US20170044978A1 - Turbine section of high bypass turbofan - Google Patents

Turbine section of high bypass turbofan Download PDF

Info

Publication number
US20170044978A1
US20170044978A1 US15/292,249 US201615292249A US2017044978A1 US 20170044978 A1 US20170044978 A1 US 20170044978A1 US 201615292249 A US201615292249 A US 201615292249A US 2017044978 A1 US2017044978 A1 US 2017044978A1
Authority
US
United States
Prior art keywords
low pressure
pressure turbine
engine
fan
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/292,249
Inventor
Paul R. Adams
Shankar S. Magge
Joseph Brent Staubach
Wesley K. Lord
Frederick M. Schwarz
Gabriel L. Suciu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/832,107 external-priority patent/US8256707B2/en
Priority claimed from US13/475,252 external-priority patent/US8844265B2/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US15/292,249 priority Critical patent/US20170044978A1/en
Publication of US20170044978A1 publication Critical patent/US20170044978A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/075Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type controlling flow ratio between flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/28Geometry three-dimensional patterned
    • F05B2250/283Honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the disclosure relates to turbofan engines. More particularly, the disclosure relates to low pressure turbine sections of turbofan engines which power the fans via a speed reduction mechanism.
  • a turbofan engine having an engine case and a gaspath through the engine case.
  • a fan has a circumferential array of fan blades.
  • the engine further has a compressor in fluid communication with the fan, a combustor in fluid communication with the compressor, a turbine in fluid communication with the combustor, wherein the turbine includes a low pressure turbine section having 3 to 6 blade stages.
  • a speed reduction mechanism couples the low pressure turbine section to the fan.
  • a bypass area ratio is greater than about 6.0.
  • a ratio of the total number of airfoils in the low pressure turbine section divided by the bypass area ratio is less than about 170, said low pressure turbine section airfoil count being the total number of blade airfoils and vane airfoils of the low pressure turbine section.
  • the bypass area ratio may be greater than about 8.0 or may be between about 8.0 and about 20.0.
  • a fan case may encircle the fan blades radially outboard of the engine case.
  • the compressor may comprise a low pressure compressor section and a high pressure compressor section.
  • the blades of the low pressure compressor section and low pressure turbine section may share a low shaft.
  • the high pressure compressor section and a high pressure turbine section of the turbine may share a high shaft.
  • the speed reduction mechanism may comprise an epicyclic transmission coupling the low speed shaft to a fan shaft to drive the fan with a speed reduction.
  • the low pressure turbine section may have an exemplary 2 to 6 blade stages or 2 to 3 blade stages.
  • a hub-to-tip ratio (R I :R O ) of the low pressure turbine section may be between about 0.4 and about 0.5 measured at the maximum R O axial location in the low pressure turbine section.
  • a ratio of maximum gaspath radius along the low pressure turbine section to maximum radius of the fan may be less than about 0.55, or less than about 0.50, or between about 0.35 and about 0.50.
  • the ratio of low pressure turbine section airfoil count to bypass area ratio may be between about 10 and about 150.
  • the airfoil count of the low pressure turbine section may be below about 1600.
  • the engine may be in combination with a mounting arrangement (e.g., of an engine pylon) wherein an aft mount reacts at least a thrust load.
  • a mounting arrangement e.g., of an engine pylon
  • FIG. 1 is an axial sectional view of a turbofan engine.
  • FIG. 2 is an axial sectional view of a low pressure turbine section of the engine of FIG. 1 .
  • FIG. 3 is transverse sectional view of transmission of the engine of FIG. 1 .
  • FIG. 4 shows another embodiment.
  • FIG. 5 shows yet another embodiment.
  • FIG. 1 shows a turbofan engine 20 having a main housing (engine case) 22 containing a rotor shaft assembly 23 .
  • An exemplary engine is a high-bypass turbofan.
  • the normal cruise condition bypass area ratio of air mass flowing outside the case 22 (e.g., the compressor sections and combustor) to air mass passing through the case 22 is typically in excess of about 4.0 and, more narrowly, typically between about 4.0 and about 12.0.
  • a high pressure turbine section (gas generating turbine) 26 and a low pressure turbine section 27 respectively drive a high pressure compressor section 28 and a low pressure compressor section 30 .
  • the high pressure turbine section experiences higher pressures that the low pressure turbine section.
  • a low pressure turbine section is a section that powers a fan 42 .
  • a two-spool (plus fan) engine is shown, one of many alternative variations involves a three-spool (plus fan) engine wherein an intermediate spool comprises an intermediate pressure compressor between the low fan and high pressure compressor section and an intermediate pressure turbine between the high pressure turbine section and low pressure turbine section.
  • the engine extends along a longitudinal axis 500 from a fore end to an aft end. Adjacent the fore end, a shroud (fan case) 40 encircles the fan 42 and is supported by vanes 44 . An aerodynamic nacelle around the fan case is shown and an aerodynamic nacelle 45 around the engine case is shown.
  • a shroud (fan case) 40 Adjacent the fore end, a shroud (fan case) 40 encircles the fan 42 and is supported by vanes 44 .
  • An aerodynamic nacelle around the fan case is shown and an aerodynamic nacelle 45 around the engine case is shown.
  • the low shaft portion 25 of the rotor shaft assembly 23 drives the fan 42 through a speed reduction mechanism 46 .
  • An exemplary speed reduction mechanism is an epicyclic transmission, namely a star or planetary gear system.
  • an inlet airflow 520 entering the nacelle is divided into a portion 522 passing along a core flowpath 524 and a bypass portion 526 passing along a bypass flowpath 528 .
  • flow along the core flowpath sequentially passes through the low pressure compressor section, high pressure compressor section, a combustor 48 , the high pressure turbine section, and the low pressure turbine section before exiting from an outlet 530 .
  • FIG. 3 schematically shows details of the transmission 46 .
  • a forward end of the low shaft 25 is coupled to a sun gear 52 (or other high speed input to the speed reduction mechanism).
  • the externally-toothed sun gear 52 is encircled by a number of externally-toothed star gears 56 and an internally-toothed ring gear 54 .
  • the exemplary ring gear is coupled to the fan to rotate with the fan as a unit.
  • the star gears 56 are positioned between and enmeshed with the sun gear and ring gear.
  • a cage or star carrier assembly 60 carries the star gears via associated journals 62 .
  • the exemplary star carrier is substantially irrotatably mounted relative via fingers 404 to the case 22 .
  • Another transmission/gearbox combination has the star carrier connected to the fan and the ring is fixed to the fixed structure (case) is possible and such is commonly referred to as a planetary gearbox.
  • the speed reduction ratio is determined by the ratio of diameters within the gearbox.
  • An exemplary reduction is between about 2:1 and about 13:1.
  • the exemplary fan ( FIG. 1 ) comprises a circumferential array of blades 70 .
  • Each blade comprises an airfoil 72 having a leading edge 74 and a trailing edge 76 and extending from an inboard end 78 at a platform to an outboard end 80 (i.e., a free tip).
  • the outboard end 80 is in close facing proximity to a rub strip 82 along an interior surface 84 of the nacelle and fan case.
  • a pylon 94 is mounted to the fan case and/or to the other engine cases.
  • the exemplary pylon 94 may be as disclosed in U.S. patent application Ser. No. 11/832,107 (US2009/0056343A1).
  • the pylon comprises a forward mount 100 and an aft/rear mount 102 .
  • the forward mount may engage the engine intermediate case (IMC) and the aft mount may engage the engine thrust case.
  • the aft mount reacts at least a thrust load of the engine.
  • FIG. 2 shows the low pressure turbine section 27 as comprising an exemplary three blade stages 200 , 202 , 204 .
  • An exemplary blade stage count is 2-6, more narrowly, 2-4, or 2-3, 3-5, or 3-4. Interspersed between the blade stages are vane stages 206 and 208 .
  • Each exemplary blade stage comprises a disk 210 , 212 , and 214 , respectively.
  • a circumferential array of blades extends from peripheries of each of the disks.
  • Each exemplary blade comprises an airfoil 220 extending from an inner diameter (ID) platform 222 to an outer diameter (OD) shroud 224 (shown integral with the airfoil
  • An alternative may be an unshrouded blade with a rotational gap between the tip of the blade and a stationary blade outer air seal (BOAS).
  • Each exemplary shroud 224 has outboard sealing ridges which seal with abradable seals (e.g., honeycomb) fixed to the case.
  • the exemplary vanes in stages 206 and 208 include airfoils 230 extending from ID platforms 232 to OD shrouds 234 .
  • the exemplary OD shrouds 234 are directly mounted to the case.
  • the exemplary platforms 232 carry seals for sealing with inter-disk knife edges protruding outwardly from inter-disk spacers which may be separate from the adjacent disks or unitarily formed with one of the adjacent disks.
  • Each exemplary disk 210 , 212 , 214 comprises an enlarged central annular protuberance or “bore” 240 , 242 , 244 and a thinner radial web 246 , 248 , 250 extending radially outboard from the bore.
  • the bore imparts structural strength allowing the disk to withstand centrifugal loading which the disk would otherwise be unable to withstand.
  • a turbofan engine is characterized by its bypass ratio (mass flow ratio of air bypassing the core to air passing through the core) and the geometric bypass area ratio (ratio of fan duct annulus area outside/outboard of the low pressure compressor section inlet (i.e., at location 260 in FIG. 1 ) to low pressure compressor section inlet annulus area (i.e., at location 262 in FIG. 2 ).
  • High bypass engines typically have bypass area ratio of at least four. There has been a correlation between increased bypass area ratio and increased low pressure turbine section radius and low pressure turbine section airfoil count. As is discussed below, this correlation may be broken by having an engine with relatively high bypass area ratio and relatively low turbine size.
  • a speed reduction mechanism e.g., a transmission
  • a speed reduction mechanism e.g., a transmission
  • the low pressure turbine section By employing a speed reduction mechanism (e.g., a transmission) to allow the low pressure turbine section to turn very fast relative to the fan and by employing low pressure turbine section design features for high speed, it is possible to create a compact turbine module (e.g., while producing the same amount of thrust and increasing bypass area ratio).
  • the exemplary transmission is a epicyclic transmission.
  • Alternative transmissions include composite belt transmissions, metal chain belt transmissions, fluidic transmissions, and electric means (e.g., a motor/generator set where the turbine turns a generator providing electricity to an electric motor which drives the fan).
  • the core gaspath extends from an inboard boundary (e.g., at blade hubs or outboard surfaces of platforms of associated blades and vanes) to an outboard boundary (e.g., at blade tips and inboard surfaces of blade outer air seals for unshrouded blade tips and at inboard surfaces of OD shrouds of shrouded blade tips and at inboard surfaces of OD shrouds of the vanes).
  • inboard boundary e.g., at blade hubs or outboard surfaces of platforms of associated blades and vanes
  • an outboard boundary e.g., at blade tips and inboard surfaces of blade outer air seals for unshrouded blade tips and at inboard surfaces of OD shrouds of shrouded blade tips and at inboard surfaces of OD shrouds of the vanes.
  • radial compactness there may be a relatively high ratio of radial span (R O -R I ) to radius (R O or R I ). Radial compactness may also be expressed in the hub-to-tip ratio (R I :R O ). These may be measured at the maximum R O location in the low pressure turbine section.
  • the exemplary compact low pressure turbine section has a hub-to-tip ratio close to about 0.5 (e.g., about 0.4-0.5 or about 0.42-0.48, with an exemplary about 0.46).
  • An exemplary fan size measurement is the maximum tip radius R Tmax of the fan blades.
  • An exemplary ratio is the maximum R O along the low pressure turbine section to R Tmax of the fan blades. Exemplary values for this ratio are less than about 0.55 (e.g., about 0.35-55), more narrowly, less than about 0.50, or about 0.35-0.50.
  • the designer may balance multiple physical phenomena to arrive at a system solution as defined by the low pressure turbine hub-to-tip ratio, the fan maximum tip radius to low pressure turbine maximum R O ratio, the bypass area ratio, and the bypass area ratio to low pressure turbine airfoil count ratio.
  • These concerns include, but are not limited to: a) aerodynamics within the low pressure turbine, b) low pressure turbine blade structural design, c) low pressure turbine disk structural design, and d) the shaft connecting the low pressure turbine to the low pressure compressor and speed reduction device between the low pressure compressor and fan.
  • the designer can choose to make low pressure turbine section disk bores much thicker relative to prior art turbine bores and the bores may be at a much smaller radius R B . This increases the amount of mass at less than a “self sustaining radius”.
  • Another means is to choose disk materials of greater strength than prior art such as the use of wrought powdered metal disks to allow for extremely high centrifugal blade pulls associated with the compactness.
  • AN 2 is the annulus area of the exit of the low pressure turbine divided by the low pressure turbine rpm squared at its redline or maximum speed.
  • AN 2 is the annulus area of the exit of the low pressure turbine divided by the low pressure turbine rpm squared at its redline or maximum speed.
  • low pressure turbine section size Another characteristic of low pressure turbine section size is airfoil count (numerical count of all of the blades and vanes in the low pressure turbine). Airfoil metal angles can be selected such that airfoil count is low or extremely low relative to a direct drive turbine. In known prior art engines having bypass area ratio above 6.0 (e.g. 8.0-20), low pressure turbine sections involve ratios of airfoil count to bypass area ratio above 190.
  • the ratio of airfoil count to bypass area ratio may be below about 170 to as low as 10. (e.g., below about 150 or an exemplary about 10-170, more narrowly about 10-150). Further, in such embodiments the airfoil count may be below about 1700, or below about 1600.
  • FIG. 4 shows an embodiment 600 , wherein there is a fan drive turbine 608 driving a shaft 606 to in turn drive a fan rotor 602 .
  • a gear reduction 604 may be positioned between the fan drive turbine 608 and the fan rotor 602 .
  • This gear reduction 604 may be structured and operate like the gear reduction disclosed above.
  • a compressor rotor 610 is driven by an intermediate pressure turbine 612
  • a second stage compressor rotor 614 is driven by a turbine rotor 216 .
  • a combustion section 618 is positioned intermediate the compressor rotor 614 and the turbine section 616 .
  • FIG. 5 shows yet another embodiment 700 wherein a fan rotor 702 and a first stage compressor 704 rotate at a common speed.
  • the gear reduction 706 (which may be structured as disclosed above) is intermediate the compressor rotor 704 and a shaft 708 which is driven by a low pressure turbine section.

Abstract

A turbofan engine has an engine case and a gaspath through the engine case. A fan has a circumferential array of fan blades. The engine further has a compressor, a combustor, a gas generating turbine, and a low pressure turbine section. A speed reduction mechanism couples the low pressure turbine section to the fan. A bypass area ratio is greater than about 6.0. The low pressure turbine section airfoil count to bypass area ratio is below about 170.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 14/793,785, filed Jul. 8, 2015, which is a continuation-in-part of U.S. patent application Ser. No. 14/692,090, filed Apr. 21, 2015, which was a continuation of U.S. patent application Ser. No. 13/599,175, filed Aug. 30, 2012, which was a continuation of U.S. patent application Ser. No. 13/475,252, filed May 18, 2012, now U.S. Pat. No. 8,844,265, issued Sep. 30, 2014, which was a continuation-in-part of U.S. patent application Ser. No. 11/832,107, filed Aug. 1, 2007, and claimed the benefit of U.S. Patent Provisional Application No. 61/593,190, filed Jan. 31, 2012, and U.S. Provisional Application No. 61/498,516, filed Jun. 17, 2011.
  • BACKGROUND
  • The disclosure relates to turbofan engines. More particularly, the disclosure relates to low pressure turbine sections of turbofan engines which power the fans via a speed reduction mechanism.
  • There has been a trend toward increasing bypass ratio in gas turbine engines. This is discussed further below. There has generally been a correlation between certain characteristics of bypass and the diameter of the low pressure turbine section sections of turbofan engines.
  • SUMMARY
  • One aspect of the disclosure involves a turbofan engine having an engine case and a gaspath through the engine case. A fan has a circumferential array of fan blades. The engine further has a compressor in fluid communication with the fan, a combustor in fluid communication with the compressor, a turbine in fluid communication with the combustor, wherein the turbine includes a low pressure turbine section having 3 to 6 blade stages. A speed reduction mechanism couples the low pressure turbine section to the fan. A bypass area ratio is greater than about 6.0. A ratio of the total number of airfoils in the low pressure turbine section divided by the bypass area ratio is less than about 170, said low pressure turbine section airfoil count being the total number of blade airfoils and vane airfoils of the low pressure turbine section.
  • In additional or alternative embodiments of any of the foregoing embodiments, the bypass area ratio may be greater than about 8.0 or may be between about 8.0 and about 20.0.
  • In additional or alternative embodiments of any of the foregoing embodiments, a fan case may encircle the fan blades radially outboard of the engine case.
  • In additional or alternative embodiments of any of the foregoing embodiments, the compressor may comprise a low pressure compressor section and a high pressure compressor section.
  • In additional or alternative embodiments of any of the foregoing embodiments, the blades of the low pressure compressor section and low pressure turbine section may share a low shaft.
  • In additional or alternative embodiments of any of the foregoing embodiments, the high pressure compressor section and a high pressure turbine section of the turbine may share a high shaft.
  • In additional or alternative embodiments of any of the foregoing embodiments, there are no additional compressor or turbine sections.
  • In additional or alternative embodiments of any of the foregoing embodiments, the speed reduction mechanism may comprise an epicyclic transmission coupling the low speed shaft to a fan shaft to drive the fan with a speed reduction.
  • In additional or alternative embodiments of any of the foregoing embodiments, the low pressure turbine section may have an exemplary 2 to 6 blade stages or 2 to 3 blade stages.
  • In additional or alternative embodiments of any of the foregoing embodiments, a hub-to-tip ratio (RI:RO) of the low pressure turbine section may be between about 0.4 and about 0.5 measured at the maximum RO axial location in the low pressure turbine section.
  • In additional or alternative embodiments of any of the foregoing embodiments, a ratio of maximum gaspath radius along the low pressure turbine section to maximum radius of the fan may be less than about 0.55, or less than about 0.50, or between about 0.35 and about 0.50.
  • In additional or alternative embodiments of any of the foregoing embodiments, the ratio of low pressure turbine section airfoil count to bypass area ratio may be between about 10 and about 150.
  • In additional or alternative embodiments of any of the foregoing embodiments, the airfoil count of the low pressure turbine section may be below about 1600.
  • In additional or alternative embodiments of any of the foregoing embodiments, the engine may be in combination with a mounting arrangement (e.g., of an engine pylon) wherein an aft mount reacts at least a thrust load.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an axial sectional view of a turbofan engine.
  • FIG. 2 is an axial sectional view of a low pressure turbine section of the engine of FIG. 1.
  • FIG. 3 is transverse sectional view of transmission of the engine of FIG. 1.
  • FIG. 4 shows another embodiment.
  • FIG. 5 shows yet another embodiment.
  • Like reference numbers and designations in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a turbofan engine 20 having a main housing (engine case) 22 containing a rotor shaft assembly 23. An exemplary engine is a high-bypass turbofan. In such an engine, the normal cruise condition bypass area ratio of air mass flowing outside the case 22 (e.g., the compressor sections and combustor) to air mass passing through the case 22 is typically in excess of about 4.0 and, more narrowly, typically between about 4.0 and about 12.0. Via high 24 and low 25 shaft portions of the shaft assembly 23, a high pressure turbine section (gas generating turbine) 26 and a low pressure turbine section 27 respectively drive a high pressure compressor section 28 and a low pressure compressor section 30. As used herein, the high pressure turbine section experiences higher pressures that the low pressure turbine section. A low pressure turbine section is a section that powers a fan 42. Although a two-spool (plus fan) engine is shown, one of many alternative variations involves a three-spool (plus fan) engine wherein an intermediate spool comprises an intermediate pressure compressor between the low fan and high pressure compressor section and an intermediate pressure turbine between the high pressure turbine section and low pressure turbine section.
  • The engine extends along a longitudinal axis 500 from a fore end to an aft end. Adjacent the fore end, a shroud (fan case) 40 encircles the fan 42 and is supported by vanes 44. An aerodynamic nacelle around the fan case is shown and an aerodynamic nacelle 45 around the engine case is shown.
  • The low shaft portion 25 of the rotor shaft assembly 23 drives the fan 42 through a speed reduction mechanism 46. An exemplary speed reduction mechanism is an epicyclic transmission, namely a star or planetary gear system. As is discussed further below, an inlet airflow 520 entering the nacelle is divided into a portion 522 passing along a core flowpath 524 and a bypass portion 526 passing along a bypass flowpath 528. With the exception of diversions such as cooling air, etc., flow along the core flowpath sequentially passes through the low pressure compressor section, high pressure compressor section, a combustor 48, the high pressure turbine section, and the low pressure turbine section before exiting from an outlet 530.
  • FIG. 3 schematically shows details of the transmission 46. A forward end of the low shaft 25 is coupled to a sun gear 52 (or other high speed input to the speed reduction mechanism). The externally-toothed sun gear 52 is encircled by a number of externally-toothed star gears 56 and an internally-toothed ring gear 54. The exemplary ring gear is coupled to the fan to rotate with the fan as a unit.
  • The star gears 56 are positioned between and enmeshed with the sun gear and ring gear. A cage or star carrier assembly 60 carries the star gears via associated journals 62. The exemplary star carrier is substantially irrotatably mounted relative via fingers 404 to the case 22.
  • Another transmission/gearbox combination has the star carrier connected to the fan and the ring is fixed to the fixed structure (case) is possible and such is commonly referred to as a planetary gearbox.
  • The speed reduction ratio is determined by the ratio of diameters within the gearbox. An exemplary reduction is between about 2:1 and about 13:1.
  • The exemplary fan (FIG. 1) comprises a circumferential array of blades 70. Each blade comprises an airfoil 72 having a leading edge 74 and a trailing edge 76 and extending from an inboard end 78 at a platform to an outboard end 80 (i.e., a free tip). The outboard end 80 is in close facing proximity to a rub strip 82 along an interior surface 84 of the nacelle and fan case.
  • To mount the engine to the aircraft wing 92, a pylon 94 is mounted to the fan case and/or to the other engine cases. The exemplary pylon 94 may be as disclosed in U.S. patent application Ser. No. 11/832,107 (US2009/0056343A1). The pylon comprises a forward mount 100 and an aft/rear mount 102. The forward mount may engage the engine intermediate case (IMC) and the aft mount may engage the engine thrust case. The aft mount reacts at least a thrust load of the engine.
  • To reduce aircraft fuel burn with turbofans, it is desirable to produce a low pressure turbine with the highest efficiency and lowest weight possible. Further, there are considerations of small size (especially radial size) that benefit the aerodynamic shape of the engine cowling and allow room for packaging engine subsystems.
  • FIG. 2 shows the low pressure turbine section 27 as comprising an exemplary three blade stages 200, 202, 204. An exemplary blade stage count is 2-6, more narrowly, 2-4, or 2-3, 3-5, or 3-4. Interspersed between the blade stages are vane stages 206 and 208. Each exemplary blade stage comprises a disk 210, 212, and 214, respectively. A circumferential array of blades extends from peripheries of each of the disks. Each exemplary blade comprises an airfoil 220 extending from an inner diameter (ID) platform 222 to an outer diameter (OD) shroud 224 (shown integral with the airfoil
  • An alternative may be an unshrouded blade with a rotational gap between the tip of the blade and a stationary blade outer air seal (BOAS). Each exemplary shroud 224 has outboard sealing ridges which seal with abradable seals (e.g., honeycomb) fixed to the case. The exemplary vanes in stages 206 and 208 include airfoils 230 extending from ID platforms 232 to OD shrouds 234. The exemplary OD shrouds 234 are directly mounted to the case. The exemplary platforms 232 carry seals for sealing with inter-disk knife edges protruding outwardly from inter-disk spacers which may be separate from the adjacent disks or unitarily formed with one of the adjacent disks.
  • Each exemplary disk 210, 212, 214 comprises an enlarged central annular protuberance or “bore” 240, 242, 244 and a thinner radial web 246, 248, 250 extending radially outboard from the bore. The bore imparts structural strength allowing the disk to withstand centrifugal loading which the disk would otherwise be unable to withstand.
  • A turbofan engine is characterized by its bypass ratio (mass flow ratio of air bypassing the core to air passing through the core) and the geometric bypass area ratio (ratio of fan duct annulus area outside/outboard of the low pressure compressor section inlet (i.e., at location 260 in FIG. 1) to low pressure compressor section inlet annulus area (i.e., at location 262 in FIG. 2). High bypass engines typically have bypass area ratio of at least four. There has been a correlation between increased bypass area ratio and increased low pressure turbine section radius and low pressure turbine section airfoil count. As is discussed below, this correlation may be broken by having an engine with relatively high bypass area ratio and relatively low turbine size.
  • By employing a speed reduction mechanism (e.g., a transmission) to allow the low pressure turbine section to turn very fast relative to the fan and by employing low pressure turbine section design features for high speed, it is possible to create a compact turbine module (e.g., while producing the same amount of thrust and increasing bypass area ratio). The exemplary transmission is a epicyclic transmission. Alternative transmissions include composite belt transmissions, metal chain belt transmissions, fluidic transmissions, and electric means (e.g., a motor/generator set where the turbine turns a generator providing electricity to an electric motor which drives the fan).
  • Compactness of the turbine is characterized in several ways. Along the compressor and turbine sections, the core gaspath extends from an inboard boundary (e.g., at blade hubs or outboard surfaces of platforms of associated blades and vanes) to an outboard boundary (e.g., at blade tips and inboard surfaces of blade outer air seals for unshrouded blade tips and at inboard surfaces of OD shrouds of shrouded blade tips and at inboard surfaces of OD shrouds of the vanes). These boundaries may be characterized by radii RI and RO, respectively, which vary along the length of the engine.
  • For low pressure turbine radial compactness, there may be a relatively high ratio of radial span (RO-RI) to radius (RO or RI). Radial compactness may also be expressed in the hub-to-tip ratio (RI:RO). These may be measured at the maximum RO location in the low pressure turbine section. The exemplary compact low pressure turbine section has a hub-to-tip ratio close to about 0.5 (e.g., about 0.4-0.5 or about 0.42-0.48, with an exemplary about 0.46).
  • Another characteristic of low pressure turbine radial compactness is relative to the fan size. An exemplary fan size measurement is the maximum tip radius RTmax of the fan blades. An exemplary ratio is the maximum RO along the low pressure turbine section to RTmax of the fan blades. Exemplary values for this ratio are less than about 0.55 (e.g., about 0.35-55), more narrowly, less than about 0.50, or about 0.35-0.50.
  • To achieve compactness the designer may balance multiple physical phenomena to arrive at a system solution as defined by the low pressure turbine hub-to-tip ratio, the fan maximum tip radius to low pressure turbine maximum RO ratio, the bypass area ratio, and the bypass area ratio to low pressure turbine airfoil count ratio. These concerns include, but are not limited to: a) aerodynamics within the low pressure turbine, b) low pressure turbine blade structural design, c) low pressure turbine disk structural design, and d) the shaft connecting the low pressure turbine to the low pressure compressor and speed reduction device between the low pressure compressor and fan. These physical phenomena may be balanced in order to achieve desirable performance, weight, and cost characteristics.
  • The addition of a speed reduction device between the fan and the low pressure compressor creates a larger design space because the speed of the low pressure turbine is decoupled from the fan. This design space provides great design variables and new constraints that limit feasibility of a design with respect to physical phenomena. For example the designer can independently change the speed and flow area of the low pressure turbine to achieve optimal aerodynamic parameters defined by flow coefficient (axial flow velocity/wheel speed) and work coefficient (wheel speed/square root of work). However, this introduces structural constraints with respect blade stresses, disk size, material selection, etc.
  • In some examples, the designer can choose to make low pressure turbine section disk bores much thicker relative to prior art turbine bores and the bores may be at a much smaller radius RB. This increases the amount of mass at less than a “self sustaining radius”. Another means is to choose disk materials of greater strength than prior art such as the use of wrought powdered metal disks to allow for extremely high centrifugal blade pulls associated with the compactness.
  • Another variable in achieving compactness is to increase the structural parameter AN2 which is the annulus area of the exit of the low pressure turbine divided by the low pressure turbine rpm squared at its redline or maximum speed. Relative to prior art turbines, which are greatly constrained by fan blade tip mach number, a very wide range of AN2 values can be selected and optimized while accommodating such constraints as cost or a countering, unfavorable trend in low pressure turbine section shaft dynamics. In selecting the turbine speed (and thereby selecting the transmission speed ratio, one has to be mindful that at too high a gear ratio the low pressure turbine section shaft (low shaft) will become dynamically unstable.
  • The higher the design speed, the higher the gear ratio will be and the more massive the disks will become and the stronger the low pressure turbine section disk and blade material will have to be. All of these parameters can be varied simultaneously to change the weight of the turbine, its efficiency, its manufacturing cost, the degree of difficulty in packaging the low pressure turbine section in the core cowling and its durability. This is distinguished from a prior art direct drive configuration, where the high bypass area ratio can only be achieved by a large low pressure turbine section radius. Because that radius is so very large and, although the same variables (airfoil turning, disk size, blade materials, disk shape and materials, etc.) are theoretically available, as a practical matter economics and engine fuel burn considerations severely limit the designer's choice in these parameters.
  • Another characteristic of low pressure turbine section size is airfoil count (numerical count of all of the blades and vanes in the low pressure turbine). Airfoil metal angles can be selected such that airfoil count is low or extremely low relative to a direct drive turbine. In known prior art engines having bypass area ratio above 6.0 (e.g. 8.0-20), low pressure turbine sections involve ratios of airfoil count to bypass area ratio above 190.
  • With the full range of selection of parameters discussed above including, disk bore thickness, disk material, hub to tip ratio, and RO/RTmax , the ratio of airfoil count to bypass area ratio may be below about 170 to as low as 10. (e.g., below about 150 or an exemplary about 10-170, more narrowly about 10-150). Further, in such embodiments the airfoil count may be below about 1700, or below about 1600.
  • FIG. 4 shows an embodiment 600, wherein there is a fan drive turbine 608 driving a shaft 606 to in turn drive a fan rotor 602. A gear reduction 604 may be positioned between the fan drive turbine 608 and the fan rotor 602. This gear reduction 604 may be structured and operate like the gear reduction disclosed above. A compressor rotor 610 is driven by an intermediate pressure turbine 612, and a second stage compressor rotor 614 is driven by a turbine rotor 216. A combustion section 618 is positioned intermediate the compressor rotor 614 and the turbine section 616.
  • FIG. 5 shows yet another embodiment 700 wherein a fan rotor 702 and a first stage compressor 704 rotate at a common speed. The gear reduction 706 (which may be structured as disclosed above) is intermediate the compressor rotor 704 and a shaft 708 which is driven by a low pressure turbine section.
  • One or more embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, when reengineering from a baseline engine configuration, details of the baseline may influence details of any particular implementation. Accordingly, other embodiments are within the scope of the following claims.

Claims (30)

1. A turbofan engine comprising:
a fan including a circumferential array of fan blades, and a core including a core flowpath, the fan configured to communicate a portion of air into the core flowpath and a portion of air into a bypass flowpath;
a compressor in fluid communication with the fan, the compressor including a low pressure compressor section and a high pressure compressor section, the low pressure compressor section including a low pressure compressor section inlet with a low pressure compressor section inlet annulus area;
a fan duct including a fan duct annulus area outboard of the low pressure compressor section inlet, wherein the ratio of the fan duct annulus area to the low pressure compressor section inlet annulus area defines a bypass area ratio that is greater than 8.0;
a combustor in fluid communication with the compressor;
a shaft assembly having a high portion and a low portion;
a turbine in fluid communication with the combustor, the turbine having a high pressure turbine section coupled to the high portion of the shaft assembly to drive the high pressure compressor section, and a low pressure turbine section coupled to the low portion of the shaft assembly to drive the fan, the low pressure turbine section including blades and vanes, and a low pressure turbine airfoil count defined as the numerical count of all of the blades and vanes in the low pressure turbine section;
wherein a ratio of the low pressure turbine airfoil count to the bypass area ratio is less than 150;
wherein the low pressure turbine section further includes a maximum gas path radius and the fan blades include a maximum radius, and a ratio of the maximum gas path radius to the maximum radius of the fan blades is less than 0.55; and
an epicyclic gearbox coupled to the fan and rotatable by the low pressure turbine section through the low portion of the shaft assembly to allow the low pressure turbine to turn faster than the fan, the gearbox having a speed reduction ratio between 2:1 and 13:1 determined by the ratio of diameters within the gearbox;
wherein each of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section include a plurality of stages, wherein:
each of the plurality of stages of the low pressure turbine includes a disk, and a circumferential array of blades extend from the disk, each of the blades including an airfoil extending from a platform at an inner diameter, to an outer diameter shroud, the shroud having an outboard seal which seals with an abradable fixed seal.
2. The turbofan engine as recited in claim 1, wherein the sum of the plurality of stages of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section is no less than seventeen and no more than twenty one.
3. The turbofan engine as recited in claim 2, wherein the high pressure turbine is a two-stage high pressure turbine.
4. The turbofan engine as recited in claim 3, wherein the plurality of stages of the low pressure turbine is no less than two and no more than five.
5. The turbofan engine as recited in claim 4, wherein the low pressure turbine is a four-stage low pressure turbine.
6. The turbofan engine as recited in claim 5, wherein the sum of the plurality of stages of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section is twenty one.
7. The turbofan engine as recited in claim 4, wherein the sum of the plurality of stages of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section is no less than eighteen and no more than twenty.
8. The turbofan engine as recited in claim 7, wherein the low pressure compressor is a four-stage low pressure compressor.
9. The turbofan engine as recited in claim 7, wherein the high pressure compressor is a nine-stage high pressure compressor.
10. The turbofan engine as recited in claim 1, wherein the low pressure turbine is a four-stage low pressure turbine and the high pressure turbine is a two-stage high pressure turbine.
11. The turbofan engine as recited in claim 10, further comprising a fan case and vanes, the fan case encircling the fan and supported by the vanes.
12. The turbofan engine as recited in claim 11, wherein the gearbox is a planetary gearbox.
13. The turbofan engine as recited in claim 12, wherein the gearbox carries a plurality of gears associated with journals.
14. The turbofan engine as recited in claim 12, further comprising an engine intermediate case, including an engine forward mount location configured to support an engine mount when the engine is mounted, and an engine thrust case including an engine aft mount location configured to support an engine mount and react at least a thrust load when the engine is mounted.
15. The turbofan engine as recited in claim 11, wherein the gearbox is a star gearbox and includes a sun gear, a ring gear, and a carrier that carries a plurality of star gears positioned between and enmeshed with the sun gear and ring gear, the star gears having associated journals.
16. The turbofan engine as recited in claim 11, wherein a plurality of the fan blades are mounted in a fixed relationship to a hub.
17. The turbofan engine as recited in claim 1, wherein the low pressure turbine includes a plurality of rows of the blades, and a row of the vanes intermediate a plurality of the rows of the blades.
18. A turbofan engine comprising:
a fan including a circumferential array of fan blades, and a core including a core flowpath, the fan configured to communicate a portion of air into the core flowpath and a portion of air into a bypass flowpath;
a compressor in fluid communication with the fan, the compressor including a low pressure compressor section and a high pressure compressor section, the low pressure compressor section including a low pressure compressor section inlet with a low pressure compressor section inlet annulus area;
a fan duct including a fan duct annulus area outboard of the low pressure compressor section inlet, wherein the ratio of the fan duct annulus area to the low pressure compressor section inlet annulus area defines a bypass area ratio that is greater than 8.0;
a combustor in fluid communication with the compressor;
a shaft assembly having a high portion and a low portion;
a turbine in fluid communication with the combustor, the turbine having a high pressure turbine section coupled to the high portion of the shaft assembly to drive the high pressure compressor section, and a low pressure turbine section coupled to the low portion of the shaft assembly to drive the fan, the low pressure turbine section including blades and vanes, and a low pressure turbine airfoil count defined as the numerical count of all of the blades and vanes in the low pressure turbine section;
wherein a ratio of the low pressure turbine airfoil count to the bypass area ratio is less than 150;
wherein the low pressure turbine section further includes a maximum gas path radius and the fan blades include a maximum radius, and a ratio of the maximum gas path radius to the maximum radius of the fan blades is less than 0.55;
wherein each of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section include a plurality of stages, and the sum of such stages being no less than seventeen and no more than twenty one; and
an epicyclic planetary gearbox coupled to the fan and rotatable by the low pressure turbine section through the low portion of the shaft assembly to allow the low pressure turbine to turn faster than the fan, the gearbox having a speed reduction ratio between 2:1 and 13:1 determined by the ratio of diameters within the gearbox.
19. The turbofan engine as recited in claim 18, wherein the sum of the plurality of stages of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section is no less than eighteen and no more than twenty.
20. The turbofan engine as recited in claim 19, wherein the sum of the plurality of stages of the low pressure compressor section, high pressure compressor section, low pressure turbine section and high pressure turbine section is no less than eighteen and no more than nineteen.
21. The turbofan engine as recited in claim 20, wherein the high pressure turbine is a two-stage high pressure turbine.
22. The turbofan engine as recited in claim 21, wherein the low pressure turbine is a four-stage low pressure turbine.
23. The turbofan engine as recited in claim 22, further comprising an engine intermediate case, including an engine forward mount location configured to support an engine mount when the engine is mounted, and an engine thrust case including an engine aft mount location configured to support an engine mount and react at least a thrust load when the engine is mounted.
24. The turbofan engine as recited in claim 18, wherein the low pressure turbine is a four-stage low pressure turbine and the high pressure turbine is a two-stage high pressure turbine.
25. The turbofan engine as recited in claim 24, wherein the low pressure compressor is a four-stage low pressure compressor.
26. The turbofan engine as recited in claim 25, wherein the high pressure compressor is a nine-stage high pressure compressor.
27. The turbofan engine as recited in claim 24, wherein the blades in the low pressure turbine include an airfoil extending from an inner diameter platform to an outer diameter shroud, and the shroud has an outboard seal which seals with an abradable fixed seal.
28. The turbofan engine as recited in claim 18, further comprising a fan case and vanes, the fan case encircling the fan and supported by the vanes, and wherein the gearbox is a planetary gearbox.
29. The turbofan engine as recited in claim 28, wherein each fan blade includes a platform and an outboard end having a free tip, and is fixed in position between the platform and the free tip.
30. The turbofan engine as recited in claim 29, further comprising an engine intermediate case, including an engine forward mount location configured to support an engine mount when the engine is mounted, and an engine thrust case including an engine aft mount location configured to support an engine mount and react at least a thrust load when the engine is mounted.
US15/292,249 2007-08-01 2016-10-13 Turbine section of high bypass turbofan Abandoned US20170044978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/292,249 US20170044978A1 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US11/832,107 US8256707B2 (en) 2007-08-01 2007-08-01 Engine mounting configuration for a turbofan gas turbine engine
US201161498516P 2011-06-17 2011-06-17
US201261593190P 2012-01-31 2012-01-31
US13/475,252 US8844265B2 (en) 2007-08-01 2012-05-18 Turbine section of high bypass turbofan
US13/599,175 US9010085B2 (en) 2007-08-01 2012-08-30 Turbine section of high bypass turbofan
US14/692,090 US10662880B2 (en) 2007-08-01 2015-04-21 Turbine section of high bypass turbofan
US14/793,785 US20150377123A1 (en) 2007-08-01 2015-07-08 Turbine section of high bypass turbofan
US15/292,249 US20170044978A1 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/793,785 Continuation US20150377123A1 (en) 2007-08-01 2015-07-08 Turbine section of high bypass turbofan

Publications (1)

Publication Number Publication Date
US20170044978A1 true US20170044978A1 (en) 2017-02-16

Family

ID=54929995

Family Applications (8)

Application Number Title Priority Date Filing Date
US14/793,785 Abandoned US20150377123A1 (en) 2007-08-01 2015-07-08 Turbine section of high bypass turbofan
US15/292,472 Active US10060357B2 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US15/292,249 Abandoned US20170044978A1 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US15/292,438 Abandoned US20170298832A1 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US15/292,405 Active 2028-02-17 US10371061B2 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US16/025,094 Active US10794293B2 (en) 2007-08-01 2018-07-02 Turbine section of high bypass turbofan
US17/062,756 Active US11215123B2 (en) 2007-08-01 2020-10-05 Turbine section of high bypass turbofan
US17/530,544 Active US11614036B2 (en) 2007-08-01 2021-11-19 Turbine section of gas turbine engine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/793,785 Abandoned US20150377123A1 (en) 2007-08-01 2015-07-08 Turbine section of high bypass turbofan
US15/292,472 Active US10060357B2 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/292,438 Abandoned US20170298832A1 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US15/292,405 Active 2028-02-17 US10371061B2 (en) 2007-08-01 2016-10-13 Turbine section of high bypass turbofan
US16/025,094 Active US10794293B2 (en) 2007-08-01 2018-07-02 Turbine section of high bypass turbofan
US17/062,756 Active US11215123B2 (en) 2007-08-01 2020-10-05 Turbine section of high bypass turbofan
US17/530,544 Active US11614036B2 (en) 2007-08-01 2021-11-19 Turbine section of gas turbine engine

Country Status (1)

Country Link
US (8) US20150377123A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364415B2 (en) 2012-10-08 2018-07-25 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Geared turbine engine with a relatively lightweight propulsor module
DK2991983T3 (en) 2013-04-29 2017-05-08 Hoffmann La Roche 2-PHENYL OR 2-HETARYLIMIDAZOLE [1,2-a] PYRIDINE DERIVATIVES
FR3020658B1 (en) * 2014-04-30 2020-05-15 Safran Aircraft Engines LUBRICATION OIL RECOVERY HOOD FOR TURBOMACHINE EQUIPMENT
GB201703521D0 (en) * 2017-03-06 2017-04-19 Rolls Royce Plc Geared turbofan
FR3065994B1 (en) * 2017-05-02 2019-04-19 Safran Aircraft Engines BLOWER ROTOR TURBOMACHINE AND REDUCER DRIVING A LOW PRESSURE COMPRESSOR SHAFT
US10557412B2 (en) * 2017-05-30 2020-02-11 United Technologies Corporation Systems for reducing deflection of a shroud that retains fan exit stators
GB2572360B (en) * 2018-03-27 2020-04-08 Intelligent Power Generation Ltd An axial turbine
GB201805764D0 (en) 2018-04-06 2018-05-23 Rolls Royce Plc A casing
GB201811281D0 (en) 2018-07-10 2018-08-29 Rolls Royce Plc A geared turbofan bas turbine engine mounting arrangement
GB201813086D0 (en) 2018-08-10 2018-09-26 Rolls Royce Plc Efficient gas turbine engine
GB201813082D0 (en) 2018-08-10 2018-09-26 Rolls Royce Plc Efficient gas turbine engine
GB201820925D0 (en) * 2018-12-21 2019-02-06 Rolls Royce Plc Turbine engine
US11204037B2 (en) 2018-12-21 2021-12-21 Rolls-Royce Plc Turbine engine
GB201820924D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Turbine engine
GB201820945D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Low noise gas turbine engine
GB201820934D0 (en) * 2018-12-21 2019-02-06 Rolls Royce Plc Low fan noise geared gas turbine engine
GB201820919D0 (en) 2018-12-21 2019-02-06 Rolls Royce Plc Turbine engine
US11073088B2 (en) 2019-02-20 2021-07-27 General Electric Company Gearbox mounting in a turbomachine
US11753939B2 (en) 2019-02-20 2023-09-12 General Electric Company Turbomachine with alternatingly spaced rotor blades
US11156097B2 (en) 2019-02-20 2021-10-26 General Electric Company Turbomachine having an airflow management assembly
US11085515B2 (en) 2019-02-20 2021-08-10 General Electric Company Gearbox coupling in a turbomachine
US11136899B2 (en) 2019-06-14 2021-10-05 Raytheon Technologies Corporation Integrated electro-aero-thermal turbine engine
US11319882B2 (en) * 2019-09-10 2022-05-03 Raytheon Technologies Corporation Gear and electric amplification of generator motor compressor and turbine drives
GB201918777D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Shaft bearing arrangement
GB201918781D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Improved shaft bearing positioning in a gas turbine engine
GB201918782D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Shaft bearing arrangement
GB201918779D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Shaft bearings
GB201918780D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Shaft bearings for gas turbine engine
GB201918783D0 (en) 2019-12-19 2020-02-05 Rolls Royce Plc Shaft with three bearings
US11549373B2 (en) 2020-12-16 2023-01-10 Raytheon Technologies Corporation Reduced deflection turbine rotor

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258792A (en) 1941-04-12 1941-10-14 Westinghouse Electric & Mfg Co Turbine blading
US3021731A (en) 1951-11-10 1962-02-20 Wilhelm G Stoeckicht Planetary gear transmission
US2936655A (en) 1955-11-04 1960-05-17 Gen Motors Corp Self-aligning planetary gearing
US3194487A (en) 1963-06-04 1965-07-13 United Aircraft Corp Noise abatement method and apparatus
US3327971A (en) 1964-06-23 1967-06-27 Rolls Royce Mounting arrangement for lift engines
US3287906A (en) 1965-07-20 1966-11-29 Gen Motors Corp Cooled gas turbine vanes
US3352178A (en) 1965-11-15 1967-11-14 Gen Motors Corp Planetary gearing
US3412560A (en) 1966-08-03 1968-11-26 Gen Motors Corp Jet propulsion engine with cooled combustion chamber, fuel heater, and induced air-flow
US3664612A (en) 1969-12-22 1972-05-23 Boeing Co Aircraft engine variable highlight inlet
GB1350431A (en) 1971-01-08 1974-04-18 Secr Defence Gearing
US3892358A (en) 1971-03-17 1975-07-01 Gen Electric Nozzle seal
US3765623A (en) 1971-10-04 1973-10-16 Mc Donnell Douglas Corp Air inlet
US3747343A (en) 1972-02-10 1973-07-24 United Aircraft Corp Low noise prop-fan
GB1418905A (en) 1972-05-09 1975-12-24 Rolls Royce Gas turbine engines
US3756623A (en) 1972-08-28 1973-09-04 L Whittler Heat shield for a motorcycle
US3814549A (en) 1972-11-14 1974-06-04 Avco Corp Gas turbine engine with power shaft damper
US3843277A (en) 1973-02-14 1974-10-22 Gen Electric Sound attenuating inlet duct
US3988889A (en) 1974-02-25 1976-11-02 General Electric Company Cowling arrangement for a turbofan engine
US3932058A (en) 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
FR2291091A1 (en) 1974-11-13 1976-06-11 Snecma MOUNTING DEVICE ON AIRCRAFT OF A TURBOREACTOR
US3935558A (en) 1974-12-11 1976-01-27 United Technologies Corporation Surge detector for turbine engines
US4130872A (en) 1975-10-10 1978-12-19 The United States Of America As Represented By The Secretary Of The Air Force Method and system of controlling a jet engine for avoiding engine surge
US4044973A (en) 1975-12-29 1977-08-30 The Boeing Company Nacelle assembly and mounting structures for a turbofan jet propulsion engine
GB1516041A (en) 1977-02-14 1978-06-28 Secr Defence Multistage axial flow compressor stators
GB1574379A (en) 1977-08-24 1980-09-03 English Electric Co Ltd Turbines and like rotary machines
GB2010969A (en) 1977-12-22 1979-07-04 Rolls Royce Mounting for Gas Turbine Jet Propulsion Engine
US4240250A (en) 1977-12-27 1980-12-23 The Boeing Company Noise reducing air inlet for gas turbine engines
US4266741A (en) 1978-05-22 1981-05-12 The Boeing Company Mounting apparatus for fan jet engine having mixed flow nozzle installation
GB2041090A (en) 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
US4284174A (en) 1979-04-18 1981-08-18 Avco Corporation Emergency oil/mist system
US4220171A (en) 1979-05-14 1980-09-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Curved centerline air intake for a gas turbine engine
US4289360A (en) 1979-08-23 1981-09-15 General Electric Company Bearing damper system
DE2940446C2 (en) 1979-10-05 1982-07-08 B. Braun Melsungen Ag, 3508 Melsungen Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels
US4478551A (en) 1981-12-08 1984-10-23 United Technologies Corporation Turbine exhaust case design
US4595340A (en) 1984-07-30 1986-06-17 General Electric Company Gas turbine bladed disk assembly
US4722357A (en) 1986-04-11 1988-02-02 United Technologies Corporation Gas turbine engine nacelle
US4696156A (en) 1986-06-03 1987-09-29 United Technologies Corporation Fuel and oil heat management system for a gas turbine engine
US4790133A (en) * 1986-08-29 1988-12-13 General Electric Company High bypass ratio counterrotating turbofan engine
GB8630754D0 (en) 1986-12-23 1987-02-04 Rolls Royce Plc Turbofan gas turbine engine
US4966338A (en) 1987-08-05 1990-10-30 General Electric Company Aircraft pylon
GB8822798D0 (en) 1988-09-28 1988-11-02 Short Brothers Ltd Ducted fan turbine engine
US4969325A (en) 1989-01-03 1990-11-13 General Electric Company Turbofan engine having a counterrotating partially geared fan drive turbine
US4979362A (en) 1989-05-17 1990-12-25 Sundstrand Corporation Aircraft engine starting and emergency power generating system
US5058617A (en) 1990-07-23 1991-10-22 General Electric Company Nacelle inlet for an aircraft gas turbine engine
US5141400A (en) 1991-01-25 1992-08-25 General Electric Company Wide chord fan blade
US5102379A (en) 1991-03-25 1992-04-07 United Technologies Corporation Journal bearing arrangement
GB9116986D0 (en) 1991-08-07 1991-10-09 Rolls Royce Plc Gas turbine engine nacelle assembly
US5174525A (en) 1991-09-26 1992-12-29 General Electric Company Structure for eliminating lift load bending in engine core of turbofan
GB9125011D0 (en) 1991-11-25 1992-01-22 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US5275357A (en) 1992-01-16 1994-01-04 General Electric Company Aircraft engine mount
US5320307A (en) 1992-03-25 1994-06-14 General Electric Company Aircraft engine thrust mount
GB2265418B (en) 1992-03-26 1995-03-08 Rolls Royce Plc Gas turbine engine casing
GB2266080A (en) 1992-04-16 1993-10-20 Rolls Royce Plc Mounting arrangement for a gas turbine engine.
US5317877A (en) 1992-08-03 1994-06-07 General Electric Company Intercooled turbine blade cooling air feed system
US5277382A (en) 1992-10-13 1994-01-11 General Electric Company Aircraft engine forward mount
GB2275308B (en) 1993-02-20 1997-02-26 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
US5447411A (en) 1993-06-10 1995-09-05 Martin Marietta Corporation Light weight fan blade containment system
US5466198A (en) 1993-06-11 1995-11-14 United Technologies Corporation Geared drive system for a bladed propulsor
US5361580A (en) 1993-06-18 1994-11-08 General Electric Company Gas turbine engine rotor support system
US5452575A (en) 1993-09-07 1995-09-26 General Electric Company Aircraft gas turbine engine thrust mount
US5524847A (en) 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
US5443229A (en) 1993-12-13 1995-08-22 General Electric Company Aircraft gas turbine engine sideways mount
RU2082824C1 (en) 1994-03-10 1997-06-27 Московский государственный авиационный институт (технический университет) Method of protection of heat-resistant material from effect of high-rapid gaseous flow of corrosive media (variants)
US5433674A (en) 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
US5778659A (en) 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5915917A (en) 1994-12-14 1999-06-29 United Technologies Corporation Compressor stall and surge control using airflow asymmetry measurement
GB2303884B (en) 1995-04-13 1999-07-14 Rolls Royce Plc A mounting for coupling a turbofan gas turbine engine to an aircraft structure
JP2969075B2 (en) 1996-02-26 1999-11-02 ジャパンゴアテックス株式会社 Degassing device
US5634767A (en) 1996-03-29 1997-06-03 General Electric Company Turbine frame having spindle mounted liner
GB2312251B (en) 1996-04-18 1999-10-27 Rolls Royce Plc Ducted fan gas turbine engine mounting
US5810287A (en) 1996-05-24 1998-09-22 The Boeing Company Aircraft support pylon
US5857836A (en) 1996-09-10 1999-01-12 Aerodyne Research, Inc. Evaporatively cooled rotor for a gas turbine engine
FR2755943B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
FR2755944B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
FR2755942B1 (en) 1996-11-21 1998-12-24 Snecma REDUNDANT FRONT SUSPENSION FOR TURBOMACHINE
GB9713395D0 (en) 1997-06-25 1997-08-27 Rolls Royce Plc Improvements in or relating to the friction welding of components
US5975841A (en) 1997-10-03 1999-11-02 Thermal Corp. Heat pipe cooling for turbine stators
US5927644A (en) 1997-10-08 1999-07-27 General Electric Company Double failsafe engine mount
US5921500A (en) 1997-10-08 1999-07-13 General Electric Company Integrated failsafe engine mount
US6219916B1 (en) 1997-12-19 2001-04-24 United Technologies Corporation Method for linear friction welding and product made by such method
US6126110A (en) 1997-12-22 2000-10-03 Mcdonnell Douglas Corporation Horizontally opposed trunnion forward engine mount system supported beneath a wing pylon
US5985470A (en) 1998-03-16 1999-11-16 General Electric Company Thermal/environmental barrier coating system for silicon-based materials
US6138949A (en) 1998-10-30 2000-10-31 Sikorsky Aircraft Corporation Main rotor pylon support structure
US6517341B1 (en) 1999-02-26 2003-02-11 General Electric Company Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments
US6189830B1 (en) 1999-02-26 2001-02-20 The Boeing Company Tuned engine mounting system for jet aircraft
US6410148B1 (en) 1999-04-15 2002-06-25 General Electric Co. Silicon based substrate with environmental/ thermal barrier layer
GB9927425D0 (en) 1999-11-20 2000-01-19 Rolls Royce Plc A gas turbine engine mounting arrangement
US6315815B1 (en) 1999-12-16 2001-11-13 United Technologies Corporation Membrane based fuel deoxygenator
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
GB0002257D0 (en) 2000-02-02 2000-03-22 Rolls Royce Plc Rotary apparatus for a gas turbine engine
US6318070B1 (en) 2000-03-03 2001-11-20 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
US6444335B1 (en) 2000-04-06 2002-09-03 General Electric Company Thermal/environmental barrier coating for silicon-containing materials
US6647707B2 (en) 2000-09-05 2003-11-18 Sudarshan Paul Dev Nested core gas turbine engine
US6478545B2 (en) 2001-03-07 2002-11-12 General Electric Company Fluted blisk
GB2375513B (en) 2001-05-19 2005-03-23 Rolls Royce Plc A mounting arrangement for a gas turbine engine
US6708482B2 (en) 2001-11-29 2004-03-23 General Electric Company Aircraft engine with inter-turbine engine frame
US6517027B1 (en) 2001-12-03 2003-02-11 Pratt & Whitney Canada Corp. Flexible/fixed support for engine cowl
US6619030B1 (en) 2002-03-01 2003-09-16 General Electric Company Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors
US6607165B1 (en) 2002-06-28 2003-08-19 General Electric Company Aircraft engine mount with single thrust link
US6652222B1 (en) 2002-09-03 2003-11-25 Pratt & Whitney Canada Corp. Fan case design with metal foam between Kevlar
US6814541B2 (en) 2002-10-07 2004-11-09 General Electric Company Jet aircraft fan case containment design
US7021042B2 (en) 2002-12-13 2006-04-04 United Technologies Corporation Geartrain coupling for a turbofan engine
US6899518B2 (en) 2002-12-23 2005-05-31 Pratt & Whitney Canada Corp. Turbine shroud segment apparatus for reusing cooling air
US6709492B1 (en) 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
FR2856656B1 (en) 2003-06-30 2006-12-01 Snecma Moteurs AIRCRAFT ENGINE REAR SUSPENSION WITH BOOMERANG SHAFT AND BOOMERANG SHAFT
GB2411441B (en) 2004-02-24 2006-04-19 Rolls Royce Plc Fan or compressor blisk
US7055330B2 (en) 2004-02-25 2006-06-06 United Technologies Corp Apparatus for driving an accessory gearbox in a gas turbine engine
DE102004016246A1 (en) 2004-04-02 2005-10-20 Mtu Aero Engines Gmbh Turbine, in particular low-pressure turbine, a gas turbine, in particular an aircraft engine
US7328580B2 (en) 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
US7121802B2 (en) 2004-07-13 2006-10-17 General Electric Company Selectively thinned turbine blade
US7134286B2 (en) 2004-08-24 2006-11-14 Pratt & Whitney Canada Corp. Gas turbine floating collar arrangement
US7409819B2 (en) 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
GB0506685D0 (en) 2005-04-01 2005-05-11 Hopkins David R A design to increase and smoothly improve the throughput of fluid (air or gas) through the inlet fan (or fans) of an aero-engine system
US7374403B2 (en) 2005-04-07 2008-05-20 General Electric Company Low solidity turbofan
US7220100B2 (en) 2005-04-14 2007-05-22 General Electric Company Crescentic ramp turbine stage
US7500365B2 (en) 2005-05-05 2009-03-10 United Technologies Corporation Accessory gearbox
FR2887521B1 (en) 2005-06-28 2007-08-17 Airbus France Sas ENGINE ASSEMBLY FOR AN AIRCRAFT COMPRISING AN ENGINE AND A DEVICE FOR HITCHING SUCH AN ENGINE
US9657156B2 (en) 2005-09-28 2017-05-23 Entrotech, Inc. Braid-reinforced composites and processes for their preparation
GB0520850D0 (en) 2005-10-14 2005-11-23 Rolls Royce Plc Fan static structure
US20070214795A1 (en) * 2006-03-15 2007-09-20 Paul Cooker Continuous real time EGT margin control
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
BE1017135A3 (en) 2006-05-11 2008-03-04 Hansen Transmissions Int A GEARBOX FOR A WIND TURBINE.
US20080003096A1 (en) 2006-06-29 2008-01-03 United Technologies Corporation High coverage cooling hole shape
JP4911344B2 (en) 2006-07-04 2012-04-04 株式会社Ihi Turbofan engine
US8585538B2 (en) 2006-07-05 2013-11-19 United Technologies Corporation Coupling system for a star gear train in a gas turbine engine
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
GB2440345A (en) 2006-07-26 2008-01-30 Rolls Royce Plc Integrally bladed rotor having blades made of metallic and non-metallic materials
US7694505B2 (en) 2006-07-31 2010-04-13 General Electric Company Gas turbine engine assembly and method of assembling same
US7632064B2 (en) 2006-09-01 2009-12-15 United Technologies Corporation Variable geometry guide vane for a gas turbine engine
US7662059B2 (en) 2006-10-18 2010-02-16 United Technologies Corporation Lubrication of windmilling journal bearings
US7966806B2 (en) 2006-10-31 2011-06-28 General Electric Company Turbofan engine assembly and method of assembling same
US7841165B2 (en) 2006-10-31 2010-11-30 General Electric Company Gas turbine engine assembly and methods of assembling same
US8020665B2 (en) 2006-11-22 2011-09-20 United Technologies Corporation Lubrication system with extended emergency operability
US8017188B2 (en) 2007-04-17 2011-09-13 General Electric Company Methods of making articles having toughened and untoughened regions
US7950237B2 (en) 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US20120124964A1 (en) 2007-07-27 2012-05-24 Hasel Karl L Gas turbine engine with improved fuel efficiency
US11346289B2 (en) * 2007-08-01 2022-05-31 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US20150377122A1 (en) 2007-08-01 2015-12-31 United Technologies Corporation Turbine section of high bypass turbofan
US11149650B2 (en) * 2007-08-01 2021-10-19 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US8256707B2 (en) 2007-08-01 2012-09-04 United Technologies Corporation Engine mounting configuration for a turbofan gas turbine engine
US8844265B2 (en) 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US11242805B2 (en) 2007-08-01 2022-02-08 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US8205432B2 (en) 2007-10-03 2012-06-26 United Technologies Corporation Epicyclic gear train for turbo fan engine
US8104289B2 (en) 2007-10-09 2012-01-31 United Technologies Corp. Systems and methods involving multiple torque paths for gas turbine engines
US20090185908A1 (en) 2008-01-21 2009-07-23 Honeywell International, Inc. Linear friction welded blisk and method of fabrication
DE102008019332A1 (en) 2008-04-16 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Method for milling blisks
US8128021B2 (en) 2008-06-02 2012-03-06 United Technologies Corporation Engine mount system for a turbofan gas turbine engine
US20140174056A1 (en) 2008-06-02 2014-06-26 United Technologies Corporation Gas turbine engine with low stage count low pressure turbine
US7997868B1 (en) 2008-11-18 2011-08-16 Florida Turbine Technologies, Inc. Film cooling hole for turbine airfoil
US8307626B2 (en) 2009-02-26 2012-11-13 United Technologies Corporation Auxiliary pump system for fan drive gear system
US8181441B2 (en) 2009-02-27 2012-05-22 United Technologies Corporation Controlled fan stream flow bypass
DE102009016803A1 (en) 2009-04-09 2010-10-14 Rolls-Royce Deutschland Ltd & Co Kg Labyrinth rubbing seal for a turbomachine
US8172716B2 (en) 2009-06-25 2012-05-08 United Technologies Corporation Epicyclic gear system with superfinished journal bearing
US8545167B2 (en) 2009-08-26 2013-10-01 Pratt & Whitney Canada Corp. Composite casing for rotating blades
US8689538B2 (en) 2009-09-09 2014-04-08 The Boeing Company Ultra-efficient propulsor with an augmentor fan circumscribing a turbofan
US8911203B2 (en) * 2009-11-20 2014-12-16 United Technologies Corporation Fan rotor support
US8439637B2 (en) 2009-11-20 2013-05-14 United Technologies Corporation Bellows preload and centering spring for a fan drive gear system
US9170616B2 (en) 2009-12-31 2015-10-27 Intel Corporation Quiet system cooling using coupled optimization between integrated micro porous absorbers and rotors
US8636195B2 (en) 2010-02-19 2014-01-28 General Electric Company Welding process and component formed thereby
US8905713B2 (en) 2010-05-28 2014-12-09 General Electric Company Articles which include chevron film cooling holes, and related processes
US10041442B2 (en) 2010-06-11 2018-08-07 United Technologies Corporation Variable area fan nozzle
US20130186058A1 (en) 2012-01-24 2013-07-25 William G. Sheridan Geared turbomachine fan and compressor rotation
US9845726B2 (en) 2012-01-31 2017-12-19 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section
US9103227B2 (en) 2012-02-28 2015-08-11 United Technologies Corporation Gas turbine engine with fan-tied inducer section
US10036351B2 (en) 2012-04-02 2018-07-31 United Technologies Corporation Geared turbofan with three co-rotating turbines
US8807916B2 (en) 2012-09-27 2014-08-19 United Technologies Corporation Method for setting a gear ratio of a fan drive gear system of a gas turbine engine
US8834099B1 (en) 2012-09-28 2014-09-16 United Technoloiies Corporation Low noise compressor rotor for geared turbofan engine
US10190496B2 (en) 2013-03-15 2019-01-29 United Technologies Corporation Turbofan engine bearing and gearbox arrangement
US8869504B1 (en) 2013-11-22 2014-10-28 United Technologies Corporation Geared turbofan engine gearbox arrangement
US10502066B2 (en) * 2015-05-08 2019-12-10 United Technologies Corporation Turbine engine component including an axially aligned skin core passage interrupted by a pedestal
EP3115576A1 (en) 2015-07-08 2017-01-11 United Technologies Corporation Turbine section of high bypass turbofan
US10724541B2 (en) * 2015-12-31 2020-07-28 United Technologies Corporation Nacelle short inlet
US10683806B2 (en) * 2017-01-05 2020-06-16 General Electric Company Protected core inlet with reduced capture area
GB201702382D0 (en) * 2017-02-14 2017-03-29 Rolls Royce Plc Gas turbine engine fan blade
GB201702384D0 (en) * 2017-02-14 2017-03-29 Rolls Royce Plc Gas turbine engine fan blade
US10670040B2 (en) * 2017-02-22 2020-06-02 Honeywell International Inc. Core-protecting fan modules and turbofan engines containing the same
FR3065994B1 (en) * 2017-05-02 2019-04-19 Safran Aircraft Engines BLOWER ROTOR TURBOMACHINE AND REDUCER DRIVING A LOW PRESSURE COMPRESSOR SHAFT
US10815881B2 (en) * 2017-09-20 2020-10-27 General Electric Company Counter rotating turbine with reversing speed reduction assembly
GB201805764D0 (en) * 2018-04-06 2018-05-23 Rolls Royce Plc A casing
GB201820423D0 (en) * 2018-12-14 2019-01-30 Rolls Royce Plc Super-cooled ice impact protection for a gas turbine engine
GB201820925D0 (en) * 2018-12-21 2019-02-06 Rolls Royce Plc Turbine engine
GB201906168D0 (en) * 2019-05-02 2019-06-19 Rolls Royce Plc Gas turbine engine with fan outlet guide vanes
GB201906164D0 (en) * 2019-05-02 2019-06-19 Rolls Royce Plc Gas turbine engine
DE102019117038A1 (en) 2019-06-25 2020-12-31 Rolls-Royce Deutschland Ltd & Co Kg Gearbox and gas turbine engine
US11286779B2 (en) * 2020-06-03 2022-03-29 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor
GB2599692A (en) 2020-10-09 2022-04-13 Rolls Royce Plc A heat exchanger

Also Published As

Publication number Publication date
US10060357B2 (en) 2018-08-28
US20170044992A1 (en) 2017-02-16
US20170044990A1 (en) 2017-02-16
US11215123B2 (en) 2022-01-04
US20170298832A1 (en) 2017-10-19
US11614036B2 (en) 2023-03-28
US20220074352A1 (en) 2022-03-10
US20150377123A1 (en) 2015-12-31
US20210071587A1 (en) 2021-03-11
US10794293B2 (en) 2020-10-06
US10371061B2 (en) 2019-08-06
US20190048803A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US11614036B2 (en) Turbine section of gas turbine engine
US10662880B2 (en) Turbine section of high bypass turbofan
US11480108B2 (en) Turbine section of high bypass turbofan
US11242805B2 (en) Turbine section of high bypass turbofan
EP2904254B1 (en) Geared turbofan engine with high compressor exit temperature
EP3115576A1 (en) Turbine section of high bypass turbofan
US20150377122A1 (en) Turbine section of high bypass turbofan
US10119466B2 (en) Geared turbofan engine with high compressor exit temperature
EP3115590A1 (en) Turbine section of high bypass turbofan
EP3591191A1 (en) Turbine section of high bypass turbofan
US11346289B2 (en) Turbine section of high bypass turbofan
US11486311B2 (en) Turbine section of high bypass turbofan
US20230323836A1 (en) Turbine section of a gas turbine engine
EP3591192A1 (en) Turbofan engine with an epicyclic transmission
US20150377124A1 (en) Turbine section of high bypass turbofan
EP3115589A1 (en) Turbine section of high bypass turbofan

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION