US20170054198A1 - Multi-element telecommunications antenna - Google Patents

Multi-element telecommunications antenna Download PDF

Info

Publication number
US20170054198A1
US20170054198A1 US15/240,325 US201615240325A US2017054198A1 US 20170054198 A1 US20170054198 A1 US 20170054198A1 US 201615240325 A US201615240325 A US 201615240325A US 2017054198 A1 US2017054198 A1 US 2017054198A1
Authority
US
United States
Prior art keywords
broadband
antenna
dipole
dipole elements
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/240,325
Other versions
US10505259B2 (en
Inventor
Kevin T. Le
William J. Brown
Jordan E. Ragos
Shawn M. Chawgo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Css Antenna (a Jma Company) LLC
CSS ANTENNA LLC
Original Assignee
CSS ANTENNA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSS ANTENNA LLC filed Critical CSS ANTENNA LLC
Priority to US15/240,325 priority Critical patent/US10505259B2/en
Assigned to CSS ANTENNA, LLC (A JMA COMPANY) reassignment CSS ANTENNA, LLC (A JMA COMPANY) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAWGO, SHAWN M., LE, KEVIN T., RAGOS, JORDAN E., BROWN, WILLIAM J.
Publication of US20170054198A1 publication Critical patent/US20170054198A1/en
Application granted granted Critical
Publication of US10505259B2 publication Critical patent/US10505259B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the antenna comprises a multiple input, multiple-output phase shifter to provide a directional beam pattern over a specific geographic region.
  • Typical cellular systems divide geographical areas into a plurality of adjoining cells, each cell including a wireless cell site or “base station.”
  • the cell sites operate within a limited radio frequency band and, accordingly, carrier frequencies must be used efficiently to ensure sufficient user capacity in the system.
  • a base station may provide omni-directional coverage or directional coverage based upon the geography of a particular site. For example, a site may be centrally-located in an open area, void of tall buildings/structures/mountains, such that an omni-directional antenna may be the most efficient arrangement for providing coverage in a particular geographic region. If a mountain range has caused geographic development along one of its sides, then a directional antenna may be best-suited for providing coverage to cellular customers residing on that side of the mountain range.
  • an antenna which produces a circular, downwardly-directed beam may provide the most efficient cellular coverage for the area.
  • a beam pattern comprising a plurality of lobes may provide the best coverage. Notwithstanding the type of coverage provided by the individual cell sites, one of the more important considerations involves minimizing overlap between adjacent lobes to minimize interference between cell sites.
  • Diversity improves the ability of an antenna to see an intended signal around natural geographic features of a landscape, including man-made structures such as high-rise buildings.
  • a diversity antenna array helps to increase coverage as well as to overcome fading.
  • Antenna polarization combines pairs of antennas with orthogonal polarizations to improve base station uplink gain. Given the random orientation of a transmitting antenna, when the signal of one diversity-receiving antenna fades due to the receipt of a weak signal, the probability is high that the signal of other diversity-receiving antenna will strengthen.
  • antenna polarization most communications systems use vertical, slant and/or circular polarization.
  • Beam Shaping is another technique employed to optimize call carrying capacity by providing the most available carrier frequencies within demanding geographic environments. Oftentimes user demographics change such that base transceiver stations have insufficient capacity to deal with current local demand within an area. For example, a new housing development within a cell may increase demand within that specific area. Beam shaping can address this problem by distributing the traffic among the transceivers to increase coverage in the demanding geographic sector.
  • Prior art beam shaping solutions utilize complex beam-forming devices (LPAs, controllable phase shifters, etc.), many of which are not well-suited for deployment atop a masthead or cell tower.
  • LPAs complex beam-forming devices
  • a significant design effort involves the use of 2- and 3-sector antennas optimized to provide beam-forming for the purpose of increasing “long term evolution” (4G LTE) data rates in a small cellular network.
  • 4G LTE long term evolution
  • Single Input, Single Output (SISO), Single Input, Multiple Output (SIMO), Multiple Input, Single Output, (MISO) and Multiple Input, Multiple Output (MIMO) antenna systems are, by far, the most common.
  • Single Input, Single Output (SISO) antenna are somewhat self-explanatory inasmuch as the antenna employs a single transmitter for sending signals and a single receiver for accepting signals.
  • SIMO and MISO telecommunications antennas utilize multiple transmit and/or multiple receive antennas to exploit multipath propagation technology.
  • such technology refers to a practical technique for sending and receiving more than one data signal on the same radio channel at the same time via multipath propagation.
  • such telecommunication system are fundamentally different from smart antenna techniques developed to enhance the performance of a single data signal, such as the techniques employed in beamforming and beam diversity.
  • monopole antennas of the prior art propagate energy in the one-half wavelength (1 ⁇ 2)( ⁇ ) which corresponds to about seven and four-tenth inches (7.4.′′)
  • a full wave-length radiators will be more than about fourteen and eight-tenths inches (14.8′′). Since the maximum/desired envelope of certain canister antennas is only about six inches (6.0′′), typical low-band radiators are generally dismissed as being too large for such applications.
  • An antenna is provided to exchange signals in the broadband range of the electromagnetic spectrum, comprising: a conductive ground plane and at least one pair of broadband radiators mounted to the conductive ground plane.
  • Each of the broadband radiators includes first and second dipole elements wherein the first dipole element is tuned to a first broadband frequency and the second dipole element is tuned to a second broadband frequency.
  • At least one of the dipole elements associated with one broadband radiator is spatially positioned relative to the respective dipole element of the other broadband radiator to minimize electrical coupling therebetween.
  • the dipole elements tuned to the same frequency on each of the broadband radiators are oriented orthogonally to the mitigate electrical coupling across the dipole elements.
  • a telecommunications antenna for use in combination with a Multiple Input, Multiple Output (MIMO) antenna.
  • MIMO Multiple Input, Multiple Output
  • This telecommunications antenna comprises a conductive ground plane, and first and second dipole elements each mounted, and electrically connected, to the conductive ground plane.
  • the first and second dipole elements each have a length dimension tuned to a broadband frequency wherein the broadband frequency of the second dipole element is higher than the broadband frequency of the first dipole element.
  • the first dipole element crosses the second dipole element along a vertical line substantially normal to the ground plane and has a shorter length dimension than the second dipole element.
  • FIG. 1 is a perspective view of a telecommunications antenna mounted internally of a canister housing which is integrated within a ceiling structure of a conventional office or commercial building.
  • FIG. 2 is a perspective view of the internal components of the telecommunications antenna including a pair of broadband radiators each employing a first dipole element tuned to a first broadband frequency and a second dipole element tuned to a second broadband frequency.
  • FIG. 3 is a top view of the telecommunications antenna wherein the first of the dipole elements associated with one of the broadband radiators is orthogonal to, i.e., disposed at right angles relative to, the first dipole elements of the other broadband radiators to minimize electrical coupling between the first dipole elements.
  • FIG. 4 is a perspective view of the telecommunications antenna shown in FIG. 2 which is partially exploded to view the assembly of the broadband radiators.
  • FIG. 5 is a perspective view of a directional telecommunications antenna employing two pairs of broadband radiators, each employing first and second dipole elements tuned to low and high broadband frequencies, respectively.
  • FIG. 6 is a top view of the directional telecommunications antenna, wherein the first dipole elements are disposed at right angles relative to the second dipole elements of the same broadband radiator, wherein the first and second dipole elements of each broadband radiator are orthogonal to minimize electrical couplings therebetween, and wherein the telecommunications antenna further comprises a phase shifter to increase the signal gain along a vector to produce a directional quality to the transmitted/received RF signals.
  • FIG. 7 depicts the signal output of the directional telecommunications antenna shown in FIGS. 5 and 6 , wherein the signal is directional along one or more forward vectors.
  • the telecommunications antenna of the present invention will be described in the context of a Single Input, Single Output (SISO), Single Input, Multiple Output (SIMO), Multiple Input, Single Output (MISO) antenna system, however, it should be appreciated that the invention is also applicable to a Multiple Input, Multiple Output (MIMO) telecommunication antennas. Further, while a telecommunications antenna having four dipole assemblies or broadband radiators is described, the telecommunications antenna may have any number of antennas to exchange broadband signals to and from cellular devices.
  • a telecommunications antenna 100 is mounted within a ceiling structure of a conventional office or commercial building.
  • the telecommunications antenna 100 includes an outer housing 102 which is transparent to electromagnetic energy for exchanging broadband signals to and from cellular customers/devices.
  • the housing 102 is limited in size to about eight inches (8′′) in diameter and about six inches (6′′) in height.
  • building residents and service providers often mandate or stipulate that the size of such antennas be limited/minimized to maintain the overall building aesthetics while mitigating concerns regarding occupant exposure to harmful levels of RF radiation.
  • the telecommunications antenna 100 includes a generally planar, conductive base plate 104 having mounted thereto a pair of dipole assemblies or broadband radiators 106 , 108 each comprising a first dipole, leg or radiating element 106 a , 108 a and a second dipole, leg, or radiating element 106 b , 108 b (hereinafter referred to as “dipole elements”).
  • the first and second dipole elements 106 a , 106 b , 108 a , 108 b project outwardly from the base plate 104 , and, in the illustrated embodiment, project orthogonally, or at right angles relative to, the base plate 104 .
  • Jumper cables 110 a , 110 b exchange broadband signals between ports (not shown) along the underside of the telecommunications antenna 100 and a Distributed Antenna System (DAS).
  • DAS Distributed Antenna System
  • the first dipole elements 106 a , 108 a of the dipole assemblies or broadband radiators 106 , 108 are configured to be tuned to a first frequency while the second dipole elements 106 b , 108 b thereof are configured to be tuned to a second frequency.
  • the second dipole elements 106 b , 108 b are configured to be tuned to a second frequency higher than the first frequency.
  • the first dipole elements 106 a , 108 a are longer, i.e., in spanwise length dimension, than the length dimension of the second dipole elements 106 b , 108 b .
  • the lower frequency/longer wavelength of the first dipole elements 106 a , 108 a will necessarily be longer than the higher frequency/shorter wavelength of the second dipole elements 106 b , 108 b.
  • the first and second dipole elements 106 a , 108 a , 106 ba , 108 b are generally metallic and conductive. Furthermore, the first dipole elements 106 a , 108 a are electrically grounded to the base plate 104 . Inasmuch as such electrical grounding may be counter-intuitive to conventional antenna design, it will be appreciated that monopole antennas are not suitable due to the height requirements of the radiators. Similar to the length requirements, the height requirements are once again a function of wavelength. Since the maximum height of the housing/canister 104 is only six inches (6.0′′), the inventors were challenged to develop a radiator which propagates a relatively long wavelength while at the same time maintaining a small design envelope.
  • the inventors decided to combine the principals of a 1 ⁇ 4 wave stub (typically employed to alter the impedance in a coaxial cable) with the low-band, dipole elements 106 a , 108 a of each of the radiators 106 , 108 .
  • a DC current may be fed directly into the 1 ⁇ 4 ⁇ wavelength dipole elements 106 a , 106 b , 108 a , 108 b to transform a short circuit into an open circuit.
  • This configuration has no adverse effect on the quality of the electrical signals on the lines, yet allows for a significant reduction in vertical dimension of the canister.
  • the dipole elements 106 a , 106 b , 108 a , 108 b comprise one or more laminates of a fiber-reinforced, resin matrix material having a metallic layer bonded to, or interposing the layers of, the composite laminate.
  • the first dipole elements 106 a , 108 a which are longer than the second dipole elements 106 b , 108 b , include a metallic trace 112 a , 114 a (shown in phantom lines) extending along the outer periphery of the first dipole elements 106 a , 106 b .
  • the trace 112 a , 114 a projects downwardly at the outboard end 115 a of each of the elements 106 a , 108 a for soldering to, and producing an electrical connection between a conductive brass fitting 116 in the base plate 104 and the metallic trace 112 a , 114 a .
  • the trace 114 grounds the dipole elements 106 a , 108 a while also extending along an outboard edge to reflect RF energy in a desired direction.
  • the first and second dipole elements 106 a , 106 b , 108 a , 108 b intersect along vertical lines 120 , 122 oriented normal to the plane of the base plate 104 .
  • the dipole elements 106 a , 106 b , 108 a , 108 b of each broadband radiator 106 , 108 i.e., the first and second pole elements 106 a , 106 b of the first broadband radiator 106 and the first and second dipole elements 108 a , 108 b of the second broadband radiator 108 cross in a mid-span region to form a generally cruciform shape.
  • the first and second dipole elements 106 a , 106 b of the first broadband radiator 106 , and the first and second dipole elements 108 a , 108 b of the second broadband radiator 108 each include a vertical slot 126 a , 126 b and 128 a , 128 b , respectively, formed along each of the vertical lines 120 , 122 .
  • the slots 126 a , 128 a , 126 b , 128 extend from the upper or lower edges 130 u , 1301 , 132 u , 1321 of the respective dipole elements 106 a , 106 b , 108 a , 108 b to the center of the respective element such that the elements 106 a , 106 b , 108 a , 108 b nest as the slots 130 u , 1301 , 132 u , 1321 of each are engaged.
  • first and second dipole elements 106 a , 106 b , 108 a , 108 b may form an acute or obtuse angle relative to each other, they preferably are orthogonal, forming a right angle along the vertical lines 120 , 122 .
  • the telecommunications antenna includes first and second dipole elements 106 a , 106 b , 108 a , 108 b which are selectively tuned such that the first dipole elements 106 a , 108 a are longer than the respective second dipole elements 106 b , 108 b .
  • the first dipole elements 106 a , 108 a correspond in size, i.e., in length, to about 1 ⁇ 4 ( ⁇ ), wherein the wavelength ( ⁇ ) corresponds to a frequency (v) which is less than about one-thousand seven hundred megahertz (1700 mHz).
  • the second dipole elements 106 b , 108 b correspond in size, i.e., in length, to about 1 ⁇ 4 ( ⁇ ), wherein the wavelength ( ⁇ ) corresponds to a frequency (v) which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
  • the first dipole elements 106 a , 108 a have a length corresponding in size to a frequency (v) which is less than about one-thousand megahertz (1000 mHz).
  • the second dipole elements 106 b , 108 b have a length corresponding in size to a frequency (v) which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
  • the first dipole elements 106 a , 108 a correspond in size) i.e., 1 ⁇ 4 ( ⁇ ), to a frequency (v) of about eight-hundred twenty-five mega-hertz (825 mHz), which is the average frequency in the low broadband range. This range extends from about six hundred and ninety mega-hertz (690 mHz) to about nine hundred and sixty mega-hertz (960 MHz).
  • the second dipole elements 106 b , 108 b correspond in size, i.e., 1 ⁇ 4 ( ⁇ ), to a frequency (v) of about two-thousand, two-hundred and ninety-five mega-hertz (2295 mHz), which is the average frequency in the high broadband range. This range extends from about one-thousand six-hundred and ninety-five mega-hertz (1695 mHz) to about two-thousand six-hundred and ninety mega-hertz (2690 MHz).
  • the first dipole and second dipole elements 106 a , 106 b , 108 a , 108 b are spatially separated to minimize the overall size of the envelope while minimizing the electrical coupling therebetween.
  • the dipole assemblies or broadband radiators 106 , 108 are separated by a distance greater than at least three-tenths of the largest wavelength 0.3( ⁇ ) corresponding to the resonant frequency to which the dipole assemblies 106 , 108 are tuned.
  • the second dipole elements 106 b , 108 b which have the shortest wavelengths and the greatest propensity for cross-coupling, are spaced farther apart than the first dipole elements 106 a , 108 a .
  • isolation standoffs 140 , 150 a , 150 b are interposed between the first and second dipole elements 106 a , 106 b , 108 a , 108 b of the dipole assemblies 106 , 108 .
  • a low-band standoff 140 is disposed midway between the first dipole elements 106 a , 108 a .
  • a pair of high-band standoffs 150 a , 150 b are disposed between each outwardly facing leg of the first dipole elements 106 a , 108 a and each inwardly facing leg of the second dipole elements 106 b . 108 b .
  • the isolation standoffs 140 , 150 a , 150 b have the effect of re-directing electrical current such that isolation is maximized between the broadband radiators 106 , 108 .
  • Prior art telecommunications antenna configurations have struggled to achieve greater than about ten decibels (10 Dbi) of isolation between the radiators.
  • the configuration of the present invention more than doubles the isolation between antennas due to the configuration and orientation of the broadband radiators 106 , 108 . That is, the telecommunications antenna of the present description results in about twenty-one decibels (21 Dbi) of isolation.
  • the telecommunications antenna mitigates electrical coupling between the broadband radiators 106 , 108 , interference is also minimized while maximizing isolation.
  • FIGS. 5 and 6 depict a telecommunications antenna 200 having a phase shifter 240 to provide a directional beam pattern over a specific geographic region.
  • the telecommunications antenna 200 includes at least two pairs, or four broadband radiators 202 , 204 , 206 , 208 each exchanging signals in a ninety-degree (90°) quadrants of a desired geographic sector.
  • Each of the broadband radiators 202 , 204 , 206 , 208 includes a first dipole element 202 a , 204 a , 206 a , 208 a , respectively, resonant in a low-band frequency range and a second dipole element 202 b , 204 b , 206 b , 208 b , respectively, resonant in a high-band frequency range.
  • the broadband radiators 202 , 204 , 206 , 208 are mounted, and electrically connected, to a conductive ground plane 210 .
  • the low-band frequency range corresponds in size, i.e., 1 ⁇ 4 ( ⁇ ), to a frequency (v) of about eight-hundred twenty-five mega-hertz (825 mHz), which is the average frequency in the low broadband range.
  • This range extends from about six hundred and ninety mega-hertz (690 mHz) to about nine hundred and sixty mega-hertz (960 MHz).
  • the second dipole elements 106 b , 108 b correspond in size to a frequency (v), i.e., 1 ⁇ 4 ( ⁇ ), of about two-thousand, two-hundred and ninety-five mega-hertz (2295 mHz), which is the average frequency in the high broadband range.
  • This range extends from about one-thousand six-hundred and ninety-five mega-hertz (1695 mHz) to about two-thousand six-hundred and ninety mega-hertz (2690 MHz).
  • At least one of the first dipole elements 202 a , 204 a , 206 a , 208 a of one of the broadband radiators 202 , 204 , 206 , 208 is substantially orthogonal to the one of the first dipole elements 202 a , 204 a , 206 a , 208 a of the other of the broadband radiators 202 , 204 , 206 , 208 .
  • both the first and second dipole elements 202 a , 204 a , 206 a , 208 a , 202 b , 204 b , 206 b , 208 b of one of the broadband radiators 202 , 204 , 206 , 208 are substantially orthogonal to the respective one of the first and second dipole elements 202 a , 204 a , 206 a , 208 a , 202 b , 204 b , 206 b , 208 b of the other of the dipole broadband radiators 202 , 204 , 206 , 208 .
  • the directional telecommunications antenna 200 includes isolation standoffs 160 a , 160 b , 160 c , 160 d interposed between the first and second dipole elements 202 a , 204 a , 206 a , 208 a , 202 b , 204 b , 206 b , 208 b of the broadband radiators 202 , 204 , 206 , 208 . 106 , 108 .
  • the isolation standoffs 160 a , 160 b , 160 c , 160 d have the effect of re-directing electrical current such that isolation is maximized between the broadband radiators 202 a , 204 a , 206 a , 208 a , 202 b , 204 b , 206 b , 208 b.
  • a phase shifter is employed to electronically shift the direction of the beam by altering the gain along a vector V 1 .
  • the gain can be altered in each quadrant: QI (0 to 90), Q 2 (90 to 180), Q 3 ( ⁇ 180 to ⁇ 90) and Q 4 ( ⁇ 90 to 0) to produce a beam pattern which resembles the output pattern 300 shown in FIG. 7 .
  • QI (0 to 90)
  • Q 2 90 to 180
  • Q 3 ⁇ 180 to ⁇ 90
  • Q 4 ⁇ 90 to 0
  • Additional embodiments include any one of the embodiments described above, where one or more of its components, functionalities or structures is interchanged with, replaced by or augmented in combination with one or more of the components, functionalities or structures of a different embodiment described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A telecommunications antenna comprising a conductive ground plane and at least one pair of broadband radiators mounted, and electrically connected, to the conductive ground plane. Each of the broadband radiators includes first and second dipole elements wherein the first dipole element is tuned to a first broadband frequency and the second dipole element is tuned to a second broadband frequency. At least one of the dipole elements associated with one broadband radiator is spatially positioned relative to the respective dipole element of the other broadband radiator to minimize electrical coupling therebetween. Dipole elements tuned to the same frequency on each broadband radiator are oriented orthogonally to mitigate electrical coupling across the dipole elements.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a non-provisional patent application, and claims the benefit and priority, of U.S. Provisional Patent Application No. 62/206,485 filed on Aug. 18, 2015. The entire contents of such application are hereby incorporated by reference.
  • TECHNICAL FIELD
  • This application relates to an antenna for use in telecommunications systems and, more particularly, to a new and useful tailored multi-element antenna system which minimizes electrical coupling and signal interference. In another embodiment the antenna comprises a multiple input, multiple-output phase shifter to provide a directional beam pattern over a specific geographic region.
  • BACKGROUND
  • Typical cellular systems divide geographical areas into a plurality of adjoining cells, each cell including a wireless cell site or “base station.” The cell sites operate within a limited radio frequency band and, accordingly, carrier frequencies must be used efficiently to ensure sufficient user capacity in the system.
  • Call carrying capacity for cellular networks involves the creation of base stations or cell sites across various geographic regions/areas. The base stations/cell sites are partitioned based upon user density/location and, consequently, service providers must purchase real estate and equipment for each site. A base station may provide omni-directional coverage or directional coverage based upon the geography of a particular site. For example, a site may be centrally-located in an open area, void of tall buildings/structures/mountains, such that an omni-directional antenna may be the most efficient arrangement for providing coverage in a particular geographic region. If a mountain range has caused geographic development along one of its sides, then a directional antenna may be best-suited for providing coverage to cellular customers residing on that side of the mountain range. If an area is heavily developed, such as in an urban setting, an antenna which produces a circular, downwardly-directed beam may provide the most efficient cellular coverage for the area. In the case of heavily populated areas, a beam pattern comprising a plurality of lobes may provide the best coverage. Notwithstanding the type of coverage provided by the individual cell sites, one of the more important considerations involves minimizing overlap between adjacent lobes to minimize interference between cell sites.
  • To improve the quality and reliability of wireless systems, service providers often rely on antenna “diversity” and antenna “polarization.” Diversity improves the ability of an antenna to see an intended signal around natural geographic features of a landscape, including man-made structures such as high-rise buildings. A diversity antenna array helps to increase coverage as well as to overcome fading. Antenna polarization combines pairs of antennas with orthogonal polarizations to improve base station uplink gain. Given the random orientation of a transmitting antenna, when the signal of one diversity-receiving antenna fades due to the receipt of a weak signal, the probability is high that the signal of other diversity-receiving antenna will strengthen. With respect to antenna polarization, most communications systems use vertical, slant and/or circular polarization.
  • Beam Shaping is another technique employed to optimize call carrying capacity by providing the most available carrier frequencies within demanding geographic environments. Oftentimes user demographics change such that base transceiver stations have insufficient capacity to deal with current local demand within an area. For example, a new housing development within a cell may increase demand within that specific area. Beam shaping can address this problem by distributing the traffic among the transceivers to increase coverage in the demanding geographic sector.
  • Prior art beam shaping solutions utilize complex beam-forming devices (LPAs, controllable phase shifters, etc.), many of which are not well-suited for deployment atop a masthead or cell tower. A significant design effort involves the use of 2- and 3-sector antennas optimized to provide beam-forming for the purpose of increasing “long term evolution” (4G LTE) data rates in a small cellular network.
  • Of the various antenna systems employed, Single Input, Single Output (SISO), Single Input, Multiple Output (SIMO), Multiple Input, Single Output, (MISO) and Multiple Input, Multiple Output (MIMO) antenna systems are, by far, the most common. Single Input, Single Output (SISO) antenna are somewhat self-explanatory inasmuch as the antenna employs a single transmitter for sending signals and a single receiver for accepting signals. To multiply the capacity of a radio link, SIMO and MISO telecommunications antennas utilize multiple transmit and/or multiple receive antennas to exploit multipath propagation technology. For example, such technology refers to a practical technique for sending and receiving more than one data signal on the same radio channel at the same time via multipath propagation. Moreover, such telecommunication system are fundamentally different from smart antenna techniques developed to enhance the performance of a single data signal, such as the techniques employed in beamforming and beam diversity.
  • While telecommunications systems can provide an ability to increase system capacity, the multiple antennas employed therein must be spaced-apart to provide proper isolation between each antenna. Inasmuch as the antenna spacing increases the overall size/diameter of the telecommunications antenna, service providers often impose size constraints which prohibit the type/size of certain antenna. That is, the geometry of a telecommunications antenna is oftentimes too large to fit within the spatial envelope stipulated by the building occupants, residents, service providers, etc.
  • Furthermore, monopole antennas of the prior art propagate energy in the one-half wavelength (½)(λ) which corresponds to about seven and four-tenth inches (7.4.″) Hence, a full wave-length radiators will be more than about fourteen and eight-tenths inches (14.8″). Since the maximum/desired envelope of certain canister antennas is only about six inches (6.0″), typical low-band radiators are generally dismissed as being too large for such applications.
  • The foregoing background describes some, but not necessarily all, of the problems, disadvantages and shortcomings related to telecommunications antennas.
  • SUMMARY
  • An antenna is provided to exchange signals in the broadband range of the electromagnetic spectrum, comprising: a conductive ground plane and at least one pair of broadband radiators mounted to the conductive ground plane. Each of the broadband radiators includes first and second dipole elements wherein the first dipole element is tuned to a first broadband frequency and the second dipole element is tuned to a second broadband frequency. At least one of the dipole elements associated with one broadband radiator is spatially positioned relative to the respective dipole element of the other broadband radiator to minimize electrical coupling therebetween. In the described embodiment, the dipole elements tuned to the same frequency on each of the broadband radiators are oriented orthogonally to the mitigate electrical coupling across the dipole elements.
  • In another embodiment, a telecommunications antenna is provided for use in combination with a Multiple Input, Multiple Output (MIMO) antenna. This telecommunications antenna comprises a conductive ground plane, and first and second dipole elements each mounted, and electrically connected, to the conductive ground plane. The first and second dipole elements each have a length dimension tuned to a broadband frequency wherein the broadband frequency of the second dipole element is higher than the broadband frequency of the first dipole element. Additionally, the first dipole element crosses the second dipole element along a vertical line substantially normal to the ground plane and has a shorter length dimension than the second dipole element.
  • Additional features and advantages of the present disclosure are described in, and will be apparent from, the following Brief Description of the Drawings and Detailed Description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a telecommunications antenna mounted internally of a canister housing which is integrated within a ceiling structure of a conventional office or commercial building.
  • FIG. 2 is a perspective view of the internal components of the telecommunications antenna including a pair of broadband radiators each employing a first dipole element tuned to a first broadband frequency and a second dipole element tuned to a second broadband frequency.
  • FIG. 3 is a top view of the telecommunications antenna wherein the first of the dipole elements associated with one of the broadband radiators is orthogonal to, i.e., disposed at right angles relative to, the first dipole elements of the other broadband radiators to minimize electrical coupling between the first dipole elements.
  • FIG. 4 is a perspective view of the telecommunications antenna shown in FIG. 2 which is partially exploded to view the assembly of the broadband radiators.
  • FIG. 5 is a perspective view of a directional telecommunications antenna employing two pairs of broadband radiators, each employing first and second dipole elements tuned to low and high broadband frequencies, respectively.
  • FIG. 6 is a top view of the directional telecommunications antenna, wherein the first dipole elements are disposed at right angles relative to the second dipole elements of the same broadband radiator, wherein the first and second dipole elements of each broadband radiator are orthogonal to minimize electrical couplings therebetween, and wherein the telecommunications antenna further comprises a phase shifter to increase the signal gain along a vector to produce a directional quality to the transmitted/received RF signals.
  • FIG. 7 depicts the signal output of the directional telecommunications antenna shown in FIGS. 5 and 6, wherein the signal is directional along one or more forward vectors.
  • DETAILED DESCRIPTION
  • The telecommunications antenna of the present invention will be described in the context of a Single Input, Single Output (SISO), Single Input, Multiple Output (SIMO), Multiple Input, Single Output (MISO) antenna system, however, it should be appreciated that the invention is also applicable to a Multiple Input, Multiple Output (MIMO) telecommunication antennas. Further, while a telecommunications antenna having four dipole assemblies or broadband radiators is described, the telecommunications antenna may have any number of antennas to exchange broadband signals to and from cellular devices.
  • In FIG. 1, a telecommunications antenna 100 is mounted within a ceiling structure of a conventional office or commercial building. The telecommunications antenna 100 includes an outer housing 102 which is transparent to electromagnetic energy for exchanging broadband signals to and from cellular customers/devices. The housing 102 is limited in size to about eight inches (8″) in diameter and about six inches (6″) in height. As mentioned in the background of the invention, building residents and service providers often mandate or stipulate that the size of such antennas be limited/minimized to maintain the overall building aesthetics while mitigating concerns regarding occupant exposure to harmful levels of RF radiation.
  • In FIG. 2, the telecommunications antenna 100 includes a generally planar, conductive base plate 104 having mounted thereto a pair of dipole assemblies or broadband radiators 106, 108 each comprising a first dipole, leg or radiating element 106 a, 108 a and a second dipole, leg, or radiating element 106 b, 108 b (hereinafter referred to as “dipole elements”). The first and second dipole elements 106 a, 106 b, 108 a, 108 b project outwardly from the base plate 104, and, in the illustrated embodiment, project orthogonally, or at right angles relative to, the base plate 104. Jumper cables 110 a, 110 b exchange broadband signals between ports (not shown) along the underside of the telecommunications antenna 100 and a Distributed Antenna System (DAS).
  • In the broadest sense of the invention, the first dipole elements 106 a, 108 a of the dipole assemblies or broadband radiators 106, 108 are configured to be tuned to a first frequency while the second dipole elements 106 b, 108 b thereof are configured to be tuned to a second frequency. In the described embodiment, the second dipole elements 106 b, 108 b are configured to be tuned to a second frequency higher than the first frequency. As a consequence of this teaching, the first dipole elements 106 a, 108 a are longer, i.e., in spanwise length dimension, than the length dimension of the second dipole elements 106 b, 108 b. That is, since tuning is a function of the quarter-wavelength (¼)(λ) of the target frequency (v), the lower frequency/longer wavelength of the first dipole elements 106 a, 108 a will necessarily be longer than the higher frequency/shorter wavelength of the second dipole elements 106 b, 108 b.
  • In FIGS. 2 and 3, the first and second dipole elements 106 a, 108 a, 106 ba, 108 b are generally metallic and conductive. Furthermore, the first dipole elements 106 a, 108 a are electrically grounded to the base plate 104. Inasmuch as such electrical grounding may be counter-intuitive to conventional antenna design, it will be appreciated that monopole antennas are not suitable due to the height requirements of the radiators. Similar to the length requirements, the height requirements are once again a function of wavelength. Since the maximum height of the housing/canister 104 is only six inches (6.0″), the inventors were challenged to develop a radiator which propagates a relatively long wavelength while at the same time maintaining a small design envelope. As a consequence, the inventors decided to combine the principals of a ¼ wave stub (typically employed to alter the impedance in a coaxial cable) with the low-band, dipole elements 106 a, 108 a of each of the radiators 106, 108. By electrically connecting the dipole elements 106 a, 108 a to the conductive base plate 104, a DC current may be fed directly into the ¼λ wavelength dipole elements 106 a, 106 b, 108 a, 108 b to transform a short circuit into an open circuit. This configuration has no adverse effect on the quality of the electrical signals on the lines, yet allows for a significant reduction in vertical dimension of the canister.
  • In the described embodiment, the dipole elements 106 a, 106 b, 108 a, 108 b comprise one or more laminates of a fiber-reinforced, resin matrix material having a metallic layer bonded to, or interposing the layers of, the composite laminate. The first dipole elements 106 a, 108 a, which are longer than the second dipole elements 106 b, 108 b, include a metallic trace 112 a, 114 a (shown in phantom lines) extending along the outer periphery of the first dipole elements 106 a, 106 b. The trace 112 a, 114 a projects downwardly at the outboard end 115 a of each of the elements 106 a, 108 a for soldering to, and producing an electrical connection between a conductive brass fitting 116 in the base plate 104 and the metallic trace 112 a, 114 a. As mentioned in the preceding paragraph, the trace 114 grounds the dipole elements 106 a, 108 a while also extending along an outboard edge to reflect RF energy in a desired direction.
  • In addition to projecting orthogonally from the conductive base plate 104, the first and second dipole elements 106 a, 106 b, 108 a, 108 b intersect along vertical lines 120, 122 oriented normal to the plane of the base plate 104. The dipole elements 106 a, 106 b, 108 a, 108 b of each broadband radiator 106, 108, i.e., the first and second pole elements 106 a, 106 b of the first broadband radiator 106 and the first and second dipole elements 108 a, 108 b of the second broadband radiator 108 cross in a mid-span region to form a generally cruciform shape. In FIG. 3, the first and second dipole elements 106 a, 106 b of the first broadband radiator 106, and the first and second dipole elements 108 a, 108 b of the second broadband radiator 108 each include a vertical slot 126 a, 126 b and 128 a, 128 b, respectively, formed along each of the vertical lines 120, 122. The slots 126 a, 128 a, 126 b, 128 extend from the upper or lower edges 130 u, 1301, 132 u, 1321 of the respective dipole elements 106 a, 106 b, 108 a, 108 b to the center of the respective element such that the elements 106 a, 106 b, 108 a, 108 b nest as the slots 130 u, 1301, 132 u, 1321 of each are engaged. While the first and second dipole elements 106 a, 106 b, 108 a, 108 b may form an acute or obtuse angle relative to each other, they preferably are orthogonal, forming a right angle along the vertical lines 120, 122.
  • In FIGS. 2 and 3, the telecommunications antenna includes first and second dipole elements 106 a, 106 b, 108 a, 108 b which are selectively tuned such that the first dipole elements 106 a, 108 a are longer than the respective second dipole elements 106 b, 108 b. In one embodiment, the first dipole elements 106 a, 108 a, correspond in size, i.e., in length, to about ¼ (λ), wherein the wavelength (λ) corresponds to a frequency (v) which is less than about one-thousand seven hundred megahertz (1700 mHz). The second dipole elements 106 b, 108 b correspond in size, i.e., in length, to about ¼ (λ), wherein the wavelength (λ) corresponds to a frequency (v) which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
  • In another embodiment, the first dipole elements 106 a, 108 a, have a length corresponding in size to a frequency (v) which is less than about one-thousand megahertz (1000 mHz). In the same embodiment, the second dipole elements 106 b, 108 b have a length corresponding in size to a frequency (v) which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
  • In yet another embodiment, the first dipole elements 106 a, 108 a, correspond in size) i.e., ¼ (λ), to a frequency (v) of about eight-hundred twenty-five mega-hertz (825 mHz), which is the average frequency in the low broadband range. This range extends from about six hundred and ninety mega-hertz (690 mHz) to about nine hundred and sixty mega-hertz (960 MHz). The second dipole elements 106 b, 108 b correspond in size, i.e., ¼ (λ), to a frequency (v) of about two-thousand, two-hundred and ninety-five mega-hertz (2295 mHz), which is the average frequency in the high broadband range. This range extends from about one-thousand six-hundred and ninety-five mega-hertz (1695 mHz) to about two-thousand six-hundred and ninety mega-hertz (2690 MHz).
  • In the embodiment shown in FIGS. 2-4, the first dipole and second dipole elements 106 a, 106 b, 108 a, 108 b are spatially separated to minimize the overall size of the envelope while minimizing the electrical coupling therebetween. In the described embodiment, the dipole assemblies or broadband radiators 106, 108 are separated by a distance greater than at least three-tenths of the largest wavelength 0.3(λ) corresponding to the resonant frequency to which the dipole assemblies 106, 108 are tuned. The second dipole elements 106 b, 108 b, which have the shortest wavelengths and the greatest propensity for cross-coupling, are spaced farther apart than the first dipole elements 106 a, 108 a. In the described embodiment, isolation standoffs 140, 150 a, 150 b are interposed between the first and second dipole elements 106 a, 106 b, 108 a, 108 b of the dipole assemblies 106, 108. A low-band standoff 140 is disposed midway between the first dipole elements 106 a, 108 a. Further, a pair of high- band standoffs 150 a, 150 b are disposed between each outwardly facing leg of the first dipole elements 106 a,108 a and each inwardly facing leg of the second dipole elements 106 b. 108 b. The isolation standoffs 140, 150 a, 150 b have the effect of re-directing electrical current such that isolation is maximized between the broadband radiators 106, 108.
  • Prior art telecommunications antenna configurations have struggled to achieve greater than about ten decibels (10 Dbi) of isolation between the radiators. The configuration of the present invention more than doubles the isolation between antennas due to the configuration and orientation of the broadband radiators 106, 108. That is, the telecommunications antenna of the present description results in about twenty-one decibels (21 Dbi) of isolation. Inasmuch as the telecommunications antenna mitigates electrical coupling between the broadband radiators 106, 108, interference is also minimized while maximizing isolation.
  • FIGS. 5 and 6 depict a telecommunications antenna 200 having a phase shifter 240 to provide a directional beam pattern over a specific geographic region. In the described embodiment, the telecommunications antenna 200 includes at least two pairs, or four broadband radiators 202, 204, 206, 208 each exchanging signals in a ninety-degree (90°) quadrants of a desired geographic sector. Each of the broadband radiators 202, 204, 206, 208 includes a first dipole element 202 a, 204 a, 206 a, 208 a, respectively, resonant in a low-band frequency range and a second dipole element 202 b, 204 b, 206 b, 208 b, respectively, resonant in a high-band frequency range. The broadband radiators 202, 204, 206, 208 are mounted, and electrically connected, to a conductive ground plane 210. As mentioned hereinbefore, the low-band frequency range corresponds in size, i.e., ¼ (λ), to a frequency (v) of about eight-hundred twenty-five mega-hertz (825 mHz), which is the average frequency in the low broadband range. This range extends from about six hundred and ninety mega-hertz (690 mHz) to about nine hundred and sixty mega-hertz (960 MHz). The second dipole elements 106 b, 108 b correspond in size to a frequency (v), i.e., ¼ (λ), of about two-thousand, two-hundred and ninety-five mega-hertz (2295 mHz), which is the average frequency in the high broadband range. This range extends from about one-thousand six-hundred and ninety-five mega-hertz (1695 mHz) to about two-thousand six-hundred and ninety mega-hertz (2690 MHz).
  • In this embodiment, at least one of the first dipole elements 202 a, 204 a, 206 a, 208 a of one of the broadband radiators 202, 204, 206, 208 is substantially orthogonal to the one of the first dipole elements 202 a, 204 a, 206 a, 208 a of the other of the broadband radiators 202, 204, 206, 208. Furthermore, the embodiment also shows that both the first and second dipole elements 202 a, 204 a, 206 a, 208 a, 202 b, 204 b, 206 b, 208 b of one of the broadband radiators 202, 204, 206, 208 are substantially orthogonal to the respective one of the first and second dipole elements 202 a, 204 a, 206 a, 208 a, 202 b, 204 b, 206 b, 208 b of the other of the dipole broadband radiators 202, 204, 206, 208. By arranging the low band resonators orthogonally relative to each other as well as the high band resonators, electrical couplings are mitigated. That is, since electrical couplings are magnified when dipole elements are in parallel, by arranging the elements orthogonally or at right angles, electrical couplings are diminished. Moreover, interference is also diminished by minimizing electrical coupling between the broadband radiators 202, 204, 206, 208.
  • Similar to the earlier embodiment, the directional telecommunications antenna 200 includes isolation standoffs 160 a, 160 b, 160 c, 160 d interposed between the first and second dipole elements 202 a, 204 a, 206 a, 208 a, 202 b, 204 b, 206 b, 208 b of the broadband radiators 202, 204, 206, 208. 106, 108. The isolation standoffs 160 a, 160 b, 160 c, 160 d have the effect of re-directing electrical current such that isolation is maximized between the broadband radiators 202 a, 204 a, 206 a, 208 a, 202 b, 204 b, 206 b, 208 b.
  • A phase shifter is employed to electronically shift the direction of the beam by altering the gain along a vector V1. The gain can be altered in each quadrant: QI (0 to 90), Q2 (90 to 180), Q3 (−180 to −90) and Q4 (−90 to 0) to produce a beam pattern which resembles the output pattern 300 shown in FIG. 7. Therein, it can be seen how the gain shifts coverage to increase the volumetric area in quadrants Q1 and Q4 from quadrants Q2 and Q3.
  • Additional embodiments include any one of the embodiments described above, where one or more of its components, functionalities or structures is interchanged with, replaced by or augmented in combination with one or more of the components, functionalities or structures of a different embodiment described above.
  • It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
  • Although several embodiments of the disclosure have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the disclosure will come to mind to which the disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed herein above, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure, nor the claims which follow.

Claims (20)

The following is claimed:
1. An antenna operative to exchange signals in the broadband range of the electromagnetic spectrum, comprising:
a conductive ground plane;
at least one pair of broadband radiators mounted to the conductive ground plane;
each broadband radiator including first and second dipole elements, the first dipole element tuned to a first broadband frequency and the second dipole element tuned to a second broadband frequency; and
wherein at least the first dipole element of one broadband radiator is spatially positioned relative to the respective first dipole element of the other broadband radiator to minimize electrical coupling therebetween.
2. The antenna of claim 1 wherein the first and second dipole elements of one broadband radiator are spatially positioned relative to the respective first and second dipole elements of the other broadband radiator to minimize electrical coupling therebetween.
3. The antenna of claim 1 wherein one of the first and second dipole elements of one of the broadband radiators is substantially orthogonal to the one of the first and second dipole elements of the other of the broadband radiators.
4. The antenna of claim 1 wherein both of the first and second dipole elements associated with one of the broadband radiators are substantially orthogonal to the respective first and second dipole elements of the other of the broadband radiators.
5. The antenna of claim 1 wherein each of the first and second dipole elements has a length dimension and wherein the length of the first dipole element is longer than the length of the second dipole element.
6. The antenna of claim 1 wherein the first and second dipole elements are arranged in a cruciform configuration.
7. The antenna of claim 1 wherein the first and second dipole elements of each pair of broadband radiators are substantially orthogonal to the conductive ground plane.
8. The antenna of claim 1 wherein the first dipole element of one broadband radiator is substantially orthogonal the second dipole element of the same broadband radiator.
9. The antenna of claim 1 wherein the first broadband frequency is within a range which is less than about one-thousand seven hundred megahertz (1700 mHz), and wherein the second broadband frequency is within a range which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
10. The antenna of claim 9 wherein the first broadband frequency is within a range which is less than about one-thousand megahertz (1000 mHz).
11. The antenna of claim 1 further comprising a phase shifter operatively coupled to each broadband radiator for directionally increasing the gain to improve reception and reduce interference in a particular geographic sector.
12. The antenna of claim 1 further comprising at least two pairs of broadband radiator wherein each broadband radiator transmits/receives signals in a ninety-degree (90°) quadrant of the geographic sector.
13. The antenna of claim 1 further comprising at least one isolation standoff is disposed between the broadband radiators to redirect the flow of electric current around the dipole elements.
14. A telecommunications antenna for use in combination with a Multiple Input Multiple Output (MIMO) antenna, comprising:
a conductive ground plane;
a first dipole element mounted, and electrically connected, to the conductive ground plane and having a length tuned to a first broadband frequency;
a second dipole element mounted, and electrically connected, to the conductive ground plane and crossing the first dipole element along a vertical line substantially normal to the ground plane, the second dipole element having a length tuned to a second broadband frequency higher than the first broadband frequency; and
wherein the length of the second dipole element is longer than the length of the first dipole element.
15. The telecommunications of claim 14 wherein the first and second dipole elements are arranged in a cruciform configuration.
16. The telecommunications of claim 14 wherein the first and second dipole elements of the broadband radiator are substantially orthogonal.
17. The telecommunications antenna of claim 14 wherein the first and second dipole elements of the broadband radiator are substantially orthogonal to the conductive ground plane.
18. The telecommunications antenna of claim 14 wherein the first broadband frequency is within a range which is less than about one-thousand seven hundred megahertz (1700 mHz), and wherein the second broadband frequency is within a range which is greater than or equal to about one-thousand seven hundred megahertz (1700 mHz).
19. The telecommunications antenna of claim 14 wherein the first broadband frequency is within a range which is less than about one-thousand megahertz (1000 mHz).
20. The telecommunications antenna of claim 14 further comprising a phase shifter operatively coupled to the broadband radiator for directionally increasing the gain to improve reception and reduce interference in a particular geographic sector.
US15/240,325 2015-08-18 2016-08-18 Multi-element telecommunications antenna Active 2036-11-20 US10505259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/240,325 US10505259B2 (en) 2015-08-18 2016-08-18 Multi-element telecommunications antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562206485P 2015-08-18 2015-08-18
US15/240,325 US10505259B2 (en) 2015-08-18 2016-08-18 Multi-element telecommunications antenna

Publications (2)

Publication Number Publication Date
US20170054198A1 true US20170054198A1 (en) 2017-02-23
US10505259B2 US10505259B2 (en) 2019-12-10

Family

ID=56740129

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/240,325 Active 2036-11-20 US10505259B2 (en) 2015-08-18 2016-08-18 Multi-element telecommunications antenna

Country Status (2)

Country Link
US (1) US10505259B2 (en)
EP (1) EP3133693B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180090834A1 (en) * 2016-09-23 2018-03-29 Laird Technologies, Inc. Omnidirectional antennas, antenna systems, and methods of making omnidirectional antennas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029718B (en) * 2020-01-14 2020-12-15 施航 Indoor ceiling type antenna for 5G data transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952983A (en) * 1997-05-14 1999-09-14 Andrew Corporation High isolation dual polarized antenna system using dipole radiating elements
US6195063B1 (en) * 1997-05-30 2001-02-27 Kathrein-Werke Kg Dual-polarized antenna system
US20120003946A1 (en) * 2009-11-02 2012-01-05 Panasonic Corporation Adaptive array antenna and wireless communication apparatus including adaptive array antenna
US20120006243A1 (en) * 2010-07-07 2012-01-12 Ilan Gonen Wind-propelled vehicle including wing-sail
US20140032759A1 (en) * 2011-10-11 2014-01-30 Citrix Systems, Inc. Policy-Based Application Management

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079158A2 (en) * 2004-02-23 2005-09-01 Galtronics Ltd. Conical beam cross-slot antenna
CN102403567B (en) 2010-09-14 2014-01-08 光宝电子(广州)有限公司 Multi-antenna system and electronic device provided with same
JP2014504124A (en) * 2011-01-27 2014-02-13 ガルトロニクス コーポレイション リミテッド Broadband polarization antenna
EP2595243B1 (en) 2011-11-15 2017-10-25 Alcatel Lucent Wideband antenna
CN203166098U (en) 2012-03-19 2013-08-28 盖尔创尼克斯有限公司 Antenna and broadband dipole radiation elements thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952983A (en) * 1997-05-14 1999-09-14 Andrew Corporation High isolation dual polarized antenna system using dipole radiating elements
US6195063B1 (en) * 1997-05-30 2001-02-27 Kathrein-Werke Kg Dual-polarized antenna system
US20120003946A1 (en) * 2009-11-02 2012-01-05 Panasonic Corporation Adaptive array antenna and wireless communication apparatus including adaptive array antenna
US20120006243A1 (en) * 2010-07-07 2012-01-12 Ilan Gonen Wind-propelled vehicle including wing-sail
US20140032759A1 (en) * 2011-10-11 2014-01-30 Citrix Systems, Inc. Policy-Based Application Management

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180090834A1 (en) * 2016-09-23 2018-03-29 Laird Technologies, Inc. Omnidirectional antennas, antenna systems, and methods of making omnidirectional antennas
US10270162B2 (en) * 2016-09-23 2019-04-23 Laird Technologies, Inc. Omnidirectional antennas, antenna systems, and methods of making omnidirectional antennas

Also Published As

Publication number Publication date
US10505259B2 (en) 2019-12-10
EP3133693A3 (en) 2017-05-17
EP3133693A2 (en) 2017-02-22
EP3133693B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US11283192B2 (en) Aperture-fed, stacked-patch antenna assembly
US10587034B2 (en) Base station antennas with lenses for reducing upwardly-directed radiation
US10505609B2 (en) Small cell beam-forming antennas
EP3120416B1 (en) Compact antenna array using virtual rotation of radiating vectors
EP3491696B1 (en) Low profile telecommunications antenna
CN113748572B (en) Radiating element with angled feed stalk and base station antenna including the same
US9077070B2 (en) Tri-pole antenna element and antenna array
US11108137B2 (en) Compact omnidirectional antennas having stacked reflector structures
US20110109524A1 (en) Patch Antenna Element Array
EP2617098B1 (en) Antenna for diversity operation
US11411301B2 (en) Compact multiband feed for small cell base station antennas
US11239544B2 (en) Base station antenna and multiband base station antenna
CN110419144A (en) Antenna element and aerial array
US10505259B2 (en) Multi-element telecommunications antenna
CN105048066A (en) Low-profile high-gain fractal miniature base station antenna
US11646502B2 (en) Multi-band base station antenna
CN210692768U (en) Base station antenna and multiband base station antenna
US20230238707A1 (en) Base station antenna

Legal Events

Date Code Title Description
AS Assignment

Owner name: CSS ANTENNA, LLC (A JMA COMPANY), MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE, KEVIN T.;BROWN, WILLIAM J.;RAGOS, JORDAN E.;AND OTHERS;SIGNING DATES FROM 20161017 TO 20161204;REEL/FRAME:041250/0183

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4