US20170047324A1 - Method of Manufacturing an Integrated Circuit - Google Patents

Method of Manufacturing an Integrated Circuit Download PDF

Info

Publication number
US20170047324A1
US20170047324A1 US15/335,553 US201615335553A US2017047324A1 US 20170047324 A1 US20170047324 A1 US 20170047324A1 US 201615335553 A US201615335553 A US 201615335553A US 2017047324 A1 US2017047324 A1 US 2017047324A1
Authority
US
United States
Prior art keywords
epitaxial layer
transistor cells
forming
base substrate
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/335,553
Inventor
Sylvain Léomant
Martin Vielemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Austria AG
Original Assignee
Infineon Technologies Austria AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Austria AG filed Critical Infineon Technologies Austria AG
Priority to US15/335,553 priority Critical patent/US20170047324A1/en
Assigned to INFINEON TECHNOLOGIES AUSTRIA AG reassignment INFINEON TECHNOLOGIES AUSTRIA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LÉOMANT, SYLVAIN, VIELEMEYER, MARTIN
Publication of US20170047324A1 publication Critical patent/US20170047324A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • H01L27/0694Integrated circuits having a three-dimensional layout comprising components formed on opposite sides of a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Definitions

  • Integrated circuits may integrate several switching devices. For example, integrated half bridge circuits combine high side and low side switches arranged side-by-side in the same semiconductor die. There is a need for improved power switching devices.
  • an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion.
  • the first and second sections as well as electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion.
  • Another embodiment refers to a method of manufacturing a semiconductor device.
  • An epitaxial layer grows on a process surface of a base substrate.
  • Processes applied to an exposed first surface of the epitaxial layer provide first transistor cells in the epitaxial layer, wherein each first transistor cell includes a first gate electrode.
  • Processes applied to a surface opposite to the first surface provide second transistor cells, wherein each second transistor cell includes a second gate electrode.
  • FIG. 1A is a schematic circuit diagram of an integrated circuit including a half bridge circuit with the low and high side switches embodied as n-FETs (n channel field effect transistors).
  • FIG. 1B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 1A in accordance with an embodiment providing a lateral n-FET as high side switch and a vertical n-FET as low side switch.
  • FIG. 1C is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 1A according to an embodiment providing a lateral n-FET as high side switch and a vertical n-FET as low side switch as well as a laterally patterned body connection for the high side switch.
  • FIG. 1D is a schematic plan view of a first side of the integrated circuit of FIG. 1A according to an embodiment.
  • FIG. 1E is a schematic plan view of a second side of the integrated circuit of FIG. 1A according to an embodiment.
  • FIG. 2A is a schematic circuit diagram of an integrated circuit including a half bridge circuit with a p-FET high side switch and an n-FET low side switch.
  • FIG. 2B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 2A in accordance with an embodiment providing a lateral p-FET as high side switch and a vertical n-FET as low side switch.
  • FIG. 3A is a schematic circuit diagram of an integrated circuit according to an embodiment including an HEMT (high electron mobility transistor) and an n-FET in a cascode configuration.
  • HEMT high electron mobility transistor
  • FIG. 3B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 3A in accordance with an embodiment providing a vertical n-FET.
  • FIG. 4A is a schematic circuit diagram of an integrated circuit including two HEMTs electrically arranged in series.
  • FIG. 4B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 4A .
  • FIG. 5A is a schematic cross-sectional view of a portion of a semiconductor substrate in an exemplary method of manufacturing a semiconductor device including vertically integrated switching devices after providing an auxiliary structure on a first process surface of a base substrate.
  • FIG. 5B is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5A after growing a first epitaxial layer on the base substrate.
  • FIG. 5C is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5B after providing first provisional transistor cells in the first epitaxial layer.
  • FIG. 5D is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5C after applying a carrier on the side of the first epitaxial layer.
  • FIG. 5E is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5D after flipping the semiconductor substrate and removing the base substrate.
  • FIG. 5F is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5E after providing second provisional transistor cells.
  • FIG. 5G is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5F after forming device connection structures.
  • FIG. 6A is a schematic cross-sectional view of a portion of a semiconductor substrate in an exemplary method of manufacturing an integrated circuit by providing vertically integrated HEMTs after growing a first epitaxial layer on a first process surface of a base substrate.
  • FIG. 6B is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6A after providing first transistor cells on and in the first epitaxial layer.
  • FIG. 6C is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6B after flipping the semiconductor substrate and thinning the base substrate.
  • FIG. 6D is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6C after growing a second epitaxial layer on the thinned base substrate on a side opposite to the first process surface.
  • FIG. 6E is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6D after providing second transistor cells on and in the second epitaxial layer.
  • electrically connected describes a permanent low-ohmic connection between electrically connected elements, for example a direct contact between the concerned elements or a low-ohmic connection via a metal and/or highly doped semiconductor.
  • electrically coupled includes that one or more intervening element(s) adapted for signal transmission may be provided between the electrically coupled elements, for example elements that are controllable to temporarily provide a low-ohmic connection in a first state and a high-ohmic electric decoupling in a second state.
  • the Figures illustrate relative doping concentrations by indicating “ ⁇ ” or “+” next to the doping type “n” or “p.”
  • n means a doping concentration that is lower than the doping concentration of an “n”-doping region while an “n + ”-doping region has a higher doping concentration than an “n”-doping region.
  • Doping regions of the same relative doping concentration do not necessarily have the same absolute doping concentration.
  • two different “n”-doping regions may have the same or different absolute doping concentrations.
  • the embodiments relate to integrated circuits vertically integrating at least a first and a second switching device T 1 , T 2 .
  • the integrated circuits may include further switching devices, electronic circuits and/or semiconductor elements.
  • Exemplary switching devices T 1 , T 2 include a p-FET (p channel field effect transistor) of the depletion or enhancement mode, an n-FET of the depletion or enhancement mode, an HEMT or a JFET (junction field effect transistor).
  • each of the switching devices T 1 , T 2 may be a lateral switching device or a vertical switching device, wherein in lateral switching devices a load current flows parallel to the main surfaces and wherein in vertical devices the load current flows in a vertical direction perpendicular to the main surfaces.
  • the load paths of the first and second switching devices T 1 , T 2 may be electrically arranged in series, for example with two electrically connected control inputs or two separate control inputs, e.g. in a cascode configuration, or may be electrically arranged in parallel, for example with two separate or two electrically connected control inputs.
  • FIGS. 1A to 1E refer to an integrated circuit including n-FETs with load paths electrically arranged in series and usable, for example, as a half bridge circuit.
  • the first and second switching devices T 1 , T 2 of an integrated circuit 500 may be FETs, e.g. Power MOSFETs, with the load paths between drain D and source S connected in series between a first load terminal Vdd and a second load terminal Gnd of the integrated circuit 500 .
  • the drain D of the first switching device T 1 may be electrically connected or coupled to the first load terminal Vdd.
  • the source S of the second switching device T 2 may be electrically connected or coupled to the second load terminal Gnd.
  • the source S of the first switching device T 1 and the drain D of the second switching device T 2 may be electrically connected to each other and to an output terminal Vph.
  • the gate G of the first switching device T 1 may be electrically coupled or connected to a first control terminal Ctrl 1 and the gate G of the second switching device T 2 may be electrically coupled or connected to a second control terminal Ctrl 2 .
  • the gates G of the first and second switching devices T 1 , T 2 may be electrically connected to each other or at least one of the gates G may be electrically connected to one of the load and output terminals Vdd, Gnd, Vph or to a driver circuit integrated in the integrated circuit 500 .
  • FIG. 1B refers to an embodiment of the integrated circuit 500 of FIG. 1A with a lateral n-FET providing the first switching device T 1 and a vertical n-FET providing the second switching device T 2 .
  • the integrated circuit 500 is implemented on a semiconductor portion 100 of one or more single-crystalline semiconductor materials selected from a group including silicon (Si), silicon carbide (SiC), germanium (Ge), a silicon germanium crystal (SiGe), gallium nitride (GaN) and gallium arsenide (GaAs), for example.
  • the semiconductor portion 100 may have an essentially planar first surface 101 and a planar second surface 102 parallel to the first surface 101 as main surfaces. A normal to the first surface 101 defines a vertical direction and directions orthogonal to the vertical direction are lateral directions.
  • the first switching device T 1 includes a semiconductor region in a first section 100 a of the semiconductor portion 100 .
  • the second switching device T 2 includes a semiconductor region in a second section 100 b of the semiconductor portion 100 .
  • the first and second sections 100 a , 100 b may be spaced from each other along the vertical direction, may form an interface parallel to the first and second surfaces 101 , 102 or may partly, but not totally, overlap each other.
  • Electrode structures 310 b , 311 a , 312 a which are electrically connected to the first and second switching devices T 1 , T 2 , are arranged in the vertical projection of the semiconductor portion 100 .
  • the first switching device T 1 may be a lateral n-FET of the enhancement type including a plurality of approximately identical first transistor cells TC 1 , which may be regularly arranged at regular distances along at least a first lateral direction.
  • Each first transistor cell TC 1 includes a first gate electrode 150 a arranged outside the semiconductor portion 100 in a distance to the first surface 101 and a first gate dielectric 205 a dielectrically insulating the first gate electrode 150 a from the first semiconductor region in the first section 100 a of the semiconductor portion 100 .
  • the first section 100 a the first semiconductor region of the first switching device T 1 includes p-type first body zones 115 a , which may be portions of a p-type epitaxial layer, as well as heavily doped n-type first source zones 110 a and heavily doped n-type first drain zones 120 a , which may extend as wells from the first surface 101 into the first substrate section 100 a , respectively.
  • a lightly doped n-type first drift zone 121 a may be provided between the first body zone 115 a and the first drain zone 120 a of each first transistor cell TC 1 .
  • First portions of the first body zones 115 a separate the first source and drift zones 110 a , 121 a and adjoin the first surface 101 .
  • Second portions of the first body zones 115 a separate the first source, drain and drift zones 110 a , 120 a , 121 a from the second switching device T 2 .
  • the first gate dielectrics 205 a dielectrically insulate the first gate electrodes 150 a from the first portions of the first body zones 115 a .
  • First cell insulators 202 a which are thicker than the first gate dielectrics 205 a , may dielectrically insulate the first gate electrodes 150 a from the first drift and drain zones 121 a , 120 a.
  • First contact structures 305 a extend between the first gate electrodes 150 a into the semiconductor portion 100 and electrically connect the first source zones 110 a with a first source electrode 311 a and the first drain zones 130 a with a first drain electrode 312 a .
  • the first source electrode 311 a may be electrically connected or coupled to an output terminal Vph and the first drain electrode 312 a may be electrically connected or coupled to a first load terminal Vdd of the integrated circuit 500 .
  • Dielectric spacers 220 a are provided between the first contact structures 305 a and the first gate electrodes 150 a and a dielectric layer 222 a may dielectrically insulate the first gate electrodes 150 a from the first source and drain electrodes 311 a , 312 a.
  • the second switching device T 2 may be a vertical n-FET of the enhancement type including a plurality of approximately identical second transistor cells TC 2 , which may be regularly arranged at equal distances along at least a first lateral direction.
  • a center-to-center distance (pitch) between adjoining second transistor cells TC 2 may be equal to, smaller than, or greater than the pitch of adjoining first transistor cells TC 1 .
  • the second transistor cells TC 2 are arranged in the vertical projection of at least some of the first transistor cells TC 1 , or vice versa.
  • Each second transistor cell TC 2 includes a second gate electrode 150 b buried in the semiconductor portion 100 at a distance to the second surface 102 and a second gate dielectric 205 b dielectrically insulating the second gate electrode 150 b from the second semiconductor region in the second section 100 b of the semiconductor portion 100 .
  • the semiconductor region of the second switching device T 2 may include heavily doped n-type second source zones 110 b directly adjoining the second surface 102 , a lightly doped n-type second drift zone 121 b , p-type second body zones 115 b spatially separating the second source and drift zones 110 b , 121 b and a second drain zone 120 b .
  • the interfaces between the second body zones 115 b and the second drift zones 121 b as well as between the second drift and drain zones 121 b , 120 b may be parallel to the first and second surfaces 101 , 102 .
  • the second gate electrodes 150 b are arranged in cell stripes extending from the second surface 102 into the semiconductor portion 100 .
  • the cell stripes may further include field electrodes 160 b , wherein a field dielectric 210 dielectrically insulates the field electrodes 160 b from the semiconductor material of the semiconductor portion 100 and the second gate electrodes 150 b .
  • Second gate dielectrics 205 b dielectrically insulate the second gate electrodes 150 b from the second body zones 115 b.
  • a dielectric structure 220 b directly adjoins the second surface 102 .
  • Second contact structures 305 b extend through openings in the dielectric structure 220 b into the semiconductor portion 100 .
  • the second contact structures 305 b may electrically connect the second source and body zones 110 b , 115 b with a second source electrode 310 b .
  • the second source electrode 310 b may be electrically connected or coupled to a second load terminal Gnd of the integrated circuit 500 .
  • Heavily doped p-type second contact zones 117 b may directly adjoin a bottom portion of the second contact structures 305 b to provide a low contact resistance between the second contact structures 305 b and the second body zones 115 b.
  • Device connection structure 305 x may extend from the first surface 101 into the semiconductor portion 100 and may electrically connect the second drain zone 120 b with the first source electrode 311 a .
  • first contact zones 117 a may provide highly conductive connections between the second source electrode 311 a and the first body zones 115 a.
  • first and second transistor cells TC 1 , TC 2 overlap each other.
  • the first transistor cells TC 1 may be arranged in pairs, wherein the two transistor cells of each pair are arranged mirror-inverted with regard to the first drain zone 120 a shared by the concerned two first transistor cells TC 1 .
  • the embodiment of FIG. 1C differs from the embodiment of FIG. 1B in that the first source zones 110 a are patterned along a lateral direction perpendicular to the cross-sectional plane.
  • the first source zones 110 a extend from the first surface 101 to the second drain zone 120 b and provide an electrical connection between the first source zones 110 a of the first switching device T 1 and the second drain zones 120 b of the second switching device T 2 .
  • heavily doped p-type first contact zones 117 a extend between the first source zones 110 a and the second drain zones 120 b and provide a low-resistivity connection between the adjoining first body zones 115 a and the first contact structures 305 a electrically connected to the first source electrode 311 a .
  • the heavily doped p-type first contact zones 117 a alternate with sections of the heavily doped n-type first source zones 110 a .
  • the second drain zone 120 b directly adjoins sections of the first source zones 110 a.
  • heavily doped p-type first contact zones 117 a separate the first source zones 115 a from the second drain zone 120 b and the first contact structures 305 a extend into the second drain zone 120 b such that the first contact structures 305 a electrically connect the first source zones 110 a , the second drain zones 120 b , the first body zones 115 a and the first source electrode 311 a.
  • FIG. 1D is a schematic plan view of the electrode structures 311 a , 312 a of the integrated circuit 500 at a side of the first surface 101 .
  • the first source electrode 311 a may form an output terminal Vph, or a terminal pad for a bonding connection to the output terminal Vdd.
  • the first drain electrode 312 a may form a first load terminal Vdd or a terminal pad for a bonding connection to the first load terminal Vdd.
  • a first control terminal Ctrl 1 or terminal pad for a bonding connection to the first control terminal Ctrl 1 is electrically connected to the first gate electrodes 150 a of FIGS. 1A-1C .
  • FIG. 1E shows the opposite side oriented to the second surface 102 .
  • the second source electrode 310 b may form a second load terminal Vdd or a terminal pad for a bonding connection to the second load terminal Vdd.
  • a second control terminal Ctrl 2 or terminal pad for a bonding connection to the second control terminal Ctrl 2 is electrically connected to the second gate electrodes 150 b of FIGS. 1A-1C .
  • a further terminal or terminal pad may be electrically connected or coupled to the second field electrodes 160 b .
  • the second field electrodes 160 b are electrically connected with the second source electrode 310 b or the second gate electrodes 150 b .
  • both control terminals or terminal pads Ctrl 1 , Ctrl 2 may be on the same side by providing a TSV (through-silicon via), for example.
  • the integrated circuit 500 may vertically integrate at least two switching devices T 1 , T 2 , e.g. the low side and high side switches of a half bridge. Low parasitic capacitance and electrical resistance between the high side and low side switches and allows for a high packaging density.
  • the integrated circuit 500 may be a power semiconductor device.
  • one way that the integrated circuit 500 reduces packaging costs is that only one die must be handled and less package level interconnections are required.
  • the integrated circuit 500 allows for significantly reducing the required chip area.
  • FIGS. 2A to 2B refer to an integrated circuit 500 with a lateral p-FET providing the first switching device T 1 and a vertical n-FET providing the second switching device T 2 .
  • the second switching device T 2 may correspond to the second switching device T 2 of FIG. 1A .
  • first contact structures 305 a electrically connected to the first drain electrode 312 a and the first load terminal Vdd directly adjoin the heavily doped p-type first drain zones 120 a as well as the n-type first body zones 115 a .
  • FIG. 1A to 1E For further details reference is made to the description of FIG. 1A to 1E .
  • FIGS. 3A to 3B refer to an embodiment that vertically integrates a lateral HEMT as the first switching device T 1 and a vertical n-FET as the second switching device T 2 .
  • the load paths of the first and second switching devices T 1 , T 2 are electrically arranged in series.
  • the first and second switching devices T 1 , T 2 may be configured in a cascode connection with the gate G of the first switching device T 1 being electrically connected to the source S of the second switching device T 2 .
  • the second switching device T 2 may correspond to the second switching device T 2 of FIG. 1A .
  • the first switching device T 1 may include at least a buffer layer 180 and a barrier layer 182 , both provided from Group III nitrides or Group III arsenides, encompassing semiconductor compounds formed from nitrogen or arsenic and Group III elements as gallium (Ga), aluminum (Al) and indium (In) and including ternary and tertiary compounds like AlGaN and AlInGaN.
  • the materials for the buffer and barrier layers 180 , 182 are selected from Group III nitrides/arsenides such that the band gaps of the materials for the barrier and buffer layers 180 , 182 differ significantly from each other and such that in proximity of the interface between the buffer and barrier layers 180 , 182 a two-dimensional electron gas (2DEG) provides a conductive channel in the buffer layer 180 .
  • 2DEG two-dimensional electron gas
  • the conductive channel extends between a drain electrode provided by a first contact structure 305 a electrically connected to the first load terminal Vdd and a source electrode provided by a first contact structure 305 a extending from the first surface 101 up to or into the heavily doped n-type second drain zone 120 b .
  • a first gate electrode 150 a which may include a portion containing a conductive Group III nitride or Group III arsenide material, may locally deplete or not deplete the conductive channel of the HEMT in response to a voltage applied to the first gate electrode 150 a.
  • the embodiment of FIGS. 4A and 4B combines two HEMTs as described above on opposing sides of a base substrate 400 shared by the two HEMTs.
  • the material of the base substrate 400 may be GaAs, SiC, Si, GaN, Ge, SiGe, or sapphire, for example.
  • the first switching device T 1 is a HEMT including first buffer and barrier layers 180 a , 182 a , wherein the exposed surface of the first barrier layer 182 a may form the first surface 101 of the semiconductor portion 100 .
  • the second switching device T 2 is a HEMT including second buffer and barrier layers 180 b , 182 b , wherein the exposed surface of the second barrier layer 182 b may form the second surface 107 .
  • a device connection structure 305 x may extend from the first surface 101 through the semiconductor portion 100 to the second surface 102 , electrically connecting the first source electrode 311 a of the first switching device T 1 and the second drain electrode 313 b of the second switching device T 2 .
  • a first portion of the device connection structure 305 x may extend from the first surface 101 into the base substrate 400 and a second portion may extend from the second surface 102 into the base substrate 400 .
  • the first and second portions may directly adjoin each other.
  • a portion of the base substrate 400 may separate the first and second portions of the device connection structure 305 x.
  • FIGS. 5A to 5G relate to a method of manufacturing an integrated circuit vertically integrating a first switching device with first transistor cells and a second switching device with second transistor cells.
  • a base substrate 400 of a semiconductor substrate 500 a is provided from one or more dielectric or semiconducting materials, e.g., sapphire, intrinsic or heavily doped single crystalline silicon (Si), single crystalline germanium (Ge), a silicon germanium crystal (SiGe), silicon carbide (SiC), gallium nitride (GaN) or gallium arsenide (GaAs).
  • An auxiliary structure 140 may be provided on a first process surface 401 of the base substrate 400 .
  • FIG. 5A shows the auxiliary structure 140 formed on portions of the first process surface 401 .
  • the material of the auxiliary structure 140 and the material of the base substrate 400 may have significantly different etch properties.
  • the base substrate 400 is provided from heavily doped n-type single-crystalline silicon and the auxiliary structure 140 is provided from a dielectric material, for example a silicon oxide.
  • An epitaxy process grows an epitaxial layer 104 on the first surface 401 and laterally overgrows the auxiliary structures 140 such that the epitaxial layer 104 and the base substrate 400 embed the auxiliary structure 140 .
  • the materials of the base substrate 400 and the epitaxial layer 104 may have identical or approximately identical lattice constants such that the epitaxial layer 104 grows in registry with the crystal lattice of the base substrate 400 .
  • the first epitaxial layer 104 may consist of one homogeneously doped layer or may include two, three or more sub-layers differing from each other as regards a vertical impurity profile, a mean net impurity concentration and/or an impurity type. The mean net dopant concentration, conductivity type and vertical impurity profile of each sub-layer depends on the type of the switching device(s) to be formed in the first epitaxial layer 104 .
  • the first epitaxial layer 104 is a single-crystalline silicon layer including a lightly doped p-type first sub-layer 104 a , a heavily doped n-type second sub-layer 104 b and a lightly doped n-type third sub-layer 104 c .
  • the exposed surface of the epitaxial layer 104 opposite to the base substrate 400 may form a first surface 101 of a semiconductor portion of the finalized device.
  • Provisional or complete first transistor cells TC 1 of a first switching device T 1 are formed in the first epitaxial layer 104 by deposition, implant and etch processes applied to the semiconductor substrate 500 a from a side defined by the first surface 101 .
  • the first switching device may be a vertical switching device with first gate electrodes 150 a and field electrodes 160 formed in cell stripes extending from the first surface 101 into the first epitaxial layer 104 .
  • First gate dielectrics 205 a dielectrically insulate the first gate electrodes 150 a from the first epitaxial layer 104 .
  • Field dielectrics 202 may dielectrically insulate the field electrodes 160 from the epitaxial layer 104 and the first gate electrodes 150 a.
  • a first dielectric structure 220 a may be provided on the first surface 101 and contact grooves 105 may be etched through openings in the first dielectric structure 220 a into semiconductor mesas formed between adjoining cell stripes. Additional impurities may be introduced into the first epitaxial layer 104 by diffusion and/or implant processes through the first surface 101 for forming source zones, channel/body zones and contact zones. In the case of implants, the implant damages may or may not be annealed at this stage and the implants may or may not be diffused at this stage.
  • a thin metal barrier liner 301 may be deposited that lines the contact grooves 105 and that covers the first dielectric structure 220 a.
  • FIG. 5C shows the completed or provisional first transistor cells TC 1 and the metal barrier liner 301 .
  • the metal barrier liner 301 may consist of or contain titanium nitride (TiN) or tantalum nitride (TaN), by way of example.
  • TiN titanium nitride
  • TaN tantalum nitride
  • the second sub-layer 104 b may correspond to or include a first drain zone 120 a and the third sub-layer 104 c may correspond to or include a first drift zone 121 a of the first switching device.
  • a protection layer 710 may be deposited on the metal barrier liner 301 and a carrier 720 may be fixed, e.g. adhered or bonded, to the protection layer 710 .
  • FIG. 5D shows the protection layer 710 provided from a material that can be removed with high selectivity against the material of the metal barrier liner 301 and withstands the process temperatures applied for providing the second switching device, e.g. a glass.
  • the carrier 720 may be a metal chunk or a silicon plate directly bonded to a silicon-containing protection layer 710 , by way of example.
  • the semiconductor substrate 500 a is turned upside down (flipped) such that a second process surface of the base substrate 400 side opposite to the first surface 101 is accessible for deposition, etch, implant and polishing processes.
  • the base substrate 400 may be thinned or may be removed completely, e.g. by a chemical/mechanical polishing process.
  • other embodiments may provide removing a portion of the first epitaxial layer 104 adjoining the base substrate 400 .
  • the auxiliary structures 140 may be used for endpoint detection in a polishing process.
  • FIG. 5E shows the semiconductor substrate 500 a after a polishing process completely removes the base substrate 400 and stops at the auxiliary structures 140 .
  • the polished surface of the epitaxial layer 140 may form the second surface 102 of the semiconductor portion 100 of the finalized device. Defects in a portion of the first epitaxial layer 104 oriented to the second surface 102 may be cured, for example by using etching, annealing, and/or oxidation processes and generating a sacrificial oxide, which may be removed in the following.
  • a further epitaxial layer may or may not be grown on the surface of the semiconductor substrate 500 a opposite to the first surface 101 .
  • Second complete or provisional transistor cells TC 2 of the second switching device may be formed by providing second gate electrodes 150 b , second gate dielectrics 205 b that dielectrically insulate the second gate electrodes 150 b from the semiconductor portion 100 , and a second dielectric structure 220 b dielectrically encapsulating the second gate electrodes 150 b .
  • the second switching device may be an LDMOS-FET (laterally diffused metal oxide semiconductor FET) in the usual meaning including both metal gate electrodes and non-metal gate electrodes. Additional impurities may be introduced into the first sub-layer 104 a by diffusion and/or implant processes through the second surface 102 for forming channel or body, drain, source and contact zones. In the case of implants, the implant damages may or may not be annealed at this stage and the implants may or may not be diffused at this stage.
  • FIG. 5F shows the second completed or provisional transistor cells TC 2 with second gate dielectrics 205 b dielectrically insulating the second gate electrodes 150 b from the first epitaxial layer 104 .
  • An etch process may remove the auxiliary structures 140 with high selectivity against the material of the first epitaxial layer 104 to form device connection grooves extending from the second surface 102 into the semiconductor portion 100 .
  • the etch process may expose the heavily doped second sub-layer 104 b and a further etch process, which may remove heavily doped material at a higher rate than lightly doped material, may be used to deepen the device connection grooves.
  • Device connection structures 305 x may be formed in the device connection grooves.
  • FIG. 5G shows second transistor cells TC 2 of the switching device T 2 and device connection structures 305 x in place of the auxiliary structures 140 of FIG. 5A .
  • the device connection structures 305 x may extend into the second sub-layer 104 b and may electrically connect the first drain zones 120 a of the first switching device T 1 with second source zones of the second switching device T 2 .
  • the carrier 720 and the protection layer 710 are removed and the electrode structures of the first switching device T 1 may be completed.
  • the finalized device may in substance correspond to the integrated circuit 500 of FIG. 1B .
  • Annealing and/or diffusion of implants concerning the first and second switching devices T 1 , T 2 may be carried out separately or may be combined with each other, e.g. the annealing or the diffusion processes may be carried out simultaneously.
  • Other embodiments may flip the semiconductor substrate 500 a before or after forming the metal barrier liner 301 or may flip the semiconductor substrate 500 a more than once.
  • FIGS. 6A to 6E refer to the manufacture of an integrated circuit that vertically integrates two HEMTs.
  • a first process surface 401 of a base substrate 400 for example on a (111)-surface of a silicon crystal, an epitaxy process grows a first epitaxial layer including at least two group III nitride layers with different band gaps, for example a first buffer layer 180 a and a first barrier layer 182 a.
  • FIG. 6A shows the first buffer layer 180 a , e.g. a GaN layer, on the first process surface 401 and the first barrier layer 182 a , e.g. an AlGaN or InAlN layer, on the first buffer layer 180 a .
  • An exposed surface of the first barrier layer 182 a opposite to the base substrate 400 may correspond to the first surface 101 of a semiconductor portion of the finalized device.
  • Other embodiments may provide a seed layer from a further group III nitride between the base substrate 400 and the first buffer layer 180 a.
  • First source and drain contacts 305 a and a first gate electrode 150 a are formed in and on the first epitaxial layer and a passivation layer 190 may be deposited.
  • the first source and drain contacts 305 a extend from the first surface 101 through the first barrier layer 182 a into the first buffer layer 180 a .
  • the first gate electrode 150 a is provided at a distance to an interface between the first buffer and barrier layers 180 a , 182 a .
  • the passivation layer 190 covers the first surface 101 and encapsulates the first gate electrode 150 a as well as the first source and drain contacts 305 a .
  • One of the drain and source contacts 305 a may extend through the first buffer layer 180 a and may directly adjoin the base substrate 400 to provide a portion of a device connection structure.
  • the semiconductor substrate 500 a is turned upside down such that a second process surface 402 of the base substrate 400 side opposite to the first surface 101 is accessible for deposition, etch, implant and polishing processes.
  • the base substrate 400 may or may not be thinned in a grinding process.
  • FIG. 6C shows the flipped semiconductor substrate 500 a with the thinned base substrate 400 a providing a further process surface 403 opposite to the passivation layer 190 .
  • a second epitaxial layer selected from group III nitrides is grown on the further process surface 403 .
  • the second epitaxial layer includes at least a second buffer layer 180 b and a second barrier layer 182 b.
  • the second buffer layer 180 b directly adjoins the thinned base substrate 400 a opposite to the first buffer layer 180 a .
  • An exposed surface of the second barrier layer 182 b provides the second surface 102 of the semiconductor portion 100 of the finalized device.
  • the materials and dimensions of the first and second buffer layers 180 a , 180 b may be the same or may be different.
  • Second gate electrodes 150 b as well as second source and drain contacts 305 b are formed on and in the second epitaxial layer similar to the first gate electrodes 150 a and first source and drain contacts 305 a .
  • One of the second drain and source contacts 305 b may extend through the second buffer layer 180 b , and may directly adjoin the base substrate 400 .
  • the extended first drain and second source contacts 305 a , 305 b may directly adjoin each other and may form portions of a contiguous device connection structure 305 x , wherein the thinned base substrate 400 a may be based on a conductive or a dielectric material.
  • the extended first drain and second source contacts 305 a , 305 b do not directly adjoin each other, wherein the thinned base substrate 400 a is based on a conductive material and is part of the device connection structure.
  • An embodiment of an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion.
  • the first and second sections and electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion.
  • the first and second sections of the semiconductor portion may directly adjoin each other and form an interface parallel to the first surface.
  • an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion.
  • the first and second sections and electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion.
  • a device connection structure electrically connects one of the electrode structures of the first switching device with one of the electrode structures of the second switching device.
  • the device connection structure is arranged between the first surface and an opposite second surface of the semiconductor portion and is embedded in the semiconductor portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A method of manufacturing an integrated circuit includes: growing an epitaxial layer on a process surface of a base substrate; forming, by processes applied to an exposed first surface of the epitaxial layer, first transistor cells in the epitaxial layer, each first transistor cell including a first gate electrode; and forming, by processes applied to a surface opposite to the first surface, second transistor cells, each second transistor cell including a second gate electrode.

Description

    BACKGROUND
  • Integrated circuits may integrate several switching devices. For example, integrated half bridge circuits combine high side and low side switches arranged side-by-side in the same semiconductor die. There is a need for improved power switching devices.
  • SUMMARY
  • According to an embodiment, an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion. The first and second sections as well as electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion.
  • Another embodiment refers to a method of manufacturing a semiconductor device. An epitaxial layer grows on a process surface of a base substrate. Processes applied to an exposed first surface of the epitaxial layer provide first transistor cells in the epitaxial layer, wherein each first transistor cell includes a first gate electrode. Processes applied to a surface opposite to the first surface provide second transistor cells, wherein each second transistor cell includes a second gate electrode.
  • Those skilled in the art will recognize additional features and advantages upon reading the following detailed description and on viewing the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the description serve to explain principles of the invention. Other embodiments of the invention and intended advantages will be readily appreciated as they become better understood by reference to the following detailed description.
  • FIG. 1A is a schematic circuit diagram of an integrated circuit including a half bridge circuit with the low and high side switches embodied as n-FETs (n channel field effect transistors).
  • FIG. 1B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 1A in accordance with an embodiment providing a lateral n-FET as high side switch and a vertical n-FET as low side switch.
  • FIG. 1C is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 1A according to an embodiment providing a lateral n-FET as high side switch and a vertical n-FET as low side switch as well as a laterally patterned body connection for the high side switch.
  • FIG. 1D is a schematic plan view of a first side of the integrated circuit of FIG. 1A according to an embodiment.
  • FIG. 1E is a schematic plan view of a second side of the integrated circuit of FIG. 1A according to an embodiment.
  • FIG. 2A is a schematic circuit diagram of an integrated circuit including a half bridge circuit with a p-FET high side switch and an n-FET low side switch.
  • FIG. 2B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 2A in accordance with an embodiment providing a lateral p-FET as high side switch and a vertical n-FET as low side switch.
  • FIG. 3A is a schematic circuit diagram of an integrated circuit according to an embodiment including an HEMT (high electron mobility transistor) and an n-FET in a cascode configuration.
  • FIG. 3B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 3A in accordance with an embodiment providing a vertical n-FET.
  • FIG. 4A is a schematic circuit diagram of an integrated circuit including two HEMTs electrically arranged in series.
  • FIG. 4B is a schematic cross-sectional view of a portion of the integrated circuit of FIG. 4A.
  • FIG. 5A is a schematic cross-sectional view of a portion of a semiconductor substrate in an exemplary method of manufacturing a semiconductor device including vertically integrated switching devices after providing an auxiliary structure on a first process surface of a base substrate.
  • FIG. 5B is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5A after growing a first epitaxial layer on the base substrate.
  • FIG. 5C is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5B after providing first provisional transistor cells in the first epitaxial layer.
  • FIG. 5D is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5C after applying a carrier on the side of the first epitaxial layer.
  • FIG. 5E is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5D after flipping the semiconductor substrate and removing the base substrate.
  • FIG. 5F is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5E after providing second provisional transistor cells.
  • FIG. 5G is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 5F after forming device connection structures.
  • FIG. 6A is a schematic cross-sectional view of a portion of a semiconductor substrate in an exemplary method of manufacturing an integrated circuit by providing vertically integrated HEMTs after growing a first epitaxial layer on a first process surface of a base substrate.
  • FIG. 6B is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6A after providing first transistor cells on and in the first epitaxial layer.
  • FIG. 6C is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6B after flipping the semiconductor substrate and thinning the base substrate.
  • FIG. 6D is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6C after growing a second epitaxial layer on the thinned base substrate on a side opposite to the first process surface.
  • FIG. 6E is a schematic cross-sectional view of the semiconductor substrate portion of FIG. 6D after providing second transistor cells on and in the second epitaxial layer.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustrations specific embodiments in which the invention may be practiced. Other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. For example, features illustrated or described for one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that the present invention includes such modifications and variations. The examples are described using specific language that should not be construed as limiting the scope of the appending claims. The drawings are not scaled and are for illustrative purposes only. For clarity, the same elements have been designated by corresponding references in the different drawings if not stated otherwise.
  • The terms “having,” “containing,” “including,” “comprising” and the like are open and the terms indicate the presence of stated structures, elements or features but not preclude additional elements or features. The articles “a,” “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
  • The term “electrically connected” describes a permanent low-ohmic connection between electrically connected elements, for example a direct contact between the concerned elements or a low-ohmic connection via a metal and/or highly doped semiconductor. The term “electrically coupled” includes that one or more intervening element(s) adapted for signal transmission may be provided between the electrically coupled elements, for example elements that are controllable to temporarily provide a low-ohmic connection in a first state and a high-ohmic electric decoupling in a second state.
  • The Figures illustrate relative doping concentrations by indicating “−” or “+” next to the doping type “n” or “p.” For example, “n” means a doping concentration that is lower than the doping concentration of an “n”-doping region while an “n+”-doping region has a higher doping concentration than an “n”-doping region. Doping regions of the same relative doping concentration do not necessarily have the same absolute doping concentration. For example, two different “n”-doping regions may have the same or different absolute doping concentrations.
  • The embodiments relate to integrated circuits vertically integrating at least a first and a second switching device T1, T2. Apart from the first and second switching devices T1, T2 the integrated circuits may include further switching devices, electronic circuits and/or semiconductor elements. Exemplary switching devices T1, T2 include a p-FET (p channel field effect transistor) of the depletion or enhancement mode, an n-FET of the depletion or enhancement mode, an HEMT or a JFET (junction field effect transistor).
  • With respect to two parallel main surfaces along which electrode structures of the first and second switching devices T1, T2 provide electric access to the switching devices T1, T2, each of the switching devices T1, T2 may be a lateral switching device or a vertical switching device, wherein in lateral switching devices a load current flows parallel to the main surfaces and wherein in vertical devices the load current flows in a vertical direction perpendicular to the main surfaces.
  • The load paths of the first and second switching devices T1, T2 may be electrically arranged in series, for example with two electrically connected control inputs or two separate control inputs, e.g. in a cascode configuration, or may be electrically arranged in parallel, for example with two separate or two electrically connected control inputs.
  • The embodiments of FIGS. 1A to 1E refer to an integrated circuit including n-FETs with load paths electrically arranged in series and usable, for example, as a half bridge circuit.
  • According to FIG. 1A, the first and second switching devices T1, T2 of an integrated circuit 500 may be FETs, e.g. Power MOSFETs, with the load paths between drain D and source S connected in series between a first load terminal Vdd and a second load terminal Gnd of the integrated circuit 500. The drain D of the first switching device T1 may be electrically connected or coupled to the first load terminal Vdd. The source S of the second switching device T2 may be electrically connected or coupled to the second load terminal Gnd. The source S of the first switching device T1 and the drain D of the second switching device T2 may be electrically connected to each other and to an output terminal Vph. The gate G of the first switching device T1 may be electrically coupled or connected to a first control terminal Ctrl1 and the gate G of the second switching device T2 may be electrically coupled or connected to a second control terminal Ctrl2. According to other embodiments, the gates G of the first and second switching devices T1, T2 may be electrically connected to each other or at least one of the gates G may be electrically connected to one of the load and output terminals Vdd, Gnd, Vph or to a driver circuit integrated in the integrated circuit 500.
  • FIG. 1B refers to an embodiment of the integrated circuit 500 of FIG. 1A with a lateral n-FET providing the first switching device T1 and a vertical n-FET providing the second switching device T2. The integrated circuit 500 is implemented on a semiconductor portion 100 of one or more single-crystalline semiconductor materials selected from a group including silicon (Si), silicon carbide (SiC), germanium (Ge), a silicon germanium crystal (SiGe), gallium nitride (GaN) and gallium arsenide (GaAs), for example. The semiconductor portion 100 may have an essentially planar first surface 101 and a planar second surface 102 parallel to the first surface 101 as main surfaces. A normal to the first surface 101 defines a vertical direction and directions orthogonal to the vertical direction are lateral directions.
  • The first switching device T1 includes a semiconductor region in a first section 100 a of the semiconductor portion 100. The second switching device T2 includes a semiconductor region in a second section 100 b of the semiconductor portion 100. The first and second sections 100 a, 100 b may be spaced from each other along the vertical direction, may form an interface parallel to the first and second surfaces 101, 102 or may partly, but not totally, overlap each other. Electrode structures 310 b, 311 a, 312 a, which are electrically connected to the first and second switching devices T1, T2, are arranged in the vertical projection of the semiconductor portion 100.
  • The first switching device T1 may be a lateral n-FET of the enhancement type including a plurality of approximately identical first transistor cells TC1, which may be regularly arranged at regular distances along at least a first lateral direction. Each first transistor cell TC1 includes a first gate electrode 150 a arranged outside the semiconductor portion 100 in a distance to the first surface 101 and a first gate dielectric 205 a dielectrically insulating the first gate electrode 150 a from the first semiconductor region in the first section 100 a of the semiconductor portion 100.
  • The first section 100 a the first semiconductor region of the first switching device T1 includes p-type first body zones 115 a, which may be portions of a p-type epitaxial layer, as well as heavily doped n-type first source zones 110 a and heavily doped n-type first drain zones 120 a, which may extend as wells from the first surface 101 into the first substrate section 100 a, respectively. A lightly doped n-type first drift zone 121 a may be provided between the first body zone 115 a and the first drain zone 120 a of each first transistor cell TC1. First portions of the first body zones 115 a separate the first source and drift zones 110 a, 121 a and adjoin the first surface 101. Second portions of the first body zones 115 a separate the first source, drain and drift zones 110 a, 120 a, 121 a from the second switching device T2.
  • The first gate dielectrics 205 a dielectrically insulate the first gate electrodes 150 a from the first portions of the first body zones 115 a. First cell insulators 202 a, which are thicker than the first gate dielectrics 205 a, may dielectrically insulate the first gate electrodes 150 a from the first drift and drain zones 121 a, 120 a.
  • First contact structures 305 a extend between the first gate electrodes 150 a into the semiconductor portion 100 and electrically connect the first source zones 110 a with a first source electrode 311 a and the first drain zones 130 a with a first drain electrode 312 a. The first source electrode 311 a may be electrically connected or coupled to an output terminal Vph and the first drain electrode 312 a may be electrically connected or coupled to a first load terminal Vdd of the integrated circuit 500. Dielectric spacers 220 a are provided between the first contact structures 305 a and the first gate electrodes 150 a and a dielectric layer 222 a may dielectrically insulate the first gate electrodes 150 a from the first source and drain electrodes 311 a, 312 a.
  • The second switching device T2 may be a vertical n-FET of the enhancement type including a plurality of approximately identical second transistor cells TC2, which may be regularly arranged at equal distances along at least a first lateral direction. The vertical projections of the first and second semiconductor regions of the first and second switching devices T1, T2 overlap each other.
  • A center-to-center distance (pitch) between adjoining second transistor cells TC2 may be equal to, smaller than, or greater than the pitch of adjoining first transistor cells TC1. The second transistor cells TC2 are arranged in the vertical projection of at least some of the first transistor cells TC1, or vice versa.
  • Each second transistor cell TC2 includes a second gate electrode 150 b buried in the semiconductor portion 100 at a distance to the second surface 102 and a second gate dielectric 205 b dielectrically insulating the second gate electrode 150 b from the second semiconductor region in the second section 100 b of the semiconductor portion 100.
  • The semiconductor region of the second switching device T2 may include heavily doped n-type second source zones 110 b directly adjoining the second surface 102, a lightly doped n-type second drift zone 121 b, p-type second body zones 115 b spatially separating the second source and drift zones 110 b, 121 b and a second drain zone 120 b. The interfaces between the second body zones 115 b and the second drift zones 121 b as well as between the second drift and drain zones 121 b, 120 b may be parallel to the first and second surfaces 101, 102.
  • The second gate electrodes 150 b are arranged in cell stripes extending from the second surface 102 into the semiconductor portion 100. The cell stripes may further include field electrodes 160 b, wherein a field dielectric 210 dielectrically insulates the field electrodes 160 b from the semiconductor material of the semiconductor portion 100 and the second gate electrodes 150 b. Second gate dielectrics 205 b dielectrically insulate the second gate electrodes 150 b from the second body zones 115 b.
  • A dielectric structure 220 b directly adjoins the second surface 102. Second contact structures 305 b extend through openings in the dielectric structure 220 b into the semiconductor portion 100. The second contact structures 305 b may electrically connect the second source and body zones 110 b, 115 b with a second source electrode 310 b. The second source electrode 310 b may be electrically connected or coupled to a second load terminal Gnd of the integrated circuit 500. Heavily doped p-type second contact zones 117 b may directly adjoin a bottom portion of the second contact structures 305 b to provide a low contact resistance between the second contact structures 305 b and the second body zones 115 b.
  • Device connection structure 305 x may extend from the first surface 101 into the semiconductor portion 100 and may electrically connect the second drain zone 120 b with the first source electrode 311 a. Along sidewalls of the device connection structures 305 x heavily doped first contact zones 117 a may provide highly conductive connections between the second source electrode 311 a and the first body zones 115 a.
  • The vertical projections of first and second transistor cells TC1, TC2 overlap each other. The first transistor cells TC1 may be arranged in pairs, wherein the two transistor cells of each pair are arranged mirror-inverted with regard to the first drain zone 120 a shared by the concerned two first transistor cells TC1.
  • The embodiment of FIG. 1C differs from the embodiment of FIG. 1B in that the first source zones 110 a are patterned along a lateral direction perpendicular to the cross-sectional plane. In first sections, the first source zones 110 a extend from the first surface 101 to the second drain zone 120 b and provide an electrical connection between the first source zones 110 a of the first switching device T1 and the second drain zones 120 b of the second switching device T2. In second sections, heavily doped p-type first contact zones 117 a extend between the first source zones 110 a and the second drain zones 120 b and provide a low-resistivity connection between the adjoining first body zones 115 a and the first contact structures 305 a electrically connected to the first source electrode 311 a. Along the lateral direction perpendicular to the cross-sectional plane, the heavily doped p-type first contact zones 117 a alternate with sections of the heavily doped n-type first source zones 110 a. The second drain zone 120 b directly adjoins sections of the first source zones 110 a.
  • Alternatively, heavily doped p-type first contact zones 117 a separate the first source zones 115 a from the second drain zone 120 b and the first contact structures 305 a extend into the second drain zone 120 b such that the first contact structures 305 a electrically connect the first source zones 110 a, the second drain zones 120 b, the first body zones 115 a and the first source electrode 311 a.
  • FIG. 1D is a schematic plan view of the electrode structures 311 a, 312 a of the integrated circuit 500 at a side of the first surface 101. The first source electrode 311 a may form an output terminal Vph, or a terminal pad for a bonding connection to the output terminal Vdd. The first drain electrode 312 a may form a first load terminal Vdd or a terminal pad for a bonding connection to the first load terminal Vdd. A first control terminal Ctrl1 or terminal pad for a bonding connection to the first control terminal Ctrl1 is electrically connected to the first gate electrodes 150 a of FIGS. 1A-1C.
  • FIG. 1E shows the opposite side oriented to the second surface 102. The second source electrode 310 b may form a second load terminal Vdd or a terminal pad for a bonding connection to the second load terminal Vdd. A second control terminal Ctrl2 or terminal pad for a bonding connection to the second control terminal Ctrl2 is electrically connected to the second gate electrodes 150 b of FIGS. 1A-1C.
  • A further terminal or terminal pad may be electrically connected or coupled to the second field electrodes 160 b. According to other embodiments, the second field electrodes 160 b are electrically connected with the second source electrode 310 b or the second gate electrodes 150 b. According to other embodiments, both control terminals or terminal pads Ctrl1, Ctrl2 may be on the same side by providing a TSV (through-silicon via), for example.
  • The integrated circuit 500 may vertically integrate at least two switching devices T1, T2, e.g. the low side and high side switches of a half bridge. Low parasitic capacitance and electrical resistance between the high side and low side switches and allows for a high packaging density. The integrated circuit 500 may be a power semiconductor device.
  • Compared to co-packaged dies with the high side and low side switches processed in different dies obtained from different substrates and soldered on top of each other or side-by-side, one way that the integrated circuit 500 reduces packaging costs is that only one die must be handled and less package level interconnections are required.
  • Other than monolithic side-by-side implementations for half bridges, the integrated circuit 500 allows for significantly reducing the required chip area.
  • FIGS. 2A to 2B refer to an integrated circuit 500 with a lateral p-FET providing the first switching device T1 and a vertical n-FET providing the second switching device T2. The second switching device T2 may correspond to the second switching device T2 of FIG. 1A. On the side of the first switching device T1, first contact structures 305 a electrically connected to the first drain electrode 312 a and the first load terminal Vdd directly adjoin the heavily doped p-type first drain zones 120 a as well as the n-type first body zones 115 a. First contact structures 305 a electrically connected to the first source electrode 311 a and the output terminal Vph directly adjoin the heavily doped n-type second drain zone 120 b as well as the heavily doped p-type first source zones 110 a. For further details reference is made to the description of FIG. 1A to 1E.
  • FIGS. 3A to 3B refer to an embodiment that vertically integrates a lateral HEMT as the first switching device T1 and a vertical n-FET as the second switching device T2. The load paths of the first and second switching devices T1, T2 are electrically arranged in series. The first and second switching devices T1, T2 may be configured in a cascode connection with the gate G of the first switching device T1 being electrically connected to the source S of the second switching device T2.
  • The second switching device T2 may correspond to the second switching device T2 of FIG. 1A. The first switching device T1 may include at least a buffer layer 180 and a barrier layer 182, both provided from Group III nitrides or Group III arsenides, encompassing semiconductor compounds formed from nitrogen or arsenic and Group III elements as gallium (Ga), aluminum (Al) and indium (In) and including ternary and tertiary compounds like AlGaN and AlInGaN. The materials for the buffer and barrier layers 180, 182 are selected from Group III nitrides/arsenides such that the band gaps of the materials for the barrier and buffer layers 180, 182 differ significantly from each other and such that in proximity of the interface between the buffer and barrier layers 180, 182 a two-dimensional electron gas (2DEG) provides a conductive channel in the buffer layer 180.
  • The conductive channel extends between a drain electrode provided by a first contact structure 305 a electrically connected to the first load terminal Vdd and a source electrode provided by a first contact structure 305 a extending from the first surface 101 up to or into the heavily doped n-type second drain zone 120 b. A first gate electrode 150 a, which may include a portion containing a conductive Group III nitride or Group III arsenide material, may locally deplete or not deplete the conductive channel of the HEMT in response to a voltage applied to the first gate electrode 150 a.
  • The embodiment of FIGS. 4A and 4B combines two HEMTs as described above on opposing sides of a base substrate 400 shared by the two HEMTs. The material of the base substrate 400 may be GaAs, SiC, Si, GaN, Ge, SiGe, or sapphire, for example. The first switching device T1 is a HEMT including first buffer and barrier layers 180 a, 182 a, wherein the exposed surface of the first barrier layer 182 a may form the first surface 101 of the semiconductor portion 100. The second switching device T2 is a HEMT including second buffer and barrier layers 180 b, 182 b, wherein the exposed surface of the second barrier layer 182 b may form the second surface 107.
  • A device connection structure 305 x may extend from the first surface 101 through the semiconductor portion 100 to the second surface 102, electrically connecting the first source electrode 311 a of the first switching device T1 and the second drain electrode 313 b of the second switching device T2.
  • According to other embodiments, a first portion of the device connection structure 305 x may extend from the first surface 101 into the base substrate 400 and a second portion may extend from the second surface 102 into the base substrate 400. The first and second portions may directly adjoin each other. According to embodiments that include a highly conductive base substrate 400, a portion of the base substrate 400 may separate the first and second portions of the device connection structure 305 x.
  • FIGS. 5A to 5G relate to a method of manufacturing an integrated circuit vertically integrating a first switching device with first transistor cells and a second switching device with second transistor cells.
  • A base substrate 400 of a semiconductor substrate 500 a is provided from one or more dielectric or semiconducting materials, e.g., sapphire, intrinsic or heavily doped single crystalline silicon (Si), single crystalline germanium (Ge), a silicon germanium crystal (SiGe), silicon carbide (SiC), gallium nitride (GaN) or gallium arsenide (GaAs). An auxiliary structure 140 may be provided on a first process surface 401 of the base substrate 400.
  • FIG. 5A shows the auxiliary structure 140 formed on portions of the first process surface 401. The material of the auxiliary structure 140 and the material of the base substrate 400 may have significantly different etch properties. For example, the base substrate 400 is provided from heavily doped n-type single-crystalline silicon and the auxiliary structure 140 is provided from a dielectric material, for example a silicon oxide.
  • An epitaxy process grows an epitaxial layer 104 on the first surface 401 and laterally overgrows the auxiliary structures 140 such that the epitaxial layer 104 and the base substrate 400 embed the auxiliary structure 140. The materials of the base substrate 400 and the epitaxial layer 104 may have identical or approximately identical lattice constants such that the epitaxial layer 104 grows in registry with the crystal lattice of the base substrate 400. The first epitaxial layer 104 may consist of one homogeneously doped layer or may include two, three or more sub-layers differing from each other as regards a vertical impurity profile, a mean net impurity concentration and/or an impurity type. The mean net dopant concentration, conductivity type and vertical impurity profile of each sub-layer depends on the type of the switching device(s) to be formed in the first epitaxial layer 104.
  • In FIG. 5B the first epitaxial layer 104 is a single-crystalline silicon layer including a lightly doped p-type first sub-layer 104 a, a heavily doped n-type second sub-layer 104 b and a lightly doped n-type third sub-layer 104 c. The exposed surface of the epitaxial layer 104 opposite to the base substrate 400 may form a first surface 101 of a semiconductor portion of the finalized device.
  • Provisional or complete first transistor cells TC1 of a first switching device T1 are formed in the first epitaxial layer 104 by deposition, implant and etch processes applied to the semiconductor substrate 500 a from a side defined by the first surface 101. The first switching device may be a vertical switching device with first gate electrodes 150 a and field electrodes 160 formed in cell stripes extending from the first surface 101 into the first epitaxial layer 104. First gate dielectrics 205 a dielectrically insulate the first gate electrodes 150 a from the first epitaxial layer 104. Field dielectrics 202 may dielectrically insulate the field electrodes 160 from the epitaxial layer 104 and the first gate electrodes 150 a.
  • A first dielectric structure 220 a may be provided on the first surface 101 and contact grooves 105 may be etched through openings in the first dielectric structure 220 a into semiconductor mesas formed between adjoining cell stripes. Additional impurities may be introduced into the first epitaxial layer 104 by diffusion and/or implant processes through the first surface 101 for forming source zones, channel/body zones and contact zones. In the case of implants, the implant damages may or may not be annealed at this stage and the implants may or may not be diffused at this stage. A thin metal barrier liner 301 may be deposited that lines the contact grooves 105 and that covers the first dielectric structure 220 a.
  • FIG. 5C shows the completed or provisional first transistor cells TC1 and the metal barrier liner 301. The metal barrier liner 301 may consist of or contain titanium nitride (TiN) or tantalum nitride (TaN), by way of example. The second sub-layer 104 b may correspond to or include a first drain zone 120 a and the third sub-layer 104 c may correspond to or include a first drift zone 121 a of the first switching device.
  • A protection layer 710 may be deposited on the metal barrier liner 301 and a carrier 720 may be fixed, e.g. adhered or bonded, to the protection layer 710.
  • FIG. 5D shows the protection layer 710 provided from a material that can be removed with high selectivity against the material of the metal barrier liner 301 and withstands the process temperatures applied for providing the second switching device, e.g. a glass. The carrier 720 may be a metal chunk or a silicon plate directly bonded to a silicon-containing protection layer 710, by way of example.
  • The semiconductor substrate 500 a is turned upside down (flipped) such that a second process surface of the base substrate 400 side opposite to the first surface 101 is accessible for deposition, etch, implant and polishing processes. The base substrate 400 may be thinned or may be removed completely, e.g. by a chemical/mechanical polishing process. In addition to the base substrate 400, other embodiments may provide removing a portion of the first epitaxial layer 104 adjoining the base substrate 400. The auxiliary structures 140 may be used for endpoint detection in a polishing process.
  • FIG. 5E shows the semiconductor substrate 500 a after a polishing process completely removes the base substrate 400 and stops at the auxiliary structures 140. The polished surface of the epitaxial layer 140 may form the second surface 102 of the semiconductor portion 100 of the finalized device. Defects in a portion of the first epitaxial layer 104 oriented to the second surface 102 may be cured, for example by using etching, annealing, and/or oxidation processes and generating a sacrificial oxide, which may be removed in the following. A further epitaxial layer may or may not be grown on the surface of the semiconductor substrate 500 a opposite to the first surface 101.
  • Second complete or provisional transistor cells TC2 of the second switching device may be formed by providing second gate electrodes 150 b, second gate dielectrics 205 b that dielectrically insulate the second gate electrodes 150 b from the semiconductor portion 100, and a second dielectric structure 220 b dielectrically encapsulating the second gate electrodes 150 b. The second switching device may be an LDMOS-FET (laterally diffused metal oxide semiconductor FET) in the usual meaning including both metal gate electrodes and non-metal gate electrodes. Additional impurities may be introduced into the first sub-layer 104 a by diffusion and/or implant processes through the second surface 102 for forming channel or body, drain, source and contact zones. In the case of implants, the implant damages may or may not be annealed at this stage and the implants may or may not be diffused at this stage.
  • FIG. 5F shows the second completed or provisional transistor cells TC2 with second gate dielectrics 205 b dielectrically insulating the second gate electrodes 150 b from the first epitaxial layer 104.
  • An etch process may remove the auxiliary structures 140 with high selectivity against the material of the first epitaxial layer 104 to form device connection grooves extending from the second surface 102 into the semiconductor portion 100. The etch process may expose the heavily doped second sub-layer 104 b and a further etch process, which may remove heavily doped material at a higher rate than lightly doped material, may be used to deepen the device connection grooves. Device connection structures 305 x may be formed in the device connection grooves.
  • FIG. 5G shows second transistor cells TC2 of the switching device T2 and device connection structures 305 x in place of the auxiliary structures 140 of FIG. 5A. The device connection structures 305 x may extend into the second sub-layer 104 b and may electrically connect the first drain zones 120 a of the first switching device T1 with second source zones of the second switching device T2.
  • After providing the electrodes of the second switching device T2, the carrier 720 and the protection layer 710 are removed and the electrode structures of the first switching device T1 may be completed. The finalized device may in substance correspond to the integrated circuit 500 of FIG. 1B.
  • Annealing and/or diffusion of implants concerning the first and second switching devices T1, T2 may be carried out separately or may be combined with each other, e.g. the annealing or the diffusion processes may be carried out simultaneously. Other embodiments may flip the semiconductor substrate 500 a before or after forming the metal barrier liner 301 or may flip the semiconductor substrate 500 a more than once.
  • FIGS. 6A to 6E refer to the manufacture of an integrated circuit that vertically integrates two HEMTs. On a first process surface 401 of a base substrate 400, for example on a (111)-surface of a silicon crystal, an epitaxy process grows a first epitaxial layer including at least two group III nitride layers with different band gaps, for example a first buffer layer 180 a and a first barrier layer 182 a.
  • FIG. 6A shows the first buffer layer 180 a, e.g. a GaN layer, on the first process surface 401 and the first barrier layer 182 a, e.g. an AlGaN or InAlN layer, on the first buffer layer 180 a. An exposed surface of the first barrier layer 182 a opposite to the base substrate 400 may correspond to the first surface 101 of a semiconductor portion of the finalized device. Other embodiments may provide a seed layer from a further group III nitride between the base substrate 400 and the first buffer layer 180 a.
  • First source and drain contacts 305 a and a first gate electrode 150 a are formed in and on the first epitaxial layer and a passivation layer 190 may be deposited.
  • As shown in FIG. 6B, the first source and drain contacts 305 a extend from the first surface 101 through the first barrier layer 182 a into the first buffer layer 180 a. The first gate electrode 150 a is provided at a distance to an interface between the first buffer and barrier layers 180 a, 182 a. The passivation layer 190 covers the first surface 101 and encapsulates the first gate electrode 150 a as well as the first source and drain contacts 305 a. One of the drain and source contacts 305 a, for example the drain contact 305 a, may extend through the first buffer layer 180 a and may directly adjoin the base substrate 400 to provide a portion of a device connection structure.
  • The semiconductor substrate 500 a is turned upside down such that a second process surface 402 of the base substrate 400 side opposite to the first surface 101 is accessible for deposition, etch, implant and polishing processes. The base substrate 400 may or may not be thinned in a grinding process.
  • FIG. 6C shows the flipped semiconductor substrate 500 a with the thinned base substrate 400 a providing a further process surface 403 opposite to the passivation layer 190.
  • A second epitaxial layer selected from group III nitrides is grown on the further process surface 403. The second epitaxial layer includes at least a second buffer layer 180 b and a second barrier layer 182 b.
  • In FIG. 6D the second buffer layer 180 b directly adjoins the thinned base substrate 400 a opposite to the first buffer layer 180 a. An exposed surface of the second barrier layer 182 b provides the second surface 102 of the semiconductor portion 100 of the finalized device. The materials and dimensions of the first and second buffer layers 180 a, 180 b may be the same or may be different.
  • Second gate electrodes 150 b as well as second source and drain contacts 305 b are formed on and in the second epitaxial layer similar to the first gate electrodes 150 a and first source and drain contacts 305 a. One of the second drain and source contacts 305 b, for example the second source contact 305 a, may extend through the second buffer layer 180 b, and may directly adjoin the base substrate 400.
  • In FIG. 6E, the extended first drain and second source contacts 305 a, 305 b may directly adjoin each other and may form portions of a contiguous device connection structure 305 x, wherein the thinned base substrate 400 a may be based on a conductive or a dielectric material.
  • According to other embodiments, the extended first drain and second source contacts 305 a, 305 b do not directly adjoin each other, wherein the thinned base substrate 400 a is based on a conductive material and is part of the device connection structure.
  • An embodiment of an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion. The first and second sections and electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion. The first and second sections of the semiconductor portion may directly adjoin each other and form an interface parallel to the first surface.
  • Another embodiment of an integrated circuit includes a first switching device including a first semiconductor region in a first section of a semiconductor portion and a second switching device including a second semiconductor region in a second section of the semiconductor portion. The first and second sections and electrode structures of the first and second switching devices outside the semiconductor portion are arranged along a vertical axis perpendicular to a first surface of the semiconductor portion. A device connection structure electrically connects one of the electrode structures of the first switching device with one of the electrode structures of the second switching device. The device connection structure is arranged between the first surface and an opposite second surface of the semiconductor portion and is embedded in the semiconductor portion.
  • Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a vatiety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.

Claims (19)

What is claimed is:
1. A method of manufacturing an integrated circuit, the method comprising:
growing an epitaxial layer on a process surface of a base substrate;
forming, by processes applied to an exposed first surface of the epitaxial layer, first transistor cells in the epitaxial layer, each first transistor cell comprising a first gate electrode; and
forming, by processes applied to a surface opposite to the first surface, second transistor cells, each second transistor cell comprising a second gate electrode.
2. The method of claim 1, further comprising:
removing at least a portion of the base substrate after forming the first transistor cells and before forming the second transistor cells.
3. The method of claim 1, wherein the second transistor cells are formed in the epitaxial layer.
4. The method of claim 1, wherein the second transistor cells are formed in the base substrate.
5. The method of claim 1, further comprising:
growing, after forming the first transistor cells, a further epitaxial layer on a side of the base substrate opposite to the epitaxial layer with the first transistor cells, wherein the second transistor cells are formed in the further epitaxial layer.
6. The method of claim 1, further comprising:
forming, before growing the epitaxial layer, an auxiliary structure from a material different from a material of the base substrate on the process surface.
7. The method of claim 6, further comprising:
removing, before forming the second transistor cells, the base substrate after forming the first transistor cells, wherein the auxiliary structure and a second surface are exposed.
8. The method of claim 7, wherein forming the second transistor cells comprises forming the second gate electrodes of the second transistor cells on the second surface.
9. The method of claim 8, further comprising:
removing, before forming the second transistor cells, the auxiliary structure selectively against the epitaxial layer so as to form a device connection groove.
10. The method of claim 9, further comprising:
forming a device connection structure in the device connection groove.
11. The method of claim 10, wherein the first transistor cells are vertical transistor cells, forming the first transistor cells comprises forming a common drain zone of the first transistor cells in the epitaxial layer, and wherein the device connection structure directly adjoins the common drain zone.
12. The method of claim 6, wherein the auxiliary structure is formed from a dielectric material.
13. The method of claim 1, wherein forming the epitaxial layer comprises forming at least two group III nitride layers.
14. The method of claim 13, wherein forming the first transistor cells comprises forming a first source contact and a first drain contact extending from a first surface of the epitaxial layer into the epitaxial layer, wherein one of the first source contact and the first drain contact extends into the base substrate.
15. The method of claim 14, wherein forming the first transistor cells further comprises forming a first gate electrode on the first surface of the epitaxial layer.
16. The method of claim 14, further comprising:
growing, after forming the first transistor cells, a further epitaxial layer on a side of the base substrate opposite to the epitaxial layer with the first transistor cells, wherein the second transistor cells are formed in the further epitaxial layer.
17. The method of claim 16, wherein forming the second transistor cells comprises forming a second source contact and a second drain contact extending from a second surface of the further epitaxial layer into the epitaxial layer, wherein one of the second drain contact and the second source contact extends into the base substrate.
18. The method of claim 17, wherein the base substrate is conductive.
19. The method of claim 17, wherein either the first drain contact and the second source contact or the second drain contact and the first source contact directly adjoin to each other and form a continuous device connection structure extending from the first surface to the second surface.
US15/335,553 2013-08-16 2016-10-27 Method of Manufacturing an Integrated Circuit Abandoned US20170047324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/335,553 US20170047324A1 (en) 2013-08-16 2016-10-27 Method of Manufacturing an Integrated Circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/968,505 US9502401B2 (en) 2013-08-16 2013-08-16 Integrated circuit with first and second switching devices, half bridge circuit and method of manufacturing
US15/335,553 US20170047324A1 (en) 2013-08-16 2016-10-27 Method of Manufacturing an Integrated Circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/968,505 Division US9502401B2 (en) 2013-08-16 2013-08-16 Integrated circuit with first and second switching devices, half bridge circuit and method of manufacturing

Publications (1)

Publication Number Publication Date
US20170047324A1 true US20170047324A1 (en) 2017-02-16

Family

ID=52430388

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/968,505 Expired - Fee Related US9502401B2 (en) 2013-08-16 2013-08-16 Integrated circuit with first and second switching devices, half bridge circuit and method of manufacturing
US15/335,553 Abandoned US20170047324A1 (en) 2013-08-16 2016-10-27 Method of Manufacturing an Integrated Circuit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/968,505 Expired - Fee Related US9502401B2 (en) 2013-08-16 2013-08-16 Integrated circuit with first and second switching devices, half bridge circuit and method of manufacturing

Country Status (3)

Country Link
US (2) US9502401B2 (en)
CN (1) CN104377198A (en)
DE (1) DE102014111653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723670B (en) * 2019-10-01 2021-04-01 台灣積體電路製造股份有限公司 Integrated transistor device and method of forming integrated transistor device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160293597A1 (en) * 2015-04-06 2016-10-06 Infineon Technologies Austria Ag Integrated Semiconductor Device
US9570438B1 (en) 2015-08-04 2017-02-14 Infineon Technologies Austria Ag Avalanche-rugged quasi-vertical HEMT
EP3298629A4 (en) * 2015-10-09 2019-01-09 HRL Laboratories, LLC GaN-ON-SAPPHIRE MONOLITHICALLY INTEGRATED POWER CONVERTER
US9627275B1 (en) * 2015-10-30 2017-04-18 Taiwan Semiconductor Manufacturing Company Ltd. Hybrid semiconductor structure on a common substrate
US9991776B2 (en) * 2015-12-16 2018-06-05 Semiconductor Components Industries, Llc Switched mode power supply converter
US10083963B2 (en) 2016-12-21 2018-09-25 Qualcomm Incorporated Logic circuit block layouts with dual-side processing
EP3649580A1 (en) 2017-07-03 2020-05-13 Giesecke+Devrient Mobile Security GmbH Interference-optimized metal data carrier
FR3122771B1 (en) * 2021-05-05 2024-05-31 Exagan Electronic device provided with a stack of two high electron mobility transistors arranged in half-bridge arms
CN113594245B (en) * 2021-07-23 2024-03-01 王晓波 Double-sided three-dimensional HEMT device and preparation method thereof
DE102022128515B3 (en) 2022-10-27 2024-02-15 Infineon Technologies Ag VERTICAL POWER SEMICONDUCTOR DEVICE CONTAINING SIC SEMICONDUCTOR BODY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224876A1 (en) * 2009-03-05 2010-09-09 International Business Machines Corporation Two-Sided Semiconductor Structure
US7915645B2 (en) * 2009-05-28 2011-03-29 International Rectifier Corporation Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same
US20120193677A1 (en) * 2011-02-02 2012-08-02 Transphorm Inc. III-N Device Structures and Methods
US20140091366A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816892A (en) * 1982-02-03 1989-03-28 General Electric Company Semiconductor device having turn-on and turn-off capabilities
JP3352840B2 (en) * 1994-03-14 2002-12-03 株式会社東芝 Reverse parallel connection type bidirectional semiconductor switch
JPH0818004A (en) * 1994-06-29 1996-01-19 Hitachi Ltd Semiconductor device and its manufacturing method
US6274892B1 (en) * 1998-03-09 2001-08-14 Intersil Americas Inc. Devices formable by low temperature direct bonding
EP1401021A4 (en) * 2001-05-25 2008-03-26 Mitsubishi Electric Corp Power semiconductor device
JP2006509360A (en) 2002-12-10 2006-03-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Integrated half-bridge power circuit
US8017978B2 (en) * 2006-03-10 2011-09-13 International Rectifier Corporation Hybrid semiconductor device
US7863877B2 (en) 2006-12-11 2011-01-04 International Rectifier Corporation Monolithically integrated III-nitride power converter
JP5258207B2 (en) * 2007-05-29 2013-08-07 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
US8193583B2 (en) 2009-04-29 2012-06-05 Intersil Americas, Inc. Monolithic output stage with vertical high-side PMOS and vertical low-side NMOS interconnected using buried metal, structure and method
WO2011008717A2 (en) 2009-07-13 2011-01-20 Maxpower Semiconductor Inc. Integrated power supplies and combined high-side plus low-side switches
EP2317553B1 (en) * 2009-10-28 2012-12-26 STMicroelectronics Srl Double-sided semiconductor structure and method for manufacturing the same
US20120228696A1 (en) 2011-03-07 2012-09-13 Texas Instruments Incorporated Stacked die power converter
JP5099282B1 (en) 2011-03-15 2012-12-19 富士電機株式会社 High voltage integrated circuit device
US20120274366A1 (en) 2011-04-28 2012-11-01 International Rectifier Corporation Integrated Power Stage
US9202811B2 (en) * 2012-12-18 2015-12-01 Infineon Technologies Americas Corp. Cascode circuit integration of group III-N and group IV devices
US9041067B2 (en) * 2013-02-11 2015-05-26 International Rectifier Corporation Integrated half-bridge circuit with low side and high side composite switches
US9184243B2 (en) * 2013-07-12 2015-11-10 Infineon Technologies Americas Corp. Monolithic composite III-nitride transistor with high voltage group IV enable switch
US9385107B2 (en) * 2013-08-05 2016-07-05 Infineon Technologies Ag Multichip device including a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224876A1 (en) * 2009-03-05 2010-09-09 International Business Machines Corporation Two-Sided Semiconductor Structure
US7915645B2 (en) * 2009-05-28 2011-03-29 International Rectifier Corporation Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same
US20120193677A1 (en) * 2011-02-02 2012-08-02 Transphorm Inc. III-N Device Structures and Methods
US20140091366A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723670B (en) * 2019-10-01 2021-04-01 台灣積體電路製造股份有限公司 Integrated transistor device and method of forming integrated transistor device

Also Published As

Publication number Publication date
US20150048420A1 (en) 2015-02-19
CN104377198A (en) 2015-02-25
US9502401B2 (en) 2016-11-22
DE102014111653A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
US9502401B2 (en) Integrated circuit with first and second switching devices, half bridge circuit and method of manufacturing
US9142550B2 (en) High-voltage cascaded diode with HEMT and monolithically integrated semiconductor diode
US9396997B2 (en) Method for producing a semiconductor component with insulated semiconductor mesas
US9525044B2 (en) Method of manufacturing a spacer supported lateral channel FET
US11139290B2 (en) High voltage cascode HEMT device
US10332876B2 (en) Method of forming compound semiconductor body
US8941217B2 (en) Semiconductor device having a through contact
US9412834B2 (en) Method of manufacturing HEMTs with an integrated Schottky diode
US11367780B2 (en) Semiconductor device having integrated diodes
US9825139B2 (en) Semiconductor device and method
US20110095358A1 (en) Double-sided semiconductor structure and method for manufacturing same
US10354925B2 (en) Semiconductor device including at least one lateral IGFET and at least one vertical IGFET and corresponding manufacturing method
US10522618B2 (en) Isolation structure for active devices
KR102059981B1 (en) Semiconductor device and method for manufacturing the same
CN107681000B (en) Electronic device and method of forming the same
KR102340004B1 (en) High voltage cascode hemt device
US10446677B2 (en) Semiconductor structures and method for fabricating the same
US8637924B2 (en) Lateral trench MESFET

Legal Events

Date Code Title Description
AS Assignment

Owner name: INFINEON TECHNOLOGIES AUSTRIA AG, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEOMANT, SYLVAIN;VIELEMEYER, MARTIN;REEL/FRAME:040147/0670

Effective date: 20131010

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION