US20160355243A1 - Rubrail assembly - Google Patents

Rubrail assembly Download PDF

Info

Publication number
US20160355243A1
US20160355243A1 US14/732,071 US201514732071A US2016355243A1 US 20160355243 A1 US20160355243 A1 US 20160355243A1 US 201514732071 A US201514732071 A US 201514732071A US 2016355243 A1 US2016355243 A1 US 2016355243A1
Authority
US
United States
Prior art keywords
base element
rubrail
assembly
recited
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/732,071
Inventor
Richard K. Hynes
Michael Casey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barbour Plastics Inc
Original Assignee
Barbour Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barbour Plastics Inc filed Critical Barbour Plastics Inc
Priority to US14/732,071 priority Critical patent/US20160355243A1/en
Assigned to Barbour Plastics Inc. reassignment Barbour Plastics Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASEY, MICHAEL, HYNES, RICHARD K.
Publication of US20160355243A1 publication Critical patent/US20160355243A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/02Fenders integral with waterborne vessels or specially adapted therefor, e.g. fenders forming part of the hull or incorporated in the hull; Rubbing-strakes

Definitions

  • the subject disclosure relates to rubrail assemblies used with vessels such as boats or ships, and more particularly, to rubrail assemblies that includes a base element and a trim element which is inserted into the base element, and still more particularly, to rubrail assemblies which include one or more sliding surfaces which facilitate inserting the trim element into the base element.
  • Rubrails are well known in the boat and ship industry, where the rubrails are usually provided along the outside upper edge of the hull from and around the bow to the stern, including extending around the transom.
  • the rubrail functions to protect the hull when the boat or ship bumps against an object outside of the vessel, such as the side of a wharf when docking.
  • Rubrails can be fabricated from wood, where the wood is shaped to fit the particular boat or ship.
  • present-day rubrails, and particularly replacement rubrails are fabricated from stainless steel, aluminum, and/or rigid and semi-rigid vinyl.
  • Stainless steel rubrails offer the maximum durability and a classy style, where many rigid vinyl/PVC rubrails are designed to accept a stainless steel overlap to provide a decorative appearance.
  • aluminum and stainless steel rubrails are expensive, and sometimes difficult to work with, particularly when installing a rubrail that extends completely around the boat or ship from the bow to the stern. As a result, many rubrail products are made entirely out of vinyl material.
  • a disadvantage of a rubrail made entirely out of rigid vinyl is that it does not cushion the impact well when the boat bumps against an object such as a dock. Additionally, rigid rubrails are difficult to install around curved surfaces due to their inflexibility.
  • rubrails are typically secured to the hull using fasteners and/or an adhesive.
  • fasteners tend press into or pull through the soft material creating an unpleasant bumpy appearance.
  • a trim element such as a rope or flexible tube
  • a rope insert is often pressed into the gap formed between the two flexible outer ends of the rubrail base so as to cover the fasteners which secure the rubrail to the hull.
  • the use of a rope insert is less aesthetically pleasing than a tube insert and is often times more difficult to install in a smooth, straight manner.
  • pressing a flexible tube insert into the gap formed between the outer ends of the rubrail can be difficult due to the friction caused by the sliding contact between the soft tube material and the relatively soft and flexible outer ends of the rubrail base.
  • the present disclosure is directed to a rubrail assemblies used in vessels, such as boats or ships which include, among other elements, a base element and a trim or insert element.
  • the base element has a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel or gap therebetween.
  • the elongated trim element includes a head portion and an engagement portion which is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element.
  • At least one or both of the base element and the trim element include at least one sliding surface that has a coefficient of friction which facilitates insertion of the engagement portion of the trim element into the longitudinal channel of the base element.
  • any number of sliding surfaces can be used without departing from the scope of the present disclosure and the number and size of the sliding surfaces used can be based on factors such as the types of materials used for the assembly and the number of contact points between the trim element and the base element during the assembly process.
  • the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces can have a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
  • the sliding surfaces can be formed using a semi-rigid vinyl material. It is envisioned that, the main body portion, the first and second end portions and the first and second sliding surfaces of the base element can be formed as a unitary structure by coextrusion.
  • each of the first and second end portions of the base element has a curved profile.
  • the main body portion of the base element can be formed using a polymer (e.g., a vinyl or PVC) which has a hardness that is greater than that of a polymer used to form the first and second end portions.
  • a polymer e.g., a vinyl or PVC
  • the end portions of the base element are flexible and cushion the impact that can be created during vessel docking and the main body portion is sufficiently rigid so as to enable a secure connection of the rubrail assembly to the hull.
  • the engagement portion of the trim element can include a collapsible barb. It is envisioned that the collapsible barb can include third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element. It is presently preferred that in certain embodiments, the head portion, engagement portion and third and fourth sliding surfaces of the trim element are formed as a unitary structure by coextrusion. It is further envisioned that the outer surface of the head portion of the trim element can have a curved profile which extends over an inner edge of each of the first and second end portions of the base element.
  • the present disclosure is further directed to a rubrail assembly that includes, inter alia, a base element and an elongated trim element.
  • the base element has a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel therebetween.
  • the elongated trim element includes a head portion and an engagement portion which has a collapsible barb that is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element.
  • At least one or both of the base element and the trim element can include at least one sliding surface that has a coefficient of friction which facilitates insertion of the barbed engagement portion of the trim element into the longitudinal channel of the base element.
  • the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
  • the collapsible barb includes third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
  • main body portion, first and second end portions and first and second sliding surfaces of the base element can be formed as a unitary structure by coextrusion.
  • head portion, engagement portion and third and fourth sliding surfaces of the trim element can be formed as a unitary structure by coextrusion.
  • the outer surface of each of the first and second end portions of the base element has a curved profile.
  • the outer surface of the head portion of the trim element has a curved profile which extends over an inner edge of each of the first and second end portions of the base element.
  • FIG. 1 is a perspective view of a base element used in a rubrail assembly which has been constructed in accordance with an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a trim element that can be used in conjunction with the base element of FIG. 1 ;
  • FIG. 3 is a perspective view illustrating the base element and trim element of FIGS. 1 and 2 , respectively, prior to assembly;
  • FIG. 4 is a perspective view illustrating the trim element of FIG. 2 being partially inserted into the base element of FIG. 1 ;
  • FIG. 5 is a perspective view illustrating the trim element of FIG. 2 fully inserted into the base element of FIG. 1 to form a completed assembly.
  • FIGS. 1 through 5 illustrate a rubrail assembly which has been constructed in accordance with an embodiment of the present invention and designated as reference number 100 .
  • Rubrail assembly 100 can be used in vessels, such as boats or ships and includes, among other elements, a base element 20 and an insert or trim element 40 .
  • the base element 20 has a main body portion 24 and first and second end portions 26 a/b which extend from opposed lateral edges of the main body portion 24 .
  • a longitudinal channel 30 is defined between the first and second end portions 26 a/b .
  • the upper portion of the channel 30 has a gap width “g”.
  • rubrail assembly 100 is shown in the figures and that typically a rubrail is a long extruded structure which can extend for a length sufficient to cover the length of a boat without a break or seam.
  • the elongated trim element 40 includes a head portion 42 and an engagement portion 46 which, as will be described in detail below, is inserted into the longitudinal channel 30 of the base portion 20 so as to secure the trim element 40 to the base element.
  • Base element 20 includes a bottom surface 30 that is adapted for attachment to a boat gunwale (also known as a gunnel), and a top surface 31 .
  • the base element 20 also includes a leg 32 adapted to cover the gap created by the typical “shoe-box” construction, whereby the deck molding is fitted over the hull molding like a shoe-box.
  • a rubrail without a leg is contemplated to be within the scope of the present disclosure.
  • the main body portion 24 is formed from a material, such as vinyl, having a first hardness and the first and second end portions 26 a / 26 b are of a material, such as a vinyl, having a second hardness.
  • the first hardness of the material used for the main body portion 24 is greater than the hardness of the material used for the first and second end portions 26 a/b .
  • the first and second end portions 26 a / 26 b can be formed from a relatively flexible plastic such as Teknor Apex number 88N059C having a durometer of about Shore A 84.
  • the main body portion 24 can be formed from a relatively stiff plastic such as for example, Rimtec 3299, Teknor 12-G2063C-102, Rimtec 3257, having a durometer of about Shore A 99, or a stiffer material such as Axiall 7465 or Rimtec 4504. Of course other suitable materials, of other hardnesses, may be used as known to one skilled in the art.
  • the first end portion 26 a of the base element 20 includes a first sliding surface 36 a and the second end portion 26 b of the base member 20 includes a second sliding surface 36 b .
  • Each of the first and second sliding surfaces 36 a / 36 b have a coefficient of friction which facilitates insertion of the engagement portion 46 of the trim element 30 into the longitudinal channel 30 of the base element 20 .
  • Base element 20 is a unitary structure which has been formed by coextrusion.
  • the main body portion 24 , the first and second end portions 26 a / 26 b and the first and second sliding surfaces 36 a / 36 b of the base element 20 are formed as a unitary structure by coextrusion.
  • any one of these elements could be formed separately and joined to the other(s) using a variety of known techniques.
  • the main body portion 24 and the end portions 26 a / 26 b could be formed as a unitary structure using a coextrusion process and then sliding surfaces 36 a / 36 b could be added to the extruded structure using adhesive.
  • An exemplary coextrusion process in described in U.S. Pat. No. 5,829,378 which is incorporated herein by reference in its entirety.
  • sliding surfaces can be used without departing from the scope of the present invention and the number and size of the sliding surfaces used can be based on factors such as the types of materials used for the assembly and the number of contact points between the trim element and the base element during the assembly process.
  • FIG. 2 provides a perspective view of trim element 40 .
  • the engagement portion 46 of the trim element includes a collapsible barb 50 .
  • Barb 50 is wedge-shaped and is attached to the head 42 of the trim element 40 by first and second support arms 52 / 54 .
  • Barb 50 has a tip section 56 that terminates in longitudinally extending lateral flanges 58 a / 58 b.
  • Collapsible barb 50 includes two sliding surfaces 60 a / 60 b that each have a coefficient of friction which facilitates insertion of the engagement portion 46 of the trim element 40 into the longitudinal channel 30 of the base element 20 .
  • FIG. 2 illustrates the two sliding surfaces 60 a / 60 b as being interconnected/unitary. However, these surfaces do not have to be connected and extend over tip 56 and could terminate before reaching the tip 56 of barb 50 .
  • the head portion 42 , engagement portion 46 and sliding surfaces 60 a / 60 b of the trim element 40 are formed as a unitary structure by coextrusion.
  • the base element 20 it is envisioned that any one of these elements could be formed separately and joined to the other(s) using a variety of know techniques.
  • the head portion 42 and the engagement portion 46 could be formed as a unitary structure using a coextrusion process and then sliding surfaces 60 a / 60 b could be added to the extruded structure using adhesive.
  • the outer surface 43 of the head portion 42 of the trim element 40 has a curved profile.
  • the profile provides a smooth external appearance for the rubrail assembly 100 .
  • this outer surface could be provided with a chrome of stainless steel finish for example.
  • the finishing material could be added during the extrusion process or following the extrusion process.
  • the color of the material used in the trim element can match that of the base element or a different color can be used for aesthetic reasons.
  • the head portion 42 of the trim element 40 extends over an inner edge of the first and second end portions 26 a / 26 b of the base element 20 .
  • the engagement portion 46 of the trim element 40 is shown as a collapsible barb, it should be understood that a variety of structures could be utilized which interact with the first and second end portions in order to secure the trim element to the base element.
  • a hollow tube could extend from the head portion and function as the engagement portion.
  • the outer periphery of the tube could include a sliding surface to facilitate insertion into the channel and the diameter of the uncollapsed tube element could be larger than the width of the gap “g” between the first and second end portions.
  • FIGS. 3 through 5 illustrate an exemplary method for installing rubrail assembly 100 .
  • the base element 20 is secured to the hull of a vessel by known techniques, which include for example, the use of fasteners.
  • the tip 56 of trim element 40 is aligned with the longitudinal channel 30 formed in base element 20 .
  • the barb 50 is pressed into the gap “g” between the first and second end portions 26 a / 26 b of base element 20 .
  • the sliding surfaces 36 a / 36 b formed on each of the first and second end portions 26 a / 26 b contact the sliding surfaces 60 a / 60 b formed on the barb 50 of the trim element 40 .

Abstract

Disclosed are rubrail assemblies used in vessels, such as boats or ships which include, among other elements, a base element and a trim or insert element. The base element has a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel or gap therebetween. The elongated trim element includes a head portion and an engagement portion which is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element. One or both of the base element and the trim element include at least one sliding surface that has a coefficient of friction which facilitates insertion of the engagement portion of the trim element into the longitudinal channel of the base element.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The subject disclosure relates to rubrail assemblies used with vessels such as boats or ships, and more particularly, to rubrail assemblies that includes a base element and a trim element which is inserted into the base element, and still more particularly, to rubrail assemblies which include one or more sliding surfaces which facilitate inserting the trim element into the base element.
  • 2. Background of the Related Art
  • Rubrails are well known in the boat and ship industry, where the rubrails are usually provided along the outside upper edge of the hull from and around the bow to the stern, including extending around the transom. The rubrail functions to protect the hull when the boat or ship bumps against an object outside of the vessel, such as the side of a wharf when docking.
  • Rubrails can be fabricated from wood, where the wood is shaped to fit the particular boat or ship. However, due to the large expense of using wood, present-day rubrails, and particularly replacement rubrails, are fabricated from stainless steel, aluminum, and/or rigid and semi-rigid vinyl. Stainless steel rubrails offer the maximum durability and a classy style, where many rigid vinyl/PVC rubrails are designed to accept a stainless steel overlap to provide a decorative appearance. However, aluminum and stainless steel rubrails are expensive, and sometimes difficult to work with, particularly when installing a rubrail that extends completely around the boat or ship from the bow to the stern. As a result, many rubrail products are made entirely out of vinyl material.
  • A disadvantage of a rubrail made entirely out of rigid vinyl is that it does not cushion the impact well when the boat bumps against an object such as a dock. Additionally, rigid rubrails are difficult to install around curved surfaces due to their inflexibility.
  • Moreover, rubrails are typically secured to the hull using fasteners and/or an adhesive. When a flexible rubrail is used, the fasteners tend press into or pull through the soft material creating an unpleasant bumpy appearance.
  • U.S. Pat. No. 5,829,378 offers a solution to this dilemma and describes a coextruded rubrail which has an outer section formed of relatively flexible vinyl and base formed with rigid vinyl. U.S. Pat. No. 5,829, 378 is incorporated herein by reference in its entirety.
  • In rubrails like the one described in U.S. Pat. No. 5,829,378, a trim element, such as a rope or flexible tube, is often pressed into the gap formed between the two flexible outer ends of the rubrail base so as to cover the fasteners which secure the rubrail to the hull. To some, the use of a rope insert is less aesthetically pleasing than a tube insert and is often times more difficult to install in a smooth, straight manner. However, pressing a flexible tube insert into the gap formed between the outer ends of the rubrail can be difficult due to the friction caused by the sliding contact between the soft tube material and the relatively soft and flexible outer ends of the rubrail base.
  • Accordingly, there is presently a need for an extruded rubrail assembly that can be easily and inexpensively manufactured, and which provides a simple and quick method for attaching the rubrail assembly to the outer surface of the hull of a boat or ship, while providing an aesthetically pleasing appearance.
  • SUMMARY OF THE INVENTION
  • The present disclosure is directed to a rubrail assemblies used in vessels, such as boats or ships which include, among other elements, a base element and a trim or insert element. The base element has a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel or gap therebetween.
  • The elongated trim element includes a head portion and an engagement portion which is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element.
  • It is envisioned that at least one or both of the base element and the trim element include at least one sliding surface that has a coefficient of friction which facilitates insertion of the engagement portion of the trim element into the longitudinal channel of the base element. Those skilled in the art will readily appreciate that any number of sliding surfaces can be used without departing from the scope of the present disclosure and the number and size of the sliding surfaces used can be based on factors such as the types of materials used for the assembly and the number of contact points between the trim element and the base element during the assembly process.
  • In certain embodiments, the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces can have a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element. For example, the sliding surfaces can be formed using a semi-rigid vinyl material. It is envisioned that, the main body portion, the first and second end portions and the first and second sliding surfaces of the base element can be formed as a unitary structure by coextrusion.
  • In a preferred embodiment, the outer surface of each of the first and second end portions of the base element has a curved profile. Moreover, the main body portion of the base element can be formed using a polymer (e.g., a vinyl or PVC) which has a hardness that is greater than that of a polymer used to form the first and second end portions. As a result, the end portions of the base element are flexible and cushion the impact that can be created during vessel docking and the main body portion is sufficiently rigid so as to enable a secure connection of the rubrail assembly to the hull.
  • In an embodiment of the present disclosure, the engagement portion of the trim element can include a collapsible barb. It is envisioned that the collapsible barb can include third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element. It is presently preferred that in certain embodiments, the head portion, engagement portion and third and fourth sliding surfaces of the trim element are formed as a unitary structure by coextrusion. It is further envisioned that the outer surface of the head portion of the trim element can have a curved profile which extends over an inner edge of each of the first and second end portions of the base element.
  • The present disclosure is further directed to a rubrail assembly that includes, inter alia, a base element and an elongated trim element. The base element has a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel therebetween. The elongated trim element includes a head portion and an engagement portion which has a collapsible barb that is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element.
  • It is envisioned that at least one or both of the base element and the trim element can include at least one sliding surface that has a coefficient of friction which facilitates insertion of the barbed engagement portion of the trim element into the longitudinal channel of the base element.
  • In an embodiment of the present disclosure, the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element. Preferably, but not necessarily, in such a construction the collapsible barb includes third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
  • It is envisioned that the main body portion, first and second end portions and first and second sliding surfaces of the base element can be formed as a unitary structure by coextrusion. Moreover, it is envisioned that the head portion, engagement portion and third and fourth sliding surfaces of the trim element can be formed as a unitary structure by coextrusion.
  • In certain embodiments, the outer surface of each of the first and second end portions of the base element has a curved profile. Moreover, the outer surface of the head portion of the trim element has a curved profile which extends over an inner edge of each of the first and second end portions of the base element.
  • It should be appreciated that the present invention can be implemented and utilized in numerous ways, including without limitation as a process, an apparatus, a system, a device, a method now known and later developed. These and other unique features of the apparatus disclosed herein will become more readily apparent from the following description and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that those having ordinary skill in the art to which the disclosed system appertains will more readily understand how to make and use the same, reference may be had to the drawings wherein:
  • FIG. 1 is a perspective view of a base element used in a rubrail assembly which has been constructed in accordance with an embodiment of the present disclosure;
  • FIG. 2 is a perspective view of a trim element that can be used in conjunction with the base element of FIG. 1;
  • FIG. 3 is a perspective view illustrating the base element and trim element of FIGS. 1 and 2, respectively, prior to assembly;
  • FIG. 4 is a perspective view illustrating the trim element of FIG. 2 being partially inserted into the base element of FIG. 1; and
  • FIG. 5 is a perspective view illustrating the trim element of FIG. 2 fully inserted into the base element of FIG. 1 to form a completed assembly.
  • It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention. The specific design features of the present invention as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes will be determined in part by the particular intended application and use environment.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention overcomes many of the prior art problems associated with conventional rubrail designs. The advantages, and other features of the assembly disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain preferred embodiments taken in conjunction with the drawings which set forth representative embodiments of the present invention and wherein like reference numerals identify similar structural elements.
  • The invention has been described in detail with reference to preferred embodiments thereof. However, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.
  • Referring now to FIGS. 1 through 5, which illustrate a rubrail assembly which has been constructed in accordance with an embodiment of the present invention and designated as reference number 100. Rubrail assembly 100 can be used in vessels, such as boats or ships and includes, among other elements, a base element 20 and an insert or trim element 40. The base element 20 has a main body portion 24 and first and second end portions 26 a/b which extend from opposed lateral edges of the main body portion 24. A longitudinal channel 30 is defined between the first and second end portions 26 a/b. The upper portion of the channel 30 has a gap width “g”.
  • Those skilled in the art will readily appreciate that only a section of the rubrail assembly 100 is shown in the figures and that typically a rubrail is a long extruded structure which can extend for a length sufficient to cover the length of a boat without a break or seam.
  • The elongated trim element 40 includes a head portion 42 and an engagement portion 46 which, as will be described in detail below, is inserted into the longitudinal channel 30 of the base portion 20 so as to secure the trim element 40 to the base element.
  • With reference to FIG. 1 which provide a perspective view of base element 20. Base element 20 includes a bottom surface 30 that is adapted for attachment to a boat gunwale (also known as a gunnel), and a top surface 31. The base element 20 also includes a leg 32 adapted to cover the gap created by the typical “shoe-box” construction, whereby the deck molding is fitted over the hull molding like a shoe-box. Those skilled in the art will readily appreciate that a rubrail without a leg is contemplated to be within the scope of the present disclosure.
  • In the embodiment shown, the main body portion 24 is formed from a material, such as vinyl, having a first hardness and the first and second end portions 26 a/26 b are of a material, such as a vinyl, having a second hardness. In an exemplary embodiment, the first hardness of the material used for the main body portion 24 is greater than the hardness of the material used for the first and second end portions 26 a/b. For example, the first and second end portions 26 a/26 b can be formed from a relatively flexible plastic such as Teknor Apex number 88N059C having a durometer of about Shore A 84. The main body portion 24 can be formed from a relatively stiff plastic such as for example, Rimtec 3299, Teknor 12-G2063C-102, Rimtec 3257, having a durometer of about Shore A 99, or a stiffer material such as Axiall 7465 or Rimtec 4504. Of course other suitable materials, of other hardnesses, may be used as known to one skilled in the art.
  • The first end portion 26 a of the base element 20 includes a first sliding surface 36 a and the second end portion 26 b of the base member 20 includes a second sliding surface 36 b. Each of the first and second sliding surfaces 36 a/36 b have a coefficient of friction which facilitates insertion of the engagement portion 46 of the trim element 30 into the longitudinal channel 30 of the base element 20.
  • Base element 20 is a unitary structure which has been formed by coextrusion. In other words, the main body portion 24, the first and second end portions 26 a/26 b and the first and second sliding surfaces 36 a/36 b of the base element 20 are formed as a unitary structure by coextrusion. However, it is envisioned that any one of these elements could be formed separately and joined to the other(s) using a variety of known techniques. For example, the main body portion 24 and the end portions 26 a/26 b could be formed as a unitary structure using a coextrusion process and then sliding surfaces 36 a/36 b could be added to the extruded structure using adhesive. An exemplary coextrusion process in described in U.S. Pat. No. 5,829,378 which is incorporated herein by reference in its entirety.
  • As mentioned previously, those skilled in the art will readily appreciate that any number of sliding surfaces can be used without departing from the scope of the present invention and the number and size of the sliding surfaces used can be based on factors such as the types of materials used for the assembly and the number of contact points between the trim element and the base element during the assembly process.
  • Referring now to FIG. 2, which provides a perspective view of trim element 40. As shown, the engagement portion 46 of the trim element includes a collapsible barb 50. Barb 50 is wedge-shaped and is attached to the head 42 of the trim element 40 by first and second support arms 52/54. Barb 50 has a tip section 56 that terminates in longitudinally extending lateral flanges 58 a/58 b.
  • Collapsible barb 50 includes two sliding surfaces 60 a/60 b that each have a coefficient of friction which facilitates insertion of the engagement portion 46 of the trim element 40 into the longitudinal channel 30 of the base element 20. FIG. 2 illustrates the two sliding surfaces 60 a/60 b as being interconnected/unitary. However, these surfaces do not have to be connected and extend over tip 56 and could terminate before reaching the tip 56 of barb 50.
  • In the embodiment shown, the head portion 42, engagement portion 46 and sliding surfaces 60 a/60 b of the trim element 40 are formed as a unitary structure by coextrusion. However, like the base element 20, it is envisioned that any one of these elements could be formed separately and joined to the other(s) using a variety of know techniques. For example, the head portion 42 and the engagement portion 46 could be formed as a unitary structure using a coextrusion process and then sliding surfaces 60 a/60 b could be added to the extruded structure using adhesive.
  • The outer surface 43 of the head portion 42 of the trim element 40 has a curved profile. The profile provides a smooth external appearance for the rubrail assembly 100. Additionally, this outer surface could be provided with a chrome of stainless steel finish for example. The finishing material could be added during the extrusion process or following the extrusion process. Moreover, the color of the material used in the trim element can match that of the base element or a different color can be used for aesthetic reasons.
  • As shown in FIG. 5, when assembled, the head portion 42 of the trim element 40 extends over an inner edge of the first and second end portions 26 a/26 b of the base element 20.
  • As previously stated, although the engagement portion 46 of the trim element 40 is shown as a collapsible barb, it should be understood that a variety of structures could be utilized which interact with the first and second end portions in order to secure the trim element to the base element. For example, rather than a barb, a hollow tube could extend from the head portion and function as the engagement portion. In such a construction the outer periphery of the tube could include a sliding surface to facilitate insertion into the channel and the diameter of the uncollapsed tube element could be larger than the width of the gap “g” between the first and second end portions.
  • Referring now to FIGS. 3 through 5 which illustrate an exemplary method for installing rubrail assembly 100. First, the base element 20 is secured to the hull of a vessel by known techniques, which include for example, the use of fasteners. Then the tip 56 of trim element 40 is aligned with the longitudinal channel 30 formed in base element 20. Next the barb 50 is pressed into the gap “g” between the first and second end portions 26 a/26 b of base element 20. At this point in the process the sliding surfaces 36 a/36 b formed on each of the first and second end portions 26 a/26 b contact the sliding surfaces 60 a/60 b formed on the barb 50 of the trim element 40. Further force on the trim element in the direction of arrow “I” causes the barb 50 to collapse upon itself. As the engagement element 46 moves further into the channel 30 the corresponding sliding surfaces 26 a/36 b and 26 b/36 b reduce the frictional drag normally associated with sliding one flexible polymer with respect to another and allow the trim element 40 to reach the installed position shown in FIG. 5. At that point the barb 50 returns to its original shape (uncollapsed) and the flanges 58 a/58 b extend out beyond the inner edges of the first and second end portions 26 a/26 b of the base element 20, and the trim element 40 in the installed portion.
  • Having described the preferred embodiments of the invention, those skilled in the art will realize that many variations are possible. For example, other plastics having different durometer values than those disclosed herein may be used without departing from the spirit of the invention. Further, materials other than plastic, but having the desired properties or effect may be used. Other alternative configurations of the illustrated embodiments may also be made but remain within the scope of the claims.

Claims (18)

What is claimed is:
1. A rubrail assembly comprising:
a) a base element having a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel therebetween; and
b) an elongated trim element including a head portion and an engagement portion which is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element; and
wherein at least one or both of the base element and the trim element include at least one sliding surface having a coefficient of friction which facilitates insertion of the engagement portion of the trim element into the longitudinal channel of the base element.
2. The rubrail assembly as recited in claim 1, wherein the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
3. The rubrail assembly as recited in claim 1, wherein the engagement portion of the trim element includes a collapsible barb.
4. The rubrail assembly as recited in claim 1, wherein the collapsible barb includes third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
5. The rubrail assembly as recited in claim 2, where the main body portion, first and second end portions and first and second sliding surfaces of the base element are formed as a unitary structure by coextrusion.
6. The rubrail assembly as recited in claim 4, wherein the head portion, engagement portion and third and fourth sliding surfaces of the trim element are formed as a unitary structure by coextrusion.
7. The rubrail assembly as recited in claim 1, wherein an outer surface of each of the first and second end portions of the base element has a curved profile.
8. The rubrail assembly as recited in claim 1, wherein an outer surface of the head portion of the trim element has a curved profile and extends over an inner edge of each of the first and second end portions of the base element.
9. The rubrail assembly as recited in claim 6, wherein the main body portion of the base element is formed using a polymer having a hardness which is greater that of a polymer used to form the first and second end portions.
10. A rubrail assembly comprising:
a) a base element having a main body portion and first and second end portions which extend from opposed lateral edges of the main body portion and define a longitudinal channel therebetween; and
b) an elongated trim element including a head portion and an engagement portion which includes a collapsible barb that is inserted into the longitudinal channel of the base portion so as to secure the trim element to the base element.
11. The rubrail assembly as recited in claim 10, wherein at least one or both of the base element and the trim element include at least one sliding surface having a coefficient of friction which facilitates insertion of the engagement portion of the trim element into the longitudinal channel of the base element.
12. The rubrail assembly as recited in claim 10, wherein the first end portion of the base element includes a first sliding surface and the second end portion of the base member includes a second sliding surface, each of the first and second sliding surfaces having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
13. The rubrail assembly as recited in claim 12, wherein the collapsible barb includes third and fourth sliding surfaces each having a coefficient of friction which facilitates insertion of the engagement portion into the longitudinal channel of the base element.
14. The rubrail assembly as recited in claim 12, where the main body portion, first and second end portions and first and second sliding surfaces of the base element are formed as a unitary structure by coextrusion.
15. The rubrail assembly as recited in claim 13, wherein the head portion, engagement portion and third and fourth sliding surfaces of the trim element are formed as a unitary structure by coextrusion.
16. The rubrail assembly as recited in claim 10, wherein an outer surface of each of the first and second end portions of the base element has a curved profile.
17. The rubrail assembly as recited in claim 10, wherein an outer surface of the head portion of the trim element has a curved profile and extends over an inner edge of each of the first and second end portions of the base element.
18. The rubrail assembly as recited in claim 10, wherein the main body portion of the base element is formed using a polymer having a hardness which is greater that of a polymer used to form the first and second end portions.
US14/732,071 2015-06-05 2015-06-05 Rubrail assembly Abandoned US20160355243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/732,071 US20160355243A1 (en) 2015-06-05 2015-06-05 Rubrail assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/732,071 US20160355243A1 (en) 2015-06-05 2015-06-05 Rubrail assembly

Publications (1)

Publication Number Publication Date
US20160355243A1 true US20160355243A1 (en) 2016-12-08

Family

ID=56297086

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/732,071 Abandoned US20160355243A1 (en) 2015-06-05 2015-06-05 Rubrail assembly

Country Status (1)

Country Link
US (1) US20160355243A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD818802S1 (en) * 2016-07-19 2018-05-29 Daiwa Kasei Kogyo Kabushiki Kaisha Clip
USD820667S1 (en) * 2016-12-13 2018-06-19 Daiwa Kasei Kogyo Kabushiki Kaisha Clip
US10543889B2 (en) * 2017-06-08 2020-01-28 Tessilmare S.R.L. Fender for boats consisting of two components made of PVC coupled by a lock joint
US10618611B2 (en) 2017-06-08 2020-04-14 Tessilmare S.R.L. Fender for boats
USD888542S1 (en) * 2018-07-06 2020-06-30 Wiles Technologies LLC Tie strap with grip
US10717572B2 (en) 2017-07-04 2020-07-21 Wiles Technologies LLC Reduced slip tie strap
USD939936S1 (en) * 2019-08-26 2022-01-04 Hon Electrical Co., Ltd. Cable tie
USD950772S1 (en) * 2019-08-21 2022-05-03 Taco Metals, Llc Extruded vinyl rub rail
USD1010430S1 (en) * 2019-12-24 2024-01-09 C.B. S.R.L. Costruzioni Brescianini Cable clip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD818802S1 (en) * 2016-07-19 2018-05-29 Daiwa Kasei Kogyo Kabushiki Kaisha Clip
USD820667S1 (en) * 2016-12-13 2018-06-19 Daiwa Kasei Kogyo Kabushiki Kaisha Clip
US10543889B2 (en) * 2017-06-08 2020-01-28 Tessilmare S.R.L. Fender for boats consisting of two components made of PVC coupled by a lock joint
US10618611B2 (en) 2017-06-08 2020-04-14 Tessilmare S.R.L. Fender for boats
US10717572B2 (en) 2017-07-04 2020-07-21 Wiles Technologies LLC Reduced slip tie strap
USD888542S1 (en) * 2018-07-06 2020-06-30 Wiles Technologies LLC Tie strap with grip
USD950772S1 (en) * 2019-08-21 2022-05-03 Taco Metals, Llc Extruded vinyl rub rail
USD939936S1 (en) * 2019-08-26 2022-01-04 Hon Electrical Co., Ltd. Cable tie
USD1010430S1 (en) * 2019-12-24 2024-01-09 C.B. S.R.L. Costruzioni Brescianini Cable clip

Similar Documents

Publication Publication Date Title
US20160355243A1 (en) Rubrail assembly
US10300833B2 (en) Resilient cover clip
US10086918B2 (en) Inflatable watercraft structures and method of making the same
US6349662B1 (en) Rub rail
WO2007143703A3 (en) Foam stabilized watercraft with finned collar
KR101577280B1 (en) Inflatable kayak
EP2852525B1 (en) An inflatable stand up paddleboard
US20150020910A1 (en) Bend limiter
CN112955375A (en) Rounding of miss-stitch stitchbonded elements
WO2008099462A1 (en) Stern shape of displacement type ship
US1195857A (en) Ernest richard royston
EP3099565B1 (en) Attachment flange for buoys and marine fenders
US10543889B2 (en) Fender for boats consisting of two components made of PVC coupled by a lock joint
EP3849896A1 (en) A water vessel hull protector and method of construction
US4597348A (en) Detachable keel for small boats
EP1910163B1 (en) Cover for rope, cable and/or strength member
US6685518B1 (en) Buoyant device that resists entanglement by whales and boats
KR101470471B1 (en) A rigid inflatable boat having an air tube separable from a body of the boat
US10618611B2 (en) Fender for boats
ITMI20091460A1 (en) PROTECTION ELEMENT FOR END CAPS OF ROPES AND TOPS FOR NAUTICAL USE
US6907837B2 (en) Mooring assembly
CA2755539C (en) Safety flag for a watercraft and watercraft assembly including safety flag
US9260165B1 (en) Releasably attachable boat rail
US20070169823A1 (en) Swimming pool cleaners and overmolded components thereof
NL2032850B1 (en) A watercraft

Legal Events

Date Code Title Description
AS Assignment

Owner name: BARBOUR PLASTICS INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HYNES, RICHARD K.;CASEY, MICHAEL;REEL/FRAME:036121/0077

Effective date: 20140526

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION