US20160336350A1 - Circuit-on-Wire (CoW) - Google Patents

Circuit-on-Wire (CoW) Download PDF

Info

Publication number
US20160336350A1
US20160336350A1 US15/218,804 US201615218804A US2016336350A1 US 20160336350 A1 US20160336350 A1 US 20160336350A1 US 201615218804 A US201615218804 A US 201615218804A US 2016336350 A1 US2016336350 A1 US 2016336350A1
Authority
US
United States
Prior art keywords
metal
control devices
forming
metal wire
cow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/218,804
Inventor
Apostolos Voutsas
Themistokles Afentakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Laboratories of America Inc
Original Assignee
Sharp Laboratories of America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Laboratories of America Inc filed Critical Sharp Laboratories of America Inc
Priority to US15/218,804 priority Critical patent/US20160336350A1/en
Assigned to SHARP LABORATORIES OF AMERICA, INC. reassignment SHARP LABORATORIES OF AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AFENTAKIS, THEMISTOKLES, VOUTSAS, APOSTOLOS
Publication of US20160336350A1 publication Critical patent/US20160336350A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Definitions

  • This invention generally relates to display fabrication and, more particularly, to a circuit-on-wire (CoW) technology generally useful. in the fabrication of large array electronic panels.
  • CoW circuit-on-wire
  • backplane arrays for various types of flat panel displays such as liquid crystal display (LCD) or organic light emitting diode (OLED)
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • steps must take place using specialized process equipment capable of handling the substantial size of the substrates typically used for display manufacturing.
  • the manufacturing cost is a function of the substrate area and, hence, tends to increase geometrically with the display size [i.e. manufacturing cost ⁇ (display diagonal) 2 ].
  • manufacturing costs must be minimized. This fact is especially evident in the case of large displays, which have become increasingly ubiquitous in everyday life—from home TVs, to information and advertising digital signs.
  • optical transparency Another important issue in display backplane fabrication is optical transparency. High optical transparency is desirable for improving display appearance (i.e. brightness) and, ultimately, for enabling a visually transparent panel that can seamlessly integrate with its surroundings and function harmoniously within its operating environment.
  • FIG. 1 is a plan view of a thin-film transistor (TFT) active matrix array backplane (prior art).
  • the backplane consists of a plurality of pixel elements formed by the intersecting horizontal (gate) and vertical (data) metal lines. These pixel elements host a number of sub-components (mostly thin film transistors and capacitor elements), which function to determine the “state” of the pixel—in other words, how much light is allowed through the pixel area to reach an observer.
  • the majority of the pixel area be void of any components that may obstruct the passage (transmission) of visible light. For example, referring to FIG.
  • FIG. 2 is a plan view of a typical LCD pixel structure (prior art)
  • pixels consisting of the intersecting metal lines and the internal subcomponents—are constructed by a succession of thin-film material formation (e.g. deposition) steps and feature-patterning steps by subtractive processing (e.g. combination of photolithography and etching steps).
  • the pixel size is determined by the desired resolution of the panel, expressed in pixels-per-inch (PPI). For example, a 50 PPI panel consists of 508 ⁇ 508 micron ( ⁇ m) pixels, while a 150 PPI panel consists of 169 ⁇ 169 ⁇ m pixels.
  • the pixel is further divided into sub-pixels—in the simplest case one sub-pixel for each of (R)ed, (G)reen and (B)lue).
  • the ultimate sub-pixel size is given (in ⁇ m) by the formula: 25400/(3 ⁇ PPI), where PPI refers to the target panel resolution.
  • PPI refers to the target panel resolution.
  • all the pixel area contributes to light transmission, but practically, only a portion of the pixel area actually transmits light.
  • light transmission is blocked by the capacitor(s), TFT(s), and width of metal wires (horizontal & vertical).
  • the area of these components tends to scale with the overall pixel area.
  • the effective pixel area (expressed often by the term aperture ratio) tends to become prohibitively small.
  • aperture ratios the ratio of transmissive area to total pixel area of more than 85% are typically demanded.
  • Disclosed herein is an apparatus and method of manufacture that permits pixel subcomponents to be moved from the pixel transmissive area, as is conventional, to the pixel's metal wiring frame.
  • two key objectives are accomplished.
  • manufacturing costs are reduced by preparing the circuit-on-wire off-line, and then “weaving” it onto the panel using a simplified assembly scheme. This process allows the manufacturing cost to scale with the length of the panel, as opposed to the area of the panel.
  • the use of the circuit-on-wire (CoW) significantly improves (increases) the pixel aperture ratio, and, ultimately achieves a sufficiently high pixel aperture to evoke the feeling of transparency.
  • a liquid crystal display (LCD) embodiment is limited in its capacity to achieve a high quality transparent display—mostly due to the necessity of having a pair of crossed polarizers at the two sides of the LCD module that block almost half of the outgoing light.
  • a display enabled by light emitting diodes (LEDs), either organic or inorganic can provide a much more effective path to transparency if the effective pixel area can be sufficiently enlarged, since polarizers are not required.
  • a CoW is provide that is made from a flexible metal wire with an outer surface, and a plurality of discrete electrical control devices formed in series along the metal wire outer surface.
  • Each control device may have a first electrical contact accessible through the metal wire.
  • the metal wire has an outer top surface and an outer bottom surface.
  • the control device may have a via through. the metal wire from the top surface to the bottom surface with a second electrical contact accessible through the via.
  • the control devices may have a top surface with an accessible third electrical contact.
  • control device may be a first thin-film transistor (TFT), with a gate electrode accessible through the metal wire, with the second electrical contact being a first source/drain (S/D) electrode, and the third electrical contact being a second S/D electrode.
  • TFT thin-film transistor
  • S/D source/drain
  • a woven active matrix array may be fabricated, made from a set of parallel first metal lines aligned in a first direction and a set of parallel second metal lines aligned in a second. direction orthogonal to the first direction.
  • the first metal lines intersect the second metal lines to form pixel regions.
  • a plurality of metal lines from the second metal lines are made with serially configured CoW control devices overlying an outer surface of the second metal line, with each control device being associated with a corresponding pixel region.
  • FIG. 1 is a plan view of a thin-film transistor (TFT) active matrix array backplane (prior art).
  • TFT thin-film transistor
  • FIG. 2 is a plan view of a typical LCD pixel structure (prior art).
  • FIG. 3 is a partial cross-sectional view of a circuit-on-wire (CoW).
  • FIG. 4 is a plan view of a pixel switching element control device.
  • FIGS. 5A and 5B depict two variations of CoW packaging.
  • FIG. 6 is a plan view of a woven active matrix array.
  • FIG. 7 is a plan view depicting a variation in the active matrix array of FIG. 6 .
  • FIGS. 8A and 8B are, respectively, plan and cross-sectional views of a CoW control device repeated unit.
  • FIG. 9 is a plan view of an active matrix array with repeated units.
  • FIGS. 10A and 10B are, respectively, schematic and perspective diagrams of a pixel switching element for use with an LED type of pixel.
  • FIGS. 11A through 11E are partial cross-sectional views of the CoW pixel switching element of FIG. 10B .
  • FIG. 12 is a flowchart illustrating a method for forming a CoW.
  • FIG. 13 is a flowchart illustrating a method for forming a woven active matrix array.
  • FIG. 3 is a partial cross-sectional view of a circuit-on-wire (CoW).
  • the CoW 300 comprises a flexible metal wire 302 with an outer surface 304 .
  • a plurality of discrete electrical control devices are formed in series along the metal wire outer surface 304 .
  • the control devices e.g., device 306 - 0
  • the metal wire 302 is electrically conductive.
  • some or all of the control devices may be electrically isolated from the metal wire 302 .
  • the metal wire may be said to comprise an outer top surface 304 a and an outer bottom surface 304 b.
  • the metal wire 302 is relatively flat or oval in its cross-section (not shown).
  • a plurality of control devices e.g., control device 306 - 1
  • a plurality of control devices, e.g., control device 306 - n each further comprise a top surface 314 - n with an accessible third electrical contact 316 - n.
  • control device 306 - n may be a first thin-film transistor (TFT), with a gate electrode 308 - n accessible through the metal wire 302 , with the second electrical contact 312 - n being a first source/drain (S/D) electrode (or a contact in electrical communication with. the first S/D electrode), and the third electrical contact 316 - n being a second S/D electrode (or a contact in electrical communication with the second S/D electrode).
  • an insulation layer 318 overlies the metal wire top 304 a and bottom surfaces 308 b, and is selectively etched to expose control device electrodes. In one aspect, the etching is performed during CoW fabrication. Alternatively, the etching may be performed as the CoW is integrated into a higher assembly.
  • sequential control devices may be the same or different types of devices. In one aspect, some of the devices need not be active. As explained in more detail below, a collection of control devices may be grouped in repeated units, where each repeated unit may be associated with a manufacturing sub-component, such as an active matrix array pixel.
  • FIG. 4 is a plan view of a pixel switching element control device.
  • the pixel switching element 400 comprises a first TFT 402 , similar to control device 306 - n of FIG. 3 , with a gate electrode 404 (in phantom) accessible through the metal wire 302 , the second electrical lE contact 406 being a first SID electrode with a via 407 (in phantom) connected to the bottom side of the wire, and the third, exposed electrical contact 408 being a second S/D electrode.
  • a storage capacitor 410 is connected to the second SID electrode 408 of the first TFT.
  • a second TFT 412 comprises a via 414 through the metal wire 302 from the top surface 304 a to the bottom surface 304 b.
  • a first SID electrode 416 is accessible through the via 414 .
  • a gate electrode 418 is connected the second S/D electrode 408 of the first TFT.
  • the second TFT 412 further comprises a second S/D electrode 420 .
  • the pixel switching element is one example of a. complete or partial repeated unit, described in more detail below.
  • FIGS. 5A and SB depict two variations of CoW packaging.
  • the metal wire 302 with control devices 306 is wound around a spool 500 , permitting the wire to be unwound, sectioned, and/or laid flat during use at a higher assembly.
  • FIG. 5B a plurality of adjacent. metal wires 302 - 0 through 302 - j are shown, where j is an integer greater than 1, wound around the spool 500 .
  • Each metal wire 302 - 0 through 302 - j includes a plurality of discrete electrically active control devices 306 formed in series along its outer surface.
  • this spooling permits the simultaneous deployment of a plurality of metal lines for the purpose, for example, of an active array fabrication.
  • control devices thereon need not necessarily be identical. Further, even if the device, and the order of the devices 306 is identical, the alignment of devices between wires may or may not be staggered.
  • the spool of FIG. 5A is attractive for relatively small roll-to-roll (R-2-R) machine operations, while the spool of FIG. 5B is more applicable to the creation of large web lines used with a process performed on very large sheets.
  • R-2-R roll-to-roll
  • FIG. 5B is more applicable to the creation of large web lines used with a process performed on very large sheets.
  • thousands of wires can be formed on a large sheet, despoiled, and then cut to generate long strips that can be laid down to make arrays.
  • the advantage in this case factor as a typical array has much empty space where the pixels are eventually formed.
  • FIG. 6 is a plan view of a woven active matrix array.
  • the array 600 comprises a set of parallel first metal lines 602 - 0 through 602 - p, where p is an integer greater than 1, aligned in a first direction 604 .
  • the first metal lines 602 intersect the second metal lines 606 to form pixel regions 610 .
  • a plurality, or all of the metal lines from the second metal lines 606 - 0 through 606 - r comprise serially configured CoW control devices 306 overlying an outer surface of the second metal line as described above in the explanation of FIGS. 3 and 4 .
  • Each control device 306 is typically associated with a corresponding pix 610 .
  • control device 306 - 0 is associated with pixel region 610 - 0 . Details of the control devices have been presented above, and are not repeated here in the interest of brevity.
  • a pixel device such as an LED or charge-coupled sensor (not shown) is connected to the second SID electrode of each second TFT.
  • the first metal lines 602 - 0 through 602 - p may be gate lines, and the second metal lines 606 - 0 through 606 - r may be data lines, as shown.
  • the first metal lines 602 - 0 through 602 - p may be data lines, and the second metal lines 606 - 0 through 606 - r may be gate lanes.
  • both the gate and control lines may be CoW, with control devices.
  • the array 600 may be formed on a transparent substrate 612 as shown.
  • the transparent substrate is flexible, so that the entire array, including the substrate, can be spooled. for delivery for higher assembly processing.
  • FIG. 7 is a plan view depicting a variation in the active matrix array of FIG. 6 .
  • a set of parallel power metal lines 700 - 0 through 700 - p are aligned in the first direction 604 , and alternating with the first metal lines 602 - 0 through 602 - p.
  • each second TFT first S/D electrode may be connected to an underlying power metal line through the via (see FIG. 10B ).
  • the first metal lines 602 - 0 through 602 - p may be gate lines, and the second metal lines 606 - 0 through 606 - r may be data lines, as shown.
  • first metal lines 602 - 0 through 602 - p may be data line and the second metal lines 606 - 0 through 606 - r may be gate lines.
  • both the gate and control lines may be CoW, with control devices.
  • FIGS. 8A and 8B are, respectively, plan and cross-sectional views of a CoW control device repeated unit.
  • the metal wire 302 may have a rectangular cross section with width 800 in the range of 10 ⁇ m to 1 mm, and thickness 802 in the range of 10 ⁇ m to 100 ⁇ m.
  • the wire 302 may, for example, be made of stainless steel, Al, Cu, Ni, Mo, or any of their alloys.
  • Circuit and device blocks may be fabricated directly on the surface of the metal wire 302 . Some of these blocks may be interconnected on the same metal wire or connected to other components (off of the metal wire). Through-holes or vias may be formed on the metal wire to facilitate such connections.
  • the features formed on the surface of the wire may comprise repeated units 804 .
  • FIG. 9 is a plan view of an active matrix array with repeated units.
  • One application for metal wires with CoW repeated units is for backplane arrays.
  • the electronic circuit that controls the operation of a pixel is the repeated unit 804 .
  • the extent of the repeated unit is then bound by the size of the pixel.
  • the spacing between repeated units is determined by the pixel pitch (PPI).
  • PPI pixel pitch
  • the pixel size is calculated to be 508 ⁇ m.
  • the pixel controlling circuit needs to be integrated within a wire length of less than 508 ⁇ m, and the repeated unit pitch is 508 ⁇ m.
  • CoW devices and circuits are shown as fabricated on gate wires, there is no real restriction as to which wire bears circuit elements, or that such elements must exist on only one type of wire. These choices depend primarily on the type of control circuits needed and tradeoffs between ease of integration and manufacturing cost.
  • FIGS. 10A and 10B are, respectively, schematic and perspective diagrams of a pixel switching element for use with an LED 1000 type of pixel.
  • the pixel switching element 400 is one example of a repeated unit.
  • the pixel switching element 400 is laid out on the metal wire 602 (gate wire) that supplies the transistor gate-controlling signal.
  • This circuit utilizes connections to two more wires, a wire 700 carrying a power signal and a wire 606 carrying a data signal to enable the proper operation of the pixel.
  • all device and circuit blocks are fabricated on a single wire in order to simplify the overall fabrication process. In the specific example of FIGS. 10A and 10B , only the gate wire needs to be fabricated with CoW control devices.
  • FIGS. 11A through 11E are partial cross-sectional views of the CoW pixel switching element of FIG. 10B .
  • the switch TFT 412 , drive TFT 402 , and capacitor 410 are primarily located on the surface of the gate wire 602 and are fabricated during the preparation of the gate wire (offline to the panel assembly).
  • the three principal metal wires (gate 602 , data 606 , and power 700 ) are laid out on the backplane substrate and other materials are used to ensure electrical connections between wires, as needed.
  • a conductive adhesive 1100 may be used to provide electrical connection between data wire 606 and gate wire 602 , LED electrode 1000 and gate wire 602 , and power wire 700 and gate wire 602 .
  • the LED electrode 1000 can be formed by solution processing printing) methods, and the conductive adhesive 1100 can be ink-jet printed at various steps of the backplane assembly process. Alternatively, LED elements can be fabricated prior to the assembly of the various wires to form the controlling active matrix array.
  • FIG. 12 is a flowchart illustrating a method for forming a CoW. Although the method is depicted as a sequence of numbered steps for clarity, the numbering does not necessarily dictate the order of the steps. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. Generally however, the method follows the numeric order of the depicted steps. The method starts at Step 1200 .
  • Step 1202 forms an electrically conductive metal wire and Step 1204 forms a series of discrete control devices overlying the metal wire.
  • Step 1204 forms the series of discrete control devices includes using film deposition and photolithographic etching steps.
  • the discrete control devices formed in Step 1204 may include a plurality of control devices each having an electrode electrically connected to the metal wire.
  • the control devices may have electrodes that are electrically isolated from the metal wire.
  • Some examples of control devices include TFTs, thin-film diodes, pixel switching elements, resistors, capacitors, inductors, and combinations of the above-mentioned devices.
  • Step 1204 forming the series of discrete control devices in Step 1204 includes substeps.
  • Step 1204 a forms an electrode on a metal wire top surface.
  • Step 1204 b forms a via from the metal wire top surface to a metal wire bottom surface, electrically connected to the electrode.
  • Step 1206 forms an insulation layer overlying the control. devices.
  • Step 1208 selectively etches the insulation layer to expose electrodes from a plurality of control devices.
  • FIG. 13 is a flowchart illustrating a method for forming a woven active matrix array.
  • the method begins at Step 1300 .
  • Step 1302 provides a substrate with a top surface.
  • Step 1304 forms a set of parallel first metal lines aligned in a first direction overlying the substrate top surface.
  • Step 1306 forms a set of parallel second metal lines aligned in a second direction orthogonal to the first direction, overlying the first metal lines.
  • Step 1308 forms pixel regions between first and second metal line intersections.
  • a plurality of metal lines from the second metal lines comprise serially configured CoW control devices overlying an outer surface of the second metal line, where each control device is associated with a corresponding pixel region.
  • Step 1310 forms a pixel device in each pixel region.
  • Step 1312 form electrical contacts between each pixel device and a corresponding control device.
  • forming the second metal lines in Step 1306 includes forming second metal lines having insulated top and bottom surfaces that are selectively etched to expose control device electrodes. Then, prior to forming the second metal lines, Step 1305 deposits an electrically conductive adhesive overlying the first metal lines. Subsequent to forming the second metal lines, Step 1307 forms electrical. contacts between the first metal lines and the control device electrodes.
  • CoW control devices a woven active matrix array, and corresponding fabrication processes have been provided. Examples of particular devices, interconnections, pixel types, and process steps have been presented to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.

Abstract

A circuit-on-wire (CoW) is provided that is made from a flexible metal wire with an outer surface, and a plurality of discrete electrical control devices formed in series along the metal wire outer surface. Each control device may have an electrical contact accessible through the metal wire. In one aspect, the control device may have a via through the metal wire from the top surface to the bottom surface with a second electrical contact accessible through the via. In addition, the control devices may have a top surface with an accessible third electrical contact. For example, the control device may be a first thin-film transistor (TFT), with a gate electrode accessible through the metal wire, wherein the second electrical contact is a first source/drain (S/D) electrode, and wherein the third electrical contact is a second S/D electrode. Using the above-described CoW, a woven active matrix array can be fabricated.

Description

    RELATED APPLICATIONS
  • This application is a Continuation of an application entitled, CIRCUIT-ON-WIRE, invented by Apostolos Voutsas et al., Ser. No. 14/169,202, filed Jan. 31, 2014, attorney docket No. SLA3377, which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention generally relates to display fabrication and, more particularly, to a circuit-on-wire (CoW) technology generally useful. in the fabrication of large array electronic panels.
  • 2. Description of the Related Art
  • The fabrication of backplane arrays for various types of flat panel displays, such as liquid crystal display (LCD) or organic light emitting diode (OLED), requires multiple deposition and photolithographic patterning (selective etching) steps. These steps must take place using specialized process equipment capable of handling the substantial size of the substrates typically used for display manufacturing. In that sense, the manufacturing cost is a function of the substrate area and, hence, tends to increase geometrically with the display size [i.e. manufacturing cost˜(display diagonal)2]. In order to achieve a lower product cost, manufacturing costs must be minimized. This fact is especially evident in the case of large displays, which have become increasingly ubiquitous in everyday life—from home TVs, to information and advertising digital signs.
  • Another important issue in display backplane fabrication is optical transparency. High optical transparency is desirable for improving display appearance (i.e. brightness) and, ultimately, for enabling a visually transparent panel that can seamlessly integrate with its surroundings and function harmoniously within its operating environment.
  • FIG. 1 is a plan view of a thin-film transistor (TFT) active matrix array backplane (prior art). The backplane consists of a plurality of pixel elements formed by the intersecting horizontal (gate) and vertical (data) metal lines. These pixel elements host a number of sub-components (mostly thin film transistors and capacitor elements), which function to determine the “state” of the pixel—in other words, how much light is allowed through the pixel area to reach an observer. For a highly transparent display, which one can “see through” when not displaying an image, it is desirable that the majority of the pixel area be void of any components that may obstruct the passage (transmission) of visible light. For example, referring to FIG. 1B, it is desirable to maximize the “active” area and minimize the “dead zone” area. Note: although a display backplane is depicted, the same issues apply to an active matrix array that receives and processes light, such as a charge-coupled device (CCD) camera.
  • FIG. 2 is a plan view of a typical LCD pixel structure (prior art) In terms of fabrication, pixels—consisting of the intersecting metal lines and the internal subcomponents—are constructed by a succession of thin-film material formation (e.g. deposition) steps and feature-patterning steps by subtractive processing (e.g. combination of photolithography and etching steps). The pixel size is determined by the desired resolution of the panel, expressed in pixels-per-inch (PPI). For example, a 50 PPI panel consists of 508×508 micron (μm) pixels, while a 150 PPI panel consists of 169×169μm pixels. For a full-color display, the pixel is further divided into sub-pixels—in the simplest case one sub-pixel for each of (R)ed, (G)reen and (B)lue). As a result, the ultimate sub-pixel size is given (in μm) by the formula: 25400/(3·PPI), where PPI refers to the target panel resolution. In the ideal case, all the pixel area contributes to light transmission, but practically, only a portion of the pixel area actually transmits light. As shown in FIG. 2 for example, light transmission is blocked by the capacitor(s), TFT(s), and width of metal wires (horizontal & vertical). The area of these components tends to scale with the overall pixel area. For very small pixels, the effective pixel area (expressed often by the term aperture ratio) tends to become prohibitively small. For a high quality transparent display, aperture ratios (the ratio of transmissive area to total pixel area) of more than 85% are typically demanded.
  • It would be advantageous if a means existed for fabricating an active matrix array with a larger aperture ratio. It would also be advantageous if this fabrication means permitted the active matrix arrays to be produced at a lower cost.
  • SUMMARY OF THE INVENTION
  • Disclosed herein is an apparatus and method of manufacture that permits pixel subcomponents to be moved from the pixel transmissive area, as is conventional, to the pixel's metal wiring frame. In doing so, two key objectives are accomplished. First, manufacturing costs are reduced by preparing the circuit-on-wire off-line, and then “weaving” it onto the panel using a simplified assembly scheme. This process allows the manufacturing cost to scale with the length of the panel, as opposed to the area of the panel. Second, the use of the circuit-on-wire (CoW) significantly improves (increases) the pixel aperture ratio, and, ultimately achieves a sufficiently high pixel aperture to evoke the feeling of transparency.
  • The notion of an effective transparent display implicitly requires an emissive technology to be achieved. In other words, a liquid crystal display (LCD) embodiment is limited in its capacity to achieve a high quality transparent display—mostly due to the necessity of having a pair of crossed polarizers at the two sides of the LCD module that block almost half of the outgoing light. On the other hand, a display enabled by light emitting diodes (LEDs), either organic or inorganic, can provide a much more effective path to transparency if the effective pixel area can be sufficiently enlarged, since polarizers are not required.
  • Accordingly, a CoW is provide that is made from a flexible metal wire with an outer surface, and a plurality of discrete electrical control devices formed in series along the metal wire outer surface. Each control device may have a first electrical contact accessible through the metal wire. In one aspect, the metal wire has an outer top surface and an outer bottom surface. Then, the control device may have a via through. the metal wire from the top surface to the bottom surface with a second electrical contact accessible through the via. In addition, the control devices may have a top surface with an accessible third electrical contact. For example, the control device may be a first thin-film transistor (TFT), with a gate electrode accessible through the metal wire, with the second electrical contact being a first source/drain (S/D) electrode, and the third electrical contact being a second S/D electrode.
  • Using the above-described CoW, a woven active matrix array may be fabricated, made from a set of parallel first metal lines aligned in a first direction and a set of parallel second metal lines aligned in a second. direction orthogonal to the first direction. The first metal lines intersect the second metal lines to form pixel regions. A plurality of metal lines from the second metal lines are made with serially configured CoW control devices overlying an outer surface of the second metal line, with each control device being associated with a corresponding pixel region.
  • Additional details of the above-described devices as well as fabrication methods are provided in more detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a thin-film transistor (TFT) active matrix array backplane (prior art).
  • FIG. 2 is a plan view of a typical LCD pixel structure (prior art).
  • FIG. 3 is a partial cross-sectional view of a circuit-on-wire (CoW).
  • FIG. 4 is a plan view of a pixel switching element control device.
  • FIGS. 5A and 5B depict two variations of CoW packaging.
  • FIG. 6 is a plan view of a woven active matrix array.
  • FIG. 7 is a plan view depicting a variation in the active matrix array of FIG. 6.
  • FIGS. 8A and 8B are, respectively, plan and cross-sectional views of a CoW control device repeated unit.
  • FIG. 9 is a plan view of an active matrix array with repeated units.
  • FIGS. 10A and 10B are, respectively, schematic and perspective diagrams of a pixel switching element for use with an LED type of pixel.
  • FIGS. 11A through 11E are partial cross-sectional views of the CoW pixel switching element of FIG. 10B.
  • FIG. 12 is a flowchart illustrating a method for forming a CoW.
  • FIG. 13 is a flowchart illustrating a method for forming a woven active matrix array.
  • DETAILED DESCRIPTION
  • FIG. 3 is a partial cross-sectional view of a circuit-on-wire (CoW). The CoW 300 comprises a flexible metal wire 302 with an outer surface 304. A plurality of discrete electrical control devices are formed in series along the metal wire outer surface 304. Shown are control devices 306-0 through 306-n, where n is an integer not limited to any particular value. In one aspect, the control devices, e.g., device 306-0, comprise a first electrical contact 308-0 accessible through the metal wire 302. Typically, the metal wire 302 is electrically conductive. Alternatively, some or all of the control devices may be electrically isolated from the metal wire 302.
  • In one aspect, the metal wire may be said to comprise an outer top surface 304 a and an outer bottom surface 304 b. For example, the metal wire 302 is relatively flat or oval in its cross-section (not shown). A plurality of control devices, e.g., control device 306-1, may comprise a via 310-1 through the metal wire from the top surface 304 a to the bottom surface 304 b, and a second electrical contact 312-1 accessible through the via. In another aspect, a plurality of control devices, e.g., control device 306-n, each further comprise a top surface 314-n with an accessible third electrical contact 316-n. For example, control device 306-n may be a first thin-film transistor (TFT), with a gate electrode 308-n accessible through the metal wire 302, with the second electrical contact 312-n being a first source/drain (S/D) electrode (or a contact in electrical communication with. the first S/D electrode), and the third electrical contact 316-n being a second S/D electrode (or a contact in electrical communication with the second S/D electrode). Typically, an insulation layer 318 overlies the metal wire top 304 a and bottom surfaces 308 b, and is selectively etched to expose control device electrodes. In one aspect, the etching is performed during CoW fabrication. Alternatively, the etching may be performed as the CoW is integrated into a higher assembly.
  • It should be understood that the sequential control devices may be the same or different types of devices. In one aspect, some of the devices need not be active. As explained in more detail below, a collection of control devices may be grouped in repeated units, where each repeated unit may be associated with a manufacturing sub-component, such as an active matrix array pixel.
  • FIG. 4 is a plan view of a pixel switching element control device. The pixel switching element 400 comprises a first TFT 402, similar to control device 306-n of FIG. 3, with a gate electrode 404 (in phantom) accessible through the metal wire 302, the second electrical lE contact 406 being a first SID electrode with a via 407 (in phantom) connected to the bottom side of the wire, and the third, exposed electrical contact 408 being a second S/D electrode. A storage capacitor 410 is connected to the second SID electrode 408 of the first TFT. A second TFT 412 comprises a via 414 through the metal wire 302 from the top surface 304 a to the bottom surface 304 b. A first SID electrode 416 is accessible through the via 414. A gate electrode 418 is connected the second S/D electrode 408 of the first TFT. The second TFT 412 further comprises a second S/D electrode 420. The pixel switching element is one example of a. complete or partial repeated unit, described in more detail below.
  • FIGS. 5A and SB depict two variations of CoW packaging. In FIG. 5A the metal wire 302 with control devices 306 is wound around a spool 500, permitting the wire to be unwound, sectioned, and/or laid flat during use at a higher assembly. In FIG. 5B, a plurality of adjacent. metal wires 302-0 through 302-j are shown, where j is an integer greater than 1, wound around the spool 500. Each metal wire 302-0 through 302-j includes a plurality of discrete electrically active control devices 306 formed in series along its outer surface. Advantageously, this spooling permits the simultaneous deployment of a plurality of metal lines for the purpose, for example, of an active array fabrication. In comparing particular wires 302-0 through 302-j, the control devices thereon need not necessarily be identical. Further, even if the device, and the order of the devices 306 is identical, the alignment of devices between wires may or may not be staggered.
  • The spool of FIG. 5A is attractive for relatively small roll-to-roll (R-2-R) machine operations, while the spool of FIG. 5B is more applicable to the creation of large web lines used with a process performed on very large sheets. For sheet-to-sheet operation, thousands of wires can be formed on a large sheet, despoiled, and then cut to generate long strips that can be laid down to make arrays. The advantage in this case factor, as a typical array has much empty space where the pixels are eventually formed.
  • FIG. 6 is a plan view of a woven active matrix array. The array 600 comprises a set of parallel first metal lines 602-0 through 602-p, where p is an integer greater than 1, aligned in a first direction 604. A set of parallel second metal lines 606-0 through 606-r, where r is an integer greater than 1, is aligned in a second direction 608 orthogonal to the first direction 604. The first metal lines 602 intersect the second metal lines 606 to form pixel regions 610. A plurality, or all of the metal lines from the second metal lines 606-0 through 606-r comprise serially configured CoW control devices 306 overlying an outer surface of the second metal line as described above in the explanation of FIGS. 3 and 4. Each control device 306 is typically associated with a corresponding pix 610. For example, control device 306-0 is associated with pixel region 610-0. Details of the control devices have been presented above, and are not repeated here in the interest of brevity. In the case of the pixel switching element of FIG. 4 for example, a pixel device such as an LED or charge-coupled sensor (not shown) is connected to the second SID electrode of each second TFT.
  • The first metal lines 602-0 through 602-p may be gate lines, and the second metal lines 606-0 through 606-r may be data lines, as shown. Alternatively, the first metal lines 602-0 through 602-p may be data lines, and the second metal lines 606-0 through 606-r may be gate lanes. In another aspect not shown, both the gate and control lines may be CoW, with control devices. The array 600 may be formed on a transparent substrate 612 as shown. In one aspect, the transparent substrate is flexible, so that the entire array, including the substrate, can be spooled. for delivery for higher assembly processing.
  • FIG. 7 is a plan view depicting a variation in the active matrix array of FIG. 6. In this aspect a set of parallel power metal lines 700-0 through 700-p are aligned in the first direction 604, and alternating with the first metal lines 602-0 through 602-p. In the case of at least some of the control devices being the pixel switching elements described above in the explanation of Fig.4, each second TFT first S/D electrode may be connected to an underlying power metal line through the via (see FIG. 10B). The first metal lines 602-0 through 602-p may be gate lines, and the second metal lines 606-0 through 606-r may be data lines, as shown. Alternatively, the first metal lines 602-0 through 602-p may be data line and the second metal lines 606-0 through 606-r may be gate lines. In another aspect not shown, both the gate and control lines may be CoW, with control devices.
  • FIGS. 8A and 8B are, respectively, plan and cross-sectional views of a CoW control device repeated unit. The metal wire 302 may have a rectangular cross section with width 800 in the range of 10 μm to 1 mm, and thickness 802 in the range of 10 μm to 100 μm. The wire 302 may, for example, be made of stainless steel, Al, Cu, Ni, Mo, or any of their alloys. Circuit and device blocks may be fabricated directly on the surface of the metal wire 302. Some of these blocks may be interconnected on the same metal wire or connected to other components (off of the metal wire). Through-holes or vias may be formed on the metal wire to facilitate such connections. The features formed on the surface of the wire may comprise repeated units 804.
  • FIG. 9 is a plan view of an active matrix array with repeated units. One application for metal wires with CoW repeated units is for backplane arrays. In that case, the electronic circuit that controls the operation of a pixel is the repeated unit 804. The extent of the repeated unit is then bound by the size of the pixel. The spacing between repeated units is determined by the pixel pitch (PPI). Taking the example of a 50 PPI backplane, the pixel size is calculated to be 508 μm. In this case, the pixel controlling circuit needs to be integrated within a wire length of less than 508 μm, and the repeated unit pitch is 508 μm.
  • Although CoW devices and circuits are shown as fabricated on gate wires, there is no real restriction as to which wire bears circuit elements, or that such elements must exist on only one type of wire. These choices depend primarily on the type of control circuits needed and tradeoffs between ease of integration and manufacturing cost.
  • FIGS. 10A and 10B are, respectively, schematic and perspective diagrams of a pixel switching element for use with an LED 1000 type of pixel. The pixel switching element 400 is one example of a repeated unit. The pixel switching element 400 is laid out on the metal wire 602 (gate wire) that supplies the transistor gate-controlling signal. This circuit utilizes connections to two more wires, a wire 700 carrying a power signal and a wire 606 carrying a data signal to enable the proper operation of the pixel. Preferable, all device and circuit blocks are fabricated on a single wire in order to simplify the overall fabrication process. In the specific example of FIGS. 10A and 10B, only the gate wire needs to be fabricated with CoW control devices.
  • FIGS. 11A through 11E are partial cross-sectional views of the CoW pixel switching element of FIG. 10B. The switch TFT 412, drive TFT 402, and capacitor 410 are primarily located on the surface of the gate wire 602 and are fabricated during the preparation of the gate wire (offline to the panel assembly). The three principal metal wires (gate 602, data 606, and power 700) are laid out on the backplane substrate and other materials are used to ensure electrical connections between wires, as needed. For example, a conductive adhesive 1100 may be used to provide electrical connection between data wire 606 and gate wire 602, LED electrode 1000 and gate wire 602, and power wire 700 and gate wire 602. The LED electrode 1000 can be formed by solution processing printing) methods, and the conductive adhesive 1100 can be ink-jet printed at various steps of the backplane assembly process. Alternatively, LED elements can be fabricated prior to the assembly of the various wires to form the controlling active matrix array.
  • FIG. 12 is a flowchart illustrating a method for forming a CoW. Although the method is depicted as a sequence of numbered steps for clarity, the numbering does not necessarily dictate the order of the steps. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. Generally however, the method follows the numeric order of the depicted steps. The method starts at Step 1200.
  • Step 1202 forms an electrically conductive metal wire and Step 1204 forms a series of discrete control devices overlying the metal wire. Typically, Step 1204 forms the series of discrete control devices includes using film deposition and photolithographic etching steps. The discrete control devices formed in Step 1204 may include a plurality of control devices each having an electrode electrically connected to the metal wire. Alternatively, the control devices may have electrodes that are electrically isolated from the metal wire. Some examples of control devices include TFTs, thin-film diodes, pixel switching elements, resistors, capacitors, inductors, and combinations of the above-mentioned devices.
  • In one aspect, forming the series of discrete control devices in Step 1204 includes substeps. Step 1204 a forms an electrode on a metal wire top surface. Step 1204 b forms a via from the metal wire top surface to a metal wire bottom surface, electrically connected to the electrode. In another aspect, Step 1206 forms an insulation layer overlying the control. devices. Step 1208 selectively etches the insulation layer to expose electrodes from a plurality of control devices.
  • FIG. 13 is a flowchart illustrating a method for forming a woven active matrix array. The method begins at Step 1300. Step 1302 provides a substrate with a top surface. Step 1304 forms a set of parallel first metal lines aligned in a first direction overlying the substrate top surface. Step 1306 forms a set of parallel second metal lines aligned in a second direction orthogonal to the first direction, overlying the first metal lines. Step 1308 forms pixel regions between first and second metal line intersections. With respect to Step 1306, a plurality of metal lines from the second metal lines comprise serially configured CoW control devices overlying an outer surface of the second metal line, where each control device is associated with a corresponding pixel region. Step 1310 forms a pixel device in each pixel region. Step 1312 form electrical contacts between each pixel device and a corresponding control device.
  • In one aspect, forming the second metal lines in Step 1306 includes forming second metal lines having insulated top and bottom surfaces that are selectively etched to expose control device electrodes. Then, prior to forming the second metal lines, Step 1305 deposits an electrically conductive adhesive overlying the first metal lines. Subsequent to forming the second metal lines, Step 1307 forms electrical. contacts between the first metal lines and the control device electrodes.
  • CoW control devices, a woven active matrix array, and corresponding fabrication processes have been provided. Examples of particular devices, interconnections, pixel types, and process steps have been presented to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.

Claims (25)

We claim:
1. A circuit-on-wire (CoW) comprising:
a flexible metal wire with an outer surface; and
a plurality of discrete electrical control devices formed in series along the metal wire outer surface.
2. The CoW of claim 1 wherein a plurality of the control devices each comprise at least a first electrical contact accessible through the metal wire.
3. The CoW of claim 1 wherein the metal wire comprises an outer top surface and an outer bottom surface;
wherein a plurality of the control devices each comprise:
a via through the metal wire from the top surface to the bottom surface; and,
a second electrical contact accessible through the via.
4. The CoW of claim 3 wherein a plurality of the control devices each further comprise a top surface with an accessible third electrical contact.
5. The CoW of claim 4 wherein a plurality of the control devices are each a first thin-film transistor (TFT), with a gate electrode accessible through the metal wire, wherein the second electrical contact is a first source/drain (S/D) electrode. and wherein the third electrical contact is a second S/D electrode.
6. The CoW of claim 4 wherein a plurality of the control devices are each a pixel switching element comprising:
a first TFT, with a gate electrode accessible through the metal wire, wherein the second electrical contact is a first S/D electrode, and wherein the third electrical contact is a second S/D electrode;
a storage capacitor connected to the second S/D electrode of the first TFT;
a second TFT comprising:
a via through the metal wire from the top surface to the bottom surface;
a first S/D electrode accessible through the via;
a gate electrode connected the second S/D electrode of the first TFT; and,
a second S/D electrode.
7. canceled
8. The CoW of claim 1 further comprising:
a spool; and,
wherein the metal wire is wound around the spool.
9. The CoW of claim 8 further comprising:
a plurality of adjacent metal wires wound around the spool, each metal wire including a plurality of discrete electrically active control devices formed in series along its outer surface.
10. canceled
11. A woven active matrix array comprising:
a set of parallel first metal lines aligned in a first direction;
a set of parallel second metal lines aligned in a second direction orthogonal to the first direction;
wherein the first metal lines intersect the second metal lines to form pixel regions;
wherein a plurality of metal lines from the second metal lines comprise serially configured circuit-on-wire (CoW) control devices overlying an outer surface of the second metal line; and,
wherein each control device is associated with a corresponding pixel region.
12. The array of claim 11 wherein a plurality of control devices each comprises at least a first electrical contact accessible through the second metal wire.
13-19. canceled
20. The array of claim 11 wherein the second metal wire further comprises:
an insulation layer overlying the second metal wire top and bottom surfaces, selectively etched to expose control device electrodes.
21. The array of claim 11 wherein a plurality of metal lines from the first metal lines comprise serially configured CoW control devices overlying an outer surface of the first metal line.
22. canceled
23. A method for forming a woven active matrix array, the method comprising:
providing a substrate with a top surface;
forming a set of parallel first metal lines aligned in a first direction overlying the substrate top surface;
forming a set of parallel second metal lines aligned in a second direction orthogonal to the first direction, overlying the first metal lines;
forming pixel regions between first and second metal line intersections;
wherein a plurality of metal lines from the second metal lines comprise serially configured circuit-on-wire (CoW) control devices overlying an outer surface of the second metal line, and wherein each control device is associated with a corresponding pixel region.
24. The method of claim 23 further comprising:
forming a pixel device in each pixel region; and, forming electrical contacts between each pixel device and a corresponding control device.
25. The method of claim 23 wherein forming the second metal lines includes forming second metal lines having insulated top and bottom surfaces, selectively etched to expose control device electrodes;
the method further comprising:
prior to forming the second metal lines, depositing an electrically conductive adhesive overlying the first metal lines; and,
subsequent to forming the second metal lines, forming electrical contacts between the first metal lines and the control device electrodes.
26. A method for forming circuit-on-wire (CoW), the method comprising:
forming an electrically conductive metal wire; and,
forming a series of discrete control devices overlying the metal wire.
27. The method of claim 26 wherein forming the series of discrete control devices includes forming thin-film devices using film deposition and photolithographic etching steps.
28. The method of claim 26 wherein forming the series of discrete control devices includes forming a plurality of control devices each having an electrode electrically connected to the metal wire.
29-30. canceled
31. The method of claim 26 wherein forming the series of discrete control devices includes forming a plurality of control devices each comprising:
an electrode on a metal wire top surface; and,
a via from the metal wire top surface to a metal wire bottom surface, electrically connected to the electrode.
32. The method of claim 26 wherein forming the series of discrete control devices includes forming control devices selected from a group consisting of thin-film transistors (TFTs), thin-film diodes, pixel switching elements, and combinations of the above-mentioned devices.
US15/218,804 2014-01-31 2016-07-25 Circuit-on-Wire (CoW) Abandoned US20160336350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/218,804 US20160336350A1 (en) 2014-01-31 2016-07-25 Circuit-on-Wire (CoW)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/169,202 US9425221B2 (en) 2014-01-31 2014-01-31 Circuit-on-wire
US15/218,804 US20160336350A1 (en) 2014-01-31 2016-07-25 Circuit-on-Wire (CoW)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/169,202 Continuation US9425221B2 (en) 2014-01-31 2014-01-31 Circuit-on-wire

Publications (1)

Publication Number Publication Date
US20160336350A1 true US20160336350A1 (en) 2016-11-17

Family

ID=53755504

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/169,202 Expired - Fee Related US9425221B2 (en) 2014-01-31 2014-01-31 Circuit-on-wire
US15/218,804 Abandoned US20160336350A1 (en) 2014-01-31 2016-07-25 Circuit-on-Wire (CoW)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/169,202 Expired - Fee Related US9425221B2 (en) 2014-01-31 2014-01-31 Circuit-on-wire

Country Status (1)

Country Link
US (2) US9425221B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508694B2 (en) * 2014-03-04 2016-11-29 Nthdegree Technologies Worldwide Inc. Multi-layer conductive backplane for LED light sheet segments
JP6424610B2 (en) * 2014-04-23 2018-11-21 ソニー株式会社 Semiconductor device and manufacturing method
KR101688165B1 (en) * 2015-05-21 2016-12-20 엘지전자 주식회사 Display device using semiconductor light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127455A1 (en) * 2002-03-25 2005-06-16 Sharp Kabushiki Kaisha Transistor array and active-matrix substrate
US20160274425A1 (en) * 2013-05-28 2016-09-22 Boe Technology Group Co., Ltd. Pixel structure and liquid crystal panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642092B1 (en) 2002-07-11 2003-11-04 Sharp Laboratories Of America, Inc. Thin-film transistors formed on a metal foil substrate
JP3938112B2 (en) * 2002-11-29 2007-06-27 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR100889625B1 (en) 2007-07-19 2009-03-20 삼성모바일디스플레이주식회사 Joining method and method of fabricating OLED using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127455A1 (en) * 2002-03-25 2005-06-16 Sharp Kabushiki Kaisha Transistor array and active-matrix substrate
US20160274425A1 (en) * 2013-05-28 2016-09-22 Boe Technology Group Co., Ltd. Pixel structure and liquid crystal panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 3, MARCH 2012 (ZYSSET et al.: WOVEN ACTIVE-MATRIX) DISPLAY *

Also Published As

Publication number Publication date
US20150221682A1 (en) 2015-08-06
US9425221B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
US10297784B2 (en) Folding type display apparatus and electric equipment
CN105789253B (en) Pixel array, electro-optical device, electric apparatus, and method of driving pixel array
TWI699017B (en) Stretchable display device and manufacturing method thereof
USRE43701E1 (en) Liquid crystal display and method of fabricating the same having particular data signal transmission lines
JP4472961B2 (en) Display device substrate, liquid crystal display device, and method of manufacturing liquid crystal display device
US6967114B2 (en) Large EL panel and manufacturing method therefor
US10862076B2 (en) OLED display device, mask, and method of manufacturing OLED display device
JPWO2014136149A1 (en) EL display device
CN108288620B (en) Pixel structure substrate and display panel thereof
US10976870B2 (en) Display device with inorganic film and method of fabricating the same
KR101980842B1 (en) Sensing unit, flexible device, and display device
US20160336350A1 (en) Circuit-on-Wire (CoW)
JP2022554043A (en) DISPLAY SUBSTRATE AND MANUFACTURING METHOD THEREOF, DISPLAY DEVICE
US9299725B2 (en) Fabrication process using circuit-on-wire
CN216719948U (en) Display substrate and display device
US10561022B2 (en) Display device
TWI467522B (en) Integrated display module
CN110571241B (en) Array substrate and manufacturing method thereof
US6980182B1 (en) Display system
CN115769296A (en) Display substrate, preparation method thereof and display device
CN109634011B (en) Array substrate, display panel and display device
JP2022098895A (en) Display device and manufacturing method thereof
US8766535B2 (en) Electro-optical apparatus, manufacturing method thereof, and electronic device
JP2008249968A (en) Active matrix type display device and manufacturing method thereof
CN111383601A (en) Display panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP LABORATORIES OF AMERICA, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VOUTSAS, APOSTOLOS;AFENTAKIS, THEMISTOKLES;SIGNING DATES FROM 20140120 TO 20140130;REEL/FRAME:039247/0705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION