonist. The polypeptide may be administered prior to, concurrently, or after other substance or therapy. The polypeptide may be administered as an adjuvant therapy to a standard cancer therapy such as surgery, radiation, bone marrow transplantation, chemotherapeutic treatment.
- The polypeptide of the invention may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form pharmaceutical compositions.
- In the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, the active principle, alone or in combination with another active principle, can be administered in a unit administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings. Suitable unit administration forms comprise oral-route forms such as tablets, gel capsules, powders, granules and oral suspensions or solutions, sublingual and buccal administration forms, aerosols, implants, subcutaneous, transdermal, topical, intraperitoneal, intramuscular, intravenous, subdermal, transdermal, intrathecal and intranasal administration forms and rectal administration forms.
- Preferably, the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The polypeptides can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active polypeptides in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
- For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
- The polypeptides may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses can also be administered. For the treatment the dose of the polypeptide that will be used depends on the severity of the disease, the age and the weight of the patient and the routes of administration and the duration of the treatment. The frequency of administration of the polypeptide may vary depending on the severity of the disease. For example, the polypeptide is administered once every 3 months, once every 3 months, once every 2 months, once every month, twice per month or three times per month. The polypeptide can be also administrated daily, twice a day, or more. Under certain conditions the polypeptide is administered continuously. The period of time over which the polypeptide is administered, can vary, depending on any of a variety of factors, e.g., severity of the diseases, age of patient and response of the patient to the treatment.
- In addition to the compounds of the invention formulated for parenteral administration, such as intravenous or intramuscular injection, other pharmaceutically acceptable forms include, e.g. tablets or other solids for oral administration; liposomal formulations; time release capsules; and any other form currently used.
- The invention will be further illustrated by the following figures and examples. However, these examples and figures should not be interpreted in any way as limiting the scope of the present invention.
-
FIGS. 1A and 1B shows the schematic representation of Apelin-77, Apelin-36, Apelin-17 and Apelin-13 (A) and the sequences of Apelin-77 in various animal species (B). -
FIG. 2 : Human apelin cDNA encodes a protein of 77 amino acid residues. Newly synthesized apelin is a preproprotein that is proteolytically processed in order to generate mature 36, 17 and 13 amino acid forms. We cloned human apelin into pIRES2-eGFP vector adding a V5 tag in C-terminus of the apelin sequence. Upon examination of the amino acid sequence of the apelin precursor, two dibasic motifs were recognized by the proprotein convertases (PCs) (RRK and FRRQR) suggesting the involvement of these convertases in the maturation of apelin. To identify the PCs involved in apelin processing, apelin and each of the PCs were transiently co-expressed in LoVo cells, a furin-deficient cell line. Supernatants were collected 24 hours after transfection and analyzed for proapelin processing by immunoblotting using a V5 antibody. As illustrated in (a), analyses of media derived from LoVo cells cotransfected with vector encoding proapelin and control vector show a band with an apparent molecular mass of 8-9 kDa, corresponding to the intact apelin precursor. Cotransfection of cells with apelin and vectors encoding different convertase (furin, PACE4, PC5 or PC7) revealed that only the expression of furin is associated with a reduction in the level of the immunoreactive precursor with a concomitant appearance of 2 products of 3-4 and 2-3 kDa, corresponding to apelin-17 and apelin-13. -
FIG. 3 : Expression in HEK293 cells apelin and/or PCs inhibitors the PCs prosegments (profurin, proPC5) and the furin-motif variants of α1-antitrypsin (α1-PDX) indicates that the expression in HEK293 cells with apelin alone resulted in 100% processing, whereas, cotransfection of cells with apelin and PCs inhibitors inhabited the processing of apelin. -
FIG. 4 : HEK293 cells were transfected with wild-type or mutants apelin (mut1, mut 2), and media derived from these cells were analyzed by Western blotting. The mutation 1 (mut1) indicates a mutation at the first cleavage site of Apelin (RR60K) and the mutation 2 (mut2) indicates a mutation at the second cleavage site of apelin (RR64QR). Expression of these cells with wild type Apelin, mut1 or mut2 don't affect the processing of Apelin. Whereas the expression in these cells of Apelin with two mutated sites prevented the processing of Apelin. Only the unprocessed form is detected under these conditions. -
FIG. 5 : APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin. Thrombin-induced aggregation of human platelets preincubated with PBS, as control (black bar); F13A (100 nM; white bar); apelin (10 nM; grey bar) or F13A (100 nM) plus apelin (10 nM) (dashed bar). -
FIG. 6 : APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin. Intracellular Ca2+ mobilization ([Ca2+]i) in human platelets was monitored in real-time using a fluorescence spectrophotometer. Human platelets, loaded with Fura-2-AM were preincubated 3 minutes with PBS, as control (black bar); F13A (100 nM; white bar); apelin (10 nM; grey bar) or F13A (100 nM) plus apelin (10 nM) (dashed bar) before stimulation by thrombin (100 mU/mL). While F13A alone has no effects on tail bleeding time, platelet aggregation and Ca2+ mobilization, its injection with apelin prevents the inhibitory effects of apelin alone. -
FIG. 7 : APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin. Tail bleeding time in wild-type mice receiving an intravenous injection of PBS, as control (); F13A (500 nmol/kg; ▪); apelin (50 nmol/kg; ∘) or F13A (500 nmol/kg) plus apelin (50 nmol/kg) (□). -
FIG. 8 : APJ antagonist (F13A) and unprocessed double mutant apelin-36 (apelin-DM) confirm the role of APJ in the inhibition of platelet function by apelin. Tail bleeding time in wild-type mice receiving an intravenous injection of PBS, as control (); apelin (50 nmol/kg; ∘); apelin-36 (500 nmol/kg; Δ); apelin-DM (500 nmol/kg; ▪), apelin-36 plus apelin (▴) or apelin-DM plus apelin (□). -
FIG. 9 : HUVEC proliferation and motility. HUVEC were serum deprived overnight and then treated for 24 h with or without VEGF in the presence of apelin wild-type (10 ng/ml) and/or apelin mut-36 (10 ng/ml). Cell proliferation was assessed using Cell Titer96 non-radioactive cell proliferation assay. - Methods:
- The unprocessed mutant of apelin (apelin-DM) was synthesized by Eurogentec. During peptide synthesis the two cleavage sites of proapelin (18RRKFRR) were replaced by 18SSKFSS amino acid sequence to generate the apelin-DM mutant peptide:
-
(SEQ ID NO: 8) LVQPRGSRNGPGPWQGGSSKFSSQRPRLSHKGPMPF. - Preparation of Washed Platelets:
- Human Platelets
- Venous blood was collected from healthy donors on 10% (v/v) trisodium citrate (3.8%). Written informed consent was obtained from all the donors. Platelet-rich plasma (PRP) was obtained by centrifugation (120 g; 15 minutes; 20° C.) and platelets were isolated by differential centrifugation as previously described15. The platelet pellet was resuspended in modified Tyrode-HEPES buffer without CaCl2 (137 mM NaCl, 2 mM KCl, 0.3 mM NaH2PO4, 5.5 mM glucose, 5 mM Hepes, 12 mM NaHCO3, pH 7.3).
- Mouse Platelets
- Mice were anesthetized by intraperitoneal injection of sodium pentobarbital (60 mg/kg). Xylocain® (0.5% v/v) was used as a local analgesic. Whole blood was collected by cardiac puncture and mixed with 80 μM PPACK and 10% (v/v) ACD-C buffer (124 mM sodium citrate, 130 mM citric acid, 110 mM dextrose, pH 6.5) to prevent coagulation. Platelet-rich plasma (PRP) was obtained by centrifugation whole blood for 7 minutes at 160 g. Platelets were obtained from PRP by centrifugation for 10 minutes at 670 g and washed in the presence of apyrase (100 mU/mL) and PGE1 (1 μM) to minimize platelet activation, then resuspended in modified Tyrode-HEPES buffer without CaCl2 16.
- Haematological Analysis and Bleeding Time:
- Complete blood counts and haematocrit were determined with an automatic cell counter, using the standard parameters for mice. Bleeding time assays were performed on overnight fasted animals, after injection of PBS, apelin-13, apelin-36, apelin-DM or F13A into the retro-orbital plexus, by cutting off the tip of the tail (3 mm from the tip) and immediately immersing it in saline at 37° C. We then recorded the time taken for the bleeding to stop. Tail bleeding was monitored for at least 60 seconds beyond this time point, to ensure that bleeding did not begin again. Tail bleeding assays were stopped at 600 seconds if the bleeding did not stop.
- Platelet Aggregation:
- Platelet aggregation was monitored by measuring light transmission through the stirred suspension of washed platelets (3×108/mL) at 37° C. in presence of 1 mM CaCl2 using a Chronolog aggregometer (Chrono-log Corporation, USA). When mentioned, platelets were first incubated with apelin-13, apelin-36, apelin-DM or F13A for 3 minutes at 37° C. Platelet aggregation was triggered by adding collagen, thrombin, or ADP. Representative traces for aggregation were obtained from at least three independent experiments. Results are expressed as the percent change in light transmission with respect to the blank (buffer without platelets), set at 100%.
- In Vitro Thrombus Formation Under Flow Conditions:
- Thrombus formation was evaluated in a whole-blood perfusion assay on a fibrillar collagen matrix under arterial shear conditions (shear rate of 1000 s−1) as previously described16. Briefly, glass microcapillary tubes (Vitrocom Hollow Rectangle capillaries; Fiber Optic Center, New Bedford, Mass.) were coated with fibrillar collagen (50 μg/mL; overnight; 4° C.). Blood samples were collected in 80 μM PPACK, fluorescently labelled with rhodamine 6G (10 μg/mL) and incubated for 5 minutes with PBS or apelin-13. Labelled whole blood was then perfused through the coated glass microcapillary with a KD Scientific syringe pump (Fisher Bioblock Scientific, Illkirch, France). Real-time thrombus formation was recorded with an inverted epifluorescence microscope (Nikon Eclipse TE2000-U; Champigny sur Marne, France), coupled to Metamorph 7.0r1 software (Universal Imaging Corporation). Thrombus formation was determined as the mean fluorescence intensity (MFI).
- Measurement of Intracellular Free Ca2+ Concentration ([Ca2+] i):
- Human platelets were loaded with Fura-2 by incubation with 2 μM Fura-2-AM for 45 minutes at 37° C. Cells were then collected by centrifugation at 350 g for 15 min and resuspended in HEPES-buffered saline (145 mM NaCl, 10 mM HEPES, 10 mM D-glucose, 5 mM KCl, 1 mM MgSO4, pH 7.4), and supplemented with 0.1% (w/v) BSA. Fluorescence was recorded from 2 mL aliquots of magnetically stirred cell suspensions at 37° C. using a fluorescence spectrophotometer (Varian Ltd., Madrid, Spain) with excitation wavelengths of 340 and 380 nm and emission at 505 nm. Changes in [Ca2+]i were monitored using the Fura-2 340/380 fluorescence ratio and calibrated according to the method of Grynkiewicz et al.19. Ca2+ release by thrombin was estimated using the integral of the rise in [Ca2+]i for 2.5 minutes after its addition, taking a sample every second, and was expressed in nM as previously described20.
- Statistical Analysis:
- Statistical significance was evaluated with Student's t tests, two-tailed Mann-Whitney U-tests or 1-way ANOVA followed by Turkey test as indicated, using GraphPad Prism statistical software (San Diego, Calif.).
- Results:
- Identified as the endogenous ligand of APJ, a ubiquitously expressed G protein coupled receptor; Apelin exerts multiple physiological effects in the cardiovascular system, fluid homeostasis, and adipoinsular axis. Deregulation of Apelin expression and/or activity was linked to various diseases, including heart failure, atherosclerosis,
type 2 diabetes, and obesity. However, the mechanism and function of Apelin precursor (proApelin) conversion to mature Apelin peptides namely: apelin-36, apelin-17 and apelin-13 are not well known (FIG. 1 ). After removal of the signal peptide, the proteolytic cleavages of proApelin occur within basic motifs, suggesting the involvement of proprotein convertase (PC) family members in this process. Using cell transfection experiments, the processing of proApelin was found to be inhibited by the Furin inhibitors serpin alpha1-antitrypsin (alpha1-PDX) and prosegment proFurin (ppFurin) and proPC5 (ppPCS). Site-directed mutagenesis analysis confirmed the RR(60)KF and KFRR(64)QR preApelin cleavage sites (FIG. 1A ). In parallel, the lack of proApelin processing found in the PC activity-deficient cell line LoVo was restored by the expression of Furin, but not by paired basic amino acid cleaving enzyme 4 (PACE4), PC5 or PC7 (FIG. 2 ). - To investigate the effect of the mutant Apelin peptide (DM) on Apelin functions, we analyzed its role on the recently identified function of apelin on platelet aggregation. Pretreatment of human platelet by thrombin induced their aggregation and Ca2+ mobilisation. In the presence of mature apelin-13 or proApelin (Apelin-36), these platelet functions were inhibited. Whereas platelet incubation with the APJ receptor antagonist apelin-13(F13A) and the synthetic unprocessed double mutant Apelin peptide (Apelin-DM) abolished the apelin inhibitory effect on thrombin-induced aggregation and Ca2+ mobilisation (
FIG. 4 ). Accordingly, using mice tail-bleed assay, we found that intravenous injection of apelin-13 or Apelin-36 induced a significant increase in bleeding time. This effect was inhibited by F13A and Apelin-DM (FIG. 5 ). The use of RT-PCR and immunoblotting analysis revealed that human platelet express apelin and its receptor APJ, at the RNA and protein levels. In these cells the furin was also expressed. Our findings demonstrate the processing of Apelin by furin and highlight the potential use of unprocessed mutant Apelin peptide as agent for metabolic disorders treatment through platelet aggregation inhibition that possess a functional apelin/APJ system. - We found that the synthetic apelin mutant peptide (SEQ ID NO: 8) inhibits endothelial cell proliferation and migration induced by VEGF (
FIG. 5 ). - Using synthetic active apelin-13 and unprocessed mutant apelin we found that while apelin-13 induced the formation of new vessels, the latter prevents the neo-vascularisation as assessed by the chick chorioallantoic membrane (CAM) and mouse aortic ring assays. In conclusion while active apelin-13 aa induced the formation of new vessels, the addition of the unprocessed mutant apelin blocked this process.
- Similarly, the use of the cutaneous reverse passive Arthus reactions assay revealed that while apelin increased tissue inflammation, the mutant unprocessed apelin inhibited these processes.
- Taken together, these findings indicate the ability of the apelin mutant peptide to mediate in vitro and in vivo biological actions. We now evaluate the potential use of this newly identified inhibitor and/or derivates in tumor angiogenesis and lymphangiogenesis therapy.
- Throughout this application, various references describe the state of the art to which this invention pertains. The disclosures of these references are hereby incorporated by reference into the present disclosure.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/391,893 US20170114113A1 (en) | 2012-04-11 | 2016-12-28 | Polypeptides as apelin inhibitors and uses thereof |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP12305426 | 2012-04-11 | ||
| EP12305426.4 | 2012-04-11 | ||
| PCT/EP2013/057356 WO2013153049A1 (en) | 2012-04-11 | 2013-04-09 | Polypeptides as apelin inhibitors and uses thereof |
| US201414391404A | 2014-10-09 | 2014-10-09 | |
| US15/391,893 US20170114113A1 (en) | 2012-04-11 | 2016-12-28 | Polypeptides as apelin inhibitors and uses thereof |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/391,404 Continuation US9593153B2 (en) | 2012-04-11 | 2013-04-09 | Modified apelin polypeptides |
| PCT/EP2013/057356 Continuation WO2013153049A1 (en) | 2012-04-11 | 2013-04-09 | Polypeptides as apelin inhibitors and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170114113A1 true US20170114113A1 (en) | 2017-04-27 |
Family
ID=48289044
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/391,404 Expired - Fee Related US9593153B2 (en) | 2012-04-11 | 2013-04-09 | Modified apelin polypeptides |
| US15/391,893 Abandoned US20170114113A1 (en) | 2012-04-11 | 2016-12-28 | Polypeptides as apelin inhibitors and uses thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/391,404 Expired - Fee Related US9593153B2 (en) | 2012-04-11 | 2013-04-09 | Modified apelin polypeptides |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US9593153B2 (en) |
| EP (1) | EP2836510A1 (en) |
| JP (2) | JP6181152B2 (en) |
| WO (1) | WO2013153049A1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8921307B2 (en) | 2012-11-20 | 2014-12-30 | Novartis Ag | Synthetic linear apelin mimetics for the treatment of heart failure |
| UY35144A (en) | 2012-11-20 | 2014-06-30 | Novartis Ag | APELINE SYNTHETIC LINEAR MIMETICS FOR THE CARDIAC INSUFFICIENCY TREATMENT |
| EP3120142B1 (en) | 2014-03-20 | 2018-12-19 | Centre National de la Recherche Scientifique (C.N.R.S.) | Compounds inhibiting apelin / apj / gp130 signaling for use for treating cancer by inhibiting cancer stem cells |
| CN110709104A (en) | 2017-05-06 | 2020-01-17 | 瑞泽恩制药公司 | Methods of treating ocular disorders with APLNR antagonists and VEGF inhibitors |
| JP7219265B2 (en) * | 2017-08-24 | 2023-02-07 | フェインズ セラピューティクス,インコーポレーテッド | Anti-apelin antibody and use thereof |
| JP2019088675A (en) * | 2017-11-16 | 2019-06-13 | 株式会社大一商会 | Gaming machine |
| JP2019088676A (en) * | 2017-11-16 | 2019-06-13 | 株式会社大一商会 | Gaming machine |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8946382B2 (en) * | 2009-02-27 | 2015-02-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Apelin peptides and methods of use |
-
2013
- 2013-04-09 EP EP13720262.8A patent/EP2836510A1/en not_active Withdrawn
- 2013-04-09 WO PCT/EP2013/057356 patent/WO2013153049A1/en active Application Filing
- 2013-04-09 US US14/391,404 patent/US9593153B2/en not_active Expired - Fee Related
- 2013-04-09 JP JP2015504926A patent/JP6181152B2/en not_active Expired - Fee Related
-
2016
- 2016-12-28 US US15/391,893 patent/US20170114113A1/en not_active Abandoned
-
2017
- 2017-07-19 JP JP2017139738A patent/JP2017221210A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8946382B2 (en) * | 2009-02-27 | 2015-02-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Apelin peptides and methods of use |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150072932A1 (en) | 2015-03-12 |
| JP2015514121A (en) | 2015-05-18 |
| EP2836510A1 (en) | 2015-02-18 |
| JP2017221210A (en) | 2017-12-21 |
| US9593153B2 (en) | 2017-03-14 |
| WO2013153049A1 (en) | 2013-10-17 |
| JP6181152B2 (en) | 2017-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20170114113A1 (en) | Polypeptides as apelin inhibitors and uses thereof | |
| US20110015130A1 (en) | Polypeptides Selective for alphavbeta3 Integrin Conjugated With a Variant Of Human Serum Albumin (HSA) And Pharmaceutical Uses Thereof | |
| US7582465B2 (en) | Beta secretase genes | |
| EP1442058B1 (en) | Peptides effective in the treatment of tumors and other conditions requiring the removal or destruction of cells | |
| AU2007357448B2 (en) | Bioactive peptides and method of using same | |
| US20130052258A1 (en) | Polypeptides and uses thereof | |
| US20170335311A1 (en) | Chimeric protein | |
| NO333999B1 (en) | NTP peptides and their use in the preparation of a drug for the treatment of tumors and other conditions requiring cell removal or destruction | |
| AU2843900A (en) | Proteins that bind angiogenesis-inhibiting proteins, compositions and methods of use thereof | |
| EP1390403B1 (en) | Peptides derived from neural thread proteins and their medical use | |
| KR20110114587A (en) | Serine Protease Derivatives and Uses in the Treatment or Prevention of Coagulation Disorders | |
| JP6886917B2 (en) | A lodestone variant, a polynucleotide encoding a lodestone variant, a recombinant host cell containing the polynucleotide, and a pharmaceutical composition comprising the lodestone variant. | |
| US9562086B2 (en) | Vitronectin:keratinocyte growth factor chimeras | |
| CA3240340A1 (en) | N-terminal and/or c-terminal cleaved soluble ph20 polypeptide and use thereof | |
| EP1862541A1 (en) | Polypeptides derived from the hemopexin-like domain of metalloproteinase MMP-2 | |
| EP0967276A2 (en) | Anti-tumor agent comprising salmosin | |
| US20020115633A1 (en) | Pharmaceutical composition containing ezrin mutated on tyrosin 353 | |
| KR100458362B1 (en) | Novel Protein Derived from Agkistrodon saxatilis emelianov and Process for Preparing the Same | |
| NO335101B1 (en) | NTP peptides for removing or destroying cells, materials comprising the NTP peptides, and using the NTP peptides for the manufacture of a medicament for the treatment of a condition which requires removal or destruction of cells. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INSERM (INSTITUT NATIONAL DE LA SANTE ET DE LA REC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIEGFRIED, GERALDINE;KHATIB, ABDEL-MAJID;SIGNING DATES FROM 20150101 TO 20150108;REEL/FRAME:040778/0834 Owner name: UNIVERSITE PARIS-SUD XI, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIEGFRIED, GERALDINE;KHATIB, ABDEL-MAJID;SIGNING DATES FROM 20150101 TO 20150108;REEL/FRAME:040778/0834 Owner name: UNIVERSITE DE BORDEAUX, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIEGFRIED, GERALDINE;KHATIB, ABDEL-MAJID;SIGNING DATES FROM 20150101 TO 20150108;REEL/FRAME:040778/0834 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |