US20170015916A1 - A process for the preparation of a feedstock for a hydroprocessing unit - Google Patents

A process for the preparation of a feedstock for a hydroprocessing unit Download PDF

Info

Publication number
US20170015916A1
US20170015916A1 US15/120,667 US201415120667A US2017015916A1 US 20170015916 A1 US20170015916 A1 US 20170015916A1 US 201415120667 A US201415120667 A US 201415120667A US 2017015916 A1 US2017015916 A1 US 2017015916A1
Authority
US
United States
Prior art keywords
crude oil
asphaltenes
solvent
hydroprocessing
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/120,667
Other versions
US10125329B2 (en
Inventor
Arno Johannes Maria Oprins
Thomas Hubertus Maria HOUSMANS
Vijayanand Rajagopalan
Ravichander Narayanaswamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Saudi Basic Industries Corp
Original Assignee
SABIC Global Technologies BV
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV, Saudi Basic Industries Corp filed Critical SABIC Global Technologies BV
Assigned to SAUDI BASIC INDUSTRIES CORPORATION, SABIC GLOBAL TECHNOLOGIES B.V. reassignment SAUDI BASIC INDUSTRIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOUSMANS, Thomas Hubertus Maria, NARAYANASWAMY, RAVICHANDER, OPRINS, Arno Johannes Maria, RAJAGOPALAN, Vijayanand
Publication of US20170015916A1 publication Critical patent/US20170015916A1/en
Assigned to SABIC GLOBAL TECHNOLOGIES B.V., SAUDI BASIC INDUSTRIES CORPORATION reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY'S ZIP CODE PREVIOUSLY RECORDED ON REEL 041372 FRAME 0840. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: HOUSMANS, Thomas Hubertus Maria, NARAYANASWAMY, RAVICHANDER, OPRINS, Arno Johannes Maria, RAJAGOPALAN, Vijayanand
Application granted granted Critical
Publication of US10125329B2 publication Critical patent/US10125329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Definitions

  • the present invention relates to a process for the preparation of a feedstock for a hydroprocessing unit, wherein said feedstock is based on crude oil containing asphaltenes.
  • Asphaltenes are the most difficult components in processing of heavy oils, which is a complex macromolecule that contains the majority of impurities such as S, N, Ni and V.
  • the composition, structure and concentration of asphaltenes highly determine the quality and processing effect of heavy oil to a certain degree.
  • Hydroprocessing is one of the most effective technologies of heavy oil processing.
  • carbon deposit and pore blocking on the surface of catalysts are easily to occur because of the congregation and coking of the constituents of asphaltenes, which can greatly shorten the operational life span of the catalyst and the running period of the plant.
  • These high molecular weight, large multi-ring aromatic hydrocarbon molecules or associated heteroatom-containing (e.g., S, N, O) multi-ring hydrocarbon molecules in heavy oils are called asphaltenes.
  • a significant portion of the sulphur is contained within the structure of these asphaltenes. Due to the large aromatic structures of the asphaltenes, the sulphur can be refractory in nature and can be difficult to remove.
  • Asphaltenes are thus present in the crude oil along with other components which aid in keeping them in dissolved state.
  • most of these other components present in the lower boiling ranges than asphaltenes are removed from the crude oil. This concentrates the asphaltenes in the residue.
  • asphaltenes in the crude oil residue it can crash out of the solution due to aggregation and precipitate as solids.
  • Precipitated asphaltenes in downstream hydroprocessing units leads to catalyst fouling and lower time-on-stream for the hydroprocessing reactors.
  • US patent application No 2007/090018 relates to a process comprising: (i) obtaining a hydroprocessed effluent from a resid hydroprocessing unit, wherein the effluent comprises 650 [deg.] F.+(343 [deg.] C.+) resid; (ii) steam cracking substantially all of the effluent to obtain a product comprising olefins. Crude or resid-containing fraction thereof, particularly atmospheric resid, vacuum resid, or any asphaltene-containing refinery or chemical intermediate stream are a feed to the hydroprocessor. The product of each of the steam crackers is sent to the steam cracker product recovery section, where various products may be recovered by separation.
  • Tar from the product recovery unit heated to a temperature of from about 100 [deg.] C. to about 200 [deg.] C. to maintain fluidity, and containing substantially no metals, and comprising very little asphaltenes and other 1050 [deg.] F.+materials, is passed to the hydroprocessor, wherein the tar is being diluted with the feed to the hydroprocessor.
  • the objective of this reference is to maximize conversion of asphaltene by steam cracking and recycling it for hydroprocessing and utilizes segregation of asphaltenes.
  • WO91/17230 relates to a process for the production of normally gaseous mono- and di-olefins, particularly ethylene, propylene and butadiene, by thermally cracking a hydrocarbon feedstock in the presence of steam at elevated temperatures which involves introducing a hydrogen donor material, such as hydrotreated steam cracked tar oils, into a stream of steam cracked effluent at or downstream of the point where the furnace effluent reactions are quenched so as to prevent thermal degradation reactions of the steam cracked liquids.
  • a hydrogen donor material such as hydrotreated steam cracked tar oils
  • US Patent application No 2011/005970 relates to a cracking process that treats steam cracker tar fractions by exposure to heat in the presence of hydrogen donor compounds to prevent or decrease formation of at least a portion of high boiling molecules, including asphaltenes and/or asphaltene precursors, within the effluent stream, comprising: a) feeding a hydrocarbon feedstock having a final boiling point above 260° C.
  • US patent application No 2007/295640 relates to a composition comprising an asphaltenes solvent and a viscosity reducing agent, the asphaltenes solvent and viscosity reducing agent present in a ratio so as to substantially reduce viscosity of an asphaltenes-containing material while substantially negating deposition of asphaltenes either in a reservoir, in production tubing, or both when mixed or otherwise.
  • WO2013/033293 relates to a process for producing a hydro processed product, comprising: exposing a combined feedstock comprising a heavy oil feed component and a solvent component to form a hydro processed effluent, separating the hydroprocessing effluent to form at least a liquid effluent and fractionating a first portion of the liquid effluent to form at least a distillate product, wherein the solvent comprises at least a portion of the distillate product, at least 90 wt. % of the at least a portion of the distillate product having a boiling point in a boiling range of 149 DEG C. to 399 DEG C.
  • Cracked distillate is a by-product obtained in the thermal cracking of a cracker feedstock, which by-product comprises a mixture of hydrocarbons with a boiling range of between 80 and 260 DEG C., at least 35 wt. % of which consists of unsaturated hydrocarbons.
  • ‘Cracked distillate’ is also understood to be a fraction of unsaturated compounds that can be polymerised into a resin, obtained from distillation of coal tar.
  • the liquid product of the cracking process is known as black oil. Black oil is highly aromatic and constitutes a valuable feedstock for the production of carbon black and for the manufacture of electrodes.
  • An object of the present invention is to provide a process for the preparation of a feedstock for a hydroprocessing unit in which feedstock the aggregation of asphaltenes in crude oil is reduced to a minimum, i.e. as to keep the asphaltenes in a dissolved state.
  • Another object of the present invention is to provide a feedstock for a hydroprocessing unit resulting in a long operational life span of the catalyst and a long running period of the plant.
  • Another object of the present invention is to provide a valuable use for steam cracker cracked distillate (CD) and steam cracker carbon black oil (CBO).
  • the present invention thus relates to a process for the preparation of a feedstock for a hydroprocessing unit, wherein said feedstock is based on crude oil containing asphaltenes, said process comprising the steps of:
  • said solvent is at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, wherein a mixing ratio solvent: crude oil is such that no aggregation of asphaltenes in said combined mixture of solvent and crude oil takes place under mixing conditions;
  • the aggregation of asphaltenes is reduced or even prevented by mixing atmospheric residue (AR) or vacuum residue, with solvent, preferably aromatic rich streams.
  • AR atmospheric residue
  • solvent preferably aromatic rich streams.
  • the solvent used in the present method is preferably at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, said streams having low sulphur content.
  • CD steam cracker cracked distillate
  • CBO steam cracker carbon black oil
  • low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams said streams having low sulphur content.
  • the present inventors assume that by this use of these solvents a proper stabilization of asphaltenes is achieved.
  • the present inventors assume that the solubility of asphaltenes is enhanced. Furthermore, the present inventors assume that by the use of these solvents in combination with a crude oil a feedstock having lower sulphur content is obtained than a feedstock only composed of crude oil.
  • the feed blend to the one or more hydroprocessing unit preferably comprises 25 wt. % or more of cracked distillate, based on the total weight of the feed blend.
  • the feed blend to the one or more hydroprocessing unit preferably comprises more than 25 wt. % of low asphaltenes containing crude oil, atmospheric or vacuum residue, based on the total weight of the feed blend.
  • the feed blend to the one or more hydroprocessing unit preferably comprises a maximum of 55 wt. % of the higher asphaltenes containing crude stream in combination with lower asphaltenes containing crude oils and aromatic streams like CD, LCO.
  • aromatic-rich hydrocarbon streams include steam cracker pygas (aromatics 60 wt %), mixed plastic waste pyrolysis oil (aromatics 75 wt %), FCC cracked gasoline (aromatics 40+%), LCO (aromatics 70-80%), HCO (aromatics 70-80%) or such. These streams can have a boiling point from their initial boiling point to below or above 300 deg C. and be used as solvents in appropriate mixing ratios that preferably satisfy the ASTM required S value, as mentioned below.
  • the solvent used is rich in aromatics and resins and lean in asphaltenes as compared to the crude oil such that the combined mixture of the feed, that is the crude oil, and solvent prior to entering the hydroprocessing unit or its feed heaters preferably has a S value, measured as per ASTMD7157-12, of greater than 1.
  • the solvent used in the present method process is majorly liquid at the conditions prevailing in the mixing zone of feed and solvent as well as in the hydroprocessing unit or its feed heaters. It is also preferred that the solvent is capable of being hydro processed in the hydroprocessing unit, preferably at least partly.
  • mixing conditions include a temperature range at which mixing of solvent and crude oil takes place. And this temperature range is maintained during at least the transport of the mixture thus obtained and the processing of the mixture in hydroprocessing unit(s).
  • the crude oil is preferably a bottom stream from a crude oil distillation unit (CDU) and/or vacuum distillation unit (VDU).
  • CDU crude oil distillation unit
  • VDU vacuum distillation unit
  • the present process further preferably comprises a step of deasphalting the crude before the step of mixing with a solvent as mentioned above.
  • Solvent deasphalting is a physical, separation process, where feed components are recovered in their original states, i.e., they do not undergo chemical reactions. A solvent is used to separate the components of the heavy crude oil fractions.
  • solvents used in a deasphalting unit are propane or light paraffinic solvent or various blends of C3-C7 hydrocarbons including light naphthas. It is a flexible process, which essentially separates atmospheric, and vacuum heavy residues, typically into two products: (i) asphalt and (ii) deasphalted or demetallized oil.
  • solvent deasphalting methods are carried out without catalysts or adsorbents, it is also possible to apply solvent deasphalting methods which employ solid adsorbents.
  • the crude oil thus deasphalted is separated into a stream having a low content asphaltenes and a stream having a high content asphaltenes, wherein said stream having a high content asphaltenes is mixed with the type of solvent as mentioned above, i.e., at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO) and low asphaltenes containing crude oil residue having a boiling point above 300 deg C.
  • the type of solvent i.e., at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO) and low asphaltenes containing crude oil residue having a boiling point above 300 deg C.
  • 2007/090018 fails to disclose a step of deasphalting crude oil. After the step of mixing the combined mixture of solvent and crude oil is fed to one or more hydroprocessing units, for example chosen from the group of resid hydrocracking unit and coking unit.
  • the effect of mixing a specific solvent and crude oil is that the sulphur content of the mixed feed is lower than the sulphur content of a feed only comprising crude oil.
  • the present inventors assume that the performance of the hydroprocessing unit is improved as with reduced sulphur content in feed, more active catalyst sites in the hydroprocessing reaction zone are now available for the hydroprocessing reactions.
  • the resid hydrocracking unit could be selected from fixed, ebullated or slurry bed reactors depending on the asphaltenes content in the mixture as well as a mixture H/C ratio.
  • the process operating conditions for these hydrocracking units include 70-200 barg, 330-500 deg C. with catalysts like Co—Mo or Ni—Mo on alumina or other commercially used hydroprocessing catalysts for that hydrocracking reactor.
  • the present invention furthermore relates to the use of a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, or combinations thereof, with crude oil for reducing the metal content of a feed comprising said solvent and said crude oil for a hydroprocessing unit.
  • a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, or combinations thereof, with crude oil for reducing the metal content of a feed comprising said solvent and said crude oil for a hydroprocessing unit.
  • the present invention relates to the use of a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil
  • the specific solvent i.e. a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, may function as a hydrogen donor in a mixture of such a solvent and crude, resulting in less consumption of hydrogen compared to a feed only comprising crude oil in a hydroprocessing unit.
  • the present inventors thus assume that by mixing these aromatic rich streams with the AR or VR the metal content of the combined feed is reduced as compared to only AR or VR. This makes the demetallizing requirement per unit volume of feed lower in the hydroprocessing reactor.
  • An unexpected effect thereof is that where an ebullated bed reactor (more severe operations) was needed, a fixed bed reactor (less severe operations) can now be used. This would result in savings in capital expenditure for such processing plants.
  • the present inventors assume the addition of these solvents also reduce viscosity of the AR and VR, making the combined stream easier to pump and more amenable to hydroprocessing.
  • the present inventors assume that the asphaltenes are more stable in solutions having lower viscosity which is enabled by the present process. As a result fouling of hydroprocessing catalyst by deposition of asphaltenes is reduced and thus a longer on-stream time for the hydroprocessing reactor is now possible.
  • FIG. 1 is a schematic illustration of an embodiment of the process of the invention.
  • FIG. 2 is a schematic illustration of an embodiment of the process of the invention.
  • a crude distillation unit 3 from which its bottom stream is sent to a vacuum distillation unit (VDU) 4 .
  • the effluent from the vacuum distillation unit 4 is sent tot a solvent dissolution unit 7 .
  • solvent dissolution unit 7 the effluent coming directly from VDU 4 is mixed with a solvent 6 .
  • Solvent 6 is chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams.
  • an additional stream 2 e.g. the effluent from a crude or distillation unit (CDU) is also fed to solvent dissolution unit 7 and mixed with solvent 6 and the effluent coming from VDU 4 .
  • CDU crude or distillation unit
  • Mixed stream 15 i.e. the effluent from the solvent dissolution unit 7 , and hydrogen 8 are further processed in hydroprocessing units 13 , for example hydrodesulphurisation, producing individual streams 9 , mainly comprising ammonia, stream 10 , mainly comprising H2S, stream 11 , mainly comprising C2 ⁇ and stream 13 , mainly comprising C3+C4.
  • the effluent from hydroprocessing unit 13 is sent to another hydroprocessing unit 14 , for example a resid hydrocracker, a FCC unit or a coker unit.
  • FIG. 2 is a schematic illustration of another embodiment of the process of the invention.
  • the essential difference between the process shown in FIG. 1 and FIG. 2 is the presence of a deasphalting unit 5 located between vacuum distillation unit 4 and solvent dissolution unit 7 .
  • deasphalting unit 5 the effluent from vacuum distillation unit 4 is brought into contact with a solvent stream 17 , resulting in a stream 18 , i.e. a stream having low content asphaltenes, and a stream 19 , i.e. a stream having a high content asphaltenes.
  • Stream 19 is sent to solvent dissolution unit 7 and mixed with solvent 6 , i.e. steam cracker cracked distillate (CD) and/or steam cracker carbon black oil (CBO) and/or low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and/or aromatic rich hydrocarbons streams.
  • solvent 6 i.e. steam cracker cracked distillate (CD) and/or steam cracker carbon black oil (
  • SARA Saturates, aromatics, resins and asphaltenes
  • SARA Saturates, aromatics, resins and asphaltenes
  • asphaltenes are stable in the mixture containing more than 25 wt % JnVR.
  • This example has been provided as it has a different distribution of resins as compared to example 1.
  • Operating refineries that process a crude basket having asphaltenes-rich and asphaltenes-lean crudes and have different crude units for these different crude types can benefit from a combination of residues from asphaltenes-rich and asphaltenes-lean crude oils and process them together in a hydrocracking unit.
  • SARA Saturates, aromatics, resins and asphaltenes

Abstract

A process for preparing a feedstock for a hydroprocessing unit, the feedstock based on crude oil containing asphaltenes and the process including mixing crude oil with a predetermined solvent in a ratio such that no aggregation of asphaltenes in the mixture takes place, and feeding the combined mixture to one or more hydroprocessing units.

Description

  • The present invention relates to a process for the preparation of a feedstock for a hydroprocessing unit, wherein said feedstock is based on crude oil containing asphaltenes.
  • Refineries are facing the challenges of oil becoming heavier and worse. Asphaltenes are the most difficult components in processing of heavy oils, which is a complex macromolecule that contains the majority of impurities such as S, N, Ni and V. The composition, structure and concentration of asphaltenes highly determine the quality and processing effect of heavy oil to a certain degree.
  • Hydroprocessing is one of the most effective technologies of heavy oil processing. However, during hydroprocessing carbon deposit and pore blocking on the surface of catalysts are easily to occur because of the congregation and coking of the constituents of asphaltenes, which can greatly shorten the operational life span of the catalyst and the running period of the plant. These high molecular weight, large multi-ring aromatic hydrocarbon molecules or associated heteroatom-containing (e.g., S, N, O) multi-ring hydrocarbon molecules in heavy oils are called asphaltenes. A significant portion of the sulphur is contained within the structure of these asphaltenes. Due to the large aromatic structures of the asphaltenes, the sulphur can be refractory in nature and can be difficult to remove.
  • Asphaltenes are thus present in the crude oil along with other components which aid in keeping them in dissolved state. In the process of crude distillation, most of these other components present in the lower boiling ranges than asphaltenes are removed from the crude oil. This concentrates the asphaltenes in the residue. Depending on the solubility of asphaltenes in the crude oil residue, it can crash out of the solution due to aggregation and precipitate as solids. Precipitated asphaltenes in downstream hydroprocessing units leads to catalyst fouling and lower time-on-stream for the hydroprocessing reactors.
  • US patent application No 2007/090018 relates to a process comprising: (i) obtaining a hydroprocessed effluent from a resid hydroprocessing unit, wherein the effluent comprises 650 [deg.] F.+(343 [deg.] C.+) resid; (ii) steam cracking substantially all of the effluent to obtain a product comprising olefins. Crude or resid-containing fraction thereof, particularly atmospheric resid, vacuum resid, or any asphaltene-containing refinery or chemical intermediate stream are a feed to the hydroprocessor. The product of each of the steam crackers is sent to the steam cracker product recovery section, where various products may be recovered by separation. Tar from the product recovery unit, heated to a temperature of from about 100 [deg.] C. to about 200 [deg.] C. to maintain fluidity, and containing substantially no metals, and comprising very little asphaltenes and other 1050 [deg.] F.+materials, is passed to the hydroprocessor, wherein the tar is being diluted with the feed to the hydroprocessor. The objective of this reference is to maximize conversion of asphaltene by steam cracking and recycling it for hydroprocessing and utilizes segregation of asphaltenes.
  • WO91/17230 relates to a process for the production of normally gaseous mono- and di-olefins, particularly ethylene, propylene and butadiene, by thermally cracking a hydrocarbon feedstock in the presence of steam at elevated temperatures which involves introducing a hydrogen donor material, such as hydrotreated steam cracked tar oils, into a stream of steam cracked effluent at or downstream of the point where the furnace effluent reactions are quenched so as to prevent thermal degradation reactions of the steam cracked liquids.
  • US Patent application No 2011/005970 relates to a cracking process that treats steam cracker tar fractions by exposure to heat in the presence of hydrogen donor compounds to prevent or decrease formation of at least a portion of high boiling molecules, including asphaltenes and/or asphaltene precursors, within the effluent stream, comprising: a) feeding a hydrocarbon feedstock having a final boiling point above 260° C. to a steam cracking furnace containing a radiant section outlet producing a steam cracker tar-containing effluent, b) adding a hydrogen donor-rich hydrocarbon stream comprising naphthenic compounds to at least a portion of the steam cracker tar-containing effluent while the tar-containing effluent is at a temperature of from 200° to 850° C. to form a mixture comprising hydrogen donor-rich hydrocarbons and steam cracker tar-containing effluent; and c) separating the mixture into i) at least one tar-lean product containing a first tar; and ii) a tar-rich product containing a second tar, the tar-rich product having a final boiling point above the final boiling point of the at least one tar-lean product.
  • US patent application No 2007/295640 relates to a composition comprising an asphaltenes solvent and a viscosity reducing agent, the asphaltenes solvent and viscosity reducing agent present in a ratio so as to substantially reduce viscosity of an asphaltenes-containing material while substantially negating deposition of asphaltenes either in a reservoir, in production tubing, or both when mixed or otherwise.
  • WO2013/033293 relates to a process for producing a hydro processed product, comprising: exposing a combined feedstock comprising a heavy oil feed component and a solvent component to a hydroprocessing catalyst to form a hydro processed effluent, separating the hydroprocessing effluent to form at least a liquid effluent and fractionating a first portion of the liquid effluent to form at least a distillate product, wherein the solvent comprises at least a portion of the distillate product, at least 90 wt. % of the at least a portion of the distillate product having a boiling point in a boiling range of 149 DEG C. to 399 DEG C.
  • Cracked distillate is a by-product obtained in the thermal cracking of a cracker feedstock, which by-product comprises a mixture of hydrocarbons with a boiling range of between 80 and 260 DEG C., at least 35 wt. % of which consists of unsaturated hydrocarbons. ‘Cracked distillate’ is also understood to be a fraction of unsaturated compounds that can be polymerised into a resin, obtained from distillation of coal tar. The liquid product of the cracking process is known as black oil. Black oil is highly aromatic and constitutes a valuable feedstock for the production of carbon black and for the manufacture of electrodes.
  • In a situation in which the commercial need for both cracked distillate and carbon black oil is decreasing new technical markets and end uses for these products need to be developed.
  • Not only carbon deposit and pore blocking on the surface of catalysts are unwanted phenomena but the presence of high amounts of sulphur in the feedstock as well. These sulphur-containing and/or nitrogen-containing organic compounds may compete for the active catalyst sites in the reaction zone in hydroprocessing units as a result of which hydrocracking reaction performance is affected.
  • An object of the present invention is to provide a process for the preparation of a feedstock for a hydroprocessing unit in which feedstock the aggregation of asphaltenes in crude oil is reduced to a minimum, i.e. as to keep the asphaltenes in a dissolved state.
  • Another object of the present invention is to provide a feedstock for a hydroprocessing unit resulting in a long operational life span of the catalyst and a long running period of the plant.
  • Another object of the present invention is to provide a valuable use for steam cracker cracked distillate (CD) and steam cracker carbon black oil (CBO).
  • The present invention thus relates to a process for the preparation of a feedstock for a hydroprocessing unit, wherein said feedstock is based on crude oil containing asphaltenes, said process comprising the steps of:
  • mixing said crude oil with a solvent, wherein said solvent is at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, wherein a mixing ratio solvent: crude oil is such that no aggregation of asphaltenes in said combined mixture of solvent and crude oil takes place under mixing conditions;
  • feeding said combined mixture of solvent and crude oil to one or more hydroprocessing units.
  • According to the present method the aggregation of asphaltenes is reduced or even prevented by mixing atmospheric residue (AR) or vacuum residue, with solvent, preferably aromatic rich streams. Thus, the present inventors found a method for keeping asphaltenes in solution by applying appropriate mixing ratio of feed and solvent. The solvent used in the present method is preferably at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, said streams having low sulphur content. The present inventors assume that by this use of these solvents a proper stabilization of asphaltenes is achieved. In addition, because of higher aromatic content of these streams compared to their paraffinic content, the present inventors assume that the solubility of asphaltenes is enhanced. Furthermore, the present inventors assume that by the use of these solvents in combination with a crude oil a feedstock having lower sulphur content is obtained than a feedstock only composed of crude oil.
  • The present inventors found that the feed blend to the one or more hydroprocessing unit preferably comprises 25 wt. % or more of cracked distillate, based on the total weight of the feed blend. According to another embodiment the feed blend to the one or more hydroprocessing unit preferably comprises more than 25 wt. % of low asphaltenes containing crude oil, atmospheric or vacuum residue, based on the total weight of the feed blend. According to yet another embodiment the feed blend to the one or more hydroprocessing unit preferably comprises a maximum of 55 wt. % of the higher asphaltenes containing crude stream in combination with lower asphaltenes containing crude oils and aromatic streams like CD, LCO.
  • Preferred examples of aromatic-rich hydrocarbon streams include steam cracker pygas (aromatics 60 wt %), mixed plastic waste pyrolysis oil (aromatics 75 wt %), FCC cracked gasoline (aromatics 40+%), LCO (aromatics 70-80%), HCO (aromatics 70-80%) or such. These streams can have a boiling point from their initial boiling point to below or above 300 deg C. and be used as solvents in appropriate mixing ratios that preferably satisfy the ASTM required S value, as mentioned below.
  • These initial boiling points could be 35 deg C. or less for naphtha range materials or above 220 deg C. for diesel range materials. Only in the embodiments of crude residues used as solvent their boiling points are specified as above 300 deg C. because usually the residue cuts AR or VR for crude oil anyway is boiling above 300 deg C.
  • According to the present invention it is preferred that the solvent used is rich in aromatics and resins and lean in asphaltenes as compared to the crude oil such that the combined mixture of the feed, that is the crude oil, and solvent prior to entering the hydroprocessing unit or its feed heaters preferably has a S value, measured as per ASTMD7157-12, of greater than 1.
  • Even though the above discussed US patent application No 2007/090018 refers to mixing crude oil with solvent, this reference is totally silent about any criteria as provided by the present invention. Moreover, if one were to consider all the figures of this reference, it is obvious that asphaltenes is taken out in the flash chambers shown in the figures, namely this reference relies on asphaltenes precipitation whereas the present invention relies on keeping asphaltenes in solution. The objective is conversion of asphaltenes or asphaltene rich streams by using a hydroprocessing unit with the intention of opening up the rings and this reference thus lacks to the present method of keeping the asphaltenes in solution and preventing segregation.
  • In addition, it is furthermore preferred that the solvent used in the present method process is majorly liquid at the conditions prevailing in the mixing zone of feed and solvent as well as in the hydroprocessing unit or its feed heaters. It is also preferred that the solvent is capable of being hydro processed in the hydroprocessing unit, preferably at least partly.
  • In the present process the solvating power of these solvents for asphaltenes is used while co-processing them in hydroprocessing reactors. The term “mixing conditions” include a temperature range at which mixing of solvent and crude oil takes place. And this temperature range is maintained during at least the transport of the mixture thus obtained and the processing of the mixture in hydroprocessing unit(s).
  • In the present process the crude oil is preferably a bottom stream from a crude oil distillation unit (CDU) and/or vacuum distillation unit (VDU).
  • The present process further preferably comprises a step of deasphalting the crude before the step of mixing with a solvent as mentioned above. Solvent deasphalting is a physical, separation process, where feed components are recovered in their original states, i.e., they do not undergo chemical reactions. A solvent is used to separate the components of the heavy crude oil fractions.
  • Examples of solvents used in a deasphalting unit are propane or light paraffinic solvent or various blends of C3-C7 hydrocarbons including light naphthas. It is a flexible process, which essentially separates atmospheric, and vacuum heavy residues, typically into two products: (i) asphalt and (ii) deasphalted or demetallized oil. Although solvent deasphalting methods are carried out without catalysts or adsorbents, it is also possible to apply solvent deasphalting methods which employ solid adsorbents.
  • According to the present invention the crude oil thus deasphalted is separated into a stream having a low content asphaltenes and a stream having a high content asphaltenes, wherein said stream having a high content asphaltenes is mixed with the type of solvent as mentioned above, i.e., at least one member chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO) and low asphaltenes containing crude oil residue having a boiling point above 300 deg C. The above discussed US patent application No 2007/090018 teaches a lot of potential feeds to be treated by a process including a first step of hydroprocessing and a second step of thermal cracking, wherein feeds such as whole crude, with or without desalting, namely desalting typically removes metal salts, such as NaCl, or the product of a refinery pipestill or a chemical intermediate stream containing asphaltene, i.e. atmospheric resid or vacuum resid, or steam cracked tar are hydroprocessed using fixed bed hydrogenation reactors or ebullating or fluidized hydrogenation reactors prior to being fed to a thermal pyrolysis unit having a flash pot integrated therewith. However, US patent application No. 2007/090018 fails to disclose a step of deasphalting crude oil. After the step of mixing the combined mixture of solvent and crude oil is fed to one or more hydroprocessing units, for example chosen from the group of resid hydrocracking unit and coking unit.
  • The effect of mixing a specific solvent and crude oil is that the sulphur content of the mixed feed is lower than the sulphur content of a feed only comprising crude oil. The present inventors assume that the performance of the hydroprocessing unit is improved as with reduced sulphur content in feed, more active catalyst sites in the hydroprocessing reaction zone are now available for the hydroprocessing reactions.
  • The resid hydrocracking unit could be selected from fixed, ebullated or slurry bed reactors depending on the asphaltenes content in the mixture as well as a mixture H/C ratio. The process operating conditions for these hydrocracking units include 70-200 barg, 330-500 deg C. with catalysts like Co—Mo or Ni—Mo on alumina or other commercially used hydroprocessing catalysts for that hydrocracking reactor.
  • The present invention furthermore relates to the use of a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, or combinations thereof, with crude oil for reducing the metal content of a feed comprising said solvent and said crude oil for a hydroprocessing unit.
  • In addition, the present invention relates to the use of a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil
  • (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, or combinations thereof, with crude oil for reducing the viscosity of a feed comprising said solvent and said crude oil for a hydroprocessing unit. The present inventors further assume a positive effect on the hydrogen consumption in a hydroprocessing unit. The specific solvent, i.e. a solvent chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, may function as a hydrogen donor in a mixture of such a solvent and crude, resulting in less consumption of hydrogen compared to a feed only comprising crude oil in a hydroprocessing unit.
  • The present inventors thus assume that by mixing these aromatic rich streams with the AR or VR the metal content of the combined feed is reduced as compared to only AR or VR. This makes the demetallizing requirement per unit volume of feed lower in the hydroprocessing reactor. An unexpected effect thereof is that where an ebullated bed reactor (more severe operations) was needed, a fixed bed reactor (less severe operations) can now be used. This would result in savings in capital expenditure for such processing plants. The present inventors assume the addition of these solvents also reduce viscosity of the AR and VR, making the combined stream easier to pump and more amenable to hydroprocessing.
  • Also, the present inventors assume that the asphaltenes are more stable in solutions having lower viscosity which is enabled by the present process. As a result fouling of hydroprocessing catalyst by deposition of asphaltenes is reduced and thus a longer on-stream time for the hydroprocessing reactor is now possible.
  • The invention will be described in further detail below and in conjunction with the attached drawing.
  • FIG. 1 is a schematic illustration of an embodiment of the process of the invention.
  • FIG. 2 is a schematic illustration of an embodiment of the process of the invention.
  • Referring now to the process and apparatus 1 schematically depicted in FIG. 1, there is shown a crude distillation unit 3 from which its bottom stream is sent to a vacuum distillation unit (VDU) 4. The effluent from the vacuum distillation unit 4 is sent tot a solvent dissolution unit 7. In solvent dissolution unit 7 the effluent coming directly from VDU 4 is mixed with a solvent 6. Solvent 6 is chosen from the group of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams.
  • According to another embodiment an additional stream 2, e.g. the effluent from a crude or distillation unit (CDU), is also fed to solvent dissolution unit 7 and mixed with solvent 6 and the effluent coming from VDU 4. By mixing the atmospheric residue or vacuum residue with a specific type of solvent the aggregation of asphaltenes in the mixture thus obtained is significantly reduced. Also the sulphur loading of the mixed stream 15 is lower than the sulphur loading of an untreated effluent coming from VDU 4 and/or CDU 2.
  • Mixed stream 15, i.e. the effluent from the solvent dissolution unit 7, and hydrogen 8 are further processed in hydroprocessing units 13, for example hydrodesulphurisation, producing individual streams 9, mainly comprising ammonia, stream 10, mainly comprising H2S, stream 11, mainly comprising C2and stream 13, mainly comprising C3+C4. The effluent from hydroprocessing unit 13 is sent to another hydroprocessing unit 14, for example a resid hydrocracker, a FCC unit or a coker unit.
  • By mixing solvent 6 with atmospheric residue and/or a vacuum residue the viscosity of feed 15 is significantly reduced. In addition, not only the viscosity of feed 15 is significantly reduced but the metal content of feed 15 is also significantly reduced. Another possible benefit of the mixing step with solvent is that the hydrogen content of feed 16 may be improved.
  • FIG. 2 is a schematic illustration of another embodiment of the process of the invention. The essential difference between the process shown in FIG. 1 and FIG. 2 is the presence of a deasphalting unit 5 located between vacuum distillation unit 4 and solvent dissolution unit 7. In deasphalting unit 5 the effluent from vacuum distillation unit 4 is brought into contact with a solvent stream 17, resulting in a stream 18, i.e. a stream having low content asphaltenes, and a stream 19, i.e. a stream having a high content asphaltenes. Stream 19 is sent to solvent dissolution unit 7 and mixed with solvent 6, i.e. steam cracker cracked distillate (CD) and/or steam cracker carbon black oil (CBO) and/or low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and/or aromatic rich hydrocarbons streams.
  • The attached Figures and examples represent alternative embodiments of the overall invention. The Figures and examples pertaining to the invention are intended to be viewed as exemplary embodiments within the scope of the overall invention as claimed.
  • EXAMPLE 1
  • The Saturates, aromatics, resins and asphaltenes (SARA) analysis of cracked distillate (CD) from steam cracker is 7.76/92.24/0/0. The 340+ deg C. residue (AHAR) from Arab heavy crude oil has the SARA analysis 53.7/34.8/3.1/8.1. The combination of these streams in different weight proportions is analysed in the below table and the predicted stable asphaltenes concentration for these combinations is presented below.
  • 75% AHAR + 50% AHAR + 25% AHAR +
    100% AHAR 25% CD 50% CD 75% CD 100% CD
    Asphaltenes 8.1 6.08 4.05 2.03 0
    Saturates 53.7 42.21 30.73 19.24 7.76
    Aromatics 34.8 49.16 63.52 77.88 92.24
    Resins 3.1 2.33 1.55 0.78 0.00
    Predicted stable 4.56 6.61 8.66 10.71 12.77
    Asphaltene concentration
    in mixture from aromatics
    and resins concentration in
    mixture
  • As can be seen from the table, stable asphaltenes combinations can be obtained in the mixture of AHAR with CD in all proportions exceeding ˜25 wt % CD in the mixture.
  • EXAMPLE 2
  • The Saturates, aromatics, resins and asphaltenes (SARA) analysis of Arab light 340+ deg C. cut (ALAR) is 61.8/30.5/3.4/3.5. The 340+ deg C. residue (AHAR) from Arab heavy crude oil has the SARA analysis 53.7/34.8/3.1/8.1. The combination of these streams in different weight proportions is analysed in the below table and the predicted stable asphaltenes concentration for these combinations based on the concentration of resins and aromatics in the combined mixture is presented.
  • 75% 50% 25%
    AHAR + AHAR + AHAR +
    100% 25% 50% 75% 100%
    AHAR ALAR ALAR ALAR ALAR
    Asphaltenes 8.1 6.95 5.80 4.65 3.5
    Saturates 53.7 55.73 57.75 59.78 61.8
    Aromatics 34.8 33.73 32.65 31.58 30.5
    Resins 3.1 3.18 3.25 3.33 3.4
    Predicted stable 4.56 4.40 4.25 4.10 3.95
    Asphaltene
    concentration in
    mixture from
    aromatics and
    resins
    concentration in
    mixture
  • As can be seen from the table, stable asphaltenes combinations can be obtained in the mixture of AHAR and ALAR when ALAR concentration in the mixture is above 75 wt %.
  • EXAMPLE 3
  • Aijun Guo et al, Fuel processing technology 89 (2008) 643-650 provide the Saturates, aromatics, resins and asphaltenes (SARA) analysis of Jinzhou vacuum residue (JnVR) as 17.2/29.6/51.3/1.9. The 340+ deg C. residue (AHAR) from Arab heavy crude oil has the SARA analysis 53.7/34.8/3.1/8.1. The combination of these streams in different weight proportions is analysed in the below table.
  • 75% 50% 25%
    100% AHAR + AHAR + AHAR + 100%
    AHAR 25% JnVR 50% JnVR 75% JnVR JnVR
    Asphaltenes 8.1 6.55 5.00 3.45 1.9
    Saturates 53.7 44.58 35.45 26.33 17.20
    Aromatics 34.8 33.50 32.20 30.90 29.60
    Resins 3.1 15.15 27.20 39.25 51.30
    Predicted stable 4.56 6.18 7.80 9.43 11.05
    Asphaltene
    concentration in
    mixture from
    aromatics and
    resins
    concentration in
    mixture
  • As can be seen from the above table, asphaltenes are stable in the mixture containing more than 25 wt % JnVR. This example has been provided as it has a different distribution of resins as compared to example 1. Operating refineries that process a crude basket having asphaltenes-rich and asphaltenes-lean crudes and have different crude units for these different crude types can benefit from a combination of residues from asphaltenes-rich and asphaltenes-lean crude oils and process them together in a hydrocracking unit.
  • EXAMPLE 4
  • The Saturates, aromatics, resins and asphaltenes (SARA) analysis of Arab light 340+ deg C. cut (ALAR) is 61.8/30.5/3.4/3.5. The 340+ deg C. residue (AHAR) from Arab heavy crude oil has the SARA analysis 53.7/34.8/3.1/8.1. The Saturates, aromatics, resins and asphaltenes (SARA) analysis of cracked distillate (CD) from steam cracker is 7.76/92.24/0/0. The combination of these streams in different weight proportions is analysed in the below table.
  • 75% 55% 40%
    AHAR + AHAR + AHAR +
    15% 25% 40%
    100% ALAR + 10% ALAR + 20% ALAR + 20% 100%
    AHAR CD CD CD ALAR 100% CD
    Asphaltenes 8.1 6.60 5.33 2.64 3.5 0
    Saturates 53.7 50.32 46.54 23.23 61.8 7.76
    Aromatics 34.8 39.90 45.21 52.86 30.5 92.24
    Resins 3.1 2.84 2.56 1.13 3.4 0.00
    Predicted 4.56 5.29 6.05 6.99 3.95 12.77
    stable
    Asphaltene
    concentration
    in mixture
    from
    aromatics and
    resins
    concentration
    in mixture
  • As can be seen from the above table with certain combinations of AHAR, ALAR and CD it is possible to keep asphaltenes from precipitating out.

Claims (11)

1. A process for the preparation of a feedstock for a hydroprocessing unit, wherein said feedstock is based on crude oil containing asphaltenes, said process comprising the steps of:
mixing said crude oil with a solvent, wherein said solvent includes at least one of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, wherein a mixing ratio of said solvent to said crude oil is such that no aggregation of asphaltenes in said combined mixture of solvent and crude oil takes place under mixing conditions; and
feeding said combined mixture of solvent and crude oil to one or more hydroprocessing units.
2. The process according to claim 1, wherein said combined mixture of solvent and crude oil prior to entering one or more hydroprocessing units, or feed heaters thereof, has a S value, measured as per ASTMD7157-12, of greater than 1.
3. The process according to claim 1, wherein said crude oil is a bottom stream from a crude oil distillation unit (CDU) and/or vacuum distillation unit (VDU).
4. The process according to claim 1, further comprising deasphalting said crude oil, and separating the crude oil thus deasphalted in a stream having a low content of asphaltenes and a stream having a high content of asphaltenes, wherein said stream having a high content of asphaltenes is mixed with said solvent.
5. The process according to claim 1, wherein said one or more hydroprocessing units are chosen from the group of a resid hydrocracking unit and a coking unit.
6. The process according to claim 1, wherein said combined mixture of solvent and crude oil comprises 25 wt. % or more of cracked distillate, based on the total weight of the feed blend.
7. The process according to claim 1, wherein said combined mixture of solvent and crude oil comprises more than 25 wt. % of low asphaltenes containing crude oil, atmospheric or vacuum residue, based on the total weight of the feed blend.
8. The process according to claim 1, wherein said combined mixture of solvent and crude oil comprises a maximum of 55 wt. % of the higher asphaltenes containing crude stream in combination with lower asphaltenes containing crude oils and aromatic streams.
9. The use of a solvent including at least one of steam cracker cracked distillate (CD), steam cracker carbon black oil (CBO), low asphaltenes containing crude oil residue having a boiling point above 300 deg C. and aromatic rich hydrocarbons streams, or combinations thereof, with crude oil for at least one of reducing a metal content, reducing a viscosity, and reducing a sulphur content of a feed comprising said solvent and said crude oil for a hydroprocessing unit.
10. (canceled)
11. (canceled)
US15/120,667 2014-02-25 2014-12-23 Process for the preparation of a feedstock for a hydroprocessing unit Active US10125329B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14156621.6 2014-02-25
EP14156621 2014-02-25
EP14156621 2014-02-25
PCT/EP2014/079224 WO2015128043A1 (en) 2014-02-25 2014-12-23 A process for the preparation of a feedstock for a hydroprocessing unit

Publications (2)

Publication Number Publication Date
US20170015916A1 true US20170015916A1 (en) 2017-01-19
US10125329B2 US10125329B2 (en) 2018-11-13

Family

ID=50156654

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/120,667 Active US10125329B2 (en) 2014-02-25 2014-12-23 Process for the preparation of a feedstock for a hydroprocessing unit

Country Status (9)

Country Link
US (1) US10125329B2 (en)
EP (1) EP3110913B1 (en)
JP (2) JP6637447B2 (en)
KR (1) KR102387296B1 (en)
CN (1) CN106164224B (en)
EA (1) EA032741B1 (en)
ES (1) ES2659025T3 (en)
SG (1) SG11201606307PA (en)
WO (1) WO2015128043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157631A1 (en) * 2019-01-29 2020-08-06 Sabic Global Technologies B.V. Conversion of heavy ends of crude oil or whole crude oil to high value chemicals using a combination of thermal hydroprocessing, hydrotreating with steam crackers under high severity conditions to maximize ethylene, propylene, butenes and benzene
WO2020157595A1 (en) * 2019-01-29 2020-08-06 Sabic Global Technologies B.V. Methods and systems for upgrading crude oils, heavy oils, and residues
US11130921B2 (en) 2017-02-02 2021-09-28 Sabic Global Technologies B.V. Process for the preparation of a feedstock for a hydroprocessing unit and an integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096974A1 (en) 2018-11-07 2020-05-14 Exxonmobil Chemical Patents Inc. Process for c5+ hydrocarbon conversion
CN116867877A (en) * 2020-12-28 2023-10-10 沙特基础工业全球技术公司 Preparation of olefins and aromatics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279090B2 (en) * 2004-12-06 2007-10-09 Institut Francais Du Pe'trole Integrated SDA and ebullated-bed process
US8696888B2 (en) * 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640765A (en) * 1984-09-04 1987-02-03 Nippon Oil Co., Ltd. Method for cracking heavy hydrocarbon oils
JPS6162591A (en) * 1984-09-04 1986-03-31 Nippon Oil Co Ltd Method of converting heavy oil to light oil
JPS61130394A (en) * 1984-11-29 1986-06-18 Nippon Oil Co Ltd Method for converting heavy oil into light oil
US5215649A (en) * 1990-05-02 1993-06-01 Exxon Chemical Patents Inc. Method for upgrading steam cracker tars
US6270654B1 (en) 1993-08-18 2001-08-07 Ifp North America, Inc. Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
FR2764902B1 (en) 1997-06-24 1999-07-16 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF HEAVY OIL FRACTIONS COMPRISING A STEP OF CONVERSION INTO A BOILING BED AND A STEP OF HYDROCRACKING
CA2281058C (en) 1998-09-03 2008-08-05 Ormat Industries Ltd. Process and apparatus for upgrading hydrocarbon feeds containing sulfur, metals, and asphaltenes
DE60006783T2 (en) 1999-01-11 2004-09-30 Texaco Development Corp. INTEGRATED SOLVENT DASPHALTING, GASIFICATION AND HYDROGEN TREATMENT PROCESS
CN1195822C (en) 2001-04-28 2005-04-06 中国石油化工股份有限公司 Process for viscosity breaking of deoiled asphalt
US7214308B2 (en) 2003-02-21 2007-05-08 Institut Francais Du Petrole Effective integration of solvent deasphalting and ebullated-bed processing
JP2005307103A (en) 2004-04-26 2005-11-04 Idemitsu Kosan Co Ltd Method for carrying out hydrogenation refining of heavy oil
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
US7691788B2 (en) 2006-06-26 2010-04-06 Schlumberger Technology Corporation Compositions and methods of using same in producing heavy oil and bitumen
US20080093262A1 (en) 2006-10-24 2008-04-24 Andrea Gragnani Process and installation for conversion of heavy petroleum fractions in a fixed bed with integrated production of middle distillates with a very low sulfur content
US7938952B2 (en) 2008-05-20 2011-05-10 Institute Francais Du Petrole Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
US8197668B2 (en) * 2009-07-09 2012-06-12 Exxonmobil Chemical Patents Inc. Process and apparatus for upgrading steam cracker tar using hydrogen donor compounds
JP5460224B2 (en) * 2009-10-08 2014-04-02 出光興産株式会社 Method for producing highly aromatic hydrocarbon oil
FR2951735B1 (en) 2009-10-23 2012-08-03 Inst Francais Du Petrole METHOD FOR CONVERTING RESIDUE INCLUDING MOBILE BED TECHNOLOGY AND BOILING BED TECHNOLOGY
US9005430B2 (en) 2009-12-10 2015-04-14 IFP Energies Nouvelles Process and apparatus for integration of a high-pressure hydroconversion process and a medium-pressure middle distillate hydrotreatment process, whereby the two processes are independent
US10400184B2 (en) 2011-08-31 2019-09-03 Exxonmobil Research And Engineering Company Hydroprocessing of heavy hydrocarbon feeds using small pore catalysts
FR2981659B1 (en) 2011-10-20 2013-11-01 Ifp Energies Now PROCESS FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCONVERSION STEP AND A FIXED BED HYDROTREATMENT STEP FOR THE PRODUCTION OF LOW SULFUR CONTENT
FR3027912B1 (en) 2014-11-04 2018-04-27 IFP Energies Nouvelles PROCESS FOR PRODUCING HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBON LOAD USING A SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP
FR3027911B1 (en) 2014-11-04 2018-04-27 IFP Energies Nouvelles METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCRACKING STEP, MATURATION STEP AND SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS
FR3033797B1 (en) 2015-03-16 2018-12-07 IFP Energies Nouvelles IMPROVED PROCESS FOR CONVERTING HEAVY HYDROCARBON LOADS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279090B2 (en) * 2004-12-06 2007-10-09 Institut Francais Du Pe'trole Integrated SDA and ebullated-bed process
US8696888B2 (en) * 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130921B2 (en) 2017-02-02 2021-09-28 Sabic Global Technologies B.V. Process for the preparation of a feedstock for a hydroprocessing unit and an integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals
WO2020157631A1 (en) * 2019-01-29 2020-08-06 Sabic Global Technologies B.V. Conversion of heavy ends of crude oil or whole crude oil to high value chemicals using a combination of thermal hydroprocessing, hydrotreating with steam crackers under high severity conditions to maximize ethylene, propylene, butenes and benzene
WO2020157595A1 (en) * 2019-01-29 2020-08-06 Sabic Global Technologies B.V. Methods and systems for upgrading crude oils, heavy oils, and residues
CN113710776A (en) * 2019-01-29 2021-11-26 沙特基础全球技术有限公司 Conversion of heavy fractions of crude oil or whole crude oil to high value chemicals using thermal hydrotreating, hydrotreating in combination with steam cracker under high severity conditions to maximize ethylene, propylene, butenes and benzene
US11680028B2 (en) 2019-01-29 2023-06-20 Sabic Global Technologies B.V. Methods and systems for upgrading crude oils, heavy oils, and residues
US11827857B2 (en) 2019-01-29 2023-11-28 Sabic Global Technologies B.V. Conversion of heavy ends of crude oil or whole crude oil to high value chemicals using a combination of thermal hydroprocessing, hydrotreating with steam crackers under high severity conditions to maximize ethylene, propylene, butenes and benzene

Also Published As

Publication number Publication date
EP3110913B1 (en) 2017-11-29
JP2019104920A (en) 2019-06-27
SG11201606307PA (en) 2016-08-30
ES2659025T3 (en) 2018-03-13
EA201691359A1 (en) 2016-12-30
EP3110913A1 (en) 2017-01-04
CN106164224A (en) 2016-11-23
JP6637447B2 (en) 2020-01-29
EA032741B1 (en) 2019-07-31
KR102387296B1 (en) 2022-04-14
KR20160146675A (en) 2016-12-21
US10125329B2 (en) 2018-11-13
WO2015128043A1 (en) 2015-09-03
CN106164224B (en) 2018-09-14
JP2017509778A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US8197668B2 (en) Process and apparatus for upgrading steam cracker tar using hydrogen donor compounds
US8709233B2 (en) Disposition of steam cracked tar
US6303842B1 (en) Method of producing olefins from petroleum residua
US7214308B2 (en) Effective integration of solvent deasphalting and ebullated-bed processing
US9982203B2 (en) Process for the conversion of a heavy hydrocarbon feedstock integrating selective cascade deasphalting with recycling of a deasphalted cut
US10435629B2 (en) Production of carbon blacks and resins from hydrotreated catalytic slurry oil
US7815791B2 (en) Process and apparatus for using steam cracked tar as steam cracker feed
US10000710B2 (en) Pyrolysis tar upgrading process
US9765267B2 (en) Methods and systems for treating a hydrocarbon feed
JP6654622B2 (en) Integrated manufacturing process for asphalt, raw petroleum coke, and liquid and gas coking unit products
US10125329B2 (en) Process for the preparation of a feedstock for a hydroprocessing unit
KR20210007893A (en) Process for converting a feedstock containing pyrolysis oil
CA2902355A1 (en) Increased production of fuels by integration of vacuum distillation with solvent deasphalting
MX2014011112A (en) Integration of solvent deasphalting with resin hydroprocessing and with delayed coking.
KR101844111B1 (en) Solvent-assisted delayed coking process
US20200181497A1 (en) Upgrading challenged feeds and pitches produced therefrom
CN114901786A (en) Process for producing light olefins from crude oil
US10570342B2 (en) Deasphalting and hydroprocessing of steam cracker tar
US9926499B2 (en) Process for refining a hydrocarbon feedstock of the vacuum residue type using selective deasphalting, a hydrotreatment and a conversion of the vacuum residue for production of gasoline and light olefins
US3338818A (en) Process for converting asphaltenecontaining hydrocarbon feeds
US20110180456A1 (en) Integrated Process and System for Steam Cracking and Catalytic Hydrovisbreaking with Catalyst Recycle
FR3097229A1 (en) OLEFIN PRODUCTION PROCESS INCLUDING HYDROTREATMENT, DESASPHALTING, HYDROCRACKING AND VAPOCRAQUAGE

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAUDI BASIC INDUSTRIES CORPORATION, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OPRINS, ARNO JOHANNES MARIA;HOUSMANS, THOMAS HUBERTUS MARIA;RAJAGOPALAN, VIJAYANAND;AND OTHERS;SIGNING DATES FROM 20160914 TO 20161129;REEL/FRAME:041372/0840

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OPRINS, ARNO JOHANNES MARIA;HOUSMANS, THOMAS HUBERTUS MARIA;RAJAGOPALAN, VIJAYANAND;AND OTHERS;SIGNING DATES FROM 20160914 TO 20161129;REEL/FRAME:041372/0840

AS Assignment

Owner name: SAUDI BASIC INDUSTRIES CORPORATION, SAUDI ARABIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY'S ZIP CODE PREVIOUSLY RECORDED ON REEL 041372 FRAME 0840. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:OPRINS, ARNO JOHANNES MARIA;HOUSMANS, THOMAS HUBERTUS MARIA;RAJAGOPALAN, VIJAYANAND;AND OTHERS;SIGNING DATES FROM 20160914 TO 20161129;REEL/FRAME:043417/0660

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND RECEIVING PARTY'S ZIP CODE PREVIOUSLY RECORDED ON REEL 041372 FRAME 0840. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:OPRINS, ARNO JOHANNES MARIA;HOUSMANS, THOMAS HUBERTUS MARIA;RAJAGOPALAN, VIJAYANAND;AND OTHERS;SIGNING DATES FROM 20160914 TO 20161129;REEL/FRAME:043417/0660

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4