US20160331207A1 - Access visualization systems - Google Patents
Access visualization systems Download PDFInfo
- Publication number
- US20160331207A1 US20160331207A1 US15/154,714 US201615154714A US2016331207A1 US 20160331207 A1 US20160331207 A1 US 20160331207A1 US 201615154714 A US201615154714 A US 201615154714A US 2016331207 A1 US2016331207 A1 US 2016331207A1
- Authority
- US
- United States
- Prior art keywords
- dilator
- endoscope
- guide tube
- endoscopic system
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012800 visualization Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000010339 dilation Effects 0.000 claims description 25
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 4
- 230000000916 dilatatory effect Effects 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 description 35
- 238000002224 dissection Methods 0.000 description 15
- 230000015271 coagulation Effects 0.000 description 12
- 238000005345 coagulation Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 210000000115 thoracic cavity Anatomy 0.000 description 7
- 210000003516 pericardium Anatomy 0.000 description 4
- 206010003658 Atrial Fibrillation Diseases 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00087—Tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00154—Holding or positioning arrangements using guiding arrangements for insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/01—Guiding arrangements therefore
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
Definitions
- Scope based surgical tools provide surgeons with an ability to view a surgical site through a lens/fiber optic/camera of the scope and also provide an ability to access the surgical site through a working channel of the tool.
- a scope permits the surgeon to access internal body tissue by passing the scope through a small diameter opening, port, or trocar placed in a surface of the body.
- an endoscope as a scope-based device.
- inventive devices and methods described herein specifically include the use of any number of scope based devices generally similar to an endoscope; for example, any type of rigid or flexible tube with or without a light delivery system and a visualization source that transmits an image to the viewer, and (optionally) a working channel or lumen that permits delivery of an additional device through the scope.
- U.S. Pat. No. 5,205,816 (the entirety of which is incorporated by reference) teaches a simple blunt dissector having a cannulated single lumen device with a mandrel inserted into the device for carrying a simple textured cloth that provides a textured surface.
- U.S. Pat. No. 5,205,816 (the entirety of which is incorporated by reference) teaches a simple blunt dissector having a cannulated single lumen device with a mandrel inserted into the device for carrying a simple textured cloth that provides a textured surface.
- the additional blunt dissector requires an additional entry port or must be exchanged with other tools that are advanced through the entry site.
- a physician must manipulate a scope as well as the blunt dissection device.
- scopes are being adapted to assist in the dissection of tissue to eliminate the need for an additional dissection device.
- Many conventional devices rely upon balloon-type structures for dissection of tissue via expansion of the balloon or close-ended obturator-type structures that dissect via dilation via insertion of the closed end.
- U.S. Pat. No. 6,989,018 to Fogarty et at discloses a balloon dissection apparatus having an elongate balloon that performs the tissue dissection.
- this dissection relies upon somewhat uncontrollable expansion of the balloon (as the internal balloon pressure increases)
- the physician typically has less control over the amount of tissue dissection as compared to using a non-expanding structure to physically dissect tissue.
- balloon dissection or dissection via obturator dilation as described above do not provide the physician with the ability to tease or loosen adjoining tissue for a more controlled dissection of tissue.
- the present method of solving this problem is using an integrated endoscope system, which provides electrophysiologists or interventional cardiologists visualization of the access procedure.
- the benefit of the integrated endoscope system is that it provides a safe and easy seamless passage for entering the pericardial space with visualization to minimize trauma to the heart.
- the integrated endoscope system may provide access to the pericardial space by percutaneous pericardial access.
- the improved methods and devices described herein offer improved access to tissue regions within the body, especially those organs in the thoracic cavity. However, the devices and methods have applicability to any region in the body apart from the thoracic cavity.
- the present system includes an endoscope configured to provide remote visualization; a dilator member having a proximal portion, a distal portion, a distal end, and a dilator passage extending from the proximal portion through the distal end, the dilator member further comprising a dilation surface located about an outer surface at the distal portion, where a profile of the dilator surface increases in size along a proximal direction such that insertion of the dilator portion in an opening in tissue dilates the tissue; a guide tube extending from the distal end of the dilator member and having a guide passage in fluid communication with the dilator passage; and where the endoscope is advanceable through the guide tube passage such that a visualization end of the endoscope can be repositioned within the guide tube.
- the variation of the above system can further include a second endoscope extending through the dilator member and radially offset from the guide tube.
- the second endoscope comprises a second visualization end exiting at a dilation surface of the dilator member.
- Variations of the system can include a configuration where the dilator member is slidable relative to the guide member.
- any portion of the system can be transparent.
- additional variations include portions of the system that are opaque.
- the guide member described herein can be removable from the dilator member or fixed to the dilator member.
- the present disclosure includes a dilation system for use with an endoscope configured to provide remote visualization, the endoscope comprising a visualization end located at a distal portion, the dilation, system comprising: a dilator member having a proximal portion, a distal portion, a distal end, and a dilator passage extending from the proximal portion through the distal end, the dilator member further comprising a dilation surface located about an outer surface at the distal portion, where a profile of the dilator surface increases in size along a proximal direction such that insertion of the dilator portion in an opening in tissue dilates the tissue; a guide tube extending from the distal end of the dilator member and having a guide passage in fluid communication with the dilator passage; and where the endoscope is advanceable through the guide tube passage such that the visualization end of the endoscope can be repositioned within the guide tube.
- the present disclosure includes methods for placement of an endoscope adjacent to a target site, in one example such a method comprises positioning an access device adjacent to an opening in tissue, the access device comprising a guide tube and a dilator member, where the guide tube is coupled, to at a distal end of the dilator member; inserting the guide tube of the access device within the opening in tissue; dilating the opening in tissue by advancing the dilator member of the access device through the opening in tissue; and imaging the target site using the endoscope while the endoscope is positioned through the dilator member.
- the method can further include visualizing using the endoscope while inserting the guide tube of the access de vice within the opening.
- the method includes an opening in tissue which comprises an opening in a pericardial space.
- the method includes a guide tube is transparent and further comprising visualizing through a wall of the guide tube using the endoscope.
- the dilator can be transparent and the method further comprises visualizing through a wall of the guide tube using the endoscope.
- the endoscope is affixed to the dilator member and where imaging the target site using the endoscope while the endoscope is positioned through the dilator member comprises repositioning the dilator member to reposition the endoscope.
- Variations of the method further include advancing a second endoscope through the guide tube.
- the present methods can include the use of any conventional device to assist in accessing the body.
- the methods can further include advancing a guidewire through the opening in tissue and where inserting the guide tube comprises advancing the guide tube over the guidewire.
- FIG. 1A illustrates a first variation of an endoscopic system or dilation system (when the endoscope is a stand-alone added component).
- FIGS. 1B and 1C illustrate additional variations of systems for navigation of an endoscopic device.
- FIGS. 2A to 2C illustrate another variation of a dilation system that can optionally be integrated with, an endoscope external to a guide tube of the system.
- FIG. 3 shows another variation of the system similar to that shown in FIG. 2A .
- the system includes two scopes.
- FIGS. 4A-4E illustrates a variation of a process of positioning or placing an endoscope using the system described herein
- Methods and devices described herein provide for improved access of regions within the body using remote visualization, such as endoscopes.
- the improved methods and devices described herein offer improved access to tissue regions within the body, especially those organs in the thoracic cavity.
- the following example discusses the methods and devices as used when a physician accesses a pericardial, space within a thoracic cavity of an individual, however, the devices and methods have applicability to any region in the body where the benefits of the methods and procedures can assist in the procedure.
- Scope based surgical tools provide surgeons with an ability to view a surgical site through a lens/fiber optic/camera of the scope and also provide an ability to access the surgical site through a working channel of the tool.
- a scope permits the surgeon to access internal body tissue by passing the scope through a small diameter opening, port, or trocar placed in a surface of the body.
- an endoscope as a scope-based device.
- inventive devices and methods described herein specifically include the use of any number of scope based devices used for remotely viewing an area of tissue generally similar to an endoscope; for example, any type of rigid or flexible tube with or without a light delivery system and a visualization source that transmits an image to the viewer, and (optionally) a working channel or lumen that permits delivery of an additional device through the scope.
- FIG. 1A illustrates a first variation under tire present disclosure of an endoscopic system 100 or dilation system 100 (when the endoscope is a stand-alone added component).
- the system 100 includes a dilator member 102 having a distal dilation surface 106 and a dilator passage 108 extending therethrough.
- a guide tube 104 extends distally from the dilator passage 108 allowing for an endoscope 150 to be advanced therethrough.
- the end 110 of the guide tube 194 can be open or can be closed, in the illustrated variation, the end 110 of the guide tube 104 is configured to be atraumatic.
- the components of the system 100 can include any conventional features useful for medical devices and/or procedures.
- the system 100 can be configured for coupling to a visual display 50 for viewing the images transmitted/relayed from the visualization end 152 of the endoscope 150 .
- the system can include any number of auxiliary fixtures (such as a fluid source, vacuum source, controller for electrodes/pacing, etc.)
- the guide tube 104 and/or dilator member 102 can have steering capabilities or pre-set shapes to assist in navigating the respective component within tissue.
- FIGS. 1B and 1C illustrate additional variations of systems 100 for navigation of an endoscopic device 150 .
- the guide tube 104 can optionally extend through the length of the dilator 102 and can optionally move relative to the dilator 102 as indicated by arrows 112 .
- the dilation surface 106 of the variation shown in FIG. 1B can be stepped rather than conical (as shown in FIG. 1A ).
- any atraumatic shape can be used for the dilation surface 106 .
- FIG. 1C also illustrates a dilator 102 having an additional dilation feature 114 such as a distensible or non-distensible balloon 114 .
- one or more of the components can be configured to assist or improve visualization of a target site by the endoscope.
- the dilator and/or the guide sheath can be fabricated from opaque or transparent materials.
- the dilator and/or guide tube can include a transparent window that assist in visualization by the endoscope.
- FIGS. 2A to 2C illustrate another variation of a dilation system 100 (that can optionally be integrated with an endoscope 160 ).
- a dilator 102 includes a guide tube 100 ex tending therethrough with the distal end of the guide tube 110 extending beyond the dilation surface 106 of the dilator 102 .
- this variation also includes an internal endoscope 160 that is adjacent to the guide tube 110 .
- Such a configuration allows the internal endoscope 160 to provide an unobstructed view (via the display 50 ) allowing the physician to visualize the tissue adjacent to the dilation surface 106 as the dilator advances.
- FIGS. 2B and 2C illustrate the end of the dilator 102 shown in FIG. 2A .
- the dilator 102 can include a scalloped opening or one where there are two passages that are parallel
- the passages 108 and 114 can be joined (as shown in FIG. 2B ) or separated (such as those found in a multi-lumen tube). Additional variations of the dilator opening can include various other shapes. However, in the illustrated variation, the opening 114 provides space tor the internal scope (as shown in FIG. 2C ). Similar to the variation shown in FIG. 1A , the dilator and/or guide tube may be composed of either opaque or transparent materials.
- the internal scope 160 can be affixed to the dilator as shown in FIG. 2C . Alternatively, the scope 160 can be moveable relative to the dilator 102 .
- FIG. 3 shows another variation of the system 108 similar to the one shown in FIG. 2A .
- the system 100 includes two scopes 150 , 160 .
- the dilator member 102 includes an internal scope 160 (either fixed or moveable within the dilator member 102 ).
- An additional scope 150 can be advanced through the guide member 104 as discussed above with respect to FIG. 1A .
- the variation shown in FIG. 3 can include an additional monitor/display 52 .
- the image generated by both scopes 150 , 160 can be projected on both monitors or a single monitor.
- FIGS. 4A-4E illustrates a variation of a process of positioning or placing an endoscope using the system described herein.
- a variation of the procedure uses minimal incisions 10 and 12 to access the chest cavity.
- an incision 14 can be made that requires traversing a diaphragm of the individual 1 in order to access the thoracic cavity.
- the procedure can be performed percutaneously.
- alternate variations of the method can occur in an open surgical procedure or with any number of surgical incisions.
- the integrated system can be inserted into the patient through any number of conventionally known access methods.
- FIG. 4B illustrates a heart 4 surrounded by a pericardium 4 in order to demonstrate an example of a process for placement of a scope using the system described herein.
- a commercially available dilator e.g., for renal applications
- a physician can percutaneously insert a needle 20 into the pericardial sac 4 via an initial pericardial incision or entry point 6 .
- a guidewire 22 can be delivered through the needle 20 into the pericardial space.
- a physician can use an expandable cannula to Insert die integrated system disclosed herein.
- the physician can use this expandable cannula with an initial insertion profile to minimize the size the pericardial opening to enter the pericardium. Once inserted, the physician expands the expandable cannula to al low for insertion of any of the disclosed integrated endoscope systems.
- FIG. 4C illustrates the state where the physician removes the needle 20 leaving the guidewire 22 in place.
- the physician introduces a system 100 adjacent to the site and advances a guide tube 104 over the guidewire 22 through the pericardial incision 6 and into the pericardial space.
- a first scope 150 can optionally be inserted through the guide tube 104 to assist the physician by allowing for visualization of the in the pericardial space that is otherwise obscured by the pericardium 4 .
- the guidewire 22 must be removed to advance the scope 150 .
- the guide tube 104 is configured to accommodate both a scope and guidewire.
- variations of the system including an internal scope 160 allow the physician visual access to the region adjacent to the distal end of the dilator member 102 and guide tube 104 .
- FIGS. 4D and 4E illustrate examples of a dual scope system and a single scope system, respectively.
- a physician can use an internal scope 160 that is positioned adjacent to a dilation surface 106 of the dilator member 102 for visualization.
- the physician also has the option of using a second scope 150 that passes through the guide tube 104
- FIG. 4E illustrates an example of the system where the scope 150 is positioned through the guide tube 104 .
- the physician can advance the dilator member 102 to further dilate the opening 6 .
- the physician can then advance an additional cannula or a hollow sheath the dilator member of the system.
- a commercial dilator can be advanced over the dilator member 102 to permit removal of the dilator member 102 and system to prepare the site for further surgical devices.
- integrated vacuum coagulation probes provided by AtriCure, Ohio, are examples of devices that can be inserted through the openings provided by the systems described above. Such devices are capable of heating the soft tissue until achieving irreversible injury making the soft tissue non-viable and unable to propagate electrical impulses, mutate, or reproduce.
- integrated vacuum coagulation probe embodiments maybe in conjunction with the access devices described herein to treat atrial fibrillation, ventricular tachycardia or other arrhythmia substrate, or eliminating cancer in lung, or other soft thoracic tissue by destroying target cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/154,714 US20160331207A1 (en) | 2015-05-13 | 2016-05-13 | Access visualization systems |
US17/935,873 US12023010B2 (en) | 2015-05-13 | 2022-09-27 | Access visualization systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562160997P | 2015-05-13 | 2015-05-13 | |
US15/154,714 US20160331207A1 (en) | 2015-05-13 | 2016-05-13 | Access visualization systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/935,873 Division US12023010B2 (en) | 2015-05-13 | 2022-09-27 | Access visualization systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160331207A1 true US20160331207A1 (en) | 2016-11-17 |
Family
ID=57249570
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/154,714 Abandoned US20160331207A1 (en) | 2015-05-13 | 2016-05-13 | Access visualization systems |
US17/935,873 Active US12023010B2 (en) | 2015-05-13 | 2022-09-27 | Access visualization systems |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/935,873 Active US12023010B2 (en) | 2015-05-13 | 2022-09-27 | Access visualization systems |
Country Status (6)
Country | Link |
---|---|
US (2) | US20160331207A1 (fr) |
EP (2) | EP3294107B8 (fr) |
JP (1) | JP2018519879A (fr) |
CN (1) | CN107920719B (fr) |
HK (1) | HK1254157A1 (fr) |
WO (1) | WO2016183503A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210315443A1 (en) * | 2020-04-08 | 2021-10-14 | Boston Scientific Limited | Medical device platforms and methods of using the same |
US12023010B2 (en) | 2015-05-13 | 2024-07-02 | Atricure, Inc. | Access visualization systems |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378920B (zh) * | 2020-10-29 | 2024-08-27 | 中国航发南方工业有限公司 | 内部齿轮的检查装置及检查方法 |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204528A (en) * | 1977-03-10 | 1980-05-27 | Zafmedico Corp. | Method and apparatus for fiber-optic intravascular endoscopy |
US4254762A (en) * | 1979-10-23 | 1981-03-10 | Inbae Yoon | Safety endoscope system |
US4269192A (en) * | 1977-12-02 | 1981-05-26 | Olympus Optical Co., Ltd. | Stabbing apparatus for diagnosis of living body |
US4335713A (en) * | 1979-02-20 | 1982-06-22 | Olympus Optical Co., Ltd. | Otoscope |
US4566438A (en) * | 1984-10-05 | 1986-01-28 | Liese Grover J | Fiber-optic stylet for needle tip localization |
US4682585A (en) * | 1985-02-23 | 1987-07-28 | Richard Wolf Gmbh | Optical system for an endoscope |
US4819620A (en) * | 1986-08-16 | 1989-04-11 | Ichiro Okutsu | Endoscope guide pipe |
US4953539A (en) * | 1986-12-26 | 1990-09-04 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4981482A (en) * | 1987-08-20 | 1991-01-01 | Kazuo Ichikawa | Device for forming an inserting hole for an endoscope |
US5154166A (en) * | 1990-02-01 | 1992-10-13 | Machida Endoscope Co., Ltd. | Endoscope cover |
US5217001A (en) * | 1991-12-09 | 1993-06-08 | Nakao Naomi L | Endoscope sheath and related method |
US5271380A (en) * | 1990-11-06 | 1993-12-21 | Siegfried Riek | Penetration instrument |
US5354302A (en) * | 1992-11-06 | 1994-10-11 | Ko Sung Tao | Medical device and method for facilitating intra-tissue visual observation and manipulation of distensible tissues |
US5385572A (en) * | 1992-11-12 | 1995-01-31 | Beowulf Holdings | Trocar for endoscopic surgery |
US5406940A (en) * | 1992-09-02 | 1995-04-18 | Olympus Winter & Ibe Gmbh | Medical instrument for creating a tissue canal |
US5514074A (en) * | 1993-02-12 | 1996-05-07 | Olympus Optical Co., Ltd. | Endoscope apparatus of an endoscope cover system for preventing buckling of an endoscope cover |
US5685856A (en) * | 1996-02-27 | 1997-11-11 | Lehrer; Theodor | Coaxial blunt dilator and endoscopic cannula insertion system |
US5876330A (en) * | 1997-10-14 | 1999-03-02 | Circon Corporation | Endoscope with semi-rigid shaft and malleable tip and method of manufacture |
US6190357B1 (en) * | 1998-04-21 | 2001-02-20 | Cardiothoracic Systems, Inc. | Expandable cannula for performing cardiopulmonary bypass and method for using same |
US6217509B1 (en) * | 1996-03-22 | 2001-04-17 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US20020022764A1 (en) * | 1996-03-22 | 2002-02-21 | Smith Maurice M. | Devices and methods for percutaneous surgery |
US6475226B1 (en) * | 1999-02-03 | 2002-11-05 | Scimed Life Systems, Inc. | Percutaneous bypass apparatus and method |
US6554793B1 (en) * | 1998-04-07 | 2003-04-29 | Stm Medizintechnik Starnberg Gmbh | Flexible trocar with an upturning tube system |
US20040260147A1 (en) * | 2003-06-19 | 2004-12-23 | Schulze Dale R. | Method for accessing cavity |
US20050059890A1 (en) * | 2003-07-31 | 2005-03-17 | Wislon-Cook Medical Inc. | System and method for introducing multiple medical devices |
US20050148818A1 (en) * | 1999-11-23 | 2005-07-07 | Sameh Mesallum | Method and apparatus for performing transgastric procedures |
US6989018B2 (en) * | 1994-06-29 | 2006-01-24 | General Surgical Innovations, Inc. | Extraluminal balloon dissection |
US20060041270A1 (en) * | 2004-05-07 | 2006-02-23 | Jay Lenker | Medical access sheath |
US20070179472A1 (en) * | 2005-03-24 | 2007-08-02 | Whittaker David R | Vascular guidewire control apparatus |
US20090137870A1 (en) * | 2002-12-20 | 2009-05-28 | Bakos Gregory J | Transparent Dilator Device and Method of Use (END-900) |
US20090275972A1 (en) * | 2006-04-19 | 2009-11-05 | Shuji Uemura | Minimally-invasive methods for implanting obesity treatment devices |
US8083690B2 (en) * | 2008-09-04 | 2011-12-27 | Vascular Solutions, Inc. | Convertible guidewire system and methods |
US20150182205A1 (en) * | 2013-12-31 | 2015-07-02 | Matthew D. Millard | Device and method for conducting a pap smear test |
US9808598B2 (en) * | 2015-02-04 | 2017-11-07 | Teleflex Medical Incorporated | Flexible tip dilator |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT985204B (it) | 1972-05-26 | 1974-11-30 | Adelman Stuart Lee | Perfezionamento negli endoscopi e simili |
US4046150A (en) | 1975-07-17 | 1977-09-06 | American Hospital Supply Corporation | Medical instrument for locating and removing occlusive objects |
US4386602A (en) * | 1977-05-17 | 1983-06-07 | Sheldon Charles H | Intracranial surgical operative apparatus |
US4195624A (en) * | 1978-06-09 | 1980-04-01 | Douglas Donald D | Tubular sheath for facilitating the insertion of an endoscope |
US4567882A (en) * | 1982-12-06 | 1986-02-04 | Vanderbilt University | Method for locating the illuminated tip of an endotracheal tube |
US4705041A (en) * | 1984-07-06 | 1987-11-10 | Kim Il G | Dilator for Sphincter of Oddi |
US4662360A (en) | 1984-10-23 | 1987-05-05 | Intelligent Medical Systems, Inc. | Disposable speculum |
US4721097A (en) | 1986-10-31 | 1988-01-26 | Circon Corporation | Endoscope sheaths and method and apparatus for installation and removal |
US4858001A (en) | 1987-10-08 | 1989-08-15 | High-Tech Medical Instrumentation, Inc. | Modular endoscopic apparatus with image rotation |
JPH01244732A (ja) | 1988-03-28 | 1989-09-29 | Asahi Optical Co Ltd | シース付内視鏡 |
US5025778A (en) * | 1990-03-26 | 1991-06-25 | Opielab, Inc. | Endoscope with potential channels and method of using the same |
US5112308A (en) * | 1990-10-03 | 1992-05-12 | Cook Incorporated | Medical device for and a method of endoscopic surgery |
US5237984A (en) | 1991-06-24 | 1993-08-24 | Xomed-Treace Inc. | Sheath for endoscope |
US5205816A (en) | 1992-04-13 | 1993-04-27 | O. R. Concepts, Inc. | Laparoscopic irrigator-aspirator blunt dissector |
US5523782A (en) | 1992-09-11 | 1996-06-04 | Williams; Ronald R. | Dental video camera with an adjustable iris |
US5337734A (en) | 1992-10-29 | 1994-08-16 | Advanced Polymers, Incorporated | Disposable sheath with optically transparent window formed continuously integral therewith |
US7384423B1 (en) | 1995-07-13 | 2008-06-10 | Origin Medsystems, Inc. | Tissue dissection method |
US7001404B1 (en) | 1995-07-13 | 2006-02-21 | Origin Medsystems, Inc. | Tissue separation cannula and method |
US6007484A (en) | 1995-09-15 | 1999-12-28 | Image Technologies Corporation | Endoscope having elevation and azimuth control of camera |
US6228052B1 (en) * | 1996-02-29 | 2001-05-08 | Medtronic Inc. | Dilator for introducer system having injection port |
US6530902B1 (en) * | 1998-01-23 | 2003-03-11 | Medtronic, Inc. | Cannula placement system |
EP0979635A2 (fr) | 1998-08-12 | 2000-02-16 | Origin Medsystems, Inc. | Dissecteur de tissu |
AU2399200A (en) | 1999-01-08 | 2000-07-24 | Origin Medsystems, Inc. | Combined vessel dissection and transection device and method |
US6592604B2 (en) | 2001-09-28 | 2003-07-15 | Ethicon, Inc. | Vessel harvesting retractor with dissection element |
US7572257B2 (en) | 2002-06-14 | 2009-08-11 | Ncontact Surgical, Inc. | Vacuum coagulation and dissection probes |
US6893442B2 (en) | 2002-06-14 | 2005-05-17 | Ablatrics, Inc. | Vacuum coagulation probe for atrial fibrillation treatment |
US7063698B2 (en) | 2002-06-14 | 2006-06-20 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
US9439714B2 (en) | 2003-04-29 | 2016-09-13 | Atricure, Inc. | Vacuum coagulation probes |
US7300448B2 (en) | 2002-10-04 | 2007-11-27 | Tyco Healthcare Group Lp | Balloon dissector with cannula |
US7275796B2 (en) | 2003-02-13 | 2007-10-02 | Bochner Ronnie Z | Device for facilitating medical examination |
US8475476B2 (en) * | 2004-06-01 | 2013-07-02 | Cook Medical Technologies Llc | System and method for accessing a body cavity |
JP2006130073A (ja) * | 2004-11-05 | 2006-05-25 | Olympus Corp | 超音波トロッカー |
US20090281500A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
EP2086441A4 (fr) | 2006-11-09 | 2012-04-25 | Ncontact Surgical Inc | Sondes de coagulation par aspiration |
US8512231B2 (en) | 2008-06-17 | 2013-08-20 | Fujifilm Corporation | Electronic endoscope including lens holder and objective mirror |
CA2786536A1 (fr) * | 2010-01-11 | 2011-07-14 | Arstasis, Inc. | Dispositif pour former des tractus dans un tissu |
US20120088968A1 (en) * | 2010-10-11 | 2012-04-12 | Epic Medical Inc. | Methods and devices for visualization and access |
EP3294107B8 (fr) | 2015-05-13 | 2023-11-08 | Atricure, Inc. | Systèmes de visualisation d'accès |
-
2016
- 2016-05-13 EP EP16793642.6A patent/EP3294107B8/fr active Active
- 2016-05-13 WO PCT/US2016/032500 patent/WO2016183503A1/fr active Application Filing
- 2016-05-13 JP JP2017559451A patent/JP2018519879A/ja active Pending
- 2016-05-13 CN CN201680034074.4A patent/CN107920719B/zh active Active
- 2016-05-13 EP EP23181476.5A patent/EP4233977A3/fr active Pending
- 2016-05-13 US US15/154,714 patent/US20160331207A1/en not_active Abandoned
-
2018
- 2018-10-16 HK HK18113231.2A patent/HK1254157A1/zh unknown
-
2022
- 2022-09-27 US US17/935,873 patent/US12023010B2/en active Active
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204528A (en) * | 1977-03-10 | 1980-05-27 | Zafmedico Corp. | Method and apparatus for fiber-optic intravascular endoscopy |
US4269192A (en) * | 1977-12-02 | 1981-05-26 | Olympus Optical Co., Ltd. | Stabbing apparatus for diagnosis of living body |
US4335713A (en) * | 1979-02-20 | 1982-06-22 | Olympus Optical Co., Ltd. | Otoscope |
US4254762A (en) * | 1979-10-23 | 1981-03-10 | Inbae Yoon | Safety endoscope system |
US4566438A (en) * | 1984-10-05 | 1986-01-28 | Liese Grover J | Fiber-optic stylet for needle tip localization |
US4682585A (en) * | 1985-02-23 | 1987-07-28 | Richard Wolf Gmbh | Optical system for an endoscope |
US4819620A (en) * | 1986-08-16 | 1989-04-11 | Ichiro Okutsu | Endoscope guide pipe |
US4953539A (en) * | 1986-12-26 | 1990-09-04 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4981482A (en) * | 1987-08-20 | 1991-01-01 | Kazuo Ichikawa | Device for forming an inserting hole for an endoscope |
US5154166A (en) * | 1990-02-01 | 1992-10-13 | Machida Endoscope Co., Ltd. | Endoscope cover |
US5271380A (en) * | 1990-11-06 | 1993-12-21 | Siegfried Riek | Penetration instrument |
US5217001A (en) * | 1991-12-09 | 1993-06-08 | Nakao Naomi L | Endoscope sheath and related method |
US5406940A (en) * | 1992-09-02 | 1995-04-18 | Olympus Winter & Ibe Gmbh | Medical instrument for creating a tissue canal |
US5354302A (en) * | 1992-11-06 | 1994-10-11 | Ko Sung Tao | Medical device and method for facilitating intra-tissue visual observation and manipulation of distensible tissues |
US5385572A (en) * | 1992-11-12 | 1995-01-31 | Beowulf Holdings | Trocar for endoscopic surgery |
US5514074A (en) * | 1993-02-12 | 1996-05-07 | Olympus Optical Co., Ltd. | Endoscope apparatus of an endoscope cover system for preventing buckling of an endoscope cover |
US6989018B2 (en) * | 1994-06-29 | 2006-01-24 | General Surgical Innovations, Inc. | Extraluminal balloon dissection |
US5685856A (en) * | 1996-02-27 | 1997-11-11 | Lehrer; Theodor | Coaxial blunt dilator and endoscopic cannula insertion system |
US6217509B1 (en) * | 1996-03-22 | 2001-04-17 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US20020022764A1 (en) * | 1996-03-22 | 2002-02-21 | Smith Maurice M. | Devices and methods for percutaneous surgery |
US5876330A (en) * | 1997-10-14 | 1999-03-02 | Circon Corporation | Endoscope with semi-rigid shaft and malleable tip and method of manufacture |
US6554793B1 (en) * | 1998-04-07 | 2003-04-29 | Stm Medizintechnik Starnberg Gmbh | Flexible trocar with an upturning tube system |
US6190357B1 (en) * | 1998-04-21 | 2001-02-20 | Cardiothoracic Systems, Inc. | Expandable cannula for performing cardiopulmonary bypass and method for using same |
US6475226B1 (en) * | 1999-02-03 | 2002-11-05 | Scimed Life Systems, Inc. | Percutaneous bypass apparatus and method |
US20050148818A1 (en) * | 1999-11-23 | 2005-07-07 | Sameh Mesallum | Method and apparatus for performing transgastric procedures |
US20090137870A1 (en) * | 2002-12-20 | 2009-05-28 | Bakos Gregory J | Transparent Dilator Device and Method of Use (END-900) |
US20040260147A1 (en) * | 2003-06-19 | 2004-12-23 | Schulze Dale R. | Method for accessing cavity |
US20050059890A1 (en) * | 2003-07-31 | 2005-03-17 | Wislon-Cook Medical Inc. | System and method for introducing multiple medical devices |
US20060041270A1 (en) * | 2004-05-07 | 2006-02-23 | Jay Lenker | Medical access sheath |
US20070179472A1 (en) * | 2005-03-24 | 2007-08-02 | Whittaker David R | Vascular guidewire control apparatus |
US20090275972A1 (en) * | 2006-04-19 | 2009-11-05 | Shuji Uemura | Minimally-invasive methods for implanting obesity treatment devices |
US8083690B2 (en) * | 2008-09-04 | 2011-12-27 | Vascular Solutions, Inc. | Convertible guidewire system and methods |
US20150182205A1 (en) * | 2013-12-31 | 2015-07-02 | Matthew D. Millard | Device and method for conducting a pap smear test |
US9808598B2 (en) * | 2015-02-04 | 2017-11-07 | Teleflex Medical Incorporated | Flexible tip dilator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12023010B2 (en) | 2015-05-13 | 2024-07-02 | Atricure, Inc. | Access visualization systems |
US20210315443A1 (en) * | 2020-04-08 | 2021-10-14 | Boston Scientific Limited | Medical device platforms and methods of using the same |
Also Published As
Publication number | Publication date |
---|---|
EP3294107B1 (fr) | 2023-10-04 |
HK1254157A1 (zh) | 2019-07-12 |
US20230021205A1 (en) | 2023-01-19 |
CN107920719A (zh) | 2018-04-17 |
EP4233977A2 (fr) | 2023-08-30 |
US12023010B2 (en) | 2024-07-02 |
JP2018519879A (ja) | 2018-07-26 |
EP3294107A1 (fr) | 2018-03-21 |
EP3294107A4 (fr) | 2019-06-12 |
EP4233977A3 (fr) | 2023-10-04 |
CN107920719B (zh) | 2020-04-24 |
EP3294107B8 (fr) | 2023-11-08 |
EP3294107C0 (fr) | 2023-10-04 |
WO2016183503A1 (fr) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11497482B2 (en) | Subxyphoid epicardial ablation | |
US12023010B2 (en) | Access visualization systems | |
US8858528B2 (en) | Articulating cannula access device | |
US12102350B2 (en) | Scope and magnetic introducer systems and methods | |
US9968414B2 (en) | Apparatus and methods for performing brain surgery | |
US8460181B2 (en) | Epicardial access and treatment systems | |
US8951226B2 (en) | Mediastinoscopy access, sampling, and visualization kit featuring toroidal balloons and exotracheal method of using | |
US8267951B2 (en) | Dissecting cannula and methods of use thereof | |
US20050165276A1 (en) | Methods and apparatus for accessing and treating regions of the body | |
JP2009500143A (ja) | 手術用アクセスデバイス、システム、および使用方法 | |
US9999443B2 (en) | Instrument head single loader | |
Visocchi | Advances in videoassisted anterior surgical approach to the craniovertebral junction | |
US20210298819A1 (en) | Surgical introducer with tissue treatment window | |
Grotenhuis | Neuroendoscopic instruments and surgical technique | |
RU149055U1 (ru) | Направляющее устройство для холедохоскопа | |
Bakshi et al. | A multifunctional, modified rigid neuroendoscopic system: clinical experience with 83 procedures | |
US20080312495A1 (en) | Method of Performing Transgastric Abdominal Surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ATRICURE, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IBRAHIM, TAMER;MONTI, MATTHEW;REEL/FRAME:040123/0746 Effective date: 20160518 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:ATRICURE, INC.;ATRICURE, LLC;ENDOSCOPIC TECHNOLOGIES, LLC;AND OTHERS;REEL/FRAME:047951/0496 Effective date: 20180223 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SENTREHEART LLC, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK, A DIVISION OF FIRST-CITIZENS BANK & TRUST COMPANY;REEL/FRAME:066256/0797 Effective date: 20240105 Owner name: NCONTACT SURGICAL, LLC, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK, A DIVISION OF FIRST-CITIZENS BANK & TRUST COMPANY;REEL/FRAME:066256/0797 Effective date: 20240105 Owner name: ENDOSCOPIC TECHNOLOGIES, LLC, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK, A DIVISION OF FIRST-CITIZENS BANK & TRUST COMPANY;REEL/FRAME:066256/0797 Effective date: 20240105 Owner name: ATRICURE, LLC, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK, A DIVISION OF FIRST-CITIZENS BANK & TRUST COMPANY;REEL/FRAME:066256/0797 Effective date: 20240105 Owner name: ATRICURE, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK, A DIVISION OF FIRST-CITIZENS BANK & TRUST COMPANY;REEL/FRAME:066256/0797 Effective date: 20240105 |