US20170047316A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
US20170047316A1
US20170047316A1 US15/057,046 US201615057046A US2017047316A1 US 20170047316 A1 US20170047316 A1 US 20170047316A1 US 201615057046 A US201615057046 A US 201615057046A US 2017047316 A1 US2017047316 A1 US 2017047316A1
Authority
US
United States
Prior art keywords
semiconductor region
electrode
semiconductor
region
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/057,046
Inventor
Hiroaki Katou
Masatoshi Arai
Chikako Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHIOKA, CHIKAKO, ARAI, MASATOSHI, KATOU, HIROAKI
Publication of US20170047316A1 publication Critical patent/US20170047316A1/en
Priority to US16/189,473 priority Critical patent/US10903202B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/10Integrated device layouts
    • H10D89/105Integrated device layouts adapted for thermal considerations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H01L27/0211
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L27/088
    • H01L29/0649
    • H01L29/1095
    • H01L29/66712
    • H01L29/7813
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0297Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/152Source regions of DMOS transistors
    • H10D62/154Dispositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/111Field plates
    • H10D64/117Recessed field plates, e.g. trench field plates or buried field plates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/256Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies

Definitions

  • Embodiments described herein relate generally to a semiconductor device.
  • a semiconductor device such as a metal oxide semiconductor field effect transistor (MOSFET) is used to control electric power, for example.
  • MOSFET metal oxide semiconductor field effect transistor
  • Such a semiconductor device is used for various purposes, including uses under a high temperature environment.
  • FIG. 1 is a perspective sectional view illustrating a part of a semiconductor device according to a first embodiment.
  • FIGS. 2A and 2B are cross-sectional views illustrating results of the manufacturing process of the semiconductor device according to the first embodiment.
  • FIGS. 3A and 3B are cross-sectional views illustrating results of the manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 4 is a perspective sectional view illustrating a part of the semiconductor device according to a modified example of the first embodiment.
  • FIG. 5 is a perspective sectional view illustrating a part of the semiconductor device according to a second embodiment.
  • Embodiments provide a semiconductor device capable of suppressing heat-caused breakage.
  • a semiconductor device includes a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type, each comprising a first part, on the first semiconductor region, wherein the second semiconductor regions are spaced apart in a first direction and extend in a second direction crossing the first direction, a third semiconductor region of the first conductivity type on each of the second semiconductor regions, the third semiconductor regions extending in the second direction parallel to the first parts, an insulation portion between two of the second semiconductor regions, the insulation portion having one side in contact with one of the first parts and the other side in contact with one of the third semiconductor regions, a first electrode separated from the first semiconductor region in the first direction by the insulation portion, a gate electrode spaced apart from the first electrode, and separated from the second semiconductor region in the first direction by the insulation portion, and a second electrode on the third semiconductor region, and electrically connected to the first electrode and the third semiconductor region.
  • drawings are schematic or conceptual, a relationship between a thickness and a width of each part, and a ratio in size between the parts are not always the same as those in an actual semiconductor device. Also, even when the same two parts are described, one part may be illustrated in different size or ratio from the other part.
  • n + , n ⁇ , and p + , p indicate relative high and low levels of an impurity concentration in each of conductivity types. That is, the n + indicates an n-type impurity concentration relatively higher than the n. In addition, the p + indicates a p-type impurity concentration relatively higher than the p.
  • a p-type and an n-type of each of semiconductor regions may be reversed, and this may be applied to each of the embodiments.
  • FIG. 1 is a perspective sectional view illustrating a part of a semiconductor device 100 according to the first embodiment.
  • the semiconductor device 100 is, for example, a MOSFET.
  • the semiconductor device 100 includes an n + type (first conductivity type) drain region 5 , an n ⁇ type semiconductor region 1 (first semiconductor region), a p type (second conductivity type) base region 2 (second semiconductor region), an n + type source region 3 (third semiconductor region), an insulation portion 20 , a field plate electrode 11 (first electrode), a gate electrode 12 , a drain electrode 31 , and a source electrode 32 (second electrode).
  • the source electrode 32 is provided on a front surface FS of a semiconductor layer S.
  • the drain electrode 31 is formed on a back surface BS of the semiconductor layer S.
  • the n + type drain region 5 is provided on the back surface BS side of the semiconductor layer S.
  • the n + type drain region 5 is electrically connected to the drain electrode 31 .
  • the n ⁇ type semiconductor region 1 is provided on the n + type drain region 5 .
  • the p ⁇ type base region 2 is selectively provided on the n ⁇ type semiconductor region 1 .
  • a plurality of p ⁇ type base regions 2 are formed spaced apart in the X-direction, and each of the p ⁇ type base regions 2 extends in a Y-direction.
  • the p ⁇ type base region 2 includes a first part 2 a provided on the front surface FS side.
  • a p-type impurity concentration of the first part 2 a may be equal to or higher than the p-type impurity concentration of the other part of the p ⁇ type base region 2 .
  • the n + type source region 3 is selectively provided on the p ⁇ type base region 2 .
  • a plurality of n + type source regions 3 are provided spaced apart in the X-direction, and each of the n + type source regions 3 extends in the Y-direction.
  • n + type source region 3 and the first part 2 a of the p ⁇ type base region 2 are arranged in the X-direction and extend in the Y direction parallel with each other.
  • the first part 2 a and the n + type source region 3 are alternately arranged in the X-direction.
  • the field plate electrode (hereinafter, refer to as FP electrode) 11 and the gate electrode 12 are surrounded by the insulation portion 20 in an X-Z plane direction.
  • the FP electrode 11 is surrounded by the n ⁇ type semiconductor region 1 through the insulation portion 20 in an X-Z plane direction.
  • the gate electrode 12 is provided over the FP electrode 11 , and faces the p ⁇ type base region 2 through the insulation portion 20 in the X-direction.
  • the gate electrode 12 is spaced from the FP electrode 11 in a Z-direction (direction from n ⁇ type semiconductor region 1 toward p ⁇ type base region 2 ).
  • the FP electrode 11 , the gate electrode 12 , and the insulation portion 20 are provided in multiple in the X-direction, and each of these electrodes extends in the Y-direction.
  • the insulation portion 20 includes a first surface S 1 and a second surface S 2 opposite the first surface S 1 .
  • the first surface S 1 and the second surface S 2 are respectively along the Y-direction and the Z-direction. Apart of the first surface S 1 comes into contact with the first part 2 a , and a part of the second surface S 2 comes into contact with the n + type source region 3 .
  • a source electrode 32 is provided on the p ⁇ type base region 2 , the n + type source region 3 , and the insulation portion 20 .
  • the source electrode 32 is electrically connected to the p ⁇ type base region 2 , the n + type source region 3 , and the FP electrode 11 .
  • a MOSFET is turned on by applying a voltage equal to or more a threshold to the gate electrode 12 .
  • a channel is formed on a region near the insulation portion 20 of the p ⁇ type base region 2 .
  • a depletion layer broadens from an interfacial surface between the insulation portion 20 and the n ⁇ type semiconductor region 1 toward the n ⁇ type semiconductor region 1 . This is because of the FP electrode 11 connected to the source electrode 32 is provided under the gate electrode 12 . The broadening of the depletion layer from the interfacial surface of the insulation portion 20 and the n ⁇ type semiconductor region 1 causes an increase in the breakdown voltage increased.
  • FIG. 2A to FIG. 3B are cross-sectional views illustrating the results of steps of a manufacturing process of the semiconductor device 100 according to the first embodiment.
  • a semiconductor substrate in which the n ⁇ type semiconductor layer 1 a is provided on the n + type semiconductor layer 5 a is prepared.
  • a main component of the n + type semiconductor layer 5 a and the n ⁇ type semiconductor layer 1 a is silicon, silicon carbide, gallium arsenide, or gallium nitride.
  • a plurality of trenches Tr are formed on the n ⁇ type semiconductor layer 1 a .
  • an upper surface of the n ⁇ type semiconductor layer 1 a and an inner wall of the trench Tr are thermally oxidized, and thus, the insulation layer 21 a including silicon oxide is formed.
  • a layer including silicon nitride may be further formed on the insulation layer 21 a.
  • a conductive layer including polysilicon is formed on the insulation layer 21 a .
  • the FP electrode 11 which is provided inside of each of the trenches Tr is formed.
  • an upper surface of the FP electrode 11 is thermally oxidized, and thus the insulation layer 22 a is formed.
  • the insulation layer 21 a which is located higher than the insulation layer 22 a is removed, and the upper surface of the n ⁇ type semiconductor layer 1 a and a part of the inner wall of the trench Tr are exposed.
  • the exposed surfaces are thermally oxidized, and thus, the insulation layer 23 a is formed as illustrated in FIG. 2B .
  • a film thickness of the insulation layer 23 a is thinner than, for example, a film thickness of the insulation layer 21 a.
  • the conductive layer is formed on the insulation layer 22 a and on the insulation layer 23 a .
  • the gate electrode 12 which is provided inside each of the trenches Tr is formed.
  • an insulation layer 24 a covering the n ⁇ type semiconductor layer 1 a , the insulation layer 23 a and the gate electrode 12 is formed.
  • the insulation portion 20 including the insulation layers 21 a to 24 a is formed as illustrated in FIG. 3A .
  • a p-type impurity and an n-type impurity are sequentially ion-implanted in the front surface FS of the n ⁇ type semiconductor layer 1 a , and the p ⁇ type base region 2 and the n + type source region 3 are formed.
  • the p ⁇ type base region 2 and the n + type source region 3 are formed so that the n + type source region 3 is positioned at one side of the insulation portion 20 , and the first part 2 a is positioned at the other side thereof. That is, the n + type source region 3 is formed on only one side of the insulation portion 20 .
  • a region other than the p ⁇ type base region 2 and the n + type source region 3 corresponds to the n ⁇ type semiconductor region 1 .
  • the source electrode 32 is formed as illustrated in FIG. 3B .
  • the back surface BS of the n + type semiconductor layer 5 a is ground until the n + type semiconductor layer 5 a achieves a predetermined thickness.
  • the n + type drain region 5 is formed by a process described above.
  • the drain electrode 31 is formed under the n + type drain region 5 , thereby obtaining the semiconductor device 100 as illustrated in FIG. 1 .
  • heat-caused breakage of the semiconductor device can be suppressed while reducing the on-resistance of the semiconductor device.
  • the semiconductor device includes the FP electrode 11 , thereby making it possible to increase the breakdown voltage of the semiconductor device. For this reason, the impurity concentration in the n ⁇ type semiconductor region 1 is increased as much as the breakdown voltage is increased by the FP electrode 11 , and thus the on-resistance of the semiconductor device can be reduced.
  • the impurity concentration in the n ⁇ type semiconductor region 1 can be increased.
  • an interval between the gate electrodes 12 when making the interval between the FP electrodes 11 narrow, an interval between the gate electrodes 12 also becomes narrow. That is, an interval between the channels formed by the gate electrode 12 also becomes narrow.
  • overlapping of paths of current which flows in the n ⁇ type semiconductor region 1 through the channel becomes significant.
  • overlapping of current paths becomes significant, an amount of heat generation in the n ⁇ type semiconductor region 1 increases, and a possibility that heat-caused breakage of the semiconductor device also increases.
  • the first part 2 a which is arranged in the n + type source region 3 in the X-direction and comes into contact with the insulation portion 20 , is provided.
  • the n + type source region 3 is provided on only one side of the insulation portion 20 .
  • the interval between the channels formed at the time of applying the voltage to the gate electrode 12 can be broadened. For this reason, overlapping of paths of the current, which flows in the n ⁇ type semiconductor region 1 through each of the channels, is reduced, and the heat generation in the n ⁇ type semiconductor region 1 is suppressed. As a result, the heat-caused breakage of the semiconductor device can be suppressed.
  • the heat generation by overlapping of the current paths can be a problem, for example, particularly, when a pitch between the gate electrodes 12 is 2.0 ⁇ m or less, and the impurity concentration in the n ⁇ type semiconductor region 1 is 1.0 ⁇ 10 16 atm/cm 3 or more. This is because, at the pitch between the gate electrodes 12 of 2 ⁇ m or less, the overlapping width of the current paths becomes significant, and, when the impurity concentration in the n ⁇ type semiconductor region 1 is high, the current path in the n ⁇ type semiconductor region 1 is likely to widen, and overlapping between the current paths becomes significant.
  • the embodiment is particularly effective in a semiconductor device which has the pitch between the gate electrodes 12 and the impurity concentration in the n ⁇ type semiconductor region 1 as described above.
  • the pitch between the gate electrodes 12 is preferably 0.8 ⁇ m or more. Also, when the pitch between the gate electrodes 12 is 0.8 ⁇ m or more, from a point of the breakdown voltage of the semiconductor device, the impurity concentration in the n ⁇ type semiconductor region 1 is preferably 8.0 ⁇ 10 16 atm/cm 3 or less.
  • pitch means an interval between the gate electrodes 12 which are arranged side by side. In an example illustrated in FIG. 1 , the pitch is equal to a distance P between end portions of each of the gate electrodes 12 in the X-direction.
  • n + type source region 3 is provided on only one side of the insulation portion 20 , and two first parts 2 a and two n + type source regions 3 can also be arranged alternatively in the X-direction. That is, two n + type source regions 3 are provided on either side of a gate electrode 12 on a part of the p ⁇ type base region 2 , and the two first parts 2 a can also be provided on either side of a gate electrode 12 on the other part of the p ⁇ type base region 2 .
  • overlapping of the current paths can be further reduced, and the heat generation in the n ⁇ type semiconductor region 1 can be further suppressed in a case in which the first part 2 a and the n + type source region 3 are arranged alternatively in the X-direction compared to a case in which the two first parts 2 a and the two n + type source regions 3 are arranged alternatively in the X-direction.
  • FIG. 4 is a sectional view illustrating a part of the semiconductor device 110 according to the modified example of the first embodiment.
  • the semiconductor device 110 according to the modified example has a different configuration of the FP electrode 11 and the gate electrode 12 compared to the semiconductor device 100 .
  • the semiconductor device 110 includes the FP electrode 11 , the gate electrodes 12 a and 12 b which are separated from each other and arranged on either side of the FP electrode 11 in the X-direction in parallel with each other.
  • the gate electrodes 12 a and 12 b are thus provided between the FP electrode 11 and each of the p ⁇ type base regions 2 .
  • n + type source region 3 is provided on only one side of the insulation portion 20 , on-resistance thereof can be reduced, and heat-caused breakage of the semiconductor device can be suppressed.
  • a length of the insulation portion 20 in the X-direction becomes greater in a case in which the FP electrode 11 and the gate electrode 12 are spaced in the Z-direction compared to a case in which the FP electrode 11 and the gate electrode 12 are spaced in the X-direction.
  • channel density increases, and thus the on-resistance can be reduced.
  • the heat generation due to overlapping of the current paths causes a problem particularly, for example, when the pitch between the gate electrodes 12 is equal to or less than 4.5 ⁇ m, and the impurity concentration in the n ⁇ type semiconductor region 1 is equal to or more than 0.5 ⁇ 10 16 atm/cm 3 .
  • the modified example is effective particularly in the semiconductor device having the pitch between the gate electrodes 12 and the impurity concentration in the n ⁇ type semiconductor region 1 as described above.
  • the pitch between the gate electrodes 12 is preferably 2.5 ⁇ m or more.
  • the impurity concentration in the n ⁇ type semiconductor region 1 is preferably 2.5 ⁇ 10 16 atm/cm 3 or less.
  • FIG. 5 is a sectional view illustrating a part of a semiconductor device 200 according to a second embodiment.
  • the source electrode 32 includes a first electrode part 32 a , and a p + type contact region (fourth semiconductor region) is further included when compared to the semiconductor device 100 .
  • the source electrode 32 includes the first electrode part 32 a provided between the first part 2 a and the n + type source region 3 .
  • the first electrode part 32 a is positioned between the adjacent insulation portions 20 in the X-direction.
  • the first part 2 a is not only provided between the first electrode part 32 a and the insulation portion 20 , but the first electrode part 32 a also comes into contact with the insulation portion 20 .
  • the p + type contact region 4 is provided between the first electrode part 32 a and the p ⁇ type base region 2 . As illustrated in FIG. 5 , a lower end of the first electrode part 32 a may be surrounded by a part of the p + type contact region 4 along the X-Y plane.
  • the semiconductor device 200 can be manufactured by, for example, a method as follows.
  • the p + type contact region 4 is formed.
  • the metal layer is formed so as to embed the trench, and the source electrode 32 is formed.
  • a rear surface of the n + type semiconductor layer 5 a is ground and the drain electrode 31 is formed, thereby obtaining the semiconductor device 200 .
  • a surge voltage is applied to the drain electrode 31 by an inductance of the semiconductor device 200 .
  • a potential of the p ⁇ type base region 2 increases by the surge voltage, there is a case where a parasitic bipolar transistor included in the semiconductor device 200 enters a latch-up state.
  • the semiconductor device is used under a high temperature, current flowing when the parasitic bipolar transistor is in the latch-up state is also great, and the semiconductor device further generates heat by the current, whereby a possibility of the heat-caused breakage of the semiconductor device is likely to be increased.
  • the semiconductor device includes the first electrode part 32 a and p + type contact region 4 , and thus an electric resistance between the p ⁇ type base region 2 and the source electrode 32 can be reduced.
  • the electric resistance between the p ⁇ type base region 2 and the source electrode 32 is reduced, the increase of the potential of the p ⁇ type base region 2 at the time of applying the surge voltage to the drain electrode 31 can be suppressed. For this reason, the latch-up state of the parasitic bipolar transistor is suppressed, and the heat-caused breakage of the semiconductor device is also suppressed.
  • the first electrode part 32 a is provided between the n + type source region 3 and the first part 2 a .
  • a length of the first electrode part 32 a in the X-direction and a length of the p + type contact region 4 in the X-direction can be formed to be greater.
  • the electric resistance between the p ⁇ type base region 2 and the source electrode 32 can be further reduced.
  • the first part 2 a is formed between the first electrode part 32 a and the insulation portion 20 .
  • the trench for forming the first electrode part 32 a is formed on the front surface of the base region 2 , a possibility of etching the insulation portion 20 due to a deviation of a mask position, or the like can be reduced, and thus a yield of the semiconductor device can be improved.
  • a structure in which the FP electrode 11 and the gate electrode 12 are arranged in the X-direction can be also applied.
  • a relative high and low level of the impurity concentration between each of the semiconductor regions can be recognized using, for example, a scanning capacitance microscope (SCM).
  • SCM scanning capacitance microscope
  • a concentration of carriers in each of the semiconductor regions can be the same as the impurity concentration active in each of the semiconductor regions. Accordingly, a relative high and low level of the concentration of the carriers between each of the semiconductor regions can be also recognized using the SCM.
  • the impurity concentration in each of the semiconductor region can be measured by, for example, a secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • each of components such as the n + type drain region 5 , the n ⁇ type semiconductor region 1 , the p ⁇ type base region 2 , the n + type source region 3 , p + type contact region 4 , the FP electrode 11 , the gate electrode 12 , the insulation portion 20 , the drain electrode 31 , and the source electrode 32 , which are included in the embodiment, a person skilled in the art can appropriately select from a well-known technology.
  • each of the embodiments described above can be performed by combining with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device includes a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type, each comprising a first part, on the first semiconductor region, wherein the second semiconductor regions are spaced apart in a first direction, a third semiconductor region of the first conductivity type on each of the second semiconductor regions, an insulation portion between two of the second semiconductor regions, the insulation portion having one side in contact with one of the first parts and the other side in contact with one of the third semiconductor regions, a first electrode within the insulation portion, a gate electrode spaced apart from the first electrode and within the insulation portion, and a second electrode on the third semiconductor region and electrically connected to the first electrode and the third semiconductor region.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2015-158364, filed Aug. 10, 2015, the entire contents of which are incorporated herein by reference.
  • FIELD
  • Embodiments described herein relate generally to a semiconductor device.
  • BACKGROUND
  • A semiconductor device such as a metal oxide semiconductor field effect transistor (MOSFET) is used to control electric power, for example. Such a semiconductor device is used for various purposes, including uses under a high temperature environment.
  • However, there is a concern that the semiconductor device might break as a result of stresses caused by heat, when the semiconductor device is used under the high temperature environment.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective sectional view illustrating a part of a semiconductor device according to a first embodiment.
  • FIGS. 2A and 2B are cross-sectional views illustrating results of the manufacturing process of the semiconductor device according to the first embodiment.
  • FIGS. 3A and 3B are cross-sectional views illustrating results of the manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 4 is a perspective sectional view illustrating a part of the semiconductor device according to a modified example of the first embodiment.
  • FIG. 5 is a perspective sectional view illustrating a part of the semiconductor device according to a second embodiment.
  • DETAILED DESCRIPTION
  • Embodiments provide a semiconductor device capable of suppressing heat-caused breakage.
  • In general, according to one embodiment, a semiconductor device includes a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type, each comprising a first part, on the first semiconductor region, wherein the second semiconductor regions are spaced apart in a first direction and extend in a second direction crossing the first direction, a third semiconductor region of the first conductivity type on each of the second semiconductor regions, the third semiconductor regions extending in the second direction parallel to the first parts, an insulation portion between two of the second semiconductor regions, the insulation portion having one side in contact with one of the first parts and the other side in contact with one of the third semiconductor regions, a first electrode separated from the first semiconductor region in the first direction by the insulation portion, a gate electrode spaced apart from the first electrode, and separated from the second semiconductor region in the first direction by the insulation portion, and a second electrode on the third semiconductor region, and electrically connected to the first electrode and the third semiconductor region.
  • Hereinafter, the embodiments will be described with reference to drawings.
  • Moreover, the drawings are schematic or conceptual, a relationship between a thickness and a width of each part, and a ratio in size between the parts are not always the same as those in an actual semiconductor device. Also, even when the same two parts are described, one part may be illustrated in different size or ratio from the other part.
  • In addition, in this specification and each drawing, the same components as illustrated in the previous drawings are given the same reference numbers and a detailed description thereof will not be repeated.
  • Each of the embodiments will be described with reference to an XYZ orthogonal coordinate system. Two directions intersecting with each other in a direction parallel to a surface of the semiconductor layer S are respectively set to an X-direction (second direction) and a Y-direction (third direction), and a direction perpendicular to both of the X-direction and the Y-direction is set to a Z-direction (first direction).
  • In a description hereinafter, n+, n, and p+, p indicate relative high and low levels of an impurity concentration in each of conductivity types. That is, the n+ indicates an n-type impurity concentration relatively higher than the n. In addition, the p+ indicates a p-type impurity concentration relatively higher than the p.
  • In each of the embodiments described hereinafter, a p-type and an n-type of each of semiconductor regions may be reversed, and this may be applied to each of the embodiments.
  • First Embodiment
  • An example of a semiconductor device according to a first embodiment will be described with reference to FIG. 1. FIG. 1 is a perspective sectional view illustrating a part of a semiconductor device 100 according to the first embodiment.
  • The semiconductor device 100 is, for example, a MOSFET. The semiconductor device 100 includes an n+ type (first conductivity type) drain region 5, an ntype semiconductor region 1 (first semiconductor region), a p type (second conductivity type) base region 2 (second semiconductor region), an n+ type source region 3 (third semiconductor region), an insulation portion 20, a field plate electrode 11 (first electrode), a gate electrode 12, a drain electrode 31, and a source electrode 32 (second electrode).
  • The source electrode 32 is provided on a front surface FS of a semiconductor layer S. The drain electrode 31 is formed on a back surface BS of the semiconductor layer S.
  • The n+ type drain region 5 is provided on the back surface BS side of the semiconductor layer S. The n+ type drain region 5 is electrically connected to the drain electrode 31.
  • The n type semiconductor region 1 is provided on the n+ type drain region 5.
  • The p type base region 2 is selectively provided on the n type semiconductor region 1. A plurality of p type base regions 2 are formed spaced apart in the X-direction, and each of the p type base regions 2 extends in a Y-direction.
  • The p type base region 2 includes a first part 2 a provided on the front surface FS side. A p-type impurity concentration of the first part 2 a may be equal to or higher than the p-type impurity concentration of the other part of the p type base region 2.
  • The n+ type source region 3 is selectively provided on the p type base region 2. A plurality of n+ type source regions 3 are provided spaced apart in the X-direction, and each of the n+ type source regions 3 extends in the Y-direction.
  • The n+ type source region 3 and the first part 2 a of the p type base region 2 are arranged in the X-direction and extend in the Y direction parallel with each other. The first part 2 a and the n+ type source region 3 are alternately arranged in the X-direction.
  • The field plate electrode (hereinafter, refer to as FP electrode) 11 and the gate electrode 12 are surrounded by the insulation portion 20 in an X-Z plane direction.
  • The FP electrode 11 is surrounded by the n type semiconductor region 1 through the insulation portion 20 in an X-Z plane direction.
  • The gate electrode 12 is provided over the FP electrode 11, and faces the p type base region 2 through the insulation portion 20 in the X-direction. The gate electrode 12 is spaced from the FP electrode 11 in a Z-direction (direction from n type semiconductor region 1 toward ptype base region 2).
  • The FP electrode 11, the gate electrode 12, and the insulation portion 20 are provided in multiple in the X-direction, and each of these electrodes extends in the Y-direction.
  • The insulation portion 20 includes a first surface S1 and a second surface S2 opposite the first surface S1. The first surface S1 and the second surface S2 are respectively along the Y-direction and the Z-direction. Apart of the first surface S1 comes into contact with the first part 2 a, and a part of the second surface S2 comes into contact with the n+ type source region 3.
  • On the p type base region 2, the n+ type source region 3, and the insulation portion 20, a source electrode 32 is provided. The source electrode 32 is electrically connected to the p type base region 2, the n+ type source region 3, and the FP electrode 11.
  • In a state in which a positive voltage with respect to the source electrode 32 is applied to the drain electrode 31, a MOSFET is turned on by applying a voltage equal to or more a threshold to the gate electrode 12. At this time, a channel (reverse layer) is formed on a region near the insulation portion 20 of the p type base region 2.
  • When the MOSFET is turned off and a negative potential is applied to the drain electrode 31 with respect to a potential of the source electrode 32, a depletion layer broadens from an interfacial surface between the insulation portion 20 and the n type semiconductor region 1 toward the n type semiconductor region 1. This is because of the FP electrode 11 connected to the source electrode 32 is provided under the gate electrode 12. The broadening of the depletion layer from the interfacial surface of the insulation portion 20 and the n type semiconductor region 1 causes an increase in the breakdown voltage increased.
  • Next, an example of a manufacturing method of the semiconductor device 100 according to the first embodiment will be described with reference to FIG. 2A to FIG. 3B.
  • FIG. 2A to FIG. 3B are cross-sectional views illustrating the results of steps of a manufacturing process of the semiconductor device 100 according to the first embodiment.
  • First, a semiconductor substrate in which the n type semiconductor layer 1 a is provided on the n+ type semiconductor layer 5 a is prepared. A main component of the n+ type semiconductor layer 5 a and the n type semiconductor layer 1 a is silicon, silicon carbide, gallium arsenide, or gallium nitride.
  • Hereinafter, a case in which the main component of the n+ type semiconductor layer 5 a and the n type semiconductor layer 1 a is silicon will be described.
  • Next, a plurality of trenches Tr are formed on the n type semiconductor layer 1 a. Subsequently, as illustrated in FIG. 2A, an upper surface of the n type semiconductor layer 1 a and an inner wall of the trench Tr are thermally oxidized, and thus, the insulation layer 21 a including silicon oxide is formed. A layer including silicon nitride may be further formed on the insulation layer 21 a.
  • Next, a conductive layer including polysilicon is formed on the insulation layer 21 a. By etching back the conductive layer, the FP electrode 11 which is provided inside of each of the trenches Tr is formed. Subsequently, an upper surface of the FP electrode 11 is thermally oxidized, and thus the insulation layer 22 a is formed.
  • Next, the insulation layer 21 a which is located higher than the insulation layer 22 a is removed, and the upper surface of the n type semiconductor layer 1 a and a part of the inner wall of the trench Tr are exposed. The exposed surfaces are thermally oxidized, and thus, the insulation layer 23 a is formed as illustrated in FIG. 2B. A film thickness of the insulation layer 23 a is thinner than, for example, a film thickness of the insulation layer 21 a.
  • Next, the conductive layer is formed on the insulation layer 22 a and on the insulation layer 23 a. By etching back the conductive layer, the gate electrode 12 which is provided inside each of the trenches Tr is formed. Subsequently, an insulation layer 24 a covering the n type semiconductor layer 1 a, the insulation layer 23 a and the gate electrode 12 is formed. By patterning the insulation layers 23 a and 24 a, the insulation portion 20 including the insulation layers 21 a to 24 a is formed as illustrated in FIG. 3A.
  • Next, a p-type impurity and an n-type impurity are sequentially ion-implanted in the front surface FS of the n type semiconductor layer 1 a, and the p type base region 2 and the n+ type source region 3 are formed. At this time, the p type base region 2 and the n+ type source region 3 are formed so that the n+ type source region 3 is positioned at one side of the insulation portion 20, and the first part 2 a is positioned at the other side thereof. That is, the n+ type source region 3 is formed on only one side of the insulation portion 20. In the n type semiconductor layer 1 a, a region other than the p type base region 2 and the n+ type source region 3 corresponds to the n type semiconductor region 1.
  • Next, a metal layer covering the semiconductor region and the insulation portion 20 is formed. By patterning the metal layer, the source electrode 32 is formed as illustrated in FIG. 3B.
  • Next, the back surface BS of the n+ type semiconductor layer 5 a is ground until the n+ type semiconductor layer 5 a achieves a predetermined thickness. The n+ type drain region 5 is formed by a process described above.
  • After that, the drain electrode 31 is formed under the n+ type drain region 5, thereby obtaining the semiconductor device 100 as illustrated in FIG. 1.
  • Here, an action and an effect according to the embodiment will be described.
  • According to the embodiment, heat-caused breakage of the semiconductor device can be suppressed while reducing the on-resistance of the semiconductor device.
  • Means for solving the above problems are as follows.
  • The semiconductor device includes the FP electrode 11, thereby making it possible to increase the breakdown voltage of the semiconductor device. For this reason, the impurity concentration in the n type semiconductor region 1 is increased as much as the breakdown voltage is increased by the FP electrode 11, and thus the on-resistance of the semiconductor device can be reduced.
  • At this time, as an interval between the FP electrodes 11 becomes narrower, the impurity concentration in the n type semiconductor region 1 can be increased.
  • Meanwhile, when making the interval between the FP electrodes 11 narrow, an interval between the gate electrodes 12 also becomes narrow. That is, an interval between the channels formed by the gate electrode 12 also becomes narrow. When making the interval between the channels narrow, overlapping of paths of current which flows in the n type semiconductor region 1 through the channel becomes significant. When overlapping of current paths becomes significant, an amount of heat generation in the n type semiconductor region 1 increases, and a possibility that heat-caused breakage of the semiconductor device also increases.
  • However, in the semiconductor device according to the embodiment, the first part 2 a, which is arranged in the n+ type source region 3 in the X-direction and comes into contact with the insulation portion 20, is provided. In other words, the n+ type source region 3 is provided on only one side of the insulation portion 20.
  • By adopting such a configuration, the interval between the channels formed at the time of applying the voltage to the gate electrode 12 can be broadened. For this reason, overlapping of paths of the current, which flows in the n type semiconductor region 1 through each of the channels, is reduced, and the heat generation in the n type semiconductor region 1 is suppressed. As a result, the heat-caused breakage of the semiconductor device can be suppressed.
  • The heat generation by overlapping of the current paths can be a problem, for example, particularly, when a pitch between the gate electrodes 12 is 2.0 μm or less, and the impurity concentration in the n type semiconductor region 1 is 1.0×1016 atm/cm3 or more. This is because, at the pitch between the gate electrodes 12 of 2 μm or less, the overlapping width of the current paths becomes significant, and, when the impurity concentration in the n type semiconductor region 1 is high, the current path in the n type semiconductor region 1 is likely to widen, and overlapping between the current paths becomes significant.
  • Accordingly, the embodiment is particularly effective in a semiconductor device which has the pitch between the gate electrodes 12 and the impurity concentration in the n type semiconductor region 1 as described above.
  • Meanwhile, between the insulation portions 20, in order to easily form the first part 2 a and the n+ type source region 3, the pitch between the gate electrodes 12 is preferably 0.8 μm or more. Also, when the pitch between the gate electrodes 12 is 0.8 μm or more, from a point of the breakdown voltage of the semiconductor device, the impurity concentration in the n type semiconductor region 1 is preferably 8.0×1016 atm/cm3 or less.
  • As used herein, “pitch” means an interval between the gate electrodes 12 which are arranged side by side. In an example illustrated in FIG. 1, the pitch is equal to a distance P between end portions of each of the gate electrodes 12 in the X-direction.
  • The n+ type source region 3 is provided on only one side of the insulation portion 20, and two first parts 2 a and two n+ type source regions 3 can also be arranged alternatively in the X-direction. That is, two n+ type source regions 3 are provided on either side of a gate electrode 12 on a part of the p type base region 2, and the two first parts 2 a can also be provided on either side of a gate electrode 12 on the other part of the p type base region 2.
  • However, as illustrated in FIG. 1, overlapping of the current paths can be further reduced, and the heat generation in the n type semiconductor region 1 can be further suppressed in a case in which the first part 2 a and the n+ type source region 3 are arranged alternatively in the X-direction compared to a case in which the two first parts 2 a and the two n+ type source regions 3 are arranged alternatively in the X-direction.
  • Modified Example
  • With reference to FIG. 4, a part of the semiconductor device according to a modified example of the first embodiment will be described.
  • FIG. 4 is a sectional view illustrating a part of the semiconductor device 110 according to the modified example of the first embodiment.
  • The semiconductor device 110 according to the modified example has a different configuration of the FP electrode 11 and the gate electrode 12 compared to the semiconductor device 100.
  • Specifically, as illustrated FIG. 4, the semiconductor device 110 includes the FP electrode 11, the gate electrodes 12 a and 12 b which are separated from each other and arranged on either side of the FP electrode 11 in the X-direction in parallel with each other. The gate electrodes 12 a and 12 b are thus provided between the FP electrode 11 and each of the p type base regions 2.
  • Also in the embodiment, in the same manner in the embodiment illustrated in FIG. 1, since the n+ type source region 3 is provided on only one side of the insulation portion 20, on-resistance thereof can be reduced, and heat-caused breakage of the semiconductor device can be suppressed.
  • However, it is possible to further reduce areas of facing surfaces of the FP electrode 11 and the gate electrode 12 in a case in which the FP electrode 11 and the gate electrode 12 are spaced apart in the Z-direction, compared to a case in which the FP electrode 11 and the gate electrode 12 are spaced apart in the X-direction. When facing areas of the FP electrode 11 and the gate electrode 12 are reduced, a capacity between the FP electrode 11 (source electrode 32) and the gate electrode 12 can be reduced.
  • That is, according to the semiconductor device 100 illustrated in FIG. 1, compared to the semiconductor device 110 according to the modified example, when a voltage is applied to the gate electrode 12 until a voltage equal to or more than a threshold is applied to the gate electrode 12, a time during the semiconductor device is turned on can be reduced.
  • In addition, a length of the insulation portion 20 in the X-direction becomes greater in a case in which the FP electrode 11 and the gate electrode 12 are spaced in the Z-direction compared to a case in which the FP electrode 11 and the gate electrode 12 are spaced in the X-direction. For this reason, according to the semiconductor device 100 illustrated in FIG. 1, compared to the semiconductor device 110 according to the modified example, channel density increases, and thus the on-resistance can be reduced.
  • Meanwhile, when the channel density increases, as described above, heat generation amount due to overlapping of the current paths increases. Accordingly, suppressing the heat generation amount of the semiconductor device by providing the first part 2 a is further effective in the semiconductor device 100 in which the FP electrode 11 and the gate electrode 12 are arranged in the Z-direction.
  • As illustrated in FIG. 4, when the FP electrode 11 and the gate electrode 12 are spaced apart in the X-direction, the heat generation due to overlapping of the current paths causes a problem particularly, for example, when the pitch between the gate electrodes 12 is equal to or less than 4.5 μm, and the impurity concentration in the n type semiconductor region 1 is equal to or more than 0.5×1016 atm/cm3.
  • Accordingly, the modified example is effective particularly in the semiconductor device having the pitch between the gate electrodes 12 and the impurity concentration in the n type semiconductor region 1 as described above.
  • Meanwhile, in order to easily form the first part 2 a and the n+ type source region 3 between the insulation portions 20, the pitch between the gate electrodes 12 is preferably 2.5 μm or more. In addition, when the pitch between the gate electrodes 12 is 2.5 μm or more, in terms of the breakdown voltage of the semiconductor device, the impurity concentration in the n type semiconductor region 1 is preferably 2.5×1016 atm/cm3 or less.
  • Second Embodiment
  • An example of the semiconductor device according to a second embodiment will be described with reference to FIG. 5.
  • FIG. 5 is a sectional view illustrating a part of a semiconductor device 200 according to a second embodiment.
  • In the semiconductor device 200 according to a second embodiment, it is different in that the source electrode 32 includes a first electrode part 32 a, and a p+ type contact region (fourth semiconductor region) is further included when compared to the semiconductor device 100.
  • As illustrated in FIG. 5, the source electrode 32 includes the first electrode part 32 a provided between the first part 2 a and the n+ type source region 3. The first electrode part 32 a is positioned between the adjacent insulation portions 20 in the X-direction.
  • Alternatively, the first part 2 a is not only provided between the first electrode part 32 a and the insulation portion 20, but the first electrode part 32 a also comes into contact with the insulation portion 20.
  • The p+ type contact region 4 is provided between the first electrode part 32 a and the p type base region 2. As illustrated in FIG. 5, a lower end of the first electrode part 32 a may be surrounded by a part of the p+ type contact region 4 along the X-Y plane.
  • The semiconductor device 200 can be manufactured by, for example, a method as follows.
  • First, processes same as the processes illustrated in FIG. 2A to FIG. 3A are performed. Subsequently, the p type base region 2 and the n+ type source region 3 are formed. Subsequently, apart of a region where the n+ type source region 3 is not provided in the p type base region 2 is removed, and a trench is formed.
  • When the p-type impurity is ion-implanted into a part of the p type base region 2 through the formed trench, the p+ type contact region 4 is formed. Subsequently, the metal layer is formed so as to embed the trench, and the source electrode 32 is formed. After that, in the same manner as a manufacturing method of the semiconductor device 100, a rear surface of the n+ type semiconductor layer 5 a is ground and the drain electrode 31 is formed, thereby obtaining the semiconductor device 200.
  • Here, actions and effects of the embodiment will be described.
  • When the semiconductor device 200 is turned off, a surge voltage is applied to the drain electrode 31 by an inductance of the semiconductor device 200. When a potential of the p type base region 2 increases by the surge voltage, there is a case where a parasitic bipolar transistor included in the semiconductor device 200 enters a latch-up state. When the semiconductor device is used under a high temperature, current flowing when the parasitic bipolar transistor is in the latch-up state is also great, and the semiconductor device further generates heat by the current, whereby a possibility of the heat-caused breakage of the semiconductor device is likely to be increased.
  • In the embodiment, the semiconductor device includes the first electrode part 32 a and p + type contact region 4, and thus an electric resistance between the p type base region 2 and the source electrode 32 can be reduced. When the electric resistance between the p type base region 2 and the source electrode 32 is reduced, the increase of the potential of the p type base region 2 at the time of applying the surge voltage to the drain electrode 31 can be suppressed. For this reason, the latch-up state of the parasitic bipolar transistor is suppressed, and the heat-caused breakage of the semiconductor device is also suppressed.
  • Further, in the semiconductor device according to the embodiment, the first electrode part 32 a is provided between the n+ type source region 3 and the first part 2 a. According to such a configuration, compared to a case in which the n+ type source region 3 is formed on both sides of the insulation portion 20, and a part of the source electrode 32 is embedded between the n+ type source regions 3, a length of the first electrode part 32 a in the X-direction and a length of the p+ type contact region 4 in the X-direction can be formed to be greater.
  • For this reason, compared to a case in which the n+ type source region is provided on both side of the insulation portion 20, the electric resistance between the p type base region 2 and the source electrode 32 can be further reduced.
  • In addition, in the embodiment, the first part 2 a is formed between the first electrode part 32 a and the insulation portion 20. By adopting such a configuration, when the trench for forming the first electrode part 32 a is formed on the front surface of the base region 2, a possibility of etching the insulation portion 20 due to a deviation of a mask position, or the like can be reduced, and thus a yield of the semiconductor device can be improved.
  • Moreover, with respect to the semiconductor device 200 according to the embodiment, as a modified example of the first embodiment illustrated in FIG. 4, a structure in which the FP electrode 11 and the gate electrode 12 are arranged in the X-direction can be also applied.
  • In each of embodiments described above, a relative high and low level of the impurity concentration between each of the semiconductor regions can be recognized using, for example, a scanning capacitance microscope (SCM). Moreover, a concentration of carriers in each of the semiconductor regions can be the same as the impurity concentration active in each of the semiconductor regions. Accordingly, a relative high and low level of the concentration of the carriers between each of the semiconductor regions can be also recognized using the SCM.
  • In addition, the impurity concentration in each of the semiconductor region can be measured by, for example, a secondary ion mass spectrometry (SIMS).
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions. In regard to a specific configuration of each of components such as the n+ type drain region 5, the n type semiconductor region 1, the p type base region 2, the n+ type source region 3, p+ type contact region 4, the FP electrode 11, the gate electrode 12, the insulation portion 20, the drain electrode 31, and the source electrode 32, which are included in the embodiment, a person skilled in the art can appropriately select from a well-known technology. In addition, each of the embodiments described above can be performed by combining with each other.

Claims (20)

1. A semiconductor device comprising:
a first semiconductor region of a first conductivity type;
a plurality of second semiconductor regions of a second conductivity type, each comprising a first part, on the first semiconductor region, wherein the second semiconductor regions are spaced apart in a first direction and extend in a second direction crossing the first direction;
a third semiconductor region of the first conductivity type on each of the second semiconductor regions, the third semiconductor regions extending in the second direction parallel to the first parts;
an insulation portion between two of the second semiconductor regions, the insulation portion having one side in contact with one of the first parts and the other side in contact with one of the third semiconductor regions;
a first electrode separated from the first semiconductor region in the first direction by the insulation portion;
a gate electrode spaced apart from the first electrode, and separated from the second semiconductor region in the first direction by the insulation portion; and
a second electrode on the third semiconductor region, and electrically connected to the first electrode and the third semiconductor region.
2. The device according to claim 1,
wherein surfaces of the insulation portion in contact with one of the first parts and one of the third semiconductor regions are opposite surfaces of the insulation portion in the first direction.
3. The device according to claim 1,
wherein the second electrode includes a protruding portion that extends between one of the third semiconductor regions and one of the first parts.
4. The device according to claim 3, further comprising:
a fourth semiconductor region of the second conductivity type between the second semiconductor region and the protruding portion of the second electrode,
wherein a concentration of carriers of the second conductivity type in the fourth semiconductor region is higher than a concentration of carriers of the second conductivity type in the second semiconductor region.
5. The device according to claim 1,
wherein a plurality of the third semiconductor region, the insulation portion, the first electrode, and the gate electrode is arranged in the first direction, and
wherein each of the third semiconductor regions is provided on a different one of the second semiconductor regions and in contact with one of the insulation portions that surrounds one of the gate electrodes and one of the first electrodes.
6. The device according to claim 5,
wherein the first parts of the second semiconductor regions and the third semiconductor regions are alternately arranged in the first direction and not in contact with each other.
7. The device according to claim 6,
wherein the spacing between the multiple gate electrodes is 2.0 μm or less, and a concentration of carriers of the first conductivity type in the first semiconductor region is 1.0×1016 atm/cm3 or more.
8. The device according to claim 1,
wherein the spacing between the gate electrodes is 0.8 μm or more and a concentration of carriers of the first conductivity type in the first semiconductor region is 8.0×1016 atm/cm3 or less.
9. The device according to claim 1,
wherein a concentration of carriers of the second conductivity type in a portion of the first part of the second semiconductor region is equal to or higher than a concentration of carriers of the second conductivity type in other parts of the second semiconductor region.
10. A semiconductor device comprising;
a first semiconductor region of a first conductivity type;
a second semiconductor region of a second conductivity type on the first semiconductor region;
first and second electrodes, each extending within the second semiconductor region in a first direction, the first and second electrodes being spaced from each another in a second direction crossing the first direction;
a first insulation layer separating the first electrode from the second semiconductor region and a second insulation layer separating the second electrode from the second semiconductor region; and
a third semiconductor region of the first conductivity type between the first and second insulation layers and in contact with the first insulation layer and not with the second insulation layer.
11. The device of claim 10, further comprising a portion of the second semiconductor region between the first and second insulation layers and in contact with the second insulation layer and not with the first insulation layer, the portion of the second semiconductor region having a higher concentration of carriers of the second conductivity type than other portions of the second semiconductor region between the first and second insulation layers.
12. The device of claim 11, further comprising a source electrode in contact with the second semiconductor region and the third semiconductor region.
13. The device according to claim 12,
wherein the source electrode includes a protruding portion that extends between third semiconductor region and the portion of the second semiconductor region.
14. The device according to claim 13, further comprising:
a fourth semiconductor region of the second conductivity type between the second semiconductor region and the protruding portion of the source electrode,
wherein a concentration of carriers of the second conductivity type in the fourth semiconductor region is higher than a concentration of carriers of the second conductivity type in the second semiconductor region.
15. The device of claim 10, further comprising:
a first field plate electrode within the first insulation layer and separated from the first electrode in the first direction by the first insulation layer, the first field plate electrode being separated from the first semiconductor region in the second direction by the first insulation layer; and
a second field plate electrode within the second insulation layer and separated from the second electrode in the first direction by the second insulation layer, the second field plate electrode being separated from the first semiconductor region in the second direction by the second insulation layer.
16. The device of claim 10, wherein the first and second electrodes are gate electrodes and the spacing between the first and second electrodes is 0.8 μm or more.
17. The device of claim 10, wherein the first and second electrodes are gate electrodes and the spacing between the first and second electrodes is 2.0 μm or less.
18. A method of manufacturing a semiconductor device, comprising:
providing a first semiconductor region of a first conductivity type;
forming first and second gate electrodes respectively within first and second insulation regions to be spaced apart in a first direction on either side of a second semiconductor region of a second conductivity type that is on the first semiconductor region; and
forming a third semiconductor region of the first conductivity type on the second semiconductor region between the first and second insulation regions, the third semiconductor region being in contact with the first insulation region and not with the second insulation region.
19. The method of claim 18, further comprising:
ion-implanting carriers of the second conductivity type into a portion of the second semiconductor region, the portion having a concentration of carriers of the second conductivity type higher than other portions second semiconductor region between the first and second insulation regions and being in contact with the second insulation region and not with the first insulation region.
20. The method according to claim 19, further comprising:
forming a source electrode to be in contact with the second and third semiconductor regions and the portion of the second semiconductor region.
US15/057,046 2015-08-10 2016-02-29 Semiconductor device Abandoned US20170047316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/189,473 US10903202B2 (en) 2015-08-10 2018-11-13 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158364 2015-08-10
JP2015158364A JP6509673B2 (en) 2015-08-10 2015-08-10 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/189,473 Division US10903202B2 (en) 2015-08-10 2018-11-13 Semiconductor device

Publications (1)

Publication Number Publication Date
US20170047316A1 true US20170047316A1 (en) 2017-02-16

Family

ID=57996034

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/057,046 Abandoned US20170047316A1 (en) 2015-08-10 2016-02-29 Semiconductor device
US16/189,473 Active US10903202B2 (en) 2015-08-10 2018-11-13 Semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/189,473 Active US10903202B2 (en) 2015-08-10 2018-11-13 Semiconductor device

Country Status (3)

Country Link
US (2) US20170047316A1 (en)
JP (1) JP6509673B2 (en)
CN (1) CN106449750B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593793B2 (en) * 2018-03-16 2020-03-17 Kabushiki Kaisha Toshiba Semiconductor device
CN112420832A (en) * 2019-08-23 2021-02-26 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN113497114A (en) * 2020-03-19 2021-10-12 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
US11158734B2 (en) * 2019-03-29 2021-10-26 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US20240128360A1 (en) * 2019-04-16 2024-04-18 Fuji Electric Co., Ltd. Semiconductor device and production method
CN118380411A (en) * 2024-06-26 2024-07-23 芯联集成电路制造股份有限公司 Groove type power device structure and manufacturing method thereof
US12446257B2 (en) * 2024-05-24 2025-10-14 Semiconductor Components Industries, Llc Method for forming transistor devices having source region segments and body region segments

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055725B2 (en) * 2018-09-14 2022-04-18 株式会社東芝 Semiconductor device
JP7193387B2 (en) * 2019-03-14 2022-12-20 株式会社東芝 semiconductor equipment
JP7481913B2 (en) * 2020-06-12 2024-05-13 株式会社東芝 Semiconductor Device
JP7337756B2 (en) * 2020-07-30 2023-09-04 株式会社東芝 semiconductor equipment
JP7726773B6 (en) * 2021-12-17 2025-09-19 株式会社東芝 Semiconductor device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048132A1 (en) * 2000-05-30 2001-12-06 Hiroyasu Ito Semiconductor device and manufacturing method of the same
US20080079069A1 (en) * 2006-09-29 2008-04-03 Mitsubishi Electric Corporation Power semiconductor device
US7723231B2 (en) * 2006-08-21 2010-05-25 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
US20120326227A1 (en) * 2011-06-27 2012-12-27 Burke Peter A Method of making an insulated gate semiconductor device and structure
US20150311313A1 (en) * 2014-04-25 2015-10-29 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor device and manufacturing method thereof
US20170141114A1 (en) * 2015-02-18 2017-05-18 Fuji Electric Co., Ltd. Semiconductor integrated circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569162B2 (en) 2010-06-10 2014-08-13 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2012204395A (en) 2011-03-23 2012-10-22 Toshiba Corp Semiconductor device and manufacturing method of the same
JP5673393B2 (en) * 2011-06-29 2015-02-18 株式会社デンソー Silicon carbide semiconductor device
JP2013062344A (en) * 2011-09-13 2013-04-04 Toshiba Corp Semiconductor device and manufacturing method of the same
JP5661583B2 (en) 2011-09-21 2015-01-28 株式会社東芝 Manufacturing method of semiconductor device
JP5609939B2 (en) * 2011-09-27 2014-10-22 株式会社デンソー Semiconductor device
JP2013197551A (en) 2012-03-22 2013-09-30 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2013201268A (en) * 2012-03-23 2013-10-03 Toshiba Corp Semiconductor device
JP6047297B2 (en) 2012-04-09 2016-12-21 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2013258327A (en) * 2012-06-13 2013-12-26 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2014027182A (en) 2012-07-27 2014-02-06 Toshiba Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048132A1 (en) * 2000-05-30 2001-12-06 Hiroyasu Ito Semiconductor device and manufacturing method of the same
US7723231B2 (en) * 2006-08-21 2010-05-25 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
US20080079069A1 (en) * 2006-09-29 2008-04-03 Mitsubishi Electric Corporation Power semiconductor device
US20120326227A1 (en) * 2011-06-27 2012-12-27 Burke Peter A Method of making an insulated gate semiconductor device and structure
US20150311313A1 (en) * 2014-04-25 2015-10-29 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor device and manufacturing method thereof
US20170141114A1 (en) * 2015-02-18 2017-05-18 Fuji Electric Co., Ltd. Semiconductor integrated circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMOS Circuit Design, Layout, and Simulation, Jacob Baker, 2005, Wiley-IEEE Press, Second Edition, Page 166-167, ISBN-13: 978-0471700555. *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593793B2 (en) * 2018-03-16 2020-03-17 Kabushiki Kaisha Toshiba Semiconductor device
US20240313112A1 (en) * 2019-03-29 2024-09-19 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US11158734B2 (en) * 2019-03-29 2021-10-26 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US20220045209A1 (en) * 2019-03-29 2022-02-10 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US11605734B2 (en) * 2019-03-29 2023-03-14 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US11996477B2 (en) * 2019-03-29 2024-05-28 Semiconductor Components Industries, Llc Transistor device having a source region segments and body region segments
US20240128360A1 (en) * 2019-04-16 2024-04-18 Fuji Electric Co., Ltd. Semiconductor device and production method
US12237408B2 (en) * 2019-04-16 2025-02-25 Fuji Electric Co., Ltd. Semiconductor device and production method
CN112420832A (en) * 2019-08-23 2021-02-26 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN113497114A (en) * 2020-03-19 2021-10-12 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
US12363929B2 (en) 2020-03-19 2025-07-15 Kabushiki Kaisha Toshiba Semiconductor device
US12446257B2 (en) * 2024-05-24 2025-10-14 Semiconductor Components Industries, Llc Method for forming transistor devices having source region segments and body region segments
CN118380411A (en) * 2024-06-26 2024-07-23 芯联集成电路制造股份有限公司 Groove type power device structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP6509673B2 (en) 2019-05-08
JP2017037964A (en) 2017-02-16
CN106449750B (en) 2020-05-05
US10903202B2 (en) 2021-01-26
CN106449750A (en) 2017-02-22
US20190081030A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US10903202B2 (en) Semiconductor device
US10930647B2 (en) Semiconductor device including trenches formed in transistor or diode portions
US10770456B2 (en) Semiconductor device
US8723253B2 (en) Semiconductor device and method for manufacturing same
US10658360B2 (en) Semiconductor device with an insulated-gate bipolar transistor region and a diode region
US8975690B2 (en) Semiconductor device
US20220093728A1 (en) Semiconductor device
JP6365165B2 (en) Manufacturing method of semiconductor device
US20160268420A1 (en) Semiconductor device
CN105874577B (en) The manufacturing method and insulated gate semiconductor device of insulated gate semiconductor device
CN107833921B (en) Switching device and method of manufacturing switching device
US9064952B2 (en) Semiconductor device
JP2007184486A (en) Semiconductor device
US20130056790A1 (en) Semiconductor device and method for manufacturing same
US9679989B2 (en) Insulated gate type switching device and method for manufacturing the same
CN110660858B (en) Silicon carbide semiconductor device
US11251299B2 (en) Silicon carbide semiconductor device and manufacturing method of same
JP2018046256A (en) Semiconductor device
JP2011243915A (en) Semiconductor device and method of manufacturing the same
US20160071940A1 (en) Semiconductor device
US9496332B1 (en) Semiconductor device
US20150255629A1 (en) Semiconductor device
US10700217B2 (en) Semiconductor device
US9543422B1 (en) Semiconductor device
US20160049484A1 (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATOU, HIROAKI;ARAI, MASATOSHI;YOSHIOKA, CHIKAKO;SIGNING DATES FROM 20160425 TO 20160605;REEL/FRAME:039045/0982

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION