US20160295970A1 - Shoelace Interfaces Providing Selective Malleability - Google Patents

Shoelace Interfaces Providing Selective Malleability Download PDF

Info

Publication number
US20160295970A1
US20160295970A1 US15/092,601 US201615092601A US2016295970A1 US 20160295970 A1 US20160295970 A1 US 20160295970A1 US 201615092601 A US201615092601 A US 201615092601A US 2016295970 A1 US2016295970 A1 US 2016295970A1
Authority
US
United States
Prior art keywords
shoelace
housing
inner cavity
malleable
malleability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/092,601
Inventor
Matthew Michael Aguirre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/092,601 priority Critical patent/US20160295970A1/en
Publication of US20160295970A1 publication Critical patent/US20160295970A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C9/00Laces; Laces in general for garments made of textiles, leather, or plastics
    • A43C9/08Laces; Laces in general for garments made of textiles, leather, or plastics made of paper or wire
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0081Footwear characterised by the material made at least partially of hook-and-loop type material 
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C9/00Laces; Laces in general for garments made of textiles, leather, or plastics
    • A43C9/06Releasable ends of laces

Definitions

  • the present invention relates to a plurality of selectively malleable form-holding or pseudo form-holding shoelace designs, suitable for allowing persons with inadequate or unpracticed motor skills to learn or gain the ability to learn to tie their shoes.
  • shoelace interfaces have applications in special needs markets where learning to tie a shoe was either previously not possible or extremely difficult. They will also have applications in non-special needs children markets, where learning to tie a shoe can be greatly accelerated.
  • Shoelaces have been designed endless times, yet have never been designed in a way that allows persons with inadequate or unpracticed motor skills to greatly accelerate their learning curves to tie them, or gain the ability to learn this basic skill at all. More specifically, the embodiments described herein further allow non-special needs children to have greatly accelerated learning curves with tying their shoes, as holding and handling the laces of these embodiments are substantially less complicated for any persons unfamiliar with the art.
  • the spectrum of motor skills that the shoelace interfaces herein apply to, are substantially broader than the very specific and limited spectrum of motor skills that currently existing shoelaces cater to. This broader attribute of the embodiments described herein, is a substantial gain to a wide range of special needs persons who can barely tie their shoes at all.
  • the functional designs herein may be used with all of the typical aesthetic designs of shoelaces seen today, as to not create a social pressure that may increase a user's odds to feel uncomfortably different or incompetent in front of others.
  • a shoelace interface for providing selective malleability includes a plurality of shoelace and anchoring element designs; the shoelaces having an internal interface for permanently or releasably but securely receiving 1 or more selectively malleable inner cores, that function in tandem with their outer shoelace companion. Furthermore, between any selective malleable inner cores and their outer shoelace companion, may exist an insulating material to keep selective malleable inner cores from accidentally penetrating through their outer shoelace companion, while also giving the shoelace a more ergonomic feel to physically interact with.
  • the shoelace interface includes a flexible elongate housing having a top end, a bottom end substantially opposite the top end, and the flexible elongate housing in-between.
  • a through-hole, inner cavity, or inner cavities are contained within the housing for permanently or releasably but securely receiving an inner element or elements.
  • a through-hole or inner cavity can have generally a cylindrical shape or collapsible cylindrical shape.
  • the through-hole, inner cavity, or inner cavities can extend to a surface or surfaces on the housing, in such a way, as to form a first entrance or set of entrances leading into the through-hole, inner cavity or inner cavities.
  • the first entrance typically positioned at the top end of the housing.
  • the inner cavity or inner cavities may extend at least partially through or entirely through (a through-hole) the housing.
  • the inner cavity or inner cavities may assume different depth-wise positions within the housing along any axes.
  • the inner cavity or inner cavities may assume different depth-wise volumes within the housing along any axes.
  • one design may contain an inner cavity acting as a through-hole, containing an entrance at both ends of the housing and therefore extending entirely through the housing along its long axis.
  • the inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a bottom end of the housing.
  • the first entrance typically positioned at the top end of the housing and the 2 nd entrance typically positioned at the bottom end of the housing.
  • another design may contain an inner cavity spanning almost the entire length of the housing along its long axis, further containing an entrance at only one end of the housing.
  • the inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a bottom end of the housing, the entrance being typically positioned at the top end of the housing.
  • another design may contain a set of two inner cavities within the housing.
  • the two inner cavities then divided by an uninterrupted volume of the housing in-between, located at the central region of the housing along its long axis.
  • One inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a central region of the housing, along its long axis.
  • the entrance typically positioned at the top end of the housing.
  • a 2nd inner cavity can include a bottom cavity portion proximate a bottom end of the housing and a top cavity portion proximate a central region of the housing, along its long axis.
  • the entrance typically positioned at the bottom end of the housing.
  • anchoring elements will exist for coupling with each entrance of a housing, for maintaining inside any inserted components within inner cavities or through-holes of the housing.
  • Anchoring elements of like designs may also be used, for maintaining selective malleable inner cores within the insulation material that may also be inserted into the housing.
  • An anchoring element can extend partially over or entirely over an entrance and be permanently or releasably but securely coupled to the entrance.
  • An anchoring element may also extend partially through or entirely through the material leading up to an entrance, and be permanently or releasably but securely coupled to the material leading up to the entrance.
  • anchoring elements may comprise a friction fit component, glue, a crimp on component, a knot, a sewn thread, Velcro, and a heat shrink-wrap. It is to be noted to one of skill in the art, that many other types of anchoring elements may also provide a sufficient grade of coupling to the entrances of cavities, through-holes, or materials leading up to them.
  • FIG. 1 depicts a variety of typical shoelace styles.
  • FIG. 2 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing a through-hole inner cavity spanning the length of the long axis of the lace.
  • FIG. 3 depicts a top view, respectively, of the shoelace of FIG. 2 .
  • FIG. 4 depicts a bottom view, respectively, of the shoelace of FIG. 2 .
  • FIG. 5 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing an alternative interior to that of FIG. 2 , with a cavity spanning almost the length of the long axis of the lace.
  • FIG. 6 depicts a top view, respectively, of the shoelace of FIG. 5 , with downward perspective into the lace's interior.
  • FIG. 7 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing another alternative interior, comprising a set of inner cavities spanning a portion of the length of the long axis of the lace.
  • FIG. 8 depicts a top view, respectively, of the shoelace of FIG. 7 , with downward perspective into the lace's upper inner cavity.
  • FIG. 9 depicts a bottom view, respectively, of the shoelace of FIG. 7 , with upward perspective into the lace's lower inner cavity.
  • FIG. 10 depicts a variety of alternative entrances, able to lead into any inner cavity design, for example those of FIG. 2 , FIG. 5 , or FIG. 7 .
  • FIG. 11 depicts disproportionate examples for clarity, of a plurality of non-limiting examples of selectively malleable inner cores, which may range in thickness or greatly range in length along their long axes per application, for being inserted inside shoelace designs, such as those of FIG. 2 , FIG. 5 , or FIG. 7 .
  • FIG. 12 depicts a disproportionate example for clarity, of the shoelace design of FIG. 2 , containing an inserted selectively malleable inner core from FIG. 11 .
  • FIG. 13 depicts a disproportionate example for clarity, of the shoelace design of FIG. 5 , containing an inserted selectively malleable inner core from FIG. 11 .
  • FIG. 14 depicts a disproportionate example for clarity, of arbitrarily, the top or bottom half of the shoelace design of FIG. 7 , containing an inserted selectively malleable inner core from FIG. 11 .
  • FIG. 15 depicts a disproportionate example for clarity, of an insulation material, for covering one or more of the selectively malleable inner cores of FIG. 11 , which may be inserted into a shoelace inner cavity or through-hole.
  • FIG. 16 depicts a disproportionate example for clarity, of an insulation material comprising a stretchable property, for covering one or more of the selectively malleable inner cores of FIG. 11 , which may be inserted into a shoelace inner cavity or through-hole.
  • FIG. 17 arbitrarily depicts a top view or bottom view, respectively, of the insulation material of FIG. 15 or FIG. 16 .
  • FIG. 18 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16 , containing a selectively malleable inner core from FIG. 11 , maintained inside by anchoring elements.
  • FIG. 19 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16 , containing a selectively malleable inner core from FIG. 11 , maintained inside by anchoring elements.
  • FIG. 20 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16 , containing a selectively malleable inner core from FIG. 11 , maintained inside by anchoring elements.
  • FIG. 21 depicts a disproportionate example for clarity, of the shoelace design of FIG. 2 , containing the insulation material with the selected and inserted malleable inner core companion of FIG. 18 .
  • FIG. 22 depicts a disproportionate example for clarity, of the shoelace design of FIG. 5 , containing the insulation material with the selected and inserted malleable inner core companion of FIG. 19 .
  • FIG. 23 depicts a disproportionate example for clarity, of arbitrarily the top or bottom half of the shoelace design of FIG. 7 , containing the insulation material with the selected and inserted malleable inner core companion of FIG. 20 .
  • FIG. 24 depicts an anchoring element coupled to an arbitrary entrance of the shoelace design of FIG. 12 , maintaining any components inside.
  • FIG. 25 depicts an anchoring element coupled to the material leading up to an arbitrary entrance of the right-most shoelace style of FIG. 1 , maintaining any components inside.
  • FIG. 26 depicts a top view, respectively, of the shoelace style of FIG. 25 , revealing an opened through-hole or inner cavity region, which is shown coupled together by the anchoring element in FIG. 25 .
  • the inner cavity region is not coupled together for clarity, demonstrating that although this shoelace style appears different and has tassels, it can still be comprised of the shoelace interfaces herein.
  • FIG. 27 depicts the shoelace design of FIG. 2 or FIG. 5 , containing a malleable inner core spanning most or all of the length of the shoelace along its long axis.
  • FIG. 27 also depicts the shoelace bent at different positions and maintaining these pre-bent positions.
  • the shoelace is shown balanced and resting on a surface with its form being held along a vertical plane, further emphasizing the inventions' structural properties.
  • FIG. 28 depicts the shoelace design of FIG. 7 , containing malleable inner cores spanning parts of the length of the shoelace but having no presence in the central region of the shoelace, along its long axis.
  • FIG. 27 also depicts the shoelace bent at different positions and maintaining these pre-bent positions, except at its central region, which is collapsed by gravity, due to the uninterrupted volume of the flexible elongate housing at its central region.
  • the shoelace is shown balanced and resting on a surface with its form being held along a vertical plane, further emphasizing the inventions' structural properties.
  • FIGS. 1 through 28 illustrate example embodiments of a shoelace interface according to the present invention.
  • FIGS. 1 through 28 wherein like parts are designated by like reference numerals and alphanumerics throughout, illustrate example embodiments of a shoelace interface according to the present invention.
  • FIG. 1 depicts a variety of typical shoelace styles, the right-most one containing stylistic tassels.
  • FIG. 2 depicts a cross sectional view of a shoelace interface housing 1 a at its center along its long axis.
  • the housing 1 a revealing a through-hole inner cavity 5 a spanning the length of the long axis of the lace.
  • the housing 1 a further comprising of a top end having an entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a.
  • the housing 1 a further comprising of a bottom end substantially opposite the top end, having an entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 3 depicts a top view of the shoelace interface housing 1 a of FIG.
  • FIG. 4 depicts a bottom view of the shoelace interface housing 1 a of FIG. 2 , again revealing its through-hole inner cavity 5 a and entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 5 depicts a cross sectional view of another embodiment of a shoelace interface housing 1 b at its center along its long axis.
  • the housing 1 b revealing an inner cavity 5 a spanning almost the length of the long axis of the lace.
  • the housing 1 b further comprising of a top end having an entrance 6 a leading into the housing's 1 b inner cavity 5 a.
  • the inner cavity 5 a having a top portion proximate a top end of the housing 1 b and a bottom portion proximate a bottom end of the housing 1 b, the top end substantially opposite the bottom end.
  • the bottom portion of the inner cavity 5 a ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region.
  • FIG. 6 depicts a top view of the shoelace interface housing 1 b of FIG. 5 , with downward perspective into the lace's interior, revealing its inner cavity 5 a, entrance 6 a leading into the housing's 1 b inner cavity 5 a, and uninterrupted volume 10 of the housing 1 b at its bottom end region.
  • FIG. 7 depicts a cross sectional view of another embodiment of a shoelace interface housing 1 c at its center along its long axis.
  • the housing 1 c revealing a set of 2 inner cavities within the housing 1 c, an upper inner cavity 5 a and a lower inner cavity 5 b.
  • the upper inner cavity 5 a and the lower inner cavity 5 b being divided by an uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c along its long axis.
  • the upper inner cavity 5 a having a top portion proximate a top end of the housing 1 c and a bottom portion proximate a central region of the housing 1 c, along its long axis, the top end substantially opposite the central region.
  • the housing 1 c further comprising of an entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end.
  • the lower inner cavity 5 b having a bottom portion proximate a bottom end of the housing 1 c and a top portion proximate a central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region.
  • FIG. 8 depicts a top view of the shoelace interface housing 1 c of FIG. 7 , with downward perspective into the lace's interior, revealing its upper inner cavity 5 a, entrance 6 a leading into the housing's 1 c upper inner cavity 5 a, and uninterrupted volume 10 of the housing 1 c at its central region.
  • FIG. 8 depicts a top view of the shoelace interface housing 1 c of FIG. 7 , with downward perspective into the lace's interior, revealing its upper inner cavity 5 a, entrance 6 a leading into the housing's 1 c upper inner cavity 5 a, and uninterrupted volume 10 of the housing 1 c at its central region.
  • FIG. 9 depicts a bottom view of the shoelace interface housing 1 c of FIG. 7 , with upward perspective into the lace's interior, revealing its lower inner cavity 5 b, entrance 6 b leading into the housing's 1 c lower inner cavity 5 b, and uninterrupted volume 10 of the housing 1 c at its central region.
  • FIG. 10 depicts examples of alternate entrances that may lead into any inner cavity or through-hole embodiment.
  • FIG. 10 may further depict any shoelace interface housing 1 a, 1 b, 1 c represented herein, as any entrances 6 c, 6 d, 6 e can access any inner cavity or through-hole embodiments in a similar fashion.
  • Entrance 6 c represents an entrance for leading into an inner cavity, being positioned toward the top end on a side of the housing 1 a, 1 b, 1 c further depicted with an elongated opening going down the side of the housing 1 a, 1 b, 1 c along its long axis.
  • Entrance 6 d represents an entrance for leading into an inner cavity, being positioned toward the central region of the housing along its long axis, of a side of the housing 1 a, 1 b, 1 c further depicted with a non-elongated opening.
  • Entrance 6 e represents an entrance for leading into an inner cavity, being positioned toward the central region of the bottom half of the housing 1 a, 1 b, 1 c along its long axis, further depicted with a non-elongated but wider opening.
  • FIG. 11 depicts a variety of selectively malleable inner core embodiments, representing a multitude of non-limiting examples of methods in which various malleable states can be achieved.
  • a selectively malleable inner core 50 a represents an elongate malleable form such as that of a wire, in the approximate shape of a line.
  • a selectively malleable inner core 50 b represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘U’.
  • a selectively malleable inner core 50 c represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘N’.
  • a selectively malleable inner core 50 d represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘W’.
  • a selectively malleable inner core 50 e represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated and substantially twisted ‘U’.
  • a selectively malleable inner core 50 f represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated and incrementally twisted ‘U’.
  • a selectively malleable inner core 50 g represents an elongate malleable form such as that of a wire, in the approximate shape of a substantial series of coils.
  • a selectively malleable inner core 50 h represents an elongate malleable form such as that of a wire, in the approximate shape of an incrementally crimped line.
  • the selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h could comprise of various materials, each yielding unique malleable properties, such as that of aluminum relative to copper, plastic, rubber, or a composite of materials, as non-limiting examples.
  • the selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h and their various structural properties could be used in combination for also achieving a variety of specific malleable ranges.
  • any selectively malleable inner core 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h could be used in tandem for insertion into any inner cavity to alternatively achieve a variety of selective malleable ranges.
  • One of skill in the art may find further alternative methods for manipulating wire-like forms or composites for also achieving a variety of selective malleable ranges.
  • a selectively malleable inner core may be an insulation material, see FIG. 15 - FIG. 17 , if comprised of appropriate malleability ranges per application.
  • a selectively malleable inner core may be the actual shoelace material itself, negating the need for modulated designs.
  • the shoelace material itself would comprise of a selective, malleable specific, unibody embodiment.
  • Different ranges of selective, malleable specific, unibody shoelaces could then be tailored to the different ranges of unique motor skills.
  • a colored, valued, numeric, Roman numeral, alphabetic, or alphanumeric numbering system could then be used to match a specific range of motor skill ability to a selective, malleable specific shoelace companion.
  • FIG. 12 depicts a cross sectional view of the shoelace interface housing 1 a of FIG. 2 , at its center along its long axis.
  • the housing 1 a revealing the through-hole inner cavity 5 a spanning most of or all of the length of the long axis of the lace.
  • the housing 1 a further comprising of the top end having the entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a.
  • the housing 1 a further comprising of the bottom end substantially opposite the top end, having the entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a.
  • the housing 1 a containing the malleable inner core 50 a spanning most or all of the length of the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 13 depicts a cross sectional view of the shoelace interface housing 1 b of FIG. 5 , at its center along its long axis.
  • the housing 1 b revealing the inner cavity 5 a spanning almost the length of the long axis of the lace.
  • the housing 1 b further comprising of the top end having the entrance 6 a leading into the housing's 1 b inner cavity 5 a.
  • the inner cavity 5 a having the top portion proximate the top end of the housing 1 b and the bottom portion proximate the bottom end of the housing 1 b, the top end substantially opposite the bottom end.
  • the bottom portion of the inner cavity 5 a ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region.
  • the housing 1 b containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 b inner cavity 5 a.
  • FIG. 14 depicts a cross sectional view of half of the shoelace interface housing 1 c for clarity of FIG. 7 , at its center along its long axis.
  • the half depiction of the housing 1 c can be represented as either the top half or bottom half of the housing 1 c, along its long axis, being indicated by reference to its alphanumeric top half constituents 5 a and 6 a, or bottom half constituents 5 b and 6 b.
  • the housing 1 c revealing the set of 2 inner cavities 5 a, 5 b within the housing 1 c, the upper inner cavity 5 a and the lower inner cavity 5 b.
  • the upper inner cavity 5 a and the lower inner cavity 5 b being divided by the uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c, along its long axis.
  • the upper inner cavity 5 a having the top portion proximate the top end of the housing 1 c and the bottom portion proximate the central region of the housing 1 c, along its long axis, the top end substantially opposite the central region.
  • the bottom portion of the upper inner cavity 5 a ending proximate the central region of the housing 1 c by encountering the uninterrupted volume 10 of the housing 1 c at its central region.
  • the housing 1 c further comprising the entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end.
  • the housing 1 c containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 c inner cavity 5 a.
  • the lower inner cavity 5 b, entrance 6 b, and shoelace interface housing 1 c are being represented upside down as they are extremely similar to FIG. 14 's prior depiction, containing an upper inner cavity 5 a, entrance 6 a, and shoelace interface housing 1 c.
  • the lower inner cavity 5 b having the bottom portion proximate the bottom end of the housing 1 c and the top portion proximate the central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region.
  • the top portion of the lower inner cavity 5 b ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c, at its central region.
  • the housing 1 c further comprising the entrance 6 b leading into the housing's 1 c lower inner cavity 5 b at the housing's 1 c bottom end.
  • the housing 1 c containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 c inner cavity 5 b.
  • FIG. 15 depicts an insulation material 100 a, that is arbitrarily translucent, comprising of a through-hole inner cavity 101 , along its long axis.
  • FIG. 16 depicts a stretchable insulation material 100 a, that is arbitrarily translucent, comprising of a through-hole inner cavity 101 , along its long axis.
  • FIG. 17 depicts a top view or bottom view, arbitrarily, of the insulation or stretchable insulation material 100 a and through-hole inner cavity 101 .
  • FIG. 18 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200 .
  • the anchoring elements 200 are the insulation material 100 a, which are manipulated into a function of knots 200 at the insulation materials 100 a most-opposing ends along its long axis, further acting as non-limiting examples of anchoring elements 200 .
  • the selectively malleable inner core 50 g in this example being the approximate shape of a substantial series of coils and comprising of a selective gauge of thickness per application.
  • FIG. 18 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200 .
  • the anchoring elements 200 are the insulation material 100
  • FIG. 19 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200 .
  • the anchoring elements 200 represent a separate crimp on or friction fit component and further being non-limiting examples of anchoring elements 200 .
  • the selective malleable inner core 50 b in this example being the approximate shape of an elongated ‘U’ and comprising of a selective gauge of thickness per application.
  • FIG. 20 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200 .
  • the anchoring elements 200 represent a glue being internally placed in the most-opposing ends of the insulation material 100 a, along its long axis, and further being non-limiting examples of anchoring elements 200 .
  • the selectively malleable inner core 50 h in this example being an incrementally crimped wire and comprising of a selective gauge of thickness per application.
  • FIG. 21 depicts the cross sectional view of the shoelace interface housing 1 a of FIG. 2 , at its center along its long axis.
  • the housing 1 a revealing the through-hole inner cavity 5 a spanning the length of the long axis of the lace.
  • the housing 1 a further comprising of the top end having the entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a.
  • the housing 1 a further comprising of the bottom end substantially opposite the top end, having the entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a.
  • the housing 1 a containing the insulation package 100 b of FIG. 18 inside its through-hole inner cavity 5 a.
  • the insulation package 100 b further spanning most or all of the length of the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 22 depicts the cross sectional view of the shoelace interface housing 1 b of FIG. 5 , at its center along its long axis.
  • the housing 1 b revealing the inner cavity 5 a spanning almost the length of the long axis of the lace.
  • the housing 1 b further comprising of the top end having the entrance 6 a leading into the housing's 1 b inner cavity 5 a.
  • the inner cavity 5 a having the top portion proximate the top end of the housing 1 b and the bottom portion proximate the bottom end of the housing 1 b, the top end substantially opposite the bottom end.
  • the bottom portion of the inner cavity 5 a ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region.
  • the housing 1 b containing the insulation package 100 b of FIG. 19 inside its through-hole inner cavity 5 a.
  • the insulation package 100 b further spanning most or all of the length of the housing's 1 b through-hole
  • FIG. 23 depicts a cross sectional view of half of the shoelace interface housing 1 c for clarity of FIG. 7 , at its center along its long axis.
  • the half depiction of the housing 1 c can be represented as either the top half or bottom half of the housing 1 c, being indicated by reference to its alphanumeric top half constituents 5 a and 6 a, or its bottom half constituents 5 b and 6 b.
  • the housing 1 c revealing the set of 2 inner cavities within the housing 1 c, the upper inner cavity 5 a and the lower inner cavity 5 b.
  • the upper inner cavity 5 a and the lower inner cavity 5 b being divided by the uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c, along its long axis.
  • the upper inner cavity 5 a having the top portion proximate the top end of the housing 1 c and the bottom portion proximate the central region of the housing 1 c, along its long axis, the top end substantially opposite the central region.
  • the bottom portion of the upper inner cavity 5 a ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c at its central region.
  • the housing 1 c further comprising the entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end.
  • the housing 1 c containing the insulation package 100 b of FIG. 20 inside its upper inner cavity 5 a.
  • the insulation package 100 b further spanning most of or all of the length of the housing's 1 c upper inner cavity 5 a.
  • the lower inner cavity 5 b, entrance 6 b, and shoelace interface housing 1 c in this instance, being represented upside down as they are extremely similar to FIG. 23 's prior depiction, containing an upper inner cavity 5 a, entrance 6 a, and shoelace interface housing 1 c.
  • the lower inner cavity 5 b having the bottom portion proximate the bottom end of the housing 1 c and the top portion proximate the central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region.
  • the top portion of the lower inner cavity 5 b ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c at its central region.
  • the housing 1 c further comprising the entrance 6 b leading into the housing's 1 c lower inner cavity 5 b at the housing's 1 c bottom end.
  • the housing 1 c containing the insulation package 100 b of FIG. 20 inside its lower inner cavity 5 b.
  • the insulation package 100 b further spanning most of or all of the length of the housing's 1 c lower inner cavity 5 b.
  • FIG. 24 depicts a non-limiting example of an anchoring element 200 , representing a separate crimp on or friction fit component 200 , for maintaining any selectively malleable inner cores or insulation packages inside a shoelace interface housing 1 a, 1 b, 1 c.
  • FIG. 25 depicts a shoelace interface housing 1 a, 1 b, 1 c of the right-most shoelace style of FIG. 1 , comprising a non-limiting example of an anchoring element 200 , representing a sewn thread component 200 , for maintaining any selectively malleable inner cores or insulation packages inside the housing 1 a, 1 b, 1 c.
  • FIG. 24 depicts a non-limiting example of an anchoring element 200 , representing a separate crimp on or friction fit component 200 , for maintaining any selectively malleable inner cores or insulation packages inside a shoelace interface housing 1 a, 1 b, 1 c.
  • FIG. 25 depicts a shoelace interface housing 1 a, 1 b, 1 c
  • FIG. 25 further depicts stylistic tassels 30 attached to the top end of the housing 1 a, 1 b, 1 c. It is to be noted to one of skill in the art, that many other types of anchoring elements may also provide an equivalent and sufficient quality of coupling to the entrances of cavities or through-holes.
  • FIG. 26 depicts a top view of the top end of the right-most shoelace style of FIG. 1 from FIG. 25 , revealing stylistic tassels 30 , a through-hole or inner cavity 5 a, and entrance 6 a leading into the shoelace interface housing's 1 a, 1 b, 1 c through-hole or inner cavity 5 a.
  • FIG. 27 depicts an arbitrary surface 400 and a final non-limiting embodiment of the invention 300 representing the shoelace interface housing 1 a or 1 b, which function in a similar fashion.
  • FIG. 27 depicts an unusual and unintended use of the invention for clarity, in which the invention is shown temporarily bent at different angles while being balanced across a vertical plane on an arbitrary surface 400 , such as that of a book, tabletop, or floor.
  • a shoelace interface housing embodiment such as that of 1 a or 1 b, contain 1 or more malleable inner cores spanning most of or all of the length of the housing along their long axes
  • the final non-limiting embodiment of the invention 300 is shown able to hold its own form and weight against the demands of gravity upon it.
  • the specifically engineered selective malleabilities of the final invention 300 may range to different form-maintaining strengths between that of the shoelace herein in FIG. 27 , and weaker strengths migrating down toward but substantially greater than those of solely fabric shoelaces. Therefore, final inventions 300 , may provide other malleable ranges within a spectrum lesser than that of the range represented by the shoelace of FIG. 27 , but substantially greater than those of the ranges of typical, floppy, gravity prone shoelaces. These lesser ranges describing other embodiments of final inventions 300 , that unlike that of the final invention 300 of FIG. 27 , would slowly fall down toward gravity somewhat loosing their fixed forms, or more rapidly fall down toward gravity while more aggressively loosing their fixed forms, dependent upon their specifically designed malleabilities per motor skill range requirements of their applications.
  • FIG. 28 depicts an arbitrary surface 400 and a final non-limiting embodiment of the invention 301 representing the shoelace interface housing 1 c.
  • FIG. 28 depicts an unusual and unintended use of the invention for clarity, in which the invention is shown temporarily bent at different angles while being balanced across a vertical plane on an arbitrary surface 400 , such as that of a book, tabletop, or floor. Further observe, that the vertically balanced shoelace interface housing 1 c is collapsed at its central region, along its long axis, due its uninterrupted volume 10 of the housing 1 c where no selectively malleable inner cores may exist, unlike that of the embodiment in FIG. 27 .
  • the final non-limiting embodiment of the invention 301 is shown able to hold its own form and weight against the demands of gravity upon it, aside from its pre-described central region.
  • the specifically engineered selective malleabilities of the final invention 301 may range to different form-maintaining strengths between that of the shoelace herein in FIG. 28 , and weaker strengths migrating down toward but substantially greater than those of solely fabric shoelaces.
  • final inventions 301 may provide other malleability ranges lesser than that of the range represented by the shoelace of FIG. 28 , but substantially greater than those of the ranges of typical, floppy, gravity prone shoelaces. These lesser ranges describing other embodiments of final inventions 301 , that unlike that of the final invention 301 of FIG. 28 , would slowly fall down toward gravity somewhat loosing their fixed forms, or more rapidly fall down toward gravity while more aggressively loosing their fixed forms, dependent upon their specifically designed malleabilities per motor skill range requirements of their applications.

Abstract

A shoelace interface providing a selective range of malleability, integrating an inner cavity or plurality of inner cavities, comprising of one or more entrances into the inner cavity or inner cavities from an outer surface of the shoelace. The shoelace inner cavity or inner cavities can house a selectively malleable inner core or plurality of selectively malleable inner cores, comprising pre-established malleable tolerances. An additional attribute of the shoelace comprises of an insulation material being able to exist between any malleable inner cores and the interior of the shoelace inner cavity or inner cavities. The insulation material can contain anchoring elements at its entrances for maintaining any inner cores inside. The shoelace interface can contain anchoring elements at its entrances for maintaining any inserted components inside. All internal components of the shoelace interface are positioned within it, in such a way, as to give each shoelace a premeditated malleable tolerance.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a plurality of selectively malleable form-holding or pseudo form-holding shoelace designs, suitable for allowing persons with inadequate or unpracticed motor skills to learn or gain the ability to learn to tie their shoes. These shoelace interfaces have applications in special needs markets where learning to tie a shoe was either previously not possible or extremely difficult. They will also have applications in non-special needs children markets, where learning to tie a shoe can be greatly accelerated.
  • BACKGROUND OF THE INVENTION
  • Shoelaces have been designed endless times, yet have never been designed in a way that allows persons with inadequate or unpracticed motor skills to greatly accelerate their learning curves to tie them, or gain the ability to learn this basic skill at all. More specifically, the embodiments described herein further allow non-special needs children to have greatly accelerated learning curves with tying their shoes, as holding and handling the laces of these embodiments are substantially less complicated for any persons unfamiliar with the art. The spectrum of motor skills that the shoelace interfaces herein apply to, are substantially broader than the very specific and limited spectrum of motor skills that currently existing shoelaces cater to. This broader attribute of the embodiments described herein, is a substantial gain to a wide range of special needs persons who can barely tie their shoes at all.
  • Lastly, the functional designs herein may be used with all of the typical aesthetic designs of shoelaces seen today, as to not create a social pressure that may increase a user's odds to feel uncomfortably different or incompetent in front of others.
  • BRIEF SUMMARY OF THE INVENTION
  • As such, there is a need for a variety of shoelaces, each with unique malleable conditions that enable users with a variance of below average motor skills to tie their shoes. The present invention is directed toward solutions to address these needs, in addition to having other desirable characteristics that will be appreciated by one of skill in the art upon reading the present specification.
  • In accordance with example embodiments of the present invention, a shoelace interface for providing selective malleability includes a plurality of shoelace and anchoring element designs; the shoelaces having an internal interface for permanently or releasably but securely receiving 1 or more selectively malleable inner cores, that function in tandem with their outer shoelace companion. Furthermore, between any selective malleable inner cores and their outer shoelace companion, may exist an insulating material to keep selective malleable inner cores from accidentally penetrating through their outer shoelace companion, while also giving the shoelace a more ergonomic feel to physically interact with.
  • Also in accordance with example embodiments of the present invention, the shoelace interface includes a flexible elongate housing having a top end, a bottom end substantially opposite the top end, and the flexible elongate housing in-between. A through-hole, inner cavity, or inner cavities, are contained within the housing for permanently or releasably but securely receiving an inner element or elements. A through-hole or inner cavity can have generally a cylindrical shape or collapsible cylindrical shape. The through-hole, inner cavity, or inner cavities, can extend to a surface or surfaces on the housing, in such a way, as to form a first entrance or set of entrances leading into the through-hole, inner cavity or inner cavities. The first entrance typically positioned at the top end of the housing. In some designs, there may be a 2nd entrance, typically positioned at the bottom end of the housing. In some designs, entrances may also be placed at other positions on the other surfaces of the housing. The inner cavity or inner cavities may extend at least partially through or entirely through (a through-hole) the housing. The inner cavity or inner cavities may assume different depth-wise positions within the housing along any axes. The inner cavity or inner cavities may assume different depth-wise volumes within the housing along any axes.
  • In accordance with another example embodiment of the present invention, one design may contain an inner cavity acting as a through-hole, containing an entrance at both ends of the housing and therefore extending entirely through the housing along its long axis. The inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a bottom end of the housing. The first entrance typically positioned at the top end of the housing and the 2nd entrance typically positioned at the bottom end of the housing.
  • In accordance with another example embodiment of the present invention, another design may contain an inner cavity spanning almost the entire length of the housing along its long axis, further containing an entrance at only one end of the housing. The inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a bottom end of the housing, the entrance being typically positioned at the top end of the housing.
  • In accordance with another example embodiment of the present invention, another design may contain a set of two inner cavities within the housing. The two inner cavities then divided by an uninterrupted volume of the housing in-between, located at the central region of the housing along its long axis. One inner cavity can include a top cavity portion proximate a top end of the housing and a bottom cavity portion proximate a central region of the housing, along its long axis. The entrance typically positioned at the top end of the housing. A 2nd inner cavity can include a bottom cavity portion proximate a bottom end of the housing and a top cavity portion proximate a central region of the housing, along its long axis. The entrance typically positioned at the bottom end of the housing.
  • Furthermore, anchoring elements will exist for coupling with each entrance of a housing, for maintaining inside any inserted components within inner cavities or through-holes of the housing. Anchoring elements of like designs may also be used, for maintaining selective malleable inner cores within the insulation material that may also be inserted into the housing. An anchoring element can extend partially over or entirely over an entrance and be permanently or releasably but securely coupled to the entrance. An anchoring element may also extend partially through or entirely through the material leading up to an entrance, and be permanently or releasably but securely coupled to the material leading up to the entrance.
  • Some non-limiting examples of anchoring elements may comprise a friction fit component, glue, a crimp on component, a knot, a sewn thread, Velcro, and a heat shrink-wrap. It is to be noted to one of skill in the art, that many other types of anchoring elements may also provide a sufficient grade of coupling to the entrances of cavities, through-holes, or materials leading up to them.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be described in detail with reference to the figures, in which numerals indicate like references in the description. These and other features will be better understood, in which:
  • FIG. 1 depicts a variety of typical shoelace styles.
  • FIG. 2 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing a through-hole inner cavity spanning the length of the long axis of the lace.
  • FIG. 3 depicts a top view, respectively, of the shoelace of FIG. 2.
  • FIG. 4 depicts a bottom view, respectively, of the shoelace of FIG. 2.
  • FIG. 5 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing an alternative interior to that of FIG. 2, with a cavity spanning almost the length of the long axis of the lace.
  • FIG. 6 depicts a top view, respectively, of the shoelace of FIG. 5, with downward perspective into the lace's interior.
  • FIG. 7 depicts a disproportionate example for clarity, of a cross sectional side view, respectively, of a shoelace revealing another alternative interior, comprising a set of inner cavities spanning a portion of the length of the long axis of the lace.
  • FIG. 8 depicts a top view, respectively, of the shoelace of FIG. 7, with downward perspective into the lace's upper inner cavity.
  • FIG. 9 depicts a bottom view, respectively, of the shoelace of FIG. 7, with upward perspective into the lace's lower inner cavity.
  • FIG. 10 depicts a variety of alternative entrances, able to lead into any inner cavity design, for example those of FIG. 2, FIG. 5, or FIG. 7.
  • FIG. 11 depicts disproportionate examples for clarity, of a plurality of non-limiting examples of selectively malleable inner cores, which may range in thickness or greatly range in length along their long axes per application, for being inserted inside shoelace designs, such as those of FIG. 2, FIG. 5, or FIG. 7.
  • FIG. 12 depicts a disproportionate example for clarity, of the shoelace design of FIG. 2, containing an inserted selectively malleable inner core from FIG. 11.
  • FIG. 13 depicts a disproportionate example for clarity, of the shoelace design of FIG. 5, containing an inserted selectively malleable inner core from FIG. 11.
  • FIG. 14 depicts a disproportionate example for clarity, of arbitrarily, the top or bottom half of the shoelace design of FIG. 7, containing an inserted selectively malleable inner core from FIG. 11.
  • FIG. 15 depicts a disproportionate example for clarity, of an insulation material, for covering one or more of the selectively malleable inner cores of FIG. 11, which may be inserted into a shoelace inner cavity or through-hole.
  • FIG. 16 depicts a disproportionate example for clarity, of an insulation material comprising a stretchable property, for covering one or more of the selectively malleable inner cores of FIG. 11, which may be inserted into a shoelace inner cavity or through-hole.
  • FIG. 17 arbitrarily depicts a top view or bottom view, respectively, of the insulation material of FIG. 15 or FIG. 16.
  • FIG. 18 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16, containing a selectively malleable inner core from FIG. 11, maintained inside by anchoring elements.
  • FIG. 19 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16, containing a selectively malleable inner core from FIG. 11, maintained inside by anchoring elements.
  • FIG. 20 depicts a disproportionate example for clarity, of the insulation material of arbitrarily FIG. 15 or FIG. 16, containing a selectively malleable inner core from FIG. 11, maintained inside by anchoring elements.
  • FIG. 21 depicts a disproportionate example for clarity, of the shoelace design of FIG. 2, containing the insulation material with the selected and inserted malleable inner core companion of FIG. 18.
  • FIG. 22 depicts a disproportionate example for clarity, of the shoelace design of FIG. 5, containing the insulation material with the selected and inserted malleable inner core companion of FIG. 19.
  • FIG. 23 depicts a disproportionate example for clarity, of arbitrarily the top or bottom half of the shoelace design of FIG. 7, containing the insulation material with the selected and inserted malleable inner core companion of FIG. 20.
  • FIG. 24 depicts an anchoring element coupled to an arbitrary entrance of the shoelace design of FIG. 12, maintaining any components inside.
  • FIG. 25 depicts an anchoring element coupled to the material leading up to an arbitrary entrance of the right-most shoelace style of FIG. 1, maintaining any components inside.
  • FIG. 26 depicts a top view, respectively, of the shoelace style of FIG. 25, revealing an opened through-hole or inner cavity region, which is shown coupled together by the anchoring element in FIG. 25. In this figure, FIG. 26, the inner cavity region is not coupled together for clarity, demonstrating that although this shoelace style appears different and has tassels, it can still be comprised of the shoelace interfaces herein.
  • FIG. 27 depicts the shoelace design of FIG. 2 or FIG. 5, containing a malleable inner core spanning most or all of the length of the shoelace along its long axis. FIG. 27 also depicts the shoelace bent at different positions and maintaining these pre-bent positions. For purposes of clarity about the invention, the shoelace is shown balanced and resting on a surface with its form being held along a vertical plane, further emphasizing the inventions' structural properties.
  • FIG. 28 depicts the shoelace design of FIG. 7, containing malleable inner cores spanning parts of the length of the shoelace but having no presence in the central region of the shoelace, along its long axis. FIG. 27 also depicts the shoelace bent at different positions and maintaining these pre-bent positions, except at its central region, which is collapsed by gravity, due to the uninterrupted volume of the flexible elongate housing at its central region. For purposes of clarity about the invention, the shoelace is shown balanced and resting on a surface with its form being held along a vertical plane, further emphasizing the inventions' structural properties.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE INVENTION
  • FIGS. 1 through 28, wherein like parts are designated by like reference numerals and alphanumerics throughout, illustrate example embodiments of a shoelace interface according to the present invention. Although the present invention will be described with reference to the example embodiments illustrated in the figures, it should be understood that many alternative forms embody the present invention. One of skill in the art will additionally appreciate different ways to alter the parameters of the embodiments disclosed, such as the size, shape, or type of elements or materials, in a manner still in keeping with the spirit and scope of the present invention.
  • FIG. 1 depicts a variety of typical shoelace styles, the right-most one containing stylistic tassels.
  • FIG. 2 depicts a cross sectional view of a shoelace interface housing 1 a at its center along its long axis. The housing 1 a revealing a through-hole inner cavity 5 a spanning the length of the long axis of the lace. The housing 1 a further comprising of a top end having an entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a. The housing 1 a further comprising of a bottom end substantially opposite the top end, having an entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a. FIG. 3 depicts a top view of the shoelace interface housing 1 a of FIG. 2, again revealing its through-hole inner cavity 5 a and entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a. FIG. 4 depicts a bottom view of the shoelace interface housing 1 a of FIG. 2, again revealing its through-hole inner cavity 5 a and entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 5 depicts a cross sectional view of another embodiment of a shoelace interface housing 1 b at its center along its long axis. The housing 1 b revealing an inner cavity 5 a spanning almost the length of the long axis of the lace. The housing 1 b further comprising of a top end having an entrance 6 a leading into the housing's 1 b inner cavity 5 a. The inner cavity 5 a having a top portion proximate a top end of the housing 1 b and a bottom portion proximate a bottom end of the housing 1 b, the top end substantially opposite the bottom end. The bottom portion of the inner cavity 5 a ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region. FIG. 6 depicts a top view of the shoelace interface housing 1 b of FIG. 5, with downward perspective into the lace's interior, revealing its inner cavity 5 a, entrance 6 a leading into the housing's 1 b inner cavity 5 a, and uninterrupted volume 10 of the housing 1 b at its bottom end region.
  • FIG. 7 depicts a cross sectional view of another embodiment of a shoelace interface housing 1 c at its center along its long axis. The housing 1 c revealing a set of 2 inner cavities within the housing 1 c, an upper inner cavity 5 a and a lower inner cavity 5 b. The upper inner cavity 5 a and the lower inner cavity 5 b, being divided by an uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c along its long axis. The upper inner cavity 5 a having a top portion proximate a top end of the housing 1 c and a bottom portion proximate a central region of the housing 1 c, along its long axis, the top end substantially opposite the central region. The bottom portion of the upper inner cavity 5 a ending proximate the central region of the housing 1 c, along its long axis, by encountering an uninterrupted volume 10 of the housing 1 c at its central region. The housing 1 c further comprising of an entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end. The lower inner cavity 5 b having a bottom portion proximate a bottom end of the housing 1 c and a top portion proximate a central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region. The top portion of the lower inner cavity 5 b ending proximate the central region of the housing 1 c, along its long axis, by encountering an uninterrupted volume 10 of the housing 1 c at its central region along its long axis. The housing 1 c further comprising of an entrance 6 b leading into the housing's 1 c lower inner cavity 5 b at the housing's 1 c bottom end. FIG. 8 depicts a top view of the shoelace interface housing 1 c of FIG. 7, with downward perspective into the lace's interior, revealing its upper inner cavity 5 a, entrance 6 a leading into the housing's 1 c upper inner cavity 5 a, and uninterrupted volume 10 of the housing 1 c at its central region. FIG. 9 depicts a bottom view of the shoelace interface housing 1 c of FIG. 7, with upward perspective into the lace's interior, revealing its lower inner cavity 5 b, entrance 6 b leading into the housing's 1 c lower inner cavity 5 b, and uninterrupted volume 10 of the housing 1 c at its central region.
  • FIG. 10 depicts examples of alternate entrances that may lead into any inner cavity or through-hole embodiment. FIG. 10 may further depict any shoelace interface housing 1 a, 1 b, 1 c represented herein, as any entrances 6 c, 6 d, 6 e can access any inner cavity or through-hole embodiments in a similar fashion. Entrance 6 c represents an entrance for leading into an inner cavity, being positioned toward the top end on a side of the housing 1 a, 1 b, 1 c further depicted with an elongated opening going down the side of the housing 1 a, 1 b, 1 c along its long axis. Entrance 6 d represents an entrance for leading into an inner cavity, being positioned toward the central region of the housing along its long axis, of a side of the housing 1 a, 1 b, 1 c further depicted with a non-elongated opening. Entrance 6 e represents an entrance for leading into an inner cavity, being positioned toward the central region of the bottom half of the housing 1 a, 1 b, 1 c along its long axis, further depicted with a non-elongated but wider opening.
  • FIG. 11 depicts a variety of selectively malleable inner core embodiments, representing a multitude of non-limiting examples of methods in which various malleable states can be achieved. A selectively malleable inner core 50 a represents an elongate malleable form such as that of a wire, in the approximate shape of a line. A selectively malleable inner core 50 b represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘U’. A selectively malleable inner core 50 c represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘N’. A selectively malleable inner core 50 d represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated ‘W’. A selectively malleable inner core 50 e represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated and substantially twisted ‘U’. A selectively malleable inner core 50 f represents an elongate malleable form such as that of a wire, in the approximate shape of an elongated and incrementally twisted ‘U’. A selectively malleable inner core 50 g represents an elongate malleable form such as that of a wire, in the approximate shape of a substantial series of coils. A selectively malleable inner core 50 h represents an elongate malleable form such as that of a wire, in the approximate shape of an incrementally crimped line. The selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h could comprise of various materials, each yielding unique malleable properties, such as that of aluminum relative to copper, plastic, rubber, or a composite of materials, as non-limiting examples. Furthermore, the selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h and their various structural properties, could be used in combination for also achieving a variety of specific malleable ranges. Furthermore, two or more instances of any selectively malleable inner core 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h could be used in tandem for insertion into any inner cavity to alternatively achieve a variety of selective malleable ranges. One of skill in the art may find further alternative methods for manipulating wire-like forms or composites for also achieving a variety of selective malleable ranges. In some cases, a selectively malleable inner core may be an insulation material, see FIG. 15-FIG. 17, if comprised of appropriate malleability ranges per application. Furthermore, a selectively malleable inner core may be the actual shoelace material itself, negating the need for modulated designs. In this instance, the shoelace material itself would comprise of a selective, malleable specific, unibody embodiment. Different ranges of selective, malleable specific, unibody shoelaces could then be tailored to the different ranges of unique motor skills. Furthermore, as non-limiting examples, a colored, valued, numeric, Roman numeral, alphabetic, or alphanumeric numbering system, could then be used to match a specific range of motor skill ability to a selective, malleable specific shoelace companion.
  • FIG. 12 depicts a cross sectional view of the shoelace interface housing 1 a of FIG. 2, at its center along its long axis. The housing 1 a revealing the through-hole inner cavity 5 a spanning most of or all of the length of the long axis of the lace. The housing 1 a further comprising of the top end having the entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a. The housing 1 a further comprising of the bottom end substantially opposite the top end, having the entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a. Furthermore, the housing 1 a containing the malleable inner core 50 a spanning most or all of the length of the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 13 depicts a cross sectional view of the shoelace interface housing 1 b of FIG. 5, at its center along its long axis. The housing 1 b revealing the inner cavity 5 a spanning almost the length of the long axis of the lace. The housing 1 b further comprising of the top end having the entrance 6 a leading into the housing's 1 b inner cavity 5 a. The inner cavity 5 a having the top portion proximate the top end of the housing 1 b and the bottom portion proximate the bottom end of the housing 1 b, the top end substantially opposite the bottom end. The bottom portion of the inner cavity 5 a, ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region. Furthermore, the housing 1 b containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 b inner cavity 5 a.
  • FIG. 14 depicts a cross sectional view of half of the shoelace interface housing 1 c for clarity of FIG. 7, at its center along its long axis. The half depiction of the housing 1 c, can be represented as either the top half or bottom half of the housing 1 c, along its long axis, being indicated by reference to its alphanumeric top half constituents 5 a and 6 a, or bottom half constituents 5 b and 6 b. The housing 1 c revealing the set of 2 inner cavities 5 a, 5 b within the housing 1 c, the upper inner cavity 5 a and the lower inner cavity 5 b. The upper inner cavity 5 a and the lower inner cavity 5 b, being divided by the uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c, along its long axis.
  • The upper inner cavity 5 a having the top portion proximate the top end of the housing 1 c and the bottom portion proximate the central region of the housing 1 c, along its long axis, the top end substantially opposite the central region. The bottom portion of the upper inner cavity 5 a, ending proximate the central region of the housing 1 c by encountering the uninterrupted volume 10 of the housing 1 c at its central region. The housing 1 c further comprising the entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end. Furthermore, the housing 1 c containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 c inner cavity 5 a.
  • The lower inner cavity 5 b, entrance 6 b, and shoelace interface housing 1 c, in this instance are being represented upside down as they are extremely similar to FIG. 14's prior depiction, containing an upper inner cavity 5 a, entrance 6 a, and shoelace interface housing 1 c.
  • The lower inner cavity 5 b having the bottom portion proximate the bottom end of the housing 1 c and the top portion proximate the central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region. The top portion of the lower inner cavity 5 b ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c, at its central region. The housing 1 c further comprising the entrance 6 b leading into the housing's 1 c lower inner cavity 5 b at the housing's 1 c bottom end. Furthermore, the housing 1 c containing the selectively malleable inner core 50 e spanning most of or all of the length of the housing's 1 c inner cavity 5 b.
  • FIG. 15 depicts an insulation material 100 a, that is arbitrarily translucent, comprising of a through-hole inner cavity 101, along its long axis. FIG. 16 depicts a stretchable insulation material 100 a, that is arbitrarily translucent, comprising of a through-hole inner cavity 101, along its long axis. FIG. 17 depicts a top view or bottom view, arbitrarily, of the insulation or stretchable insulation material 100 a and through-hole inner cavity 101.
  • FIG. 18 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200. In this example of FIG. 18, the anchoring elements 200 are the insulation material 100 a, which are manipulated into a function of knots 200 at the insulation materials 100 a most-opposing ends along its long axis, further acting as non-limiting examples of anchoring elements 200. The selectively malleable inner core 50 g in this example, being the approximate shape of a substantial series of coils and comprising of a selective gauge of thickness per application. FIG. 19 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any selectively malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200. In this example, the anchoring elements 200 represent a separate crimp on or friction fit component and further being non-limiting examples of anchoring elements 200. The selective malleable inner core 50 b in this example, being the approximate shape of an elongated ‘U’ and comprising of a selective gauge of thickness per application. FIG. 20 depicts an insulation package 100 b, comprising an insulation material 100 a maintaining any malleable inner cores 50 a, 50 b, 50 c, 50 d, 50 e, 50 f, 50 g, 50 h inside by anchoring elements 200. In this example, the anchoring elements 200 represent a glue being internally placed in the most-opposing ends of the insulation material 100 a, along its long axis, and further being non-limiting examples of anchoring elements 200. The selectively malleable inner core 50 h in this example, being an incrementally crimped wire and comprising of a selective gauge of thickness per application.
  • FIG. 21 depicts the cross sectional view of the shoelace interface housing 1 a of FIG. 2, at its center along its long axis. The housing 1 a revealing the through-hole inner cavity 5 a spanning the length of the long axis of the lace. The housing 1 a further comprising of the top end having the entrance 6 a leading into the housing's 1 a through-hole inner cavity 5 a. The housing 1 a further comprising of the bottom end substantially opposite the top end, having the entrance 6 b leading into the housing's 1 a through-hole inner cavity 5 a. Furthermore, the housing 1 a containing the insulation package 100 b of FIG. 18 inside its through-hole inner cavity 5 a. The insulation package 100 b, further spanning most or all of the length of the housing's 1 a through-hole inner cavity 5 a.
  • FIG. 22 depicts the cross sectional view of the shoelace interface housing 1 b of FIG. 5, at its center along its long axis. The housing 1 b revealing the inner cavity 5 a spanning almost the length of the long axis of the lace. The housing 1 b further comprising of the top end having the entrance 6 a leading into the housing's 1 b inner cavity 5 a. The inner cavity 5 a having the top portion proximate the top end of the housing 1 b and the bottom portion proximate the bottom end of the housing 1 b, the top end substantially opposite the bottom end. The bottom portion of the inner cavity 5 a ending before the bottom end of the housing 1 b, by encountering an uninterrupted volume 10 of the housing 1 b at its bottom end region. Furthermore, the housing 1 b containing the insulation package 100 b of FIG. 19 inside its through-hole inner cavity 5 a. The insulation package 100 b, further spanning most or all of the length of the housing's 1 b through-hole inner cavity 5 a.
  • FIG. 23 depicts a cross sectional view of half of the shoelace interface housing 1 c for clarity of FIG. 7, at its center along its long axis. The half depiction of the housing 1 c, can be represented as either the top half or bottom half of the housing 1 c, being indicated by reference to its alphanumeric top half constituents 5 a and 6 a, or its bottom half constituents 5 b and 6 b. The housing 1 c revealing the set of 2 inner cavities within the housing 1 c, the upper inner cavity 5 a and the lower inner cavity 5 b. The upper inner cavity 5 a and the lower inner cavity 5 b, being divided by the uninterrupted volume 10 of the housing 1 c in-between, located at the central region of the housing 1 c, along its long axis.
  • The upper inner cavity 5 a having the top portion proximate the top end of the housing 1 c and the bottom portion proximate the central region of the housing 1 c, along its long axis, the top end substantially opposite the central region. The bottom portion of the upper inner cavity 5 a ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c at its central region. The housing 1 c further comprising the entrance 6 a leading into the housing's 1 c upper inner cavity 5 a at the housing's 1 c top end. Furthermore, the housing 1 c containing the insulation package 100 b of FIG. 20 inside its upper inner cavity 5 a. The insulation package 100 b, further spanning most of or all of the length of the housing's 1 c upper inner cavity 5 a.
  • The lower inner cavity 5 b, entrance 6 b, and shoelace interface housing 1 c, in this instance, being represented upside down as they are extremely similar to FIG. 23's prior depiction, containing an upper inner cavity 5 a, entrance 6 a, and shoelace interface housing 1 c.
  • The lower inner cavity 5 b having the bottom portion proximate the bottom end of the housing 1 c and the top portion proximate the central region of the housing 1 c, along its long axis, the bottom end substantially opposite the central region. The top portion of the lower inner cavity 5 b ending proximate the central region of the housing 1 c, by encountering the uninterrupted volume 10 of the housing 1 c at its central region. The housing 1 c further comprising the entrance 6 b leading into the housing's 1 c lower inner cavity 5 b at the housing's 1 c bottom end. Furthermore, the housing 1 c containing the insulation package 100 b of FIG. 20 inside its lower inner cavity 5 b. The insulation package 100 b, further spanning most of or all of the length of the housing's 1 c lower inner cavity 5 b.
  • FIG. 24 depicts a non-limiting example of an anchoring element 200, representing a separate crimp on or friction fit component 200, for maintaining any selectively malleable inner cores or insulation packages inside a shoelace interface housing 1 a, 1 b, 1 c. FIG. 25 depicts a shoelace interface housing 1 a, 1 b, 1 c of the right-most shoelace style of FIG. 1, comprising a non-limiting example of an anchoring element 200, representing a sewn thread component 200, for maintaining any selectively malleable inner cores or insulation packages inside the housing 1 a, 1 b, 1 c. FIG. 25 further depicts stylistic tassels 30 attached to the top end of the housing 1 a, 1 b, 1 c. It is to be noted to one of skill in the art, that many other types of anchoring elements may also provide an equivalent and sufficient quality of coupling to the entrances of cavities or through-holes. FIG. 26 depicts a top view of the top end of the right-most shoelace style of FIG. 1 from FIG. 25, revealing stylistic tassels 30, a through-hole or inner cavity 5 a, and entrance 6 a leading into the shoelace interface housing's 1 a, 1 b, 1 c through-hole or inner cavity 5 a.
  • FIG. 27 depicts an arbitrary surface 400 and a final non-limiting embodiment of the invention 300 representing the shoelace interface housing 1 a or 1 b, which function in a similar fashion. FIG. 27 depicts an unusual and unintended use of the invention for clarity, in which the invention is shown temporarily bent at different angles while being balanced across a vertical plane on an arbitrary surface 400, such as that of a book, tabletop, or floor. As a shoelace interface housing embodiment, such as that of 1 a or 1 b, contain 1 or more malleable inner cores spanning most of or all of the length of the housing along their long axes, the final non-limiting embodiment of the invention 300 is shown able to hold its own form and weight against the demands of gravity upon it. In other final non-limiting embodiments of the invention 300, the specifically engineered selective malleabilities of the final invention 300, may range to different form-maintaining strengths between that of the shoelace herein in FIG. 27, and weaker strengths migrating down toward but substantially greater than those of solely fabric shoelaces. Therefore, final inventions 300, may provide other malleable ranges within a spectrum lesser than that of the range represented by the shoelace of FIG. 27, but substantially greater than those of the ranges of typical, floppy, gravity prone shoelaces. These lesser ranges describing other embodiments of final inventions 300, that unlike that of the final invention 300 of FIG. 27, would slowly fall down toward gravity somewhat loosing their fixed forms, or more rapidly fall down toward gravity while more aggressively loosing their fixed forms, dependent upon their specifically designed malleabilities per motor skill range requirements of their applications.
  • FIG. 28 depicts an arbitrary surface 400 and a final non-limiting embodiment of the invention 301 representing the shoelace interface housing 1 c. FIG. 28 depicts an unusual and unintended use of the invention for clarity, in which the invention is shown temporarily bent at different angles while being balanced across a vertical plane on an arbitrary surface 400, such as that of a book, tabletop, or floor. Further observe, that the vertically balanced shoelace interface housing 1 c is collapsed at its central region, along its long axis, due its uninterrupted volume 10 of the housing 1 c where no selectively malleable inner cores may exist, unlike that of the embodiment in FIG. 27.
  • As a shoelace interface housing embodiment, such as that of 1 c, contain 1 or more selectively malleable inner cores spanning most or all of the length of their relative inner cavities, along their shoelaces long axes, the final non-limiting embodiment of the invention 301 is shown able to hold its own form and weight against the demands of gravity upon it, aside from its pre-described central region. In other final non-limiting embodiments of the invention 301, the specifically engineered selective malleabilities of the final invention 301, may range to different form-maintaining strengths between that of the shoelace herein in FIG. 28, and weaker strengths migrating down toward but substantially greater than those of solely fabric shoelaces. Therefore, final inventions 301 may provide other malleability ranges lesser than that of the range represented by the shoelace of FIG. 28, but substantially greater than those of the ranges of typical, floppy, gravity prone shoelaces. These lesser ranges describing other embodiments of final inventions 301, that unlike that of the final invention 301 of FIG. 28, would slowly fall down toward gravity somewhat loosing their fixed forms, or more rapidly fall down toward gravity while more aggressively loosing their fixed forms, dependent upon their specifically designed malleabilities per motor skill range requirements of their applications.
  • Numerous modifications and alternative embodiments of the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of the structure may vary substantially without departing from the spirit of the present invention, and exclusive use of all modifications that come within the scope of the appended claims is reserved. It is intended that the present invention be limited only to the extent required by the appended claims and the applicable rules of law.
  • It is also to be understood that the following claims are to cover all generic and specific features of the invention described herein, and all statements of the scope of the invention, which as a matter of language, might be said to fall therebetween.

Claims (20)

What is claimed is:
1. A shoelace interface providing a selective malleability, that when tangibly bent maintains 100 percent of the form of each tangibly bent position, comprising:
an elongate shoelace with at least 1 inner cavity contained within a shoelace interior extending along its long axis;
at least 1 entrance leading into the at least 1 inner cavity from a shoelaces outer surfaces;
at least 1 selectively malleable inner core comprising of a malleable property that allows it to be tangibly bent to different positions, and maintain those positions unless otherwise tangibly manipulated;
and the at least 1 selectively malleable inner core spanning most of or all of the length of the at least 1 inner cavity.
2. The shoelace interface providing a selective malleability of claim 1, wherein the at least 1 selectively malleable inner core comprising of a malleable property that allows it to be tangibly bent to different positions, maintains greater than 49 percent of the form of each tangibly bent position unless otherwise tangibly manipulated.
3. The shoelace interface providing a selective malleability of claim 1, wherein the at least 1 inner cavity may contain 2 or more entrances leading into the at least 1 inner cavity.
4. The shoelace interface providing a selective malleability of claim 1, wherein the at least 1 inner cavity may contain 2 or more selectively malleable inner cores spanning most of or all of the length of their inner cavity.
5. The shoelace interface providing a selective malleability of claim 1, wherein the at least 1 inner cavity may be 2 or more inner cavities extending along its long axis.
6. The shoelace interface providing a selective malleability of claim 5, wherein any inner cavity may contain 2 or more selectively malleable inner cores spanning most of or all of the length of their inner cavity.
7. The shoelace interface providing a selective malleability of claim 1, containing an insulation material for insulating any selectively malleable inner cores within the at least 1 inner cavity.
8. The insulation material of claim 7, comprising a stretchable property.
9. The insulation material of claim 7, containing anchoring elements for maintaining any selectively malleable inner cores within the insulation material.
10. The shoelace interface providing a selective malleability of claim 1, containing anchoring elements for maintaining any internal components within the at least 1 inner cavity.
11. The at least 1 selectively malleable inner core of claim 1, comprising an insulation element.
12. The at least 1 selectively malleable inner core of claim 1, comprising a stretchable property.
13. The at least 1 selectively malleable inner core of claim 1, being subject to a spectrum of malleabilities, the spectrum of malleabilities allowing any tangibly bent position of the at least 1 selectively malleable inner core to maintain between 50 to 100 percent of their forms unless otherwise tangibly manipulated.
14. Any selective malleability of the shoelace interface providing a selective malleability of claim 1, being indexed by a method of a valued, colored, symbolic, numeric, Roman numeral, alphabetic, or alphanumeric system.
15. The spectrum of malleabilities of claim 13, being indexed by a method of a valued, colored, symbolic, numeric, Roman numeral, alphabetic, or alphanumeric system.
16. The shoelace interface providing a selective malleability of claim 1, comprising a non-modulated unibody embodiment, wherein a selectively malleable inner core is an actual shoelace material itself.
17. The shoelace interface providing a selective malleability of claim 16, being subject to a spectrum of malleabilities, the spectrum of malleabilities allowing any tangibly bent position of the at least 1 selectively malleable inner core to maintain between 50 to 100 percent of their forms unless otherwise tangibly manipulated.
18. Any selective malleability of the shoelace interface providing a selective malleability of claim 16, being indexed by a method of a valued, colored, symbolic, numeric, Roman numeral, alphabetic, or alphanumeric system.
19. The spectrum of malleabilities of claim 17, being indexed by a method of a valued, colored, symbolic, numeric, Roman numeral, alphabetic, or alphanumeric system.
20. The anchoring elements of claim 10, being removable.
US15/092,601 2015-04-07 2016-04-06 Shoelace Interfaces Providing Selective Malleability Abandoned US20160295970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/092,601 US20160295970A1 (en) 2015-04-07 2016-04-06 Shoelace Interfaces Providing Selective Malleability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562143826P 2015-04-07 2015-04-07
US15/092,601 US20160295970A1 (en) 2015-04-07 2016-04-06 Shoelace Interfaces Providing Selective Malleability

Publications (1)

Publication Number Publication Date
US20160295970A1 true US20160295970A1 (en) 2016-10-13

Family

ID=57111486

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/092,601 Abandoned US20160295970A1 (en) 2015-04-07 2016-04-06 Shoelace Interfaces Providing Selective Malleability

Country Status (1)

Country Link
US (1) US20160295970A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721468A (en) * 1985-03-06 1988-01-26 Alexander Dean D Training shoelace
US4842522A (en) * 1985-03-06 1989-06-27 Alexander Dean D Training shoelace
US5029372A (en) * 1989-10-16 1991-07-09 Brinson Betty L Shoelace for children
US6397854B1 (en) * 1999-06-07 2002-06-04 Heather Bailey Bendable fabric-covered rod-like device
US7036194B2 (en) * 2004-02-25 2006-05-02 Antoinette Tricker Shoe lace
US20070226968A1 (en) * 2006-03-31 2007-10-04 Valenzuela Dora A Shoe lace
US20080271299A1 (en) * 2007-05-04 2008-11-06 Aaron Kilbarger Magnetic shoe lace
US20110195268A1 (en) * 2010-02-08 2011-08-11 Schaffer Harold J Wire Core Lace
US20140007392A1 (en) * 2012-07-04 2014-01-09 Twins Corporation Lace provided with tubular lace body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721468A (en) * 1985-03-06 1988-01-26 Alexander Dean D Training shoelace
US4842522A (en) * 1985-03-06 1989-06-27 Alexander Dean D Training shoelace
US5029372A (en) * 1989-10-16 1991-07-09 Brinson Betty L Shoelace for children
US6397854B1 (en) * 1999-06-07 2002-06-04 Heather Bailey Bendable fabric-covered rod-like device
US7036194B2 (en) * 2004-02-25 2006-05-02 Antoinette Tricker Shoe lace
US20070226968A1 (en) * 2006-03-31 2007-10-04 Valenzuela Dora A Shoe lace
US20080271299A1 (en) * 2007-05-04 2008-11-06 Aaron Kilbarger Magnetic shoe lace
US20110195268A1 (en) * 2010-02-08 2011-08-11 Schaffer Harold J Wire Core Lace
US20140007392A1 (en) * 2012-07-04 2014-01-09 Twins Corporation Lace provided with tubular lace body

Similar Documents

Publication Publication Date Title
US7469898B2 (en) Geometric puzzle kits
US20150201708A1 (en) Tassel Apparatus For Penny Loafers
US20160376837A1 (en) Cordless blind assembly
US20160295970A1 (en) Shoelace Interfaces Providing Selective Malleability
US4293601A (en) Flower-like decorative ornament
US11110026B2 (en) Aesthetic glider for walkers
US752626A (en) Bead-threader
US20160137347A1 (en) Packaging Sleeve For A Bottle
JP3209372U (en) Attraction hanging rod that can be reversed
US20240013676A1 (en) Teaching aid for knot tying practice
US1345067A (en) Toy umbrella
CN203958800U (en) A kind of personalized packing box
JP3190382U (en) Double fruit hanging bag
ES2940255T3 (en) Character figure and method for attaching hair to a character figure
CN204192140U (en) A kind of baby's game tent
US20220233002A1 (en) Flower arrangement support system
CN205813790U (en) A kind of DIY beading external member
CN208639873U (en) A kind of school bag cabinet
KR200375094Y1 (en) Frame for string passing
Wahlberg The Second Sky
US20190099032A1 (en) Do-it-yourself craft with a plastic ornament cap
US2287358A (en) Bottle basket
EP2452592A1 (en) Silk product and method of making the same
IT201800009929A1 (en) Modular element for the creation of three-dimensional figures
TWM470076U (en) Pineapple shape box structure improvement

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION