US20170059854A1 - Optics assembly for high power laser tools - Google Patents

Optics assembly for high power laser tools Download PDF

Info

Publication number
US20170059854A1
US20170059854A1 US15/140,412 US201615140412A US2017059854A1 US 20170059854 A1 US20170059854 A1 US 20170059854A1 US 201615140412 A US201615140412 A US 201615140412A US 2017059854 A1 US2017059854 A1 US 2017059854A1
Authority
US
United States
Prior art keywords
assembly
optics
high power
optical
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/140,412
Inventor
Jason D. Fraze
Brian O. Faircloth
Mark S. Zediker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foro Energy Inc
Original Assignee
Foro Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/543,986 external-priority patent/US8826973B2/en
Priority claimed from US12/896,021 external-priority patent/US8627901B1/en
Application filed by Foro Energy Inc filed Critical Foro Energy Inc
Priority to US15/140,412 priority Critical patent/US20170059854A1/en
Assigned to FORO ENERGY, INC. reassignment FORO ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAIRCLOTH, BRIAN O, FRAZE, JASON D, ZEDIKER, MARK S
Publication of US20170059854A1 publication Critical patent/US20170059854A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present inventions relate to optics assemblies for use with high power laser units, systems and high power laser tools, such as for example drilling, decommissioning, plugging and abandonment, perforating, flow assurance, workover and completion units.
  • high power laser energy means a laser beam having at least about 1 kW (kilowatt) of power.
  • greater distances means at least about 500 m (meter).
  • substantial loss of power means a loss of power of more than about 3.0 dB/km (decibel/kilometer) for a selected wavelength.
  • substantially power transmission means at least about 50% transmittance.
  • high power optics assemblies In the use of high power laser tools, and in particular high power laser tools for applications and processes in remote locations, there is a need for high power optics assemblies. In particular, there is a need for such assemblies that can transmit, shape, focus, direct, and combinations thereof, high power laser energy through and adjacent to areas of rotational transition zones with in such tools.
  • a high power laser optics assembly having: a first section and a second section; the first section having a first opening for receiving a high power laser source for providing a high power laser beam; the second section having an opening for transmitting the high power laser beam; the first opening and the second opening being in optical communication and defining an optical channel; and, a means for sealingly placing the first opening and the second opening in rotational association.
  • assemblies and packages may also include: the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.0066 radians; the optical alignment being maintained over temperature ranges from about ⁇ 100° C. to about 200° C.; the optical alignment being maintained over forces of about 100 g's; the optical alignment being maintained over forces of about 200 g's; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.018 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.001 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.0005 radians; the optical alignment being maintained in the presence of transmitting at least about a 5 kW laser beam between the first and second openings; the optical alignment being maintained in the presence of transmitting at least about a 10 kW laser beam between
  • a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including a first end, a second end, an optic and a window; a housing including a first end and a second end and a first side and a second, thus the housing second end being fixedly associated with the optics package first end; thus the housing and the optics package define a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; the member side having two bearing assemblies, the bearing assemblies being rotationally associated with the housing first side; a rotary seal in sealing engagement with the member and the housing; and, the member having an opening in optical association with the optical channel for receiving a high power laser source, thus the member and opening define a second section of the optics assembly; thus the first and second sections of the optics assembly are rotationally associated so that a laser beam may be transmitted from the first opening through the optical channel to the optics package and exit the optics package while the first section or
  • a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a housing having an opening in optical association with the optics package, the housing defining a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; thus the member being fixedly associated with the optics package; thus the member and the optics package define a second section of the optics assembly; a first bearing assembly and a second bearing assembly, having a bearing materials, the first and second bearing assemblies rotationally and axially associating the housing and the member; a rotary seal means in sealing engagement with the member and the housing, thus the first and the second bearing assemblies are isolated from the optical channel and the optics package; and, the member having an opening in optical association with the optical channel for receiving a high power laser source; thus the first and second sections of the optics assembly are rotationally associated so that so that the optics package and the optical channel are maintained substantially free from bearing material during rotation
  • optics assemblies and packages may also include: an opening for receiving the high power laser source, defines a receptacle for receiving a plurality of high power laser beams having a combined power of at least about 50 kW.
  • a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a first housing having an opening in optical association with the optics package, the first housing defining a first section of the optics assembly: a second housing defining an optical channel, the second housing having a surface removed from the optical channel; thus the second housing has the optics package; thus the housing including the optics package defines a second section of the optics assembly; a first bearing assembly and a second bearing assembly, the first and second bearing assemblies rotationally and axially associating the first housing and the second housing; and, a rotary seal means in sealing engagement with the first housing and the second housing; and, the second housing having an opening in optical association with the optical channel for receiving a high power laser source; thus the optical channel and the optics package are isolated from an environment exterior to the first housing or the second housing, during rotation and transmission of a laser beam, thus the optics package and the optical channel are maintained substantially free from contamination.
  • FIG. 1A is an angled perspective view of an embodiment of an optical assembly in accordance with the present invention.
  • FIG. 1B is a side perspective view of the embodiment of FIG. 1A .
  • FIG. 1C is a side cross-sectional view of the embodiment of FIG. 1A .
  • FIG. 2 is an exploded view of an embodiment of an optical assembly in accordance with the present invention.
  • FIG. 2A show a detailed end view of the embodiment of FIG. 2 in accordance with the present invention.
  • FIG. 2B is a side cross-sectional view taken along line B-B of FIG. 2A of the embodiment of FIG. 2 .
  • FIGS. 2C and 2D show details cross-sectional views of FIG. 26 areas C and D, respectively, of the embodiment of FIG. 2 .
  • FIG. 3 is an exploded view of an embodiment of an optics package in accordance with the present invention.
  • FIG. 4A is an angled perspective view of an embodiment of a modular optics assembly in accordance with the present invention.
  • FIG. 4B is a side view of the embodiment of FIG. 4A .
  • FIG. 5B is a schematic of an embodiment of an anti-back reflection step configuration in accordance with the present invention.
  • the present inventions relate to optical assemblies for delivering and utilization of high power laser energy.
  • the present inventions relate to optical assemblies for use in tools for performing activities such as drilling, working over, completing, cleaning, milling, perforating, monitoring, analyzing, cutting, removing, welding and assembling.
  • the high power laser optics assemblies of the present invention in general, address and manage shock, thermal, cleanliness, and laser beam delivery parameters for a high power laser tool, as well as, other environmental and operational conditions. Further, these factors may be addressed and managed by the present high power laser optics assemblies in the area of rotational transition zones of a tool.
  • a rotational transition zone is any area, section, or part of a tool, where rotating components merge with, are jointed to, overlap with, or are otherwise mechanically associated with non-rotating components, components rotating in a different direction, components rotating at a different speed, and combinations and variations of these.
  • FIGS. 1A, 1B and 1C there are shown a perspective view, a side view and a cross-sectional view of an embodiment of an optics assembly 100 .
  • the optics assembly 100 has three sections, 110 , 130 , 150 .
  • the sections are combined in a manner that seals the interior components from the exterior environment, such that environmental contaminates are kept out of, or substantially kept out of, the interior of the assembly 100 .
  • the assembly is made from materials, such as metal, ceramic, and for example aluminum, stainless steel, steel, brass, titanium, and copper, which are capable of radiating or otherwise transmitting heat that may be built up by the transmission of a high power laser beam through the assembly.
  • each section of the assembly has cooling fins, e.g., 111 , 191 , 151 .
  • sections for the optics assemblies are contemplated. Although the sections are shown as individual components that are affixed together by a securement means, such as for example a bolt, a screw, a press fit, or a threaded connection, they may also be integral, made from a single piece of material, fused, or welded together, and also include sub-section(s) that are integral or separate or combinations and variations of the foregoing. Greater or fewer cooling fins are contemplated. Thus, there may be two, three or more, five or more, ten or more, and twelve or more fins or cooling members. Additional fins may be needed, or used for, example where there are high heat loads, or where the diameter of the assembly is larger.
  • sections 110 and 130 are fixed, forming section 102 , and do not rotate with respect to each other.
  • Section 150 is rotationally connected to section 102 , and thus, section 102 can rotate with respect to section 150 .
  • each section may further have sub-sections or components, which may also be rotationally associated, fixed and combinations thereof.
  • the optics assembly 100 has two optical communication openings, 103 and 104 .
  • High power laser energy is transmitted into and out of these openings.
  • either opening may be configured to either receive or transmit the high power laser energy.
  • the openings may be configured to hold or receive a high power optical fiber or cable, to hold or receive an optical coupler, to receive or transmit a high power laser beam that may be collimated (either as received, as transmitted or both), that may be focused (either as received, as transmitted or both), that may be Gaussian (either as received, as transmitted or both), that may have a predetermined power distribution or beam profile (either as received, as transmitted or both), that may be shaped (either as received, as transmitted or both), that may be divergent (either as received, as transmitted or both), that has more than about 1 kW of power, that has more than about 2 kW of power, that has more than about 5 kW of power, that has more than about 10 kW of power, that has more than about 15 kW of power, that has
  • opening 104 is configured to receive an optical coupler connected to the end of a high power optical fiber, and is the receiving opening for the laser beam.
  • Opening 103 is configured to transmit the laser beam.
  • Opening 103 has a window 112 and optics 113 , for collimating, shaping and focusing the laser beam.
  • sealing members and bearings members are utilized. These members may be any type of such devices known to the art, they may be separate devices, they may be combined, there may be a single device or there may be several devices distributed or located at certain positions in the assembly. Provided however, that they are configured to meet the vibration, shock, pressure, speed, alignment tolerance, temperature and other operating parameters and conditions that the optics assembly will encounter, or need to meet, during its intended use, e.g., during the intended or specified use for the tool or device in which the optics assembly is employed.
  • a multiply-alkylated cyclopentane based grease such as for example, Rheolube 2000 from Nye Lubricants, is applied to the bearings and preferably all surfaces that contact the bearing races. This material may also be applied to the rotary seals. Additionally, this grease may be applied to the surfaces contacting the pre-load ring 134 .
  • the o-ring 135 may be made from an elastomeric type ring, that is durable, does not sluff, and is high temperature stable (preferably up to about 300 F or greater) for example Viton.
  • the members must seal the beam path sufficiently to prevent, substantially restrict, and preferably restrict external contaminates from entering into the interior of the assembly, e.g., getting into or onto the beam path or optics. Additionally, these members should not be a source of contamination themselves. Thus, these members and any lubricants that are used in conjunction with them should not produce, introduce or cause to be introduced, contamination into the interior of the assembly, e.g., getting into or onto the beam path or optics.
  • the optics assembly of the embodiment of FIGS. 1A-C may be used for example in a laser bottom hole assembly, such as the laser bottom hole assembly of U.S. patent applications Ser. No. 12/896,021, Ser. No. 61/446,042, co-filed US patent application having attorney docket no. 13938-81 (Foro s6a) filed contemporaneously herewith, and US patent application publication number 2010/0044104, the entire disclosures of each of which are incorporated herein by reference.
  • temperature up to 120° C. and may be up to 250° C. and higher;
  • pressure up to 300 psi may be up to 600 psi, with a Sapphire window of about 5 mm thickness; and higher pressures with thicker and/or stronger window configurations;
  • g-forces up to 200 g's and greater g-forces up to 500 g's and higher, if more robust components and designs are utilized;
  • rotational speeds from about 0 RPM (revolutions per minute), less than 1 RPM up to about 300 RPM and greater, up to about 500 RPM and greater, up to about 1000 RPM and greater, and with a more robust design and components greater than 2500 RPM;
  • tip/tilt e.g, pointing error
  • basic operating parameters for example, of less than about 0.018 radians, of less than about 0.0066 radians, or less then about 0.004 and most preferably of less than about 0.001 radians. Smaller tip/tilt values may be obtained with enhanced designs and components, such as those of the embodiment in FIG.
  • the retaining rings and optics receiving tube may be made from metal, such as Aluminum, Stainless Steel, or Brass or Copper.
  • the inner surfaces of these components, along the beam tube, as well as any non-transmissive inner surface, (e.g., generally all other components except the optics) in the assembly, that directly face the high power laser beam, should be made to reflect the laser beam.
  • these surfaces may be polished or coated with reflective materials, such as Gold, Silver, Copper, and alloys for the foregoing.
  • inner surfaces e.g., 157 , 158 , 159 , 160 that are in direct thermal contact with the fins may be made with or have a non-reflective black surface, such as black chrome, laser black, and black anodize.
  • the optical channels 154 , 138 are in optical communication. Each channel as a series of steps, or terraces, with increasing inner diameters. Thus, for example step 140 has a larger diameter than step 141 . Each step also has a flat surface, an annulus, that is normal to the axis of the beam path, e.g., 140 a, 141 a. These surfaces function to prevent back reflections, for example from a laser beam back reflection, e.g., back reflections, entering the optics 113 , from entering the fiber and/or coupler that is located in opening 104 and from which the beam is received by the assembly 100 .
  • a laser beam back reflection e.g., back reflections
  • Optics tube 153 and section 150 are joined through locking ring 156 . In this manner optics tube 153 is fixed to and rotates with section 150 . Similarly, ring 137 , and 136 are fixed to and rotate with section 130 (also section 102 ). For a thermal gasketing effect to enhance heat transfer Indium foil is used between the surface of tube 153 and the cooling fins 151 of section 150 , where they overlap.
  • the assembly 100 would be located in the area of a rotational transition zone of the tool, with section 102 being associated with a first section of the tool, and section 150 being associated with second section of the tool that has a different rotation movement from the first section, e.g., the first section rotates and the second section does not.
  • optic 180 There are further optic 180 , optic 181 , optic 182 , and springs 183 , and 184 , that are in optical communication with the optical channels 154 , 138 and the openings 104 and 103 .
  • FIGS. 2, 2A to 2D has a locking member 214 , e.g., a nut, a wave spring 218 , e.g., of stainless steel with a crest-to-crest 1.5 inch outside diameter, a cooling fin section 213 , and a sleeve 212 , which may be indium ribbon, 0.002 ⁇ 1 inch cut to length so as not to over lap when wrapped around a part.
  • the locking member 214 threadably engages inner tube 205 .
  • Locking engagement ring 211 threadably engages cooling fin section 207 , and captures rotary seal 210 , e.g., flexiseal rotary seal, flanged, 1.187 shaft diameter, v-spring, retainer 209 , a plurality of screws 215 , which are threaded into retainer 211 , and an o-ring 208 , e.g., 2.5 inches by 1/16 inches.
  • rotary seal 210 e.g., flexiseal rotary seal, flanged, 1.187 shaft diameter, v-spring, retainer 209 , a plurality of screws 215 , which are threaded into retainer 211 , and an o-ring 208 , e.g., 2.5 inches by 1/16 inches.
  • fin section 207 and engagement ring 211 rotate with respect to inner tube 205 .
  • Fin section 213 is tapper fitted and thus does not rotate with respect to inner tube 205 on sleeve 212 .
  • FIGS. 2C and 2D there is provided a detailed view of areas C and D from FIG. 2B respectively, of a preferred embodiment of a sealing and bearing member, further showing the position of barrier films 260 a, 260 b, 261 a, 261 b, 262 a, 262 b.
  • FIG. 2 shows an exploded view, and that as assembled tube 205 captures and supports fin section 213 by ring 214 , and thus forms section 201 of the optics assembly 200 .
  • the sealing and locking member 484 is affixed (e.g, threads, bolts etc.) to the inner sleeve 451 .
  • the member 484 engages bearings 483 , 482 forcing them into engagement with shoulder 431 on outer sleeve 430 .
  • inner sleeve 451 is held in rotational engagement with outer sleeve 430 .
  • the laser beam as it passes through the cavity 492 formed by the inner and outer sleeves is a collimated beam. (In other embodiments the laser beam may be focused, divergent and/or shaped)
  • purge valves e.g., 470 , 471 in the inner and outer sleeves.
  • these ports have sintered metal filters, or other devices to prevent debris from entering.
  • the ports enable the pressure between the inner and outer members, annulus 491 , and the inner cavity 492 of the inner member 451 to be equalized. In this manner a condition where a high pressure is present outside of the inner cavity 492 then inside the inner cavity, which conditions would tend to drive or force debris past the seal 484 , should not exist, or should be substantially avoided. In this manner the pressure equalizing ports form a part of the bearing and sealing member.
  • bearing and sealing components are configured to protect the optics, the optics package, and the optical channel from contamination during rotation of the various components.
  • the seals and bearing assemblies are configured and positioned to prevent bearing materials, such as shavings, wear debris, sluffings or grease from entering the optical channel or otherwise contaminating any optical surface that transmits the high power laser beam. In this manner those assemblies are isolated, or substantially isolated for practical purposes from the optical channel and the optics.
  • FIG. 5A there is provided a schematic diagram of a step configuration of an inner optical cavity to manage and mitigate back reflections.
  • a centerline 501 of an optical cavity 502 The direction of the laser beam (e.g., the forward propagating high power laser beam as it travels along a laser beam path toward an intended target, work piece, etc. to perform an intended laser operation) in the cavity 502 is shown by arrow 503 as it enters the cavity 502 and travels to the optic 504 , e.g., lens, collimating lens, etc.
  • the optic 504 e.g., lens, collimating lens, etc.
  • the cavity 502 is widest at the optic 504 .
  • the knife edges 506 tapper outwardly, e.g., making a wider cavity, with respect to the direction of the laser beam.
  • the steps 505 may be formed from a unitary piece or they may be individual inserts, that may be changed to meet a particular back reflection condition based upon a particular laser operation or work piece. The back reflections would travel generally in a direction opposite arrow 503 .
  • FIG. 5B there is provided a schematic diagram of a step configuration of an inner optical cavity to manage and mitigate back reflections.
  • a centerline 520 of an optical cavity 522 The direction of the laser beam (e.g., the forward propagating high power laser beam as it travels along a laser beam path toward an intended target, work piece, etc. to perform an intended laser operation) in the cavity 522 is shown by arrow 523 , as it enters the cavity 522 and travels to the optic 521 , e.g., lens, collimating lens, etc.
  • the optic 521 e.g., lens, collimating lens, etc.
  • the steps 525 may be formed from a unitary piece or they may be individual inserts, that may be changed to meet a particular back reflection condition based upon a particular laser operation or work piece. The back reflections would travel generally in a direction opposite arrow 523 .
  • the knife edged configured steps of FIG. 5A may be employed with the staggered or spaced steps of FIG. 5B . It further should be understood that only half of the optical cavity is shown in FIGS. 5A and 5B , and that h same step pattern would also be present on the other side of the centerline.
  • the laser assemblies of the present invention may be used with any high power laser tools or systems.
  • the laser beam, or beams may for example have 10 kW, 20 kW, 40 kW, 80 kW or more power; and have a wavelength in the range of from about 445 nm (nanometers) to about 2100 nm, preferably in the range of from about 800 to 1900 nm, and more preferably in the ranges of from about 1530 nm to 1600 nm, from about 1060 nm to 1080 nm, and from about 1800 nm to 1900 nm.
  • the types of laser beams and sources for providing a high power laser beam may be the devices, systems, optical fibers and beam shaping and delivery optics that are disclosed and taught in the following US Patent Applications and US Patent Application Publications: Publication No.
  • US 2010/0044106 Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication. No. US 2010/0044102, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, and Ser. No. 61/493,174, the entire disclosures of each of which are incorporated herein by reference.
  • the source for providing rotational movement may be a string of drill pipe rotated by a top drive or rotary table, a down hole mud motor, a down hole turbine, a down hole electric motor, and, in particular, may be the systems and devices disclosed in the following US Patent Applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No.
  • the high power lasers for example may be fiber lasers or semiconductor lasers having 10 kW, 20 kW, 50 kW or more power and, which emit laser beams with wavelengths preferably in about the 1064 nm range, about the 1070 nm range, about the 1360 nm range, about the 1455 nm range, about the 1550 nm range, about the 1070 nm range, about the 1083 nm range, or about the 1900 nm range (wavelengths in the range of 1900 nm may be provided by Thulium lasers).
  • the tools that are useful with high power laser systems and which can incorporate or utilize the optical assemblies described herein, many generally be laser drills, laser bottom hole assemblies, laser cutters, laser cleaners, laser monitors, laser welders, laser perforators, laser PIGs, and laser delivery assemblies that may have been adapted for a special use or uses. Configurations of optical elements for collimating and focusing the laser beam can be employed with these tools to provide the desired beam properties for a particular application or tool configuration.
  • Such tools for example may be used for cleaning, resurfacing, removal, and clearing away of unwanted materials, e.g., build-ups, deposits, corrosion, or substances, in, on, or around a structure, e.g. the work piece, or work surface area.
  • unwanted materials would include by way of example rust, corrosion, corrosion by products, degraded or old paint, degraded or old coatings, paint, coatings, waxes, hydrates, microbes, residual materials, biofilms, tars, sludges, and slimes.
  • the optical assemblies may be configured, either through a single opening or multiple openings, to handle one, two, three or more fibers, or optical connectors. They may further have one, two, three or more collimators and collimated beam paths, which paths may be overlapping. Additionally, one, two, three or more of the optical assemblies may be use in, or in conjunction with a particular laser tool or laser system for deploying a laser tool(s).

Abstract

There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

Description

  • This application: (i) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,040; (ii) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,312; (iii) claims, under 35 U.S.C, §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,041; (iv) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,043; (v) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,042; (vi) is a continuation-in-part of U.S. patent application Ser. No. 12/544,038 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; (vii) is a continuation-in-part of U.S. patent application Ser. No. 12/544,136 filed Aug. 19, 2009; (viii) is a continuation-in-part of U.S. patent application Ser. No. 12/543,986 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; (ix) is a continuation-in-part of U.S. patent application Ser. No. 12/544,094 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; and, (x) is a continuation-in-part of U.S. patent application Ser. No. 12/896,021 filed Oct. 1, 2010, the entire disclosures of each of which are incorporated herein by reference.
  • This invention was made with Government support under Award DE AR0000044 awarded by the Office of ARPA-E U.S. Department of Energy. The Government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present inventions relate to optics assemblies for use with high power laser units, systems and high power laser tools, such as for example drilling, decommissioning, plugging and abandonment, perforating, flow assurance, workover and completion units.
  • As used herein, unless specified otherwise “high power laser energy” means a laser beam having at least about 1 kW (kilowatt) of power. As used herein, unless specified otherwise “great distances” means at least about 500 m (meter). As used herein the term “substantial loss of power,” “substantial power loss” and similar such phrases, mean a loss of power of more than about 3.0 dB/km (decibel/kilometer) for a selected wavelength. As used herein the term “substantial power transmission” means at least about 50% transmittance.
  • SUMMARY
  • In the use of high power laser tools, and in particular high power laser tools for applications and processes in remote locations, there is a need for high power optics assemblies. In particular, there is a need for such assemblies that can transmit, shape, focus, direct, and combinations thereof, high power laser energy through and adjacent to areas of rotational transition zones with in such tools. Further, and in greater particularity, there is a need for such assemblies to address vibration, temperature, contaminant, particulate and other conditions that arise from the use of high power laser energy, the tool itself, and the environment in which the tool will be used, such as for example, drilling, decommissioning, perforating, plugging and abandonment, flow assurance, workover and completion activities in the oil, natural gas and geothermal industries, as well as, activities in other industries such as the nuclear industry, the chemical industry, the subsea exploration, salvage and construction industry, the pipeline industry, and the military. Further, these tools may be used when the high power laser energy is transmitted over great distances to small and/or difficult to access locations, positions or environments for activities such as monitoring, cleaning, controlling, assembling, drilling, machining, welding and cutting. The present inventions, among other things, solve these and other needs by providing the articles of manufacture, devices and processes taught herein.
  • There being provided a high power laser optics assembly having: a first section and a second section; the first section having a first opening for receiving a high power laser source for providing a high power laser beam; the second section having an opening for transmitting the high power laser beam; the first opening and the second opening being in optical communication and defining an optical channel; and, a means for sealingly placing the first opening and the second opening in rotational association.
  • Furthermore, there are provided assemblies and packages that may also include: the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.0066 radians; the optical alignment being maintained over temperature ranges from about −100° C. to about 200° C.; the optical alignment being maintained over forces of about 100 g's; the optical alignment being maintained over forces of about 200 g's; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.018 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.001 radians; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than 0.0005 radians; the optical alignment being maintained in the presence of transmitting at least about a 5 kW laser beam between the first and second openings; the optical alignment being maintained in the presence of transmitting at least about a 10 kW laser beam between the first and second openings; the optical alignment being maintained in the presence of transmitting at least about a 50 kW laser beam between the first and second openings; the optical channel extends through the rotational sealing means, and the rotational sealing means has a bearing assembly and a rotary seal; the rotational sealing means has two bearing assemblies; the rotational sealing means has three bearing assemblies; a means for passive cooling; a means for managing back reflections; a first section and a second section and the member second section has a stepped optical channel for managing back reflections; the optics package being associated with a passive cooling means; he assembly being capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by decentering to less than about 1.6 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by decentering to less than about 1 mm over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians over basic operating parameters; the assembly being capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.001 radians over basic operating parameters; and the assembly being capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters.
  • Moreover, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including a first end, a second end, an optic and a window; a housing including a first end and a second end and a first side and a second, thus the housing second end being fixedly associated with the optics package first end; thus the housing and the optics package define a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; the member side having two bearing assemblies, the bearing assemblies being rotationally associated with the housing first side; a rotary seal in sealing engagement with the member and the housing; and, the member having an opening in optical association with the optical channel for receiving a high power laser source, thus the member and opening define a second section of the optics assembly; thus the first and second sections of the optics assembly are rotationally associated so that a laser beam may be transmitted from the first opening through the optical channel to the optics package and exit the optics package while the first section or second section being rotating relative to the other.
  • Yet still further, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a housing having an opening in optical association with the optics package, the housing defining a first section of the optics assembly; a member defining an optical channel, the member having a side removed from the optical channel; thus the member being fixedly associated with the optics package; thus the member and the optics package define a second section of the optics assembly; a first bearing assembly and a second bearing assembly, having a bearing materials, the first and second bearing assemblies rotationally and axially associating the housing and the member; a rotary seal means in sealing engagement with the member and the housing, thus the first and the second bearing assemblies are isolated from the optical channel and the optics package; and, the member having an opening in optical association with the optical channel for receiving a high power laser source; thus the first and second sections of the optics assembly are rotationally associated so that so that the optics package and the optical channel are maintained substantially free from bearing material during rotation.
  • Still additionally, there are provided optics assemblies and packages that may also include: an opening for receiving the high power laser source, defines a receptacle for receiving a plurality of high power laser beams having a combined power of at least about 50 kW.
  • Further still, there is provided a high power rotating optics assembly for use with a high power laser device, the optics assembly having: an optics package including an optic; a first housing having an opening in optical association with the optics package, the first housing defining a first section of the optics assembly: a second housing defining an optical channel, the second housing having a surface removed from the optical channel; thus the second housing has the optics package; thus the housing including the optics package defines a second section of the optics assembly; a first bearing assembly and a second bearing assembly, the first and second bearing assemblies rotationally and axially associating the first housing and the second housing; and, a rotary seal means in sealing engagement with the first housing and the second housing; and, the second housing having an opening in optical association with the optical channel for receiving a high power laser source; thus the optical channel and the optics package are isolated from an environment exterior to the first housing or the second housing, during rotation and transmission of a laser beam, thus the optics package and the optical channel are maintained substantially free from contamination.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is an angled perspective view of an embodiment of an optical assembly in accordance with the present invention.
  • FIG. 1B is a side perspective view of the embodiment of FIG. 1A.
  • FIG. 1C is a side cross-sectional view of the embodiment of FIG. 1A.
  • FIG. 2 is an exploded view of an embodiment of an optical assembly in accordance with the present invention.
  • FIG. 2A show a detailed end view of the embodiment of FIG. 2 in accordance with the present invention.
  • FIG. 2B is a side cross-sectional view taken along line B-B of FIG. 2A of the embodiment of FIG. 2.
  • FIGS. 2C and 2D show details cross-sectional views of FIG. 26 areas C and D, respectively, of the embodiment of FIG. 2.
  • FIG. 3 is an exploded view of an embodiment of an optics package in accordance with the present invention.
  • FIG. 4A is an angled perspective view of an embodiment of a modular optics assembly in accordance with the present invention.
  • FIG. 4B is a side view of the embodiment of FIG. 4A.
  • FIG. 4C is a cross-sectional side view of the embodiment of FIG. 4.
  • FIG. 5A is a schematic of an embodiment of an anti-back reflection step configuration in accordance with the present invention.
  • FIG. 5B is a schematic of an embodiment of an anti-back reflection step configuration in accordance with the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present inventions relate to optical assemblies for delivering and utilization of high power laser energy. In particular, the present inventions relate to optical assemblies for use in tools for performing activities such as drilling, working over, completing, cleaning, milling, perforating, monitoring, analyzing, cutting, removing, welding and assembling.
  • The high power laser optics assemblies of the present invention, in general, address and manage shock, thermal, cleanliness, and laser beam delivery parameters for a high power laser tool, as well as, other environmental and operational conditions. Further, these factors may be addressed and managed by the present high power laser optics assemblies in the area of rotational transition zones of a tool. A rotational transition zone is any area, section, or part of a tool, where rotating components merge with, are jointed to, overlap with, or are otherwise mechanically associated with non-rotating components, components rotating in a different direction, components rotating at a different speed, and combinations and variations of these.
  • Turning to FIGS. 1A, 1B and 1C there are shown a perspective view, a side view and a cross-sectional view of an embodiment of an optics assembly 100. The optics assembly 100 has three sections, 110, 130, 150. The sections are combined in a manner that seals the interior components from the exterior environment, such that environmental contaminates are kept out of, or substantially kept out of, the interior of the assembly 100. The assembly is made from materials, such as metal, ceramic, and for example aluminum, stainless steel, steel, brass, titanium, and copper, which are capable of radiating or otherwise transmitting heat that may be built up by the transmission of a high power laser beam through the assembly. Preferably, each section of the assembly has cooling fins, e.g., 111, 191, 151.
  • Greater or fewer sections for the optics assemblies are contemplated. Although the sections are shown as individual components that are affixed together by a securement means, such as for example a bolt, a screw, a press fit, or a threaded connection, they may also be integral, made from a single piece of material, fused, or welded together, and also include sub-section(s) that are integral or separate or combinations and variations of the foregoing. Greater or fewer cooling fins are contemplated. Thus, there may be two, three or more, five or more, ten or more, and twelve or more fins or cooling members. Additional fins may be needed, or used for, example where there are high heat loads, or where the diameter of the assembly is larger. Active cooling means, such as a water-cooling system, may be utilized, however, and in particular, for remote applications, passive cooling, as shown in the embodiment of FIGS. 1A to 1C, and the other embodiments of the figures in this specification, is preferred. As used herein passive cooling is any means of cooling that does not employ or use an additional system or equipment to cool the assembly; but instead relies on only the operating environment and operating conditions, e.g., flow of a fluid used to remove cuttings or waste form a work site, of the tool to manage and cool the heat associated with the optics assemblies.
  • In the embodiment of FIGS. 1A to 1C, sections 110 and 130 are fixed, forming section 102, and do not rotate with respect to each other. Section 150 is rotationally connected to section 102, and thus, section 102 can rotate with respect to section 150.
  • Although two sections are shown rotationally associated in the embodiment of FIGS. 1A to 1C, greater or fewer sections are contemplated. Each section may further have sub-sections or components, which may also be rotationally associated, fixed and combinations thereof.
  • The optics assembly 100 has two optical communication openings, 103 and 104. High power laser energy is transmitted into and out of these openings. In general, either opening may be configured to either receive or transmit the high power laser energy. The openings may be configured to hold or receive a high power optical fiber or cable, to hold or receive an optical coupler, to receive or transmit a high power laser beam that may be collimated (either as received, as transmitted or both), that may be focused (either as received, as transmitted or both), that may be Gaussian (either as received, as transmitted or both), that may have a predetermined power distribution or beam profile (either as received, as transmitted or both), that may be shaped (either as received, as transmitted or both), that may be divergent (either as received, as transmitted or both), that has more than about 1 kW of power, that has more than about 2 kW of power, that has more than about 5 kW of power, that has more than about 10 kW of power, that has more than about 15 kW of power, that has more than about 20 kW of power, that has more than about 40 kW of power, that is a single beam, that is made up of multiple beams, a plurality of separate beams, and combinations and variations of these and other laser beam qualities and parameters.
  • In the embodiment of FIGS. 1A to 1C, opening 104 is configured to receive an optical coupler connected to the end of a high power optical fiber, and is the receiving opening for the laser beam. Opening 103 is configured to transmit the laser beam. Opening 103 has a window 112 and optics 113, for collimating, shaping and focusing the laser beam.
  • To accommodate the different rotational movements of section 102 and 150, sealing members and bearings members are utilized. These members may be any type of such devices known to the art, they may be separate devices, they may be combined, there may be a single device or there may be several devices distributed or located at certain positions in the assembly. Provided however, that they are configured to meet the vibration, shock, pressure, speed, alignment tolerance, temperature and other operating parameters and conditions that the optics assembly will encounter, or need to meet, during its intended use, e.g., during the intended or specified use for the tool or device in which the optics assembly is employed.
  • As shown in FIG. 1C, there are three bearing assemblies, 131, 132, 133, and a retaining ring 136 that provides a preload to bearing 133, through pre-load ring 134, which also retains O-ring 135. For example the bearings 131, 132 may be angular contact ball bearings and bearing 133 may be an angular contact ball bearing. Additionally, to facilitate sealing, e.g., containment of the bearings and bearing material thus manage and reduce contamination and potential contamination from the bearings, bearing material, a multiply-alkylated cyclopentane based grease, such as for example, Rheolube 2000 from Nye Lubricants, is applied to the bearings and preferably all surfaces that contact the bearing races. This material may also be applied to the rotary seals. Additionally, this grease may be applied to the surfaces contacting the pre-load ring 134. The o-ring 135 may be made from an elastomeric type ring, that is durable, does not sluff, and is high temperature stable (preferably up to about 300 F or greater) for example Viton. The pre-load ring 134 may be made from any metal that is durable, and has sufficient stiffness to apply the required pre-load, for example stainless steel. The bearings may be tapered roller bearings, cylindrical roller bearings, radial ball bearings, four point contact ball bearings, thrust ball bearings, journal bearings and magnetic bearings, by way of example. All three bearings, or all such bearings in a particular optical assembly may be the same type of bearing, or they may be different types. Further, and as shown in greater detail in the embodiment of FIGS. 2C and 2D, a barrier film, may be used on the surfaces adjacent to the bearings. The barrier film should provide a specific barrier to material, debris or other substances in the fluid flow. For example, if a positive displacement motor (“PDM”) is used with air flow, which requires a lubricant such as oil to be in the air flow, the barrier film should be selected to provide a barrier to oil migration. An example of such an oil barrier film would be Nyebar L from Nye Lubricants, which functions by providing a thin layer of material that has a very low surface energy and thus prevents oils and grease from migrating across it.
  • Turning again to FIGS. 1A to 1C, to keep the optics and the beam path within the assembly 100 free from debris and contamination, or substantially free from debris and contamination such that the high power laser performance of the system is not significantly adversely affected, the members must seal the beam path sufficiently to prevent, substantially restrict, and preferably restrict external contaminates from entering into the interior of the assembly, e.g., getting into or onto the beam path or optics. Additionally, these members should not be a source of contamination themselves. Thus, these members and any lubricants that are used in conjunction with them should not produce, introduce or cause to be introduced, contamination into the interior of the assembly, e.g., getting into or onto the beam path or optics. Maintaining the cleanliness of the beam path and optics is important, as even a small amount of contamination may cause the assembly to fail or degrade the quality of the laser beam, by for example being affixed to an inner surface and heated by the high power laser beam, causing the assembly to fail.
  • Preferably, by way of example, the optics assembly of the embodiment of FIGS. 1A-C, may be used for example in a laser bottom hole assembly, such as the laser bottom hole assembly of U.S. patent applications Ser. No. 12/896,021, Ser. No. 61/446,042, co-filed US patent application having attorney docket no. 13938-81 (Foro s6a) filed contemporaneously herewith, and US patent application publication number 2010/0044104, the entire disclosures of each of which are incorporated herein by reference.
  • The configurations of the optics assemblies of the present inventions provide the ability to, and thus, may meet, and can be further designed and constructed to exceed, the following criteria, operating conditions and performance criteria:
  • temperature up to 120° C. and may be up to 250° C. and higher;
  • pressure up to 300 psi, and may be up to 600 psi, with a Sapphire window of about 5 mm thickness; and higher pressures with thicker and/or stronger window configurations;
  • g-forces up to 200 g's and greater g-forces up to 500 g's and higher, if more robust components and designs are utilized;
  • capable of handling laser powers of greater than about 5 kW, greater than about 10 kW, greater than about 20 kW, and with more robust components, added thermal capacity, and enhanced design features, such as the anti-back reflection steps of FIG. 5, greater than about 40 kW, greater than about 60 kW and greater;
  • rotational speeds from about 0 RPM (revolutions per minute), less than 1 RPM up to about 300 RPM and greater, up to about 500 RPM and greater, up to about 1000 RPM and greater, and with a more robust design and components greater than 2500 RPM;
  • low temperatures of about down to about −20° C. about −40° C. and as low as about −143° C.;
  • and, can maintain optical alignment, as measured by tip/tilt, (e.g, pointing error) throughout some, and preferably all of the foregoing conditions (herein referred to as “basic operating parameters”), for example, of less than about 0.018 radians, of less than about 0.0066 radians, or less then about 0.004 and most preferably of less than about 0.001 radians. Smaller tip/tilt values may be obtained with enhanced designs and components, such as those of the embodiment in FIG. 4, which may be as small as less than about 0.0005 radians, and less than about 0.0001 radians; and, can maintain optical alignment, as measured by decentering (e.g, concentricty) throughout some and preferably all of the foregoing conditions, for example of less than about 1.6 mm, of less than about 1 mm, or preferably less then about 0.5 mm. Smaller decentering values may be obtained with enhanced designs and components, such as those of the embodiment in FIG. 4, which may be as small as less than about 0.25 mm, 0.05 mm, and less;
  • and, can maintain optical alignment, as measured by defocus throughout some and preferably all of the foregoing conditions, for example of less than about 0.7 mm, of less than about 0.5 mm, or less; and,
  • for beam patterns that are not axially symmetric, can maintain tolerance for clocking throughout some and preferably all of the foregoing conditions, of less than about 0.03 radians, and less.
  • Turning again to the embodiment of FIGS. 1A to 1C there is also shown a retaining ring 136, a seal carrier 137, a flexible sealing member 152, e.g., a v-seal or lip seal, and an optics receiving tube 153 having an optical channel 154, and a locking ring 156. The retaining, ring 136 also has an optical channel 138.
  • The retaining rings and optics receiving tube may be made from metal, such as Aluminum, Stainless Steel, or Brass or Copper. The inner surfaces of these components, along the beam tube, as well as any non-transmissive inner surface, (e.g., generally all other components except the optics) in the assembly, that directly face the high power laser beam, should be made to reflect the laser beam. Thus, these surfaces may be polished or coated with reflective materials, such as Gold, Silver, Copper, and alloys for the foregoing. However, for the purpose of heat management and to enhance heat transfer from the optics and interior to the fins, inner surfaces, e.g., 157, 158, 159, 160 that are in direct thermal contact with the fins may be made with or have a non-reflective black surface, such as black chrome, laser black, and black anodize.
  • The optical channels 154, 138 are in optical communication. Each channel as a series of steps, or terraces, with increasing inner diameters. Thus, for example step 140 has a larger diameter than step 141. Each step also has a flat surface, an annulus, that is normal to the axis of the beam path, e.g., 140 a, 141 a. These surfaces function to prevent back reflections, for example from a laser beam back reflection, e.g., back reflections, entering the optics 113, from entering the fiber and/or coupler that is located in opening 104 and from which the beam is received by the assembly 100. Thus, these surfaces, e.g., 140 a, 141 a, reflect back toward the optics, and away from receiving opening 104, back reflections that may be traveling toward the opening 104. The optical channels 138, 154 form a continuous optical channel having seven steps of increasing diameter, as the location in the continuous channel moves away from the opening 104. More or fewer steps, steps having larger and smaller diameters, and steps having different shapes may be employed.
  • Optics tube 153 and section 150 are joined through locking ring 156. In this manner optics tube 153 is fixed to and rotates with section 150. Similarly, ring 137, and 136 are fixed to and rotate with section 130 (also section 102). For a thermal gasketing effect to enhance heat transfer Indium foil is used between the surface of tube 153 and the cooling fins 151 of section 150, where they overlap. Thus, in use or as part of a high power laser tool, the assembly 100 would be located in the area of a rotational transition zone of the tool, with section 102 being associated with a first section of the tool, and section 150 being associated with second section of the tool that has a different rotation movement from the first section, e.g., the first section rotates and the second section does not.
  • There are further optic 180, optic 181, optic 182, and springs 183, and 184, that are in optical communication with the optical channels 154, 138 and the openings 104 and 103.
  • As can been seen from the FIGS. 1A to 1C and in particular in FIG. 1C there are provided other spacers, springs, washers, etc. that, provide example of the assemblies that may be used in the optical assembly to hold and position the various components of the assembly.
  • In FIGS. 2 and 2A to 2D, there is provided illustrations of an embodiment of an optics assembly 200 having two sections, 201, 202. The assembly 200 has an opening 204 and a transmitting opening 203 that are in optical communication along a laser beam path by the optical channel formed by inner tube 205. The opening 203 is configured for attachment to optics, a coupler, or other devices that may be part of or incorporated into the laser tool in which the assembly 200 will be used.
  • The embodiment of FIGS. 2, 2A to 2D has a locking member 214, e.g., a nut, a wave spring 218, e.g., of stainless steel with a crest-to-crest 1.5 inch outside diameter, a cooling fin section 213, and a sleeve 212, which may be indium ribbon, 0.002×1 inch cut to length so as not to over lap when wrapped around a part. The locking member 214 threadably engages inner tube 205. Locking engagement ring 211 threadably engages cooling fin section 207, and captures rotary seal 210, e.g., flexiseal rotary seal, flanged, 1.187 shaft diameter, v-spring, retainer 209, a plurality of screws 215, which are threaded into retainer 211, and an o-ring 208, e.g., 2.5 inches by 1/16 inches. Thus, fin section 207 and engagement ring 211 rotate with respect to inner tube 205. Fin section 213 is tapper fitted and thus does not rotate with respect to inner tube 205 on sleeve 212. Bearing sections 206, 224 are positioned between inner tube 205 and fin section 207, to accommodate the rotation of fin section 207 in relation to inner tube 205, and are held in position by spring 216, e.g., a wave spring providing a preload, 47 mm, 129N stainless steel, o-ring 222, e.g., AS568-135 viton, preload ring 223, and locking ring 236. Locking ring 236 engages and is fixed to fin section 207, and engages ledge 237 of fin section 207 holding the inner tube 205 in position. Thus, fin section 207 is held in place and is rotatable around, or with respect to, inner tube 205.
  • Turning to FIGS. 2C and 2D there is provided a detailed view of areas C and D from FIG. 2B respectively, of a preferred embodiment of a sealing and bearing member, further showing the position of barrier films 260 a, 260 b, 261 a, 261 b, 262 a, 262 b. It should also be noted that FIG. 2 shows an exploded view, and that as assembled tube 205 captures and supports fin section 213 by ring 214, and thus forms section 201 of the optics assembly 200.
  • Turning to FIG. 3, there is shown an exploded view of an optics package that may be used with or as a part of an optics assembly. The optics package may be attached to, or be, an optical communication opening for an optics assembly. The components of the optics package include a retaining ring 301, a lens 302, a spacer 303, a window 304, a cooling fin section 305, shims 306 a, 306 b (which are clocking shims to maintain alignment of the associated optics), spacers 307, 308, 309, collimator lens 310, o-ring 314, retainer ring 312, prism 315, and springs 317, 316.
  • Turning to FIGS. 4A to 4C there is shown a perspective view, side view and cross sectional view of an embodiment of an optics assembly 400. The assembly 400 has windows, 423, 421, 422, labyrinth seals 424, 425, 426, 427, and gold plating on inner surface of cavity 492. The optics assembly 400 has two sections 450 and 402, which are rotationally associated. Section 402 is made up of an optics package 410, and an outer sleeve 430. The optics package 410, at one end forms an optical communication opening 403, which in the case of this embodiment is for transmitting the laser beam from the optical assembly (window 423 is associated with opening 403). The sleeve 430 is fixed to optics package 410 by way of, for example, bolts, e.g, 485 a through piece 485. Thus, sleeve 430 and optics package 410 rotate together as a unit, or move as a unit, relative to section 450.
  • Section 450 forms an optical communication opening 404 and is configured to receive a connector. Section 450 forms an optics tube 450 a that has a stepped configuration 450 b to inhibit back reflections from reaching the connector. Section 450 has a collimating lens 452. Section 450 is affixed to inner sleeve 451 by for example bolts, e.g., 451 a. Thus, section 450 and inner sleeve 451 rotate or move together as a unit. Between inner sleeve 451 and outer sleeve 430 are bearing and seal members, which in this embodiment are four bearing assemblies 480, 481, 482, 483 and a sealing and locking member 484. The sealing and locking member 484 is affixed (e.g, threads, bolts etc.) to the inner sleeve 451. In this manner, the member 484 engages bearings 483, 482 forcing them into engagement with shoulder 431 on outer sleeve 430. Thus, inner sleeve 451 is held in rotational engagement with outer sleeve 430. It being noted that the laser beam as it passes through the cavity 492 formed by the inner and outer sleeves is a collimated beam. (In other embodiments the laser beam may be focused, divergent and/or shaped)
  • The embodiment of FIGS. 4A-C provides for a modular type of system that allows for the removal of section 450, the optics package 410, or section 402, or the bearing assembly. In this way for example, a damaged section could be easily replaced, or alternative sections for different applications could be used. Further the windows 421, 422, 423 may be quickly and easily replaced. This embodiment also provides the ability to connect section 450 into section 451, without the need to visual observe the connection process, e.g, what may be referred to as a blind stab. In this manner a high power fiber may be attached to and secured in section 450 through opening 404. That section and the fiber may then be incorporated into a high power laser tool. Section 402 may then be put into another section or component of that tool, and when the two components of the tool are brought together, the two components of the optical assembly will also be brought together and aligned by way of the tapered edges of section 451, and 460.
  • There are further provided purge valves, or pressure equalization ports, e.g., 470, 471 in the inner and outer sleeves. Preferably these ports have sintered metal filters, or other devices to prevent debris from entering. The ports enable the pressure between the inner and outer members, annulus 491, and the inner cavity 492 of the inner member 451 to be equalized. In this manner a condition where a high pressure is present outside of the inner cavity 492 then inside the inner cavity, which conditions would tend to drive or force debris past the seal 484, should not exist, or should be substantially avoided. In this manner the pressure equalizing ports form a part of the bearing and sealing member.
  • The forgoing bearing and sealing components, as set forth in the various embodiments, are configured to protect the optics, the optics package, and the optical channel from contamination during rotation of the various components. Thus, for example, the seals and bearing assemblies are configured and positioned to prevent bearing materials, such as shavings, wear debris, sluffings or grease from entering the optical channel or otherwise contaminating any optical surface that transmits the high power laser beam. In this manner those assemblies are isolated, or substantially isolated for practical purposes from the optical channel and the optics.
  • Turning to FIG. 5A there is provided a schematic diagram of a step configuration of an inner optical cavity to manage and mitigate back reflections. Thus, there is shown a centerline 501 of an optical cavity 502. The direction of the laser beam (e.g., the forward propagating high power laser beam as it travels along a laser beam path toward an intended target, work piece, etc. to perform an intended laser operation) in the cavity 502 is shown by arrow 503 as it enters the cavity 502 and travels to the optic 504, e.g., lens, collimating lens, etc. There are provided a plurality of steps 505 having knife edges 506. The steps form a progressively wider optical cavity along the direction of the laser beam. Thus, the cavity 502 is widest at the optic 504. The knife edges 506 tapper outwardly, e.g., making a wider cavity, with respect to the direction of the laser beam. The steps 505 may be formed from a unitary piece or they may be individual inserts, that may be changed to meet a particular back reflection condition based upon a particular laser operation or work piece. The back reflections would travel generally in a direction opposite arrow 503.
  • Turning to FIG. 5B there is provided a schematic diagram of a step configuration of an inner optical cavity to manage and mitigate back reflections. Thus, there is shown a centerline 520 of an optical cavity 522. The direction of the laser beam (e.g., the forward propagating high power laser beam as it travels along a laser beam path toward an intended target, work piece, etc. to perform an intended laser operation) in the cavity 522 is shown by arrow 523, as it enters the cavity 522 and travels to the optic 521, e.g., lens, collimating lens, etc. There are provided a plurality of steps 525 having spaces 526, or separations between them. The steps 525 form a progressively wider optical cavity along the direction of the laser beam. Thus, the cavity 522 is widest at the optic 521. The steps 525 may be formed from a unitary piece or they may be individual inserts, that may be changed to meet a particular back reflection condition based upon a particular laser operation or work piece. The back reflections would travel generally in a direction opposite arrow 523.
  • The knife edged configured steps of FIG. 5A may be employed with the staggered or spaced steps of FIG. 5B. It further should be understood that only half of the optical cavity is shown in FIGS. 5A and 5B, and that h same step pattern would also be present on the other side of the centerline.
  • The laser assemblies of the present invention may be used with any high power laser tools or systems.
  • Examples of embodiments and teachings regarding high power optical fiber cable, fibers and the systems and components for delivering high power laser energy over great distances from the laser to a remote location for use by a tool are disclosed and taught in the following US Patent Applications and US Patent Application Publications: US 2010/0044106, US 201010044105, Publication No. US 2010/0044104, Publication No. US 2010/0044103, US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, Ser. No. 13/366,882, Ser. No. 61/446,042, Ser. No. 61/493,174, Ser. No. 61/514,391, and Ser. No. 61/446,312, the entire disclosures of each of which are incorporated herein by reference.
  • In these methods, systems and applications, the laser beam, or beams, may for example have 10 kW, 20 kW, 40 kW, 80 kW or more power; and have a wavelength in the range of from about 445 nm (nanometers) to about 2100 nm, preferably in the range of from about 800 to 1900 nm, and more preferably in the ranges of from about 1530 nm to 1600 nm, from about 1060 nm to 1080 nm, and from about 1800 nm to 1900 nm. Further, the types of laser beams and sources for providing a high power laser beam may be the devices, systems, optical fibers and beam shaping and delivery optics that are disclosed and taught in the following US Patent Applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication. No. US 2010/0044102, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, and Ser. No. 61/493,174, the entire disclosures of each of which are incorporated herein by reference. The source for providing rotational movement may be a string of drill pipe rotated by a top drive or rotary table, a down hole mud motor, a down hole turbine, a down hole electric motor, and, in particular, may be the systems and devices disclosed in the following US Patent Applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044103, Ser. No. 12/896,021, Ser. No. 61/446,042 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference. The high power lasers for example may be fiber lasers or semiconductor lasers having 10 kW, 20 kW, 50 kW or more power and, which emit laser beams with wavelengths preferably in about the 1064 nm range, about the 1070 nm range, about the 1360 nm range, about the 1455 nm range, about the 1550 nm range, about the 1070 nm range, about the 1083 nm range, or about the 1900 nm range (wavelengths in the range of 1900 nm may be provided by Thulium lasers). Thus, by way of example, there is contemplated the use of four, five, or six, 20 kW lasers to provide a laser beam in a bit having a power greater than about 60 kW, greater than about 70 kW, greater than about 80 kW, greater than about 90 kW and greater than about 100 kW. One laser may also be envisioned to provide these higher laser powers.
  • The tools that are useful with high power laser systems, and which can incorporate or utilize the optical assemblies described herein, many generally be laser drills, laser bottom hole assemblies, laser cutters, laser cleaners, laser monitors, laser welders, laser perforators, laser PIGs, and laser delivery assemblies that may have been adapted for a special use or uses. Configurations of optical elements for collimating and focusing the laser beam can be employed with these tools to provide the desired beam properties for a particular application or tool configuration.
  • Such tools for example may be used for cleaning, resurfacing, removal, and clearing away of unwanted materials, e.g., build-ups, deposits, corrosion, or substances, in, on, or around a structure, e.g. the work piece, or work surface area. Such unwanted materials would include by way of example rust, corrosion, corrosion by products, degraded or old paint, degraded or old coatings, paint, coatings, waxes, hydrates, microbes, residual materials, biofilms, tars, sludges, and slimes.
  • Although a single optical opening is shown in the embodiments of the figures, the optical assemblies may be configured, either through a single opening or multiple openings, to handle one, two, three or more fibers, or optical connectors. They may further have one, two, three or more collimators and collimated beam paths, which paths may be overlapping. Additionally, one, two, three or more of the optical assemblies may be use in, or in conjunction with a particular laser tool or laser system for deploying a laser tool(s).
  • The invention may be embodied in other forms than those specifically disclosed herein without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.

Claims (30)

1-42. (canceled)
43. A high power rotating optics assembly for use with a high power laser device, the optics assembly comprising:
a. an optics package comprising a first end, a second end, an optic and a window;
b. a housing comprising a first end and a second end and a first side and a second, wherein the housing second end is fixedly associated with the optics package first end; whereby the housing and the optics package define a first section of the optics assembly;
c. a member defining an optical channel, the member having a side removed from the optical channel;
d. the member side having two bearing assemblies, the hearing assemblies being rotationally associated with the housing first side;
e. a rotary seal in sealing engagement with the member and the housing; and,
f. the member having an opening in optical association with the optical channel for receiving a high power laser source, wherein the member and opening define a second section of the optics assembly;
g. whereby the first and second sections of the optics assembly are rotationally associated so that a laser beam may be transmitted from the first opening through the optical channel to the optics package and exit the optics package while the first section or second section is rotating relative to the other.
44. The optics assembly of claim 43, wherein member has a first section and a second section and the member second section has a stepped optical channel for managing back reflections.
45. The optics assembly of claim 43, wherein the housing has a passive cooling means.
46. The optics assembly of claim 43, wherein the optics package is associated with a passive cooling means.
47. The optics assembly of claim 43, wherein the member has a passive cooling means.
48. The optics assembly of claim 44, wherein the member has a passive cooling means.
49. A high power rotating optics assembly for use with a high power laser device, the optics assembly comprising:
a. an optics package comprising an optic;
b. a housing having an opening in optical association with the optics package, the housing defining a first section of the optics assembly;
c. a member defining an optical channel, the member having a side removed from the optical channel; wherein the member is fixedly associated with the optics package; whereby the member and the optics package define a second section of the optics assembly;
d. a first bearing assembly and a second bearing assembly, comprised of bearing materials, the first and second bearing assemblies rotationally and axially associating the housing and the member;
e. a rotary seal means in sealing engagement with the member and the housing, whereby the first and the second bearing assemblies are isolated from the optical channel and the optics package; and,
f. the member having an opening in optical association with the optical channel for receiving a high power laser source;
g. whereby the first and second sections of the optics assembly are rotationally associated so that so that the optics package and the optical channel are maintained substantially free from bearing material during rotation.
50. The optics assembly of claim 49, comprising a means for managing back reflections.
51. The optics assembly of claim 49, comprising a passive cooling means.
52. The optics assembly of claim 49, wherein the member opening for receiving the high power laser source, defines a receptacle for receiving a plurality of high power laser beams having a combined power of at least about 50 kW.
53. The high power optics assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.0066 radians.
54. The high power optics assembly of claim 53, wherein the optical alignment is maintained over temperature ranges from about −100° C. to about 200° C.
55. The high power optics assembly of claim 53, wherein the optical alignment is maintained over forces of about 100 g's.
56. The high power optics assembly of claim 49, wherein the optical alignment is maintained over forces of about 100 g's.
57. The high power optics assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians.
58. The high power optics assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than 0.018 radians.
59. The high power optics assembly of claim 53, wherein the optical alignment is maintained in the presence of transmitting at least about a 5 kW laser beam between the first and second sections.
60. The high power optics assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians over basic operating parameters.
61. The high power optical assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0001 radians over basic operating parameters.
62. The high power optical assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters.
63. The high power optical assembly of claim 49, wherein the assembly is capable of maintaining optical alignment, as measured by decentering to less than about 1.6 mm over basic operating parameters.
64. The high power optical assembly of claims 49, wherein the assembly is capable of maintaining optical alignment, as measured by decentering to less than about 1 mm over basic operating parameters.
65. The high power optics assembly of claim 53, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.004 radians over basic operating parameters.
66. The high power optical assembly of claim 53, wherein the assembly is capable of maintaining optical alignment, as measured by tip/tilt to less than about 0.001 radians over basic operating parameters.
67. The high power optical assembly of claim 53, wherein the assembly is capable of maintaining optical alignment, as measured by defocus to less than about 0.05 mm over basic operating parameters.
68. The high power optical assembly of claim 53, wherein the assembly is capable of maintaining optical alignment, as measured by decentering to less than about 1.6 mm over basic operating parameters.
69. The high power optical assembly of claim 53, wherein the assembly is capable of maintaining optical alignment, as measured by decentering to less than about 1 mm over basic operating parameters.
70-74. (canceled)
75. A high power rotating optics assembly for use with a high power laser device, the optics assembly comprising:
a. an optics package comprising an optic;
b. a first housing having an opening in optical association with the optics package, the first housing defining a first section of the optics assembly;
c. a second housing defining an optical channel, the second housing having a surface removed from the optical channel; wherein the second housing comprises the optics package; whereby the housing comprising the optics package defines a second section of the optics assembly;
d. a first bearing assembly and a second bearing assembly, the first and second bearing assemblies rotationally and axially associating the first housing and the second housing; and,
e. a rotary seal means in sealing engagement with the first housing and the second housing,; and,
f. the second housing having an opening in optical association with the optical channel for receiving a high power laser source;
g. wherein the optical channel and the optics package are isolated from an environment exterior to the first housing or the second housing, during rotation and transmission of a laser beam, whereby the optics package and the optical channel are maintained substantially free from contamination.
US15/140,412 2008-08-20 2016-04-27 Optics assembly for high power laser tools Abandoned US20170059854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/140,412 US20170059854A1 (en) 2008-08-20 2016-04-27 Optics assembly for high power laser tools

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US9038408P 2008-08-20 2008-08-20
US10273008P 2008-10-03 2008-10-03
US10647208P 2008-10-17 2008-10-17
US15327109P 2009-02-17 2009-02-17
US12/543,986 US8826973B2 (en) 2008-08-20 2009-08-19 Method and system for advancement of a borehole using a high power laser
US12/544,136 US8511401B2 (en) 2008-08-20 2009-08-19 Method and apparatus for delivering high power laser energy over long distances
US12/544,094 US8424617B2 (en) 2008-08-20 2009-08-19 Methods and apparatus for delivering high power laser energy to a surface
US12/544,038 US8820434B2 (en) 2008-08-20 2009-08-19 Apparatus for advancing a wellbore using high power laser energy
US12/896,021 US8627901B1 (en) 2009-10-01 2010-10-01 Laser bottom hole assembly
US201161446041P 2011-02-24 2011-02-24
US201161446043P 2011-02-24 2011-02-24
US201161446312P 2011-02-24 2011-02-24
US201161446040P 2011-02-24 2011-02-24
US201161446042P 2011-02-24 2011-02-24
US13/403,509 US9360631B2 (en) 2008-08-20 2012-02-23 Optics assembly for high power laser tools
US15/140,412 US20170059854A1 (en) 2008-08-20 2016-04-27 Optics assembly for high power laser tools

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/403,509 Division US9360631B2 (en) 2008-08-20 2012-02-23 Optics assembly for high power laser tools

Publications (1)

Publication Number Publication Date
US20170059854A1 true US20170059854A1 (en) 2017-03-02

Family

ID=47218144

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/403,509 Active 2032-08-25 US9360631B2 (en) 2008-08-20 2012-02-23 Optics assembly for high power laser tools
US15/140,412 Abandoned US20170059854A1 (en) 2008-08-20 2016-04-27 Optics assembly for high power laser tools

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/403,509 Active 2032-08-25 US9360631B2 (en) 2008-08-20 2012-02-23 Optics assembly for high power laser tools

Country Status (1)

Country Link
US (2) US9360631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404042A (en) * 2020-10-26 2021-02-26 厦门理工学院 Laser cleaning acoustic monitoring equipment

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9545692B2 (en) 2008-08-20 2017-01-17 Foro Energy, Inc. Long stand off distance high power laser tools and methods of use
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US10195687B2 (en) 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US10053967B2 (en) 2008-08-20 2018-08-21 Foro Energy, Inc. High power laser hydraulic fracturing, stimulation, tools systems and methods
US20170191314A1 (en) * 2008-08-20 2017-07-06 Foro Energy, Inc. Methods and Systems for the Application and Use of High Power Laser Energy
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
EP2606201A4 (en) 2010-08-17 2018-03-07 Foro Energy Inc. Systems and conveyance structures for high power long distance laster transmission
BR112013021478A2 (en) 2011-02-24 2016-10-11 Foro Energy Inc High power laser-mechanical drilling method
WO2012167102A1 (en) 2011-06-03 2012-12-06 Foro Energy Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
BR112015004458A8 (en) 2012-09-01 2019-08-27 Chevron Usa Inc well control system, laser bop and bop set
EP2929602A4 (en) 2012-12-07 2016-12-21 Foro Energy Inc High power lasers, wavelength conversions, and matching wavelengths use environments
WO2014204535A1 (en) 2013-03-15 2014-12-24 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
WO2015088553A1 (en) 2013-12-13 2015-06-18 Foro Energy, Inc. High power laser decommissioning of multistring and damaged wells
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10267358B2 (en) * 2016-06-06 2019-04-23 Bauer Equipment America, Inc. Drill drive for a drilling rig
CN110504616A (en) * 2019-09-04 2019-11-26 广东国志激光技术有限公司 Optical-fiber laser collimates output device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030002771A1 (en) * 2001-06-01 2003-01-02 Jds Uniphase Corporation Integrated optical amplifier
US20030053513A1 (en) * 1999-06-07 2003-03-20 Metrologic Instruments, Inc. Method of and system for producing high-resolution 3-D images of 3-D object surfaces having arbitrary surface geometry
US20040081395A1 (en) * 2002-10-18 2004-04-29 Jerzy Gawalkiewicz Light source unit for use with a light guide and lamp mounting arrangement

Family Cites Families (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US914636A (en) 1908-04-20 1909-03-09 Case Tunnel & Engineering Company Rotary tunneling-machine.
US2548463A (en) 1947-12-13 1951-04-10 Standard Oil Dev Co Thermal shock drilling bit
US2742555A (en) 1952-10-03 1956-04-17 Robert W Murray Flame boring apparatus
US3122212A (en) 1960-06-07 1964-02-25 Northern Natural Gas Co Method and apparatus for the drilling of rock
US3383491A (en) 1964-05-05 1968-05-14 Hrand M. Muncheryan Laser welding machine
US3461964A (en) 1966-09-09 1969-08-19 Dresser Ind Well perforating apparatus and method
US3544165A (en) 1967-04-18 1970-12-01 Mason & Hanger Silas Mason Co Tunneling by lasers
US3503804A (en) 1967-04-25 1970-03-31 Hellmut Schneider Method and apparatus for the production of sonic or ultrasonic waves on a surface
US3539221A (en) 1967-11-17 1970-11-10 Robert A Gladstone Treatment of solid materials
US3493060A (en) 1968-04-16 1970-02-03 Woods Res & Dev In situ recovery of earth minerals and derivative compounds by laser
US3556600A (en) 1968-08-30 1971-01-19 Westinghouse Electric Corp Distribution and cutting of rocks,glass and the like
US3574357A (en) 1969-02-27 1971-04-13 Grupul Ind Pentru Foray Si Ext Thermal insulating tubing
US3586413A (en) 1969-03-25 1971-06-22 Dale A Adams Apparatus for providing energy communication between a moving and a stationary terminal
US3652447A (en) 1969-04-18 1972-03-28 Samuel S Williams Process for extracting oil from oil shale
US3699649A (en) 1969-11-05 1972-10-24 Donald A Mcwilliams Method of and apparatus for regulating the resistance of film resistors
GB2265684B (en) 1992-03-31 1996-01-24 Philip Fredrick Head An anchoring device for a conduit in coiled tubing
US3693718A (en) 1970-08-17 1972-09-26 Washburn Paul C Laser beam device and method for subterranean recovery of fluids
JPS514003B1 (en) 1970-11-12 1976-02-07
US3820605A (en) 1971-02-16 1974-06-28 Upjohn Co Apparatus and method for thermally insulating an oil well
US3821510A (en) 1973-02-22 1974-06-28 H Muncheryan Hand held laser instrumentation device
US3823788A (en) 1973-04-02 1974-07-16 Smith International Reverse circulating sub for fluid flow systems
US3871485A (en) 1973-11-02 1975-03-18 Sun Oil Co Pennsylvania Laser beam drill
US3882945A (en) 1973-11-02 1975-05-13 Sun Oil Co Pennsylvania Combination laser beam and sonic drill
US3938599A (en) 1974-03-27 1976-02-17 Hycalog, Inc. Rotary drill bit
US4047580A (en) 1974-09-30 1977-09-13 Chemical Grout Company, Ltd. High-velocity jet digging method
US3998281A (en) 1974-11-10 1976-12-21 Salisbury Winfield W Earth boring method employing high powered laser and alternate fluid pulses
US4066138A (en) 1974-11-10 1978-01-03 Salisbury Winfield W Earth boring apparatus employing high powered laser
US4019331A (en) 1974-12-30 1977-04-26 Technion Research And Development Foundation Ltd. Formation of load-bearing foundations by laser-beam irradiation of the soil
US4025091A (en) 1975-04-30 1977-05-24 Ric-Wil, Incorporated Conduit system
US3960448A (en) 1975-06-09 1976-06-01 Trw Inc. Holographic instrument for measuring stress in a borehole wall
US3992095A (en) 1975-06-09 1976-11-16 Trw Systems & Energy Optics module for borehole stress measuring instrument
US4057118A (en) 1975-10-02 1977-11-08 Walker-Neer Manufacturing Co., Inc. Bit packer for dual tube drilling
US3977478A (en) 1975-10-20 1976-08-31 The Unites States Of America As Represented By The United States Energy Research And Development Administration Method for laser drilling subterranean earth formations
US4113036A (en) 1976-04-09 1978-09-12 Stout Daniel W Laser drilling method and system of fossil fuel recovery
US4026356A (en) 1976-04-29 1977-05-31 The United States Energy Research And Development Administration Method for in situ gasification of a subterranean coal bed
US4090572A (en) 1976-09-03 1978-05-23 Nygaard-Welch-Rushing Partnership Method and apparatus for laser treatment of geological formations
US4194536A (en) 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4061190A (en) 1977-01-28 1977-12-06 The United States Of America As Represented By The United States National Aeronautics And Space Administration In-situ laser retorting of oil shale
US4162400A (en) 1977-09-09 1979-07-24 Texaco Inc. Fiber optic well logging means and method
US4125757A (en) 1977-11-04 1978-11-14 The Torrington Company Apparatus and method for laser cutting
US4280535A (en) 1978-01-25 1981-07-28 Walker-Neer Mfg. Co., Inc. Inner tube assembly for dual conduit drill pipe
US4151393A (en) 1978-02-13 1979-04-24 The United States Of America As Represented By The Secretary Of The Navy Laser pile cutter
US4189705A (en) 1978-02-17 1980-02-19 Texaco Inc. Well logging system
FR2417709A1 (en) 1978-02-21 1979-09-14 Coflexip FLEXIBLE COMPOSITE TUBE
US4281891A (en) 1978-03-27 1981-08-04 Nippon Electric Co., Ltd. Device for excellently coupling a laser beam to a transmission medium through a lens
US4282940A (en) 1978-04-10 1981-08-11 Magnafrac Apparatus for perforating oil and gas wells
US4199034A (en) 1978-04-10 1980-04-22 Magnafrac Method and apparatus for perforating oil and gas wells
US4249925A (en) 1978-05-12 1981-02-10 Fujitsu Limited Method of manufacturing an optical fiber
US4243298A (en) 1978-10-06 1981-01-06 International Telephone And Telegraph Corporation High-strength optical preforms and fibers with thin, high-compression outer layers
IL56088A (en) 1978-11-30 1982-05-31 Technion Res & Dev Foundation Method of extracting liquid and gaseous fuel from oil shale and tar sand
US4228856A (en) 1979-02-26 1980-10-21 Reale Lucio V Process for recovering viscous, combustible material
US4252015A (en) 1979-06-20 1981-02-24 Phillips Petroleum Company Wellbore pressure testing method and apparatus
US4227582A (en) 1979-10-12 1980-10-14 Price Ernest H Well perforating apparatus and method
US4332401A (en) 1979-12-20 1982-06-01 General Electric Company Insulated casing assembly
US4367917A (en) 1980-01-17 1983-01-11 Gray Stanley J Multiple sheath cable and method of manufacture
FR2475185A1 (en) 1980-02-06 1981-08-07 Technigaz FLEXIBLE CALORIFYING PIPE FOR PARTICULARLY CRYOGENIC FLUIDS
US4336415A (en) 1980-05-16 1982-06-22 Walling John B Flexible production tubing
US4340245A (en) 1980-07-24 1982-07-20 Conoco Inc. Insulated prestressed conduit string for heated fluids
US4477106A (en) 1980-08-29 1984-10-16 Chevron Research Company Concentric insulated tubing string
US4459731A (en) 1980-08-29 1984-07-17 Chevron Research Company Concentric insulated tubing string
US4389645A (en) 1980-09-08 1983-06-21 Schlumberger Technology Corporation Well logging fiber optic communication system
US4370886A (en) 1981-03-20 1983-02-01 Halliburton Company In situ measurement of gas content in formation fluid
US4375164A (en) 1981-04-22 1983-03-01 Halliburton Company Formation tester
US4415184A (en) 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
US4444420A (en) 1981-06-10 1984-04-24 Baker International Corporation Insulating tubular conduit apparatus
US4453570A (en) 1981-06-29 1984-06-12 Chevron Research Company Concentric tubing having bonded insulation within the annulus
US4374530A (en) 1982-02-01 1983-02-22 Walling John B Flexible production tubing
US4436177A (en) 1982-03-19 1984-03-13 Hydra-Rig, Inc. Truck operator's cab with equipment control station
US4504112A (en) 1982-08-17 1985-03-12 Chevron Research Company Hermetically sealed optical fiber
US4522464A (en) 1982-08-17 1985-06-11 Chevron Research Company Armored cable containing a hermetically sealed tube incorporating an optical fiber
US4531552A (en) 1983-05-05 1985-07-30 Baker Oil Tools, Inc. Concentric insulating conduit
AT391932B (en) 1983-10-31 1990-12-27 Wolf Erich M PIPELINE
US4565351A (en) 1984-06-28 1986-01-21 Arnco Corporation Method for installing cable using an inner duct
JPS61204609A (en) 1985-03-07 1986-09-10 Power Reactor & Nuclear Fuel Dev Corp Optical transmission body
US4860654A (en) 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
US4860655A (en) 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
GB2179173B (en) 1985-08-14 1989-08-16 Nova Scotia Res Found Multiple pass optical fibre rotary joint
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
DE3606065A1 (en) 1986-02-25 1987-08-27 Koeolajkutato Vallalat HEAT INSULATION PIPE, PRIMARY FOR MINING
US4952771A (en) 1986-12-18 1990-08-28 Aesculap Ag Process for cutting a material by means of a laser beam
US4741405A (en) 1987-01-06 1988-05-03 Tetra Corporation Focused shock spark discharge drill using multiple electrodes
US4872520A (en) 1987-01-16 1989-10-10 Triton Engineering Services Company Flat bottom drilling bit with polycrystalline cutters
DE3701676A1 (en) 1987-01-22 1988-08-04 Werner Foppe PROFILE MELT DRILLING PROCESS
US5168940A (en) 1987-01-22 1992-12-08 Technologie Transfer Est. Profile melting-drill process and device
EP0295045A3 (en) 1987-06-09 1989-10-25 Reed Tool Company Rotary drag bit having scouring nozzles
US4744420A (en) 1987-07-22 1988-05-17 Atlantic Richfield Company Wellbore cleanout apparatus and method
CA1325969C (en) 1987-10-28 1994-01-11 Tad A. Sudol Conduit or well cleaning and pumping device and method of use thereof
US4830113A (en) 1987-11-20 1989-05-16 Skinny Lift, Inc. Well pumping method and apparatus
FI78373C (en) 1988-01-18 1989-07-10 Sostel Oy Telephone traffic or data transmission system
US5049738A (en) 1988-11-21 1991-09-17 Conoco Inc. Laser-enhanced oil correlation system
US4924870A (en) 1989-01-13 1990-05-15 Fiberoptic Sensor Technologies, Inc. Fiber optic sensors
FR2651451B1 (en) 1989-09-07 1991-10-31 Inst Francais Du Petrole APPARATUS AND INSTALLATION FOR CLEANING DRAINS, ESPECIALLY IN A WELL FOR OIL PRODUCTION.
US5004166A (en) 1989-09-08 1991-04-02 Sellar John G Apparatus for employing destructive resonance
US5163321A (en) 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US4997250A (en) 1989-11-17 1991-03-05 General Electric Company Fiber output coupler with beam shaping optics for laser materials processing system
US5908049A (en) 1990-03-15 1999-06-01 Fiber Spar And Tube Corporation Spoolable composite tubular member with energy conductors
US5003144A (en) 1990-04-09 1991-03-26 The United States Of America As Represented By The Secretary Of The Interior Microwave assisted hard rock cutting
US5084617A (en) 1990-05-17 1992-01-28 Conoco Inc. Fluorescence sensing apparatus for determining presence of native hydrocarbons from drilling mud
IT1246761B (en) 1990-07-02 1994-11-26 Pirelli Cavi Spa OPTICAL FIBER CABLES AND RELATED COMPONENTS CONTAINING A HOMOGENEOUS MIXTURE TO PROTECT OPTICAL FIBERS FROM HYDROGEN AND RELATED HOMOGENEOUS BARRIER MIXTURE
FR2664987B1 (en) 1990-07-19 1993-07-16 Alcatel Cable UNDERWATER FIBER OPTIC TELECOMMUNICATION CABLE UNDER TUBE.
US5128882A (en) 1990-08-22 1992-07-07 The United States Of America As Represented By The Secretary Of The Army Device for measuring reflectance and fluorescence of in-situ soil
US5125063A (en) 1990-11-08 1992-06-23 At&T Bell Laboratories Lightweight optical fiber cable
US5419188A (en) 1991-05-20 1995-05-30 Otis Engineering Corporation Reeled tubing support for downhole equipment module
FR2676913B1 (en) 1991-05-28 1993-08-13 Lasag Ag MATERIAL ABLATION DEVICE, PARTICULARLY FOR DENTISTRY.
EP0518371B1 (en) 1991-06-14 1998-09-09 Baker Hughes Incorporated Fluid-actuated wellbore tool system
US5121872A (en) 1991-08-30 1992-06-16 Hydrolex, Inc. Method and apparatus for installing electrical logging cable inside coiled tubing
FR2683590B1 (en) 1991-11-13 1993-12-31 Institut Francais Petrole MEASURING AND INTERVENTION DEVICE IN A WELL, ASSEMBLY METHOD AND USE IN AN OIL WELL.
US5172112A (en) 1991-11-15 1992-12-15 Abb Vetco Gray Inc. Subsea well pressure monitor
US5212755A (en) 1992-06-10 1993-05-18 The United States Of America As Represented By The Secretary Of The Navy Armored fiber optic cables
US5285204A (en) 1992-07-23 1994-02-08 Conoco Inc. Coil tubing string and downhole generator
US5287741A (en) 1992-08-31 1994-02-22 Halliburton Company Methods of perforating and testing wells using coiled tubing
GB9219666D0 (en) 1992-09-17 1992-10-28 Miszewski Antoni A detonating system
US5355967A (en) 1992-10-30 1994-10-18 Union Oil Company Of California Underbalance jet pump drilling method
US5269377A (en) 1992-11-25 1993-12-14 Baker Hughes Incorporated Coil tubing supported electrical submersible pump
NO179261C (en) 1992-12-16 1996-09-04 Rogalandsforskning Device for drilling holes in the earth's crust, especially for drilling oil wells
US5356081A (en) 1993-02-24 1994-10-18 Electric Power Research Institute, Inc. Apparatus and process for employing synergistic destructive powers of a water stream and a laser beam
US5615052A (en) 1993-04-16 1997-03-25 Bruce W. McCaul Laser diode/lens assembly
US5500768A (en) 1993-04-16 1996-03-19 Bruce McCaul Laser diode/lens assembly
US5351533A (en) 1993-06-29 1994-10-04 Halliburton Company Coiled tubing system used for the evaluation of stimulation candidate wells
US5469878A (en) 1993-09-03 1995-11-28 Camco International Inc. Coiled tubing concentric gas lift valve assembly
US5396805A (en) 1993-09-30 1995-03-14 Halliburton Company Force sensor and sensing method using crystal rods and light signals
US5411085A (en) 1993-11-01 1995-05-02 Camco International Inc. Spoolable coiled tubing completion system
FR2716927B1 (en) 1993-11-01 1999-03-19 Camco Int Seal for wells intended to be hydraulically positioned in a flexible production tube.
FR2712628B1 (en) 1993-11-15 1996-01-12 Inst Francais Du Petrole Measuring device and method in a hydrocarbon production well.
US5435395A (en) 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
US5573225A (en) 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US5483988A (en) 1994-05-11 1996-01-16 Camco International Inc. Spoolable coiled tubing mandrel and gas lift valves
DE4418845C5 (en) 1994-05-30 2012-01-05 Synova S.A. Method and device for material processing using a laser beam
US5411105A (en) 1994-06-14 1995-05-02 Kidco Resources Ltd. Drilling a well gas supply in the drilling liquid
US5924489A (en) 1994-06-24 1999-07-20 Hatcher; Wayne B. Method of severing a downhole pipe in a well borehole
US5479860A (en) 1994-06-30 1996-01-02 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
US5503370A (en) 1994-07-08 1996-04-02 Ctes, Inc. Method and apparatus for the injection of cable into coiled tubing
US5599004A (en) 1994-07-08 1997-02-04 Coiled Tubing Engineering Services, Inc. Apparatus for the injection of cable into coiled tubing
US5503014A (en) 1994-07-28 1996-04-02 Schlumberger Technology Corporation Method and apparatus for testing wells using dual coiled tubing
US5561516A (en) 1994-07-29 1996-10-01 Iowa State University Research Foundation, Inc. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
US5463711A (en) 1994-07-29 1995-10-31 At&T Ipm Corp. Submarine cable having a centrally located tube containing optical fibers
US5515925A (en) 1994-09-19 1996-05-14 Boychuk; Randy J. Apparatus and method for installing coiled tubing in a well
US5586609A (en) 1994-12-15 1996-12-24 Telejet Technologies, Inc. Method and apparatus for drilling with high-pressure, reduced solid content liquid
CA2161168C (en) 1994-12-20 2001-08-14 John James Blee Optical fiber cable for underwater use using terrestrial optical fiber cable
ES2179176T3 (en) 1995-01-13 2003-01-16 Hydril Co SUPPRESSOR OF HIGH PRESSURE LEAK, LOW PROFILE AND LIGHT WEIGHT.
US5757484A (en) 1995-03-09 1998-05-26 The United States Of America As Represented By The Secretary Of The Army Standoff laser induced-breakdown spectroscopy penetrometer system
US6147754A (en) 1995-03-09 2000-11-14 The United States Of America As Represented By The Secretary Of The Navy Laser induced breakdown spectroscopy soil contamination probe
US6157893A (en) 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
US5771984A (en) 1995-05-19 1998-06-30 Massachusetts Institute Of Technology Continuous drilling of vertical boreholes by thermal processes: including rock spallation and fusion
US5694408A (en) 1995-06-07 1997-12-02 Mcdonnell Douglas Corporation Fiber optic laser system and associated lasing method
US5566764A (en) 1995-06-16 1996-10-22 Elliston; Tom Improved coil tubing injector unit
GB2318598B (en) 1995-06-20 1999-11-24 B J Services Company Usa Insulated and/or concentric coiled tubing
WO1997005361A1 (en) 1995-07-25 1997-02-13 Nowsco Well Service, Inc. Safeguarded method and apparatus for fluid communication using coiled tubing, with application to drill stem testing
JPH0972738A (en) 1995-09-05 1997-03-18 Fujii Kiso Sekkei Jimusho:Kk Method and equipment for inspecting properties of wall surface of bore hole
US5707939A (en) 1995-09-21 1998-01-13 M-I Drilling Fluids Silicone oil-based drilling fluids
US5921285A (en) 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
TW320586B (en) 1995-11-24 1997-11-21 Hitachi Ltd
US5896938A (en) 1995-12-01 1999-04-27 Tetra Corporation Portable electrohydraulic mining drill
US5828003A (en) 1996-01-29 1998-10-27 Dowell -- A Division of Schlumberger Technology Corporation Composite coiled tubing apparatus and methods
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5909306A (en) 1996-02-23 1999-06-01 President And Fellows Of Harvard College Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation
JPH09242453A (en) 1996-03-06 1997-09-16 Tomoo Fujioka Drilling method
RU2104393C1 (en) 1996-06-27 1998-02-10 Александр Петрович Линецкий Method for increasing degree of extracting oil, gas and other useful materials from ground, and for opening and control of deposits
US5794703A (en) 1996-07-03 1998-08-18 Ctes, L.C. Wellbore tractor and method of moving an item through a wellbore
US6104022A (en) 1996-07-09 2000-08-15 Tetra Corporation Linear aperture pseudospark switch
AU714721B2 (en) 1996-07-15 2000-01-06 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US5862862A (en) 1996-07-15 1999-01-26 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US5759859A (en) 1996-07-15 1998-06-02 United States Of America As Represented By The Secretary Of The Army Sensor and method for detecting trace underground energetic materials
US5813465A (en) 1996-07-15 1998-09-29 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
AU719919B2 (en) 1996-07-15 2000-05-18 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
CA2210563C (en) 1996-07-15 2004-03-02 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
CA2209958A1 (en) 1996-07-15 1998-01-15 James M. Barker Apparatus for completing a subterranean well and associated methods of using same
US5833003A (en) 1996-07-15 1998-11-10 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
CA2210561C (en) 1996-07-15 2004-04-06 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
AU3911997A (en) 1996-08-05 1998-02-25 Tetra Corporation Electrohydraulic pressure wave projectors
US5929986A (en) 1996-08-26 1999-07-27 Kaiser Optical Systems, Inc. Synchronous spectral line imaging methods and apparatus
US6038363A (en) 1996-08-30 2000-03-14 Kaiser Optical Systems Fiber-optic spectroscopic probe with reduced background luminescence
US5773791A (en) 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool
US5847825A (en) 1996-09-25 1998-12-08 Board Of Regents University Of Nebraska Lincoln Apparatus and method for detection and concentration measurement of trace metals using laser induced breakdown spectroscopy
US5767411A (en) 1996-12-31 1998-06-16 Cidra Corporation Apparatus for enhancing strain in intrinsic fiber optic sensors and packaging same for harsh environments
US5832006A (en) 1997-02-13 1998-11-03 Mcdonnell Douglas Corporation Phased array Raman laser amplifier and operating method therefor
WO1998037300A1 (en) 1997-02-20 1998-08-27 Bj Services Company, U.S.A. Bottomhole assembly and methods of use
US6384738B1 (en) 1997-04-07 2002-05-07 Halliburton Energy Services, Inc. Pressure impulse telemetry apparatus and method
US6281489B1 (en) 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US5925879A (en) 1997-05-09 1999-07-20 Cidra Corporation Oil and gas well packer having fiber optic Bragg Grating sensors for downhole insitu inflation monitoring
GB9710440D0 (en) 1997-05-22 1997-07-16 Apex Tubulars Ltd Improved marine riser
DE19725256A1 (en) 1997-06-13 1998-12-17 Lt Ultra Precision Technology Nozzle arrangement for laser beam cutting
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6273193B1 (en) 1997-12-16 2001-08-14 Transocean Sedco Forex, Inc. Dynamically positioned, concentric riser, drilling method and apparatus
US6060662A (en) 1998-01-23 2000-05-09 Western Atlas International, Inc. Fiber optic well logging cable
US5986756A (en) 1998-02-27 1999-11-16 Kaiser Optical Systems Spectroscopic probe with leak detection
US6309195B1 (en) 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
GB9812465D0 (en) 1998-06-11 1998-08-05 Abb Seatec Ltd Pipeline monitoring systems
DE19826265C2 (en) 1998-06-15 2001-07-12 Forschungszentrum Juelich Gmbh Borehole probe for the investigation of soils
WO2000005622A1 (en) 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Raman amplifier, optical repeater, and raman amplification method
US5973783A (en) 1998-07-31 1999-10-26 Litton Systems, Inc. Fiber optic gyroscope coil lead dressing and method for forming the same
DE19838085C2 (en) 1998-08-21 2000-07-27 Forschungszentrum Juelich Gmbh Method and borehole probe for the investigation of soils
US6227200B1 (en) 1998-09-21 2001-05-08 Ballard Medical Products Respiratory suction catheter apparatus
JP2002528744A (en) * 1998-09-30 2002-09-03 ボード・オブ・コントロール・オブ・ミシガン・テクノロジカル・ユニバーシティ Laser guided operation of non-atomic particles
US6377591B1 (en) 1998-12-09 2002-04-23 Mcdonnell Douglas Corporation Modularized fiber optic laser system and associated optical amplification modules
US6352114B1 (en) 1998-12-11 2002-03-05 Ocean Drilling Technology, L.L.C. Deep ocean riser positioning system and method of running casing
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US6250391B1 (en) 1999-01-29 2001-06-26 Glenn C. Proudfoot Producing hydrocarbons from well with underground reservoir
US6355928B1 (en) 1999-03-31 2002-03-12 Halliburton Energy Services, Inc. Fiber optic tomographic imaging of borehole fluids
JP2000334590A (en) 1999-05-24 2000-12-05 Amada Eng Center Co Ltd Machining head for laser beam machine
TW418332B (en) 1999-06-14 2001-01-11 Ind Tech Res Inst Optical fiber grating package
GB9916022D0 (en) 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
US6712150B1 (en) 1999-09-10 2004-03-30 Bj Services Company Partial coil-in-coil tubing
US6166546A (en) 1999-09-13 2000-12-26 Atlantic Richfield Company Method for determining the relative clay content of well core
US6301423B1 (en) 2000-03-14 2001-10-09 3M Innovative Properties Company Method for reducing strain on bragg gratings
NO313767B1 (en) 2000-03-20 2002-11-25 Kvaerner Oilfield Prod As Process for obtaining simultaneous supply of propellant fluid to multiple subsea wells and subsea petroleum production arrangement for simultaneous production of hydrocarbons from multi-subsea wells and supply of propellant fluid to the s.
GB2360584B (en) 2000-03-25 2004-05-19 Abb Offshore Systems Ltd Monitoring fluid flow through a filter
JP2003533871A (en) 2000-04-04 2003-11-11 シノヴァ エス.アー. Method for cutting an object and machining the cut object and a support for holding the object or the cut object
US20020007945A1 (en) 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
US6557249B1 (en) 2000-04-22 2003-05-06 Halliburton Energy Services, Inc. Optical fiber deployment system and cable
US20030159283A1 (en) 2000-04-22 2003-08-28 White Craig W. Optical fiber cable
US6415867B1 (en) 2000-06-23 2002-07-09 Noble Drilling Corporation Aluminum riser apparatus, system and method
US6437326B1 (en) 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
ATE450931T1 (en) 2000-06-30 2009-12-15 Texas Instruments Inc METHOD FOR MAINTAINING SYNCHRONIZATION OF A MOBILE TERMINAL DURING INACTIVE COMMUNICATION PERIOD
US6763889B2 (en) 2000-08-14 2004-07-20 Schlumberger Technology Corporation Subsea intervention
NO315762B1 (en) 2000-09-12 2003-10-20 Optoplan As Sand detector
US6386300B1 (en) 2000-09-19 2002-05-14 Curlett Family Limited Partnership Formation cutting method and system
US7072588B2 (en) 2000-10-03 2006-07-04 Halliburton Energy Services, Inc. Multiplexed distribution of optical power
EP1197738A1 (en) 2000-10-18 2002-04-17 Abb Research Ltd. Anisotropic fibre sensor with distributed feedback
US6747743B2 (en) 2000-11-10 2004-06-08 Halliburton Energy Services, Inc. Multi-parameter interferometric fiber optic sensor
US6494259B2 (en) 2001-03-30 2002-12-17 Halliburton Energy Services, Inc. Downhole flame spray welding tool system and method
US6626249B2 (en) 2001-04-24 2003-09-30 Robert John Rosa Dry geothermal drilling and recovery system
US7096960B2 (en) 2001-05-04 2006-08-29 Hydrill Company Lp Mounts for blowout preventer bonnets
US6591046B2 (en) 2001-06-06 2003-07-08 The United States Of America As Represented By The Secretary Of The Navy Method for protecting optical fibers embedded in the armor of a tow cable
NO322809B1 (en) 2001-06-15 2006-12-11 Schlumberger Technology Bv Device and method for monitoring and controlling deployment of seabed equipment
US7249633B2 (en) 2001-06-29 2007-07-31 Bj Services Company Release tool for coiled tubing
CA2392277C (en) 2001-06-29 2008-02-12 Bj Services Company Canada Bottom hole assembly
US7126332B2 (en) 2001-07-20 2006-10-24 Baker Hughes Incorporated Downhole high resolution NMR spectroscopy with polarization enhancement
SE522103C2 (en) 2001-08-15 2004-01-13 Permanova Lasersystem Ab Device for detecting damage of an optical fiber
US20030053783A1 (en) 2001-09-18 2003-03-20 Masataka Shirasaki Optical fiber having temperature independent optical characteristics
US6981561B2 (en) 2001-09-20 2006-01-03 Baker Hughes Incorporated Downhole cutting mill
US6920946B2 (en) 2001-09-27 2005-07-26 Kenneth D. Oglesby Inverted motor for drilling rocks, soils and man-made materials and for re-entry and cleanout of existing wellbores and pipes
US7174067B2 (en) 2001-12-06 2007-02-06 Florida Institute Of Technology Method and apparatus for spatial domain multiplexing in optical fiber communications
US6755262B2 (en) 2002-01-11 2004-06-29 Gas Technology Institute Downhole lens assembly for use with high power lasers for earth boring
GB0203252D0 (en) 2002-02-12 2002-03-27 Univ Strathclyde Plasma channel drilling process
US6867858B2 (en) 2002-02-15 2005-03-15 Kaiser Optical Systems Raman spectroscopy crystallization analysis method
US6888127B2 (en) 2002-02-26 2005-05-03 Halliburton Energy Services, Inc. Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
US7619159B1 (en) 2002-05-17 2009-11-17 Ugur Ortabasi Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion
US6870128B2 (en) 2002-06-10 2005-03-22 Japan Drilling Co., Ltd. Laser boring method and system
JP3506696B1 (en) 2002-07-22 2004-03-15 財団法人応用光学研究所 Underground renewable hydrocarbon gas resource collection device and collection method
AU2002327293A1 (en) 2002-07-23 2004-02-09 Halliburton Energy Services, Inc. Subterranean well pressure and temperature measurement
US6915848B2 (en) 2002-07-30 2005-07-12 Schlumberger Technology Corporation Universal downhole tool control apparatus and methods
EA006928B1 (en) 2002-08-15 2006-04-28 Шлюмбергер Текнолоджи Б.В. Use of distributed temperature sensors during wellbore treatments
WO2004020774A2 (en) 2002-08-30 2004-03-11 Sensor Highway Limited Methods and systems to activate downhole tools with light
US7140435B2 (en) 2002-08-30 2006-11-28 Schlumberger Technology Corporation Optical fiber conveyance, telemetry, and/or actuation
AU2003267555A1 (en) 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
US6978832B2 (en) 2002-09-09 2005-12-27 Halliburton Energy Services, Inc. Downhole sensing with fiber in the formation
US6847034B2 (en) 2002-09-09 2005-01-25 Halliburton Energy Services, Inc. Downhole sensing with fiber in exterior annulus
US7100844B2 (en) 2002-10-16 2006-09-05 Ultrastrip Systems, Inc. High impact waterjet nozzle
US6808023B2 (en) 2002-10-28 2004-10-26 Schlumberger Technology Corporation Disconnect check valve mechanism for coiled tubing
US20090190890A1 (en) 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US7471862B2 (en) 2002-12-19 2008-12-30 Corning Cable Systems, Llc Dry fiber optic cables and assemblies
US6661815B1 (en) 2002-12-31 2003-12-09 Intel Corporation Servo technique for concurrent wavelength locking and stimulated brillouin scattering suppression
US7471831B2 (en) 2003-01-16 2008-12-30 California Institute Of Technology High throughput reconfigurable data analysis system
US6994162B2 (en) 2003-01-21 2006-02-07 Weatherford/Lamb, Inc. Linear displacement measurement method and apparatus
GB2399971B (en) 2003-01-22 2006-07-12 Proneta Ltd Imaging sensor optical system
DE602004031164D1 (en) 2003-02-07 2011-03-03 Spi Lasers Uk Ltd Device for emitting optical radiation
US7575050B2 (en) 2003-03-10 2009-08-18 Exxonmobil Upstream Research Company Method and apparatus for a downhole excavation in a wellbore
US6851488B2 (en) 2003-04-04 2005-02-08 Gas Technology Institute Laser liner creation apparatus and method
US6880646B2 (en) 2003-04-16 2005-04-19 Gas Technology Institute Laser wellbore completion apparatus and method
US7024081B2 (en) 2003-04-24 2006-04-04 Weatherford/Lamb, Inc. Fiber optic cable for use in harsh environments
US7646953B2 (en) 2003-04-24 2010-01-12 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
WO2004099566A1 (en) 2003-05-02 2004-11-18 Baker Hughes Incorporaated A method and apparatus for an advanced optical analyzer
US7196786B2 (en) 2003-05-06 2007-03-27 Baker Hughes Incorporated Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples
US7782460B2 (en) 2003-05-06 2010-08-24 Baker Hughes Incorporated Laser diode array downhole spectrometer
US20070081157A1 (en) 2003-05-06 2007-04-12 Baker Hughes Incorporated Apparatus and method for estimating filtrate contamination in a formation fluid
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US7086484B2 (en) 2003-06-09 2006-08-08 Halliburton Energy Services, Inc. Determination of thermal properties of a formation
US20040252748A1 (en) 2003-06-13 2004-12-16 Gleitman Daniel D. Fiber optic sensing systems and methods
US6888097B2 (en) 2003-06-23 2005-05-03 Gas Technology Institute Fiber optics laser perforation tool
US6912898B2 (en) 2003-07-08 2005-07-05 Halliburton Energy Services, Inc. Use of cesium as a tracer in coring operations
US7195731B2 (en) 2003-07-14 2007-03-27 Halliburton Energy Services, Inc. Method for preparing and processing a sample for intensive analysis
US7073577B2 (en) 2003-08-29 2006-07-11 Applied Geotech, Inc. Array of wells with connected permeable zones for hydrocarbon recovery
US7199869B2 (en) 2003-10-29 2007-04-03 Weatherford/Lamb, Inc. Combined Bragg grating wavelength interrogator and Brillouin backscattering measuring instrument
US7040746B2 (en) 2003-10-30 2006-05-09 Lexmark International, Inc. Inkjet ink having yellow dye mixture
US7362422B2 (en) 2003-11-10 2008-04-22 Baker Hughes Incorporated Method and apparatus for a downhole spectrometer based on electronically tunable optical filters
US7134514B2 (en) 2003-11-13 2006-11-14 American Augers, Inc. Dual wall drill string assembly
US7152700B2 (en) 2003-11-13 2006-12-26 American Augers, Inc. Dual wall drill string assembly
NO322323B2 (en) 2003-12-01 2016-09-13 Unodrill As Method and apparatus for ground drilling
US7213661B2 (en) 2003-12-05 2007-05-08 Smith International, Inc. Dual property hydraulic configuration
US6874361B1 (en) 2004-01-08 2005-04-05 Halliburton Energy Services, Inc. Distributed flow properties wellbore measurement system
US20050201652A1 (en) 2004-02-12 2005-09-15 Panorama Flat Ltd Apparatus, method, and computer program product for testing waveguided display system and components
US7172026B2 (en) 2004-04-01 2007-02-06 Bj Services Company Apparatus to allow a coiled tubing tractor to traverse a horizontal wellbore
US7273108B2 (en) 2004-04-01 2007-09-25 Bj Services Company Apparatus to allow a coiled tubing tractor to traverse a horizontal wellbore
US7503404B2 (en) 2004-04-14 2009-03-17 Halliburton Energy Services, Inc, Methods of well stimulation during drilling operations
US7134488B2 (en) 2004-04-22 2006-11-14 Bj Services Company Isolation assembly for coiled tubing
US7147064B2 (en) 2004-05-11 2006-12-12 Gas Technology Institute Laser spectroscopy/chromatography drill bit and methods
US7636505B2 (en) 2004-05-12 2009-12-22 Prysmian Cavi E Sistemi Energia S.R.L. Microstructured optical fiber
US7337660B2 (en) 2004-05-12 2008-03-04 Halliburton Energy Services, Inc. Method and system for reservoir characterization in connection with drilling operations
EP1598140A1 (en) 2004-05-19 2005-11-23 Synova S.A. Laser machining
US7201222B2 (en) 2004-05-27 2007-04-10 Baker Hughes Incorporated Method and apparatus for aligning rotor in stator of a rod driven well pump
US8522869B2 (en) 2004-05-28 2013-09-03 Schlumberger Technology Corporation Optical coiled tubing log assembly
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
US9540889B2 (en) 2004-05-28 2017-01-10 Schlumberger Technology Corporation Coiled tubing gamma ray detector
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US7395696B2 (en) 2004-06-07 2008-07-08 Acushnet Company Launch monitor
US8500568B2 (en) 2004-06-07 2013-08-06 Acushnet Company Launch monitor
US8475289B2 (en) 2004-06-07 2013-07-02 Acushnet Company Launch monitor
US7837572B2 (en) 2004-06-07 2010-11-23 Acushnet Company Launch monitor
US8622845B2 (en) 2004-06-07 2014-01-07 Acushnet Company Launch monitor
GB0415223D0 (en) 2004-07-07 2004-08-11 Sensornet Ltd Intervention rod
GB0416512D0 (en) 2004-07-23 2004-08-25 Scandinavian Highlands As Analysis of rock formations
US7518722B2 (en) 2004-08-19 2009-04-14 Headwall Photonics, Inc. Multi-channel, multi-spectrum imaging spectrometer
US7527108B2 (en) 2004-08-20 2009-05-05 Tetra Corporation Portable electrocrushing drill
US8186454B2 (en) 2004-08-20 2012-05-29 Sdg, Llc Apparatus and method for electrocrushing rock
US7559378B2 (en) 2004-08-20 2009-07-14 Tetra Corporation Portable and directional electrocrushing drill
US8172006B2 (en) 2004-08-20 2012-05-08 Sdg, Llc Pulsed electric rock drilling apparatus with non-rotating bit
US7384009B2 (en) 2004-08-20 2008-06-10 Tetra Corporation Virtual electrode mineral particle disintegrator
US20060049345A1 (en) 2004-09-09 2006-03-09 Halliburton Energy Services, Inc. Radiation monitoring apparatus, systems, and methods
DE102004045912B4 (en) 2004-09-20 2007-08-23 My Optical Systems Gmbh Method and device for superimposing beams
US8074720B2 (en) 2004-09-28 2011-12-13 Vetco Gray Inc. Riser lifecycle management system, program product, and related methods
US7394064B2 (en) 2004-10-05 2008-07-01 Halliburton Energy Services, Inc. Measuring the weight on a drill bit during drilling operations using coherent radiation
US7087865B2 (en) 2004-10-15 2006-08-08 Lerner William S Heat warning safety device using fiber optic cables
EP1657020A1 (en) 2004-11-10 2006-05-17 Synova S.A. Process and device for optimising the coherence of a fluidjet used for materialworking and fluid flow nozzle for such a device
US7490664B2 (en) 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
GB2420358B (en) 2004-11-17 2008-09-03 Schlumberger Holdings System and method for drilling a borehole
US20060118303A1 (en) 2004-12-06 2006-06-08 Halliburton Energy Services, Inc. Well perforating for increased production
US7720323B2 (en) 2004-12-20 2010-05-18 Schlumberger Technology Corporation High-temperature downhole devices
US7416258B2 (en) 2005-04-19 2008-08-26 Uchicago Argonne, Llc Methods of using a laser to spall and drill holes in rocks
US7487834B2 (en) 2005-04-19 2009-02-10 Uchicago Argonne, Llc Methods of using a laser to perforate composite structures of steel casing, cement and rocks
JP3856811B2 (en) 2005-04-27 2006-12-13 日本海洋掘削株式会社 Excavation method and apparatus for submerged formation
US7372230B2 (en) 2005-04-27 2008-05-13 Focal Technologies Corporation Off-axis rotary joint
US20060289724A1 (en) 2005-06-20 2006-12-28 Skinner Neal G Fiber optic sensor capable of using optical power to sense a parameter
EP1762864B1 (en) 2005-09-12 2013-07-17 Services Petroliers Schlumberger Borehole imaging
US7694745B2 (en) 2005-09-16 2010-04-13 Halliburton Energy Services, Inc. Modular well tool system
JP2007120048A (en) 2005-10-26 2007-05-17 Graduate School For The Creation Of New Photonics Industries Rock excavating method
CN101313127A (en) 2005-11-21 2008-11-26 国际壳牌研究有限公司 Method for monitoring fluid properties
GB0524838D0 (en) 2005-12-06 2006-01-11 Sensornet Ltd Sensing system using optical fiber suited to high temperatures
US7600564B2 (en) 2005-12-30 2009-10-13 Schlumberger Technology Corporation Coiled tubing swivel assembly
US7515782B2 (en) 2006-03-17 2009-04-07 Zhang Boying B Two-channel, dual-mode, fiber optic rotary joint
US20080093125A1 (en) 2006-03-27 2008-04-24 Potter Drilling, Llc Method and System for Forming a Non-Circular Borehole
US8573313B2 (en) 2006-04-03 2013-11-05 Schlumberger Technology Corporation Well servicing methods and systems
FR2899693B1 (en) 2006-04-10 2008-08-22 Draka Comteq France OPTICAL FIBER MONOMODE.
US20070267220A1 (en) 2006-05-16 2007-11-22 Northrop Grumman Corporation Methane extraction method and apparatus using high-energy diode lasers or diode-pumped solid state lasers
US7934556B2 (en) 2006-06-28 2011-05-03 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
US8074332B2 (en) 2006-07-31 2011-12-13 M-I Production Chemicals Uk Limited Method for removing oilfield mineral scale from pipes and tubing
RU2445656C2 (en) 2006-08-30 2012-03-20 Афл Телекомьюникейшнс Ллс Borehole cables with fibre-optic and copper elements
CA2661606A1 (en) 2006-09-01 2008-03-06 Terrawatt Holdings Corporation Method of storage of sequestered greenhouse gasses in deep underground reservoirs
US20080069961A1 (en) 2006-09-14 2008-03-20 Halliburton Energy Services, Inc. Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup
US20080066535A1 (en) 2006-09-18 2008-03-20 Schlumberger Technology Corporation Adjustable Testing Tool and Method of Use
US7603011B2 (en) 2006-11-20 2009-10-13 Schlumberger Technology Corporation High strength-to-weight-ratio slickline and multiline cables
US7834777B2 (en) 2006-12-01 2010-11-16 Baker Hughes Incorporated Downhole power source
US8307900B2 (en) 2007-01-10 2012-11-13 Baker Hughes Incorporated Method and apparatus for performing laser operations downhole
US7916386B2 (en) 2007-01-26 2011-03-29 Ofs Fitel, Llc High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers
JP4270577B2 (en) 2007-01-26 2009-06-03 日本海洋掘削株式会社 Rock processing method and apparatus using laser
SK50872007A3 (en) 2007-06-29 2009-01-07 Ivan Kočiš Device for excavation boreholes in geological formation and method of energy and material transport in this boreholes
US20090033176A1 (en) 2007-07-30 2009-02-05 Schlumberger Technology Corporation System and method for long term power in well applications
US20090034918A1 (en) 2007-07-31 2009-02-05 William Eric Caldwell Fiber optic cables having coupling and methods therefor
US7993717B2 (en) 2007-08-02 2011-08-09 Lj's Products, Llc Covering or tile, system and method for manufacturing carpet coverings or tiles, and methods of installing coverings or carpet tiles
US7835814B2 (en) 2007-08-16 2010-11-16 International Business Machines Corporation Tool for reporting the status and drill-down of a control application in an automated manufacturing environment
US20090105955A1 (en) 2007-09-25 2009-04-23 Baker Hughes Incorporated Sensors For Estimating Properties Of A Core
US7931091B2 (en) 2007-10-03 2011-04-26 Schlumberger Technology Corporation Open-hole wellbore lining
US7593435B2 (en) 2007-10-09 2009-09-22 Ipg Photonics Corporation Powerful fiber laser system
US7715664B1 (en) 2007-10-29 2010-05-11 Agiltron, Inc. High power optical isolator
EP2065554B1 (en) 2007-11-30 2014-04-02 Services Pétroliers Schlumberger System and method for drilling and completing lateral boreholes
EP2065553B1 (en) 2007-11-30 2013-12-25 Services Pétroliers Schlumberger System and method for drilling lateral boreholes
EP2067926A1 (en) 2007-12-04 2009-06-10 Bp Exploration Operating Company Limited Method for removing hydrate plug from a flowline
US8090227B2 (en) 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US8162051B2 (en) 2008-01-04 2012-04-24 Intelligent Tools Ip, Llc Downhole tool delivery system with self activating perforation gun
US7934563B2 (en) 2008-02-02 2011-05-03 Regency Technologies Llc Inverted drainholes and the method for producing from inverted drainholes
US20090205675A1 (en) 2008-02-18 2009-08-20 Diptabhas Sarkar Methods and Systems for Using a Laser to Clean Hydrocarbon Transfer Conduits
WO2009117451A1 (en) 2008-03-21 2009-09-24 Imra America, Inc. Laser-based material processing methods and systems
US7946350B2 (en) 2008-04-23 2011-05-24 Schlumberger Technology Corporation System and method for deploying optical fiber
WO2009131584A1 (en) 2008-04-25 2009-10-29 Halliburton Energy Services, Inc. Multimodal geosteering systems and methods
US8056633B2 (en) 2008-04-28 2011-11-15 Barra Marc T Apparatus and method for removing subsea structures
FR2930997B1 (en) 2008-05-06 2010-08-13 Draka Comteq France Sa OPTICAL FIBER MONOMODE
US20090294050A1 (en) 2008-05-30 2009-12-03 Precision Photonics Corporation Optical contacting enhanced by hydroxide ions in a non-aqueous solution
US8217302B2 (en) 2008-06-17 2012-07-10 Electro Scientific Industries, Inc Reducing back-reflections in laser processing systems
US20100170672A1 (en) 2008-07-14 2010-07-08 Schwoebel Jeffrey J Method of and system for hydrocarbon recovery
US20100013663A1 (en) 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US20120074110A1 (en) 2008-08-20 2012-03-29 Zediker Mark S Fluid laser jets, cutting heads, tools and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US20120273470A1 (en) 2011-02-24 2012-11-01 Zediker Mark S Method of protecting high power laser drilling, workover and completion systems from carbon gettering deposits
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US20120067643A1 (en) 2008-08-20 2012-03-22 Dewitt Ron A Two-phase isolation methods and systems for controlled drilling
US10195687B2 (en) 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9121260B2 (en) 2008-09-22 2015-09-01 Schlumberger Technology Corporation Electrically non-conductive sleeve for use in wellbore instrumentation
US20100078414A1 (en) 2008-09-29 2010-04-01 Gas Technology Institute Laser assisted drilling
DE102008049943A1 (en) 2008-10-02 2010-04-08 Werner Foppe Method and device for melt drilling
EP2347082A2 (en) 2008-10-08 2011-07-27 Potter Drilling, Inc. Methods and apparatus for thermal drilling
BRPI0806638B1 (en) 2008-11-28 2017-03-14 Faculdades Católicas Mantenedora Da Pontifícia Univ Católica Do Rio De Janeiro - Puc Rio laser drilling process
US9593573B2 (en) 2008-12-22 2017-03-14 Schlumberger Technology Corporation Fiber optic slickline and tools
AU2009331923B2 (en) 2008-12-23 2016-04-28 Eth Zurich Rock drilling in great depths by thermal fragmentation using highly exothermic reactions evolving in the environment of a water-based drilling fluid
US7814991B2 (en) 2009-01-28 2010-10-19 Gas Technology Institute Process and apparatus for subterranean drilling
SK288264B6 (en) 2009-02-05 2015-05-05 Ga Drilling, A. S. Device to carry out the drillings and method of carry out the drillings
CN101823183A (en) 2009-03-04 2010-09-08 鸿富锦精密工业(深圳)有限公司 Water-conducted laser device
CA2757650C (en) 2009-04-03 2016-06-07 Statoil Asa Equipment and method for reinforcing a borehole of a well while drilling
US8307903B2 (en) 2009-06-24 2012-11-13 Weatherford / Lamb, Inc. Methods and apparatus for subsea well intervention and subsea wellhead retrieval
AU2010273790B2 (en) 2009-06-29 2015-04-02 Halliburton Energy Services, Inc. Wellbore laser operations
US20110030957A1 (en) 2009-08-07 2011-02-10 Brent Constantz Carbon capture and storage
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US20110061869A1 (en) 2009-09-14 2011-03-17 Halliburton Energy Services, Inc. Formation of Fractures Within Horizontal Well
US8291989B2 (en) 2009-12-18 2012-10-23 Halliburton Energy Services, Inc. Retrieval method for opposed slip type packers
DE102010005264A1 (en) 2010-01-20 2011-07-21 Smolka, Peter P., Dr., 48161 Chiselless drilling system
TW201207864A (en) 2010-02-15 2012-02-16 Toshiba Kk In-pipe work device
US8967298B2 (en) 2010-02-24 2015-03-03 Gas Technology Institute Transmission of light through light absorbing medium
WO2011129841A1 (en) 2010-04-14 2011-10-20 Vermeer Manufacturing Company Latching configuration for a microtunneling apparatus
NO2588709T3 (en) 2010-07-01 2018-07-21
US8499856B2 (en) 2010-07-19 2013-08-06 Baker Hughes Incorporated Small core generation and analysis at-bit as LWD tool
EP2606201A4 (en) 2010-08-17 2018-03-07 Foro Energy Inc. Systems and conveyance structures for high power long distance laster transmission
US9080435B2 (en) 2010-08-27 2015-07-14 Baker Hughes Incorporated Upgoing drainholes for reducing liquid-loading in gas wells
CA2813008C (en) 2010-09-22 2019-01-15 Joy Mm Delaware, Inc. Guidance system for a mining machine
US9022115B2 (en) 2010-11-11 2015-05-05 Gas Technology Institute Method and apparatus for wellbore perforation
BR112013021478A2 (en) 2011-02-24 2016-10-11 Foro Energy Inc High power laser-mechanical drilling method
WO2012116189A2 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. Tools and methods for use with a high power laser transmission system
WO2012167102A1 (en) 2011-06-03 2012-12-06 Foro Energy Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
BR112015004458A8 (en) 2012-09-01 2019-08-27 Chevron Usa Inc well control system, laser bop and bop set
US20140069896A1 (en) 2012-09-09 2014-03-13 Foro Energy, Inc. Light weight high power laser presure control systems and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053513A1 (en) * 1999-06-07 2003-03-20 Metrologic Instruments, Inc. Method of and system for producing high-resolution 3-D images of 3-D object surfaces having arbitrary surface geometry
US20030002771A1 (en) * 2001-06-01 2003-01-02 Jds Uniphase Corporation Integrated optical amplifier
US20040081395A1 (en) * 2002-10-18 2004-04-29 Jerzy Gawalkiewicz Light source unit for use with a light guide and lamp mounting arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404042A (en) * 2020-10-26 2021-02-26 厦门理工学院 Laser cleaning acoustic monitoring equipment

Also Published As

Publication number Publication date
US20120275159A1 (en) 2012-11-01
US9360631B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
US9360631B2 (en) Optics assembly for high power laser tools
US9267330B2 (en) Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
WO2012167102A1 (en) Rugged passively cooled high power laser fiber optic connectors and methods of use
JP3145411B2 (en) Distribution valve for high-pressure coolant used for metal machine tools
US9244235B2 (en) Systems and assemblies for transferring high power laser energy through a rotating junction
AU744226B2 (en) Sealed bearing drill bit with dual-seal configuration
EP2820466B1 (en) Total internal reflection laser tools and methods
US6209667B1 (en) Drill string fitting
US8627901B1 (en) Laser bottom hole assembly
CN101674916B (en) Long reach spindle drive systems and method
US20100260563A1 (en) Driven tool assembly
CA3108259A1 (en) Roller ball assembly with superhard elements
JP5933917B2 (en) Rotary joint with a selectively controlled seal
US5626345A (en) Dual groove seal
AU760024B2 (en) Improved bearing isolator
JP6666607B2 (en) Turbine drive power unit for cutting tools
US20130192037A1 (en) Split Sleeve Shaft Repair
US9810616B2 (en) High pressure housing and optical viewing system
CA2952649C (en) Fluid pressure pulse generator for a downhole telemetry tool
EP0958105B1 (en) Metal cutting machining device, with massive block and sliding column, and machine integrating this device
CA2656567C (en) Cuttings removal wipers for cutter assemblies and method
CN107524413A (en) A kind of raceway laser remanufacturing method of rock bit
CN114535924A (en) Equipment for repairing shield seal ring piece and working method thereof
CN101230877A (en) Rotor and manufacturing method thereof
US20200378195A1 (en) Wear Resistant Insert

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORO ENERGY, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRAZE, JASON D;FAIRCLOTH, BRIAN O;ZEDIKER, MARK S;SIGNING DATES FROM 20160802 TO 20160803;REEL/FRAME:039359/0122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION