US20160293572A1 - Cavity bridge connection for die split architecture - Google Patents

Cavity bridge connection for die split architecture Download PDF

Info

Publication number
US20160293572A1
US20160293572A1 US14/673,435 US201514673435A US2016293572A1 US 20160293572 A1 US20160293572 A1 US 20160293572A1 US 201514673435 A US201514673435 A US 201514673435A US 2016293572 A1 US2016293572 A1 US 2016293572A1
Authority
US
United States
Prior art keywords
substrate
die
package structure
photo
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/673,435
Other versions
US9443824B1 (en
Inventor
Hong Bok We
Jae Sik Lee
Dong Wook Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US14/673,435 priority Critical patent/US9443824B1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, DONG WOOK, LEE, JAE SIK, WE, HONG BOK
Priority to PCT/US2016/021278 priority patent/WO2016160283A1/en
Priority to CN201680019399.5A priority patent/CN107431027B/en
Priority to US15/261,731 priority patent/US20160379959A1/en
Application granted granted Critical
Publication of US9443824B1 publication Critical patent/US9443824B1/en
Publication of US20160293572A1 publication Critical patent/US20160293572A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5381Crossover interconnections, e.g. bridge stepovers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32137Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/38Effects and problems related to the device integration
    • H01L2924/381Pitch distance

Definitions

  • aspects of the present disclosure relate to semiconductor devices, and more particularly to a cavity bridge connection for a die split architecture.
  • the process flow for semiconductor fabrication of integrated circuits may include front-end-of-line (FEOL), middle-of-line (MOL), and back-end-of-line (BEOL) processes.
  • the front-end-of-line processes may include wafer preparation, isolation, well formation, gate patterning, spacer, extension and source/drain implantation, silicide formation, and dual stress liner formation.
  • the middle-of-line process may include gate contact formation.
  • Middle-of-line layers may include, but are not limited to, middle-of-line contacts, vias or other layers within close proximity to the semiconductor device transistors or other like active devices.
  • the back-end-of-line processes may include a series of wafer processing steps for interconnecting the semiconductor devices created during the front-end-of-line and middle-of-line processes. Successful fabrication of modern semiconductor chip products involves an interplay between the materials and the processes employed.
  • An interposer is a die-mounting technology in which the interposer serves as a base upon which the semiconductor dies of a system on chip (SoC) are mounted.
  • An interposer is an example of a fan out wafer level package structure.
  • the interposer may include wiring layers of conductive traces and conductive vias for routing electrical connections between the semiconductor dies (e.g., memory modules and processors) and a system board.
  • the interposer may include a redistribution layer (RDL) that provides a connection pattern of bond pads on the active surface of a semiconductor device (e.g., a die or chip) to a redistributed connection pattern that is more suitable for connection to the system board.
  • RDL redistribution layer
  • the interposer does not include active devices such as diodes and transistors.
  • Fabrication of wafer level package structures may include attachment of a semiconductor device (e.g., a die or chip) to the wafer level package structure.
  • a semiconductor device e.g., a die or chip
  • an interposer may provide die-to-die connection for enabling the die split architecture.
  • Using an interposer to provide die-to-die connection is expensive and involves a complicated process.
  • using an interposer to provide the die-to-die connection may prevent fabrication of package structures with reduced thickness. That is, high density die-to-die connection may involve technical hurdles for fine line/space generation as well as an extra layer (e.g., an interposer) to prepare for packaging.
  • An integrated circuit (IC) package structure may include a substrate.
  • the substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die.
  • the semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate.
  • the semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer.
  • the first semiconductor die and the second semiconductor die are supported by the substrate and coupled together through the semiconductor bridge.
  • a method for fabricating an integrated circuit (IC) package structure may include depositing a photo-sensitive layer(s) on a surface of a substrate facing a first semiconductor die and a second semiconductor die. The method may also include etching the photo-sensitive layer to form a cavity through the photo-sensitive layer to the surface of the substrate. The method may further include placing a semiconductor bridge within the cavity and directly on the surface of the substrate. The photo-sensitive layer may contact sidewalls of the semiconductor bridge. The method may also include attaching the first die and the second die to the IC package structure. The first die and the second die may be coupled together through the semiconductor bridge.
  • An integrated circuit (IC) package structure may include a substrate.
  • the substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die that are supported by the substrate.
  • the semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate.
  • the semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer.
  • the IC package structure may also include means for coupling the first semiconductor die and the second semiconductor die through the semiconductor bridge.
  • FIG. 1 illustrates a perspective view of a semiconductor wafer in an aspect of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a die in accordance with an aspect of the present disclosure.
  • FIG. 3 illustrates an integrated circuit (IC) package structure according to aspects of the present disclosure.
  • FIGS. 4A and 4B illustrate package on package (POP) arrangements of an IC package structure according to aspects of the present disclosure.
  • FIGS. 5A-5O illustrate an IC package structure at various stages of fabrication according to aspects of the present disclosure.
  • FIG. 6 is a process flow diagram illustrating a method for fabricating a cavity bridge connection for a die split architecture according to aspects of the present disclosure.
  • FIG. 7 is a block diagram showing an exemplary wireless communication system in which a configuration of the disclosure may be advantageously employed.
  • FIG. 8 is a block diagram illustrating a design workstation used for circuit, layout, and logic design of a semiconductor component according to one configuration.
  • An interposer generally serves as an intermediate layer that can be used for direct electrical interconnection between one component or substrate and a second component or substrate with the interposer positioned in between.
  • an interposer may have a pad configuration on one side that can be aligned with corresponding pads on a first component (e.g., a die), and a different pad configuration on a second side that corresponds to pads on a second component (e.g., a package substrate, system board, etc.)
  • Interposers are widely used for integrating multiple chips on a single package.
  • Interposer substrates can be composed of glass and quartz, organic, or other like material and normally contain a few interconnect layers.
  • Fabrication of wafer level package structures may include attachment of a semiconductor device (e.g., a die or chip) to the wafer level package structure.
  • a semiconductor device e.g., a die or chip
  • an interposer may be used to provide die-to-die connection for enabling the split die architecture.
  • Using an interposer to provide die-to-die connection is expensive and involves a complicated process.
  • using an interposer to provide the die-to-die connection may prevent fabrication of package structures with reduced thickness. That is, high density die-to-die connection may involve technical hurdles for fine line/space generation as well as an extra layer (e.g., an interposer) to prepare for packaging.
  • Various aspects of the disclosure provide techniques for fabrication of an integrated circuit (IC) package structure.
  • the process flow for semiconductor fabrication of the IC package structure may include front-end-of-line (FEOL) processes, middle-of-line (MOL) processes, and back-end-of-line (BEOL) processes.
  • FEOL front-end-of-line
  • MOL middle-of-line
  • BEOL back-end-of-line
  • layer includes film and is not to be construed as indicating a vertical or horizontal thickness unless otherwise stated.
  • substrate may refer to a substrate of a diced wafer or may refer to a substrate of a wafer that is not diced.
  • the terms chip and die may be used interchangeably unless such interchanging would tax credulity.
  • An IC package structure includes a cavity bridge connection for a die split architecture.
  • the IC package structure may be fabricated with a multilayer photo-sensitive region.
  • a semiconductor bridge is fabricated within a cavity of the multilayer photo-sensitive region. The semiconductor bridge provides a connection between a first die and a second die of the die split architecture.
  • the semiconductor bridge provides die-to-die connectivity for the die split architecture of an IC package structure including a core substrate.
  • a cavity is formed in the multilayer photo-sensitive region to expose a portion of a contact layer on a surface of the substrate facing the active die.
  • the semiconductor bridge is disposed within the cavity and directly on the contact layer.
  • a first photo-sensitive layer and a second photo-sensitive layer of the multilayer photo-sensitive region may directly contact the sidewalls of the semiconductor bridge, but are separate from a first layer directly on the contact layer and an exposed second layer opposite the first layer of the semiconductor bridge.
  • the IC package structure couples a first chip and a second chip that may be encapsulated within a molding compound through the semiconductor bridge.
  • the first chip and the second chip may be coupled to through interconnects (e.g., front-side) of the multilayer photo-sensitive region and the contact layer.
  • the interconnects of the contact layer may be coupled with through substrate vias to a back-side interconnect layer of the IC package structure.
  • the back-side interconnect layer may facilitate communication between the first chip and the second chip and a first conductive interconnect (e.g., a ball grid array (BGA)).
  • BGA ball grid array
  • a point of interconnection process and a semiconductor bridge (e.g., a premade silicon bridge) are used to provide a die-to-die connection.
  • the semiconductor bridge can support a fine line process because the semiconductor material (e.g., silicon (Si)) observes a fine line design that exceeds the rougher design rule of a conventional bridge.
  • the semiconductor bridge may be configured as a thin bridge embedded structure that is easy to align for die to bridge connection due to a bridge exposed bottom package surface.
  • the semiconductor bridge also provides an alternate solution to conventional interposers for die-to-die connection.
  • the semiconductor bridge can easily provide a thinner package for high I/O (input/out) count die-to-die connectivity.
  • FIG. 1 illustrates a perspective view of a semiconductor wafer in an aspect of the present disclosure.
  • a wafer 100 may be a semiconductor wafer, or may be a substrate material with one or more layers of semiconductor material on a surface of the wafer 100 .
  • the wafer 100 may be grown from a seed crystal using the Czochralski process, where the seed crystal is dipped into a molten bath of semiconductor material and slowly rotated and removed from the bath. The molten material then crystalizes onto the seed crystal in the orientation of the crystal.
  • the wafer 100 may be a compound material, such as gallium arsenide (GaAs) or gallium nitride (GaN), a ternary material such as indium gallium arsenide (InGaAs), quaternary materials, or any material that can be a substrate material for other semiconductor materials. Although many of the materials may be crystalline in nature, polycrystalline or amorphous materials may also be used for the wafer 100 .
  • the wafer 100 may be supplied with materials that make the wafer 100 more conductive.
  • a silicon wafer may have phosphorus or boron added to the wafer 100 to allow for electrical charge to flow in the wafer 100 .
  • These additives are referred to as dopants, and provide extra charge carriers (either electrons or holes) within the wafer 100 or portions of the wafer 100 .
  • the wafer 100 has an orientation 102 that indicates the crystalline orientation of the wafer 100 .
  • the orientation 102 may be a flat edge of the wafer 100 as shown in FIG. 1 , or may be a notch or other indicia to illustrate the crystalline orientation of the wafer 100 .
  • the orientation 102 may indicate the Miller Indices for the planes of the crystal lattice in the wafer 100 .
  • the wafer 100 is divided up along dicing lines 104 .
  • the dicing lines 104 indicate where the wafer 100 is to be broken apart or separated into pieces.
  • the dicing lines 104 may define the outline of the various integrated circuits that have been fabricated on the wafer 100 .
  • the wafer 100 may be sawn or otherwise separated into pieces to form die 106 .
  • Each of the die 106 may be an integrated circuit with many devices or may be a single electronic device.
  • the physical size of the die 106 which may also be referred to as a chip or a semiconductor chip, depends at least in part on the ability to separate the wafer 100 into certain sizes, as well as the number of individual devices that the die 106 is designed to contain.
  • the die 106 may be mounted into packaging to allow access to the devices and/or integrated circuits fabricated on the die 106 .
  • Packaging may include single in-line packaging, dual in-line packaging, motherboard packaging, flip-chip packaging, indium dot/bump packaging, or other types of devices that provide access to the die 106 .
  • the die 106 may also be directly accessed through wire bonding, probes, or other connections without mounting the die 106 into a separate package.
  • FIG. 2 illustrates a cross-sectional view of a die 106 in accordance with an aspect of the present disclosure.
  • a substrate 200 which may be a semiconductor material and/or may act as a mechanical support for electronic devices.
  • the substrate 200 may be a doped semiconductor substrate, which has either electrons (designated N-channel) or holes (designated P-channel) charge carriers present throughout the substrate 200 . Subsequent doping of the substrate 200 with charge carrier ions/atoms may change the charge carrying capabilities of the substrate 200 .
  • a substrate 200 there may be wells 202 and 204 , which may be the source and/or drain of a field-effect transistor (FET), or wells 202 and/or 204 may be fin structures of a fin structured FET (FinFET).
  • Wells 202 and/or 204 may also be other devices (e.g., a resistor, a capacitor, a diode, or other electronic devices) depending on the structure and other characteristics of the wells 202 and/or 204 and the surrounding structure of the substrate 200 .
  • the semiconductor substrate may also have a well 206 and a well 208 .
  • the well 208 may be completely within the well 206 , and, in some cases, may form a bipolar junction transistor (BJT).
  • BJT bipolar junction transistor
  • the well 206 may also be used as an isolation well to isolate the well 208 from electric and/or magnetic fields within the die 106 .
  • Layers may be added to the die 106 .
  • the layer 210 may be, for example, an oxide or insulating layer that may isolate the wells (e.g., 202 - 208 ) from each other or from other devices on the die 106 .
  • the layer 210 may be silicon dioxide, a polymer, a dielectric, or another electrically insulating layer.
  • the layer 210 may also be an interconnection layer, in which case it may comprise a conductive material such as copper, tungsten, aluminum, an alloy, or other conductive or metallic materials.
  • the layer 212 may also be a dielectric or conductive layer, depending on the desired device characteristics and/or the materials of the layers (e.g., 210 and 214 ).
  • the layer 214 may be an encapsulating layer, which may protect the layers (e.g., 210 and 212 ), as well as the wells 202 - 208 and the substrate 200 , from external forces.
  • the layer 214 may be a layer that protects the die 106 from mechanical damage, or the layer 214 may be a layer of material that protects the die 106 from electromagnetic or radiation damage.
  • Electronic devices designed on the die 106 may comprise many features or structural components.
  • the die 106 may be exposed to any number of methods to impart dopants into the substrate 200 , the wells 202 - 208 , and, if desired, the layers (e.g., 210 - 214 ).
  • the die 106 may be exposed to ion implantation, deposition of dopant atoms that are driven into a crystalline lattice through a diffusion process, chemical vapor deposition, epitaxial growth, or other methods.
  • the substrate 200 , the wells 202 - 208 , and the layers (e.g., 210 - 214 ) may be selectively removed or added through various processes.
  • Chemical wet etching, chemical mechanical planarization (CMP), plasma etching, photoresist masking, damascene processes, and other methods may create the structures and devices of the present disclosure.
  • FIG. 3 illustrates an integrated circuit (IC) package structure 300 according to aspects of the present disclosure.
  • the IC package structure 300 includes a substrate 310 having a contact layer 320 on the substrate 310 and a multilayer photo-sensitive region.
  • the substrate 310 may be of an organic material.
  • the substrate 310 may be an epoxy-based laminate substrate having a core and/or build-up layers such as, for example, an Ajinomoto Build-up Film (ABF) substrate.
  • the contact layer 320 may be a dielectric layer, such as an ABF layer.
  • the multilayer photo-sensitive region includes a first photo-sensitive layer 330 on the contact layer 320 and a second photo-sensitive layer 340 on the first photo-sensitive layer 330 .
  • the first photo-sensitive layer 330 and the second photo-sensitive layer 340 may be a multilayer material such as polybenzoxazole (PBO) or other like photo-sensitive material.
  • PBO polybenzoxazole
  • a semiconductor bridge 360 provides a die-to-die connection for the die split architecture of the IC package structure 300 .
  • a cavity e.g., cavity 552 of FIG. 5H
  • the semiconductor bridge 360 is disposed within the cavity and directly on the contact layer 320 .
  • the first photo-sensitive layer 330 and the second photo-sensitive layer 340 directly contact the sidewalls of the semiconductor bridge 360 , but are separate from a first layer directly on the contact layer 320 and an exposed second layer opposite the first layer of the semiconductor bridge 360 .
  • the IC package structure 300 may couple a first chip 302 A and a second chip 302 B encapsulated within a molding compound 304 through the semiconductor bridge 360 .
  • the first chip 302 A and the second chip 302 B are also coupled through interconnects (e.g., front-side) of the multilayer photo-sensitive region (e.g., 330 and 340 ) and the contact layer 320 .
  • the interconnects of the contact layer 320 are coupled to through substrate vias 312 to a back-side interconnect layer 370 .
  • the back-side interconnect layer 370 may facilitate communication between the first chip 302 A, the second chip 302 B and a first conductive interconnect (e.g., a ball grid array (BGA)), as shown in FIGS. 4A and 4B
  • a point of interconnection process (POI) and the semiconductor bridge 360 are used to provide a die-to-die connection.
  • the semiconductor bridge 360 can reduce a fine line process because the semiconductor material (e.g., silicon (Si)) observes a fine line design rule exceeding the rougher design rule of a conventional bridge.
  • the semiconductor bridge 360 may be configured as a thin bridge embedded structure that is easy to align for die to bridge connection due to a bridge exposed bottom package surface.
  • the semiconductor bridge 360 also provides an alternate solution to conventional interposers for die-to-die connection.
  • the semiconductor bridge 360 can easily provide a thinner package for high I/O (input/out) count die-to-die connectivity.
  • the package structure 300 is a non-symmetric structure.
  • FIGS. 4A and 4B illustrate package on package (POP) arrangements of an IC package structure according to aspects of the present disclosure.
  • FIG. 4A shows a conductive material filled via type POP structure 480 stacked on an IC package structure 400 .
  • the IC package structure 400 includes a back-side conductive interconnect 472 coupled to a back-side interconnect layer 470 and a through substrate via 412 .
  • the back-side conductive interconnect 472 may couple to a system board, a package substrate or other suitable carrier substrate (not shown).
  • the back-side conductive interconnect 472 may be configured according to a ball grid array (BGA) interconnect structure.
  • BGA ball grid array
  • the IC package structure 400 also couples a first chip 402 A and a second chip 402 B, encapsulated within a molding compound 404 , through a semiconductor bridge 460 .
  • the first chip 402 A and the second chip 402 B are also coupled through interconnects (e.g., front-side) of a multilayer photo-sensitive region and a contact layer 420 .
  • the multilayer photo-sensitive region includes a first photo-sensitive layer 430 on the contact layer 420 and a second photo-sensitive layer 440 on the first photo-sensitive layer 430 .
  • the interconnects of the contact layer 420 are coupled with through substrate vias 412 to the back-side interconnect layer 470 .
  • front-side conductive interconnects 464 are coupled to through mold vias 408 .
  • the POP structure 480 is coupled to the through mold vias 408 through package interconnects 482 .
  • FIG. 4B shows a microelectronic (MEP) type POP structure 490 stacked on the IC package structure 400 .
  • the MEP type POP structure 490 is formed on a molding compound 404 surrounding the first chip 402 A and the second chip 402 B.
  • front-side conductive interconnects 464 are coupled to package interconnects 492 .
  • the MEP type POP structure 490 is coupled to the front-side conductive interconnects 464 through the package interconnects 492 .
  • FIGS. 5A-5O illustrate an IC package structure 500 at various stages of fabrication according to aspects of the present disclosure.
  • FIGS. 5A-5L illustrate a sequential fabrication approach of the IC package structure 300 shown in FIG. 3 .
  • FIGS. 5L-5N illustrate a sequential approach for fabrication of the POP structure 480 of FIG. 4A .
  • FIG. 5O illustrates fabrication of the MEP type POP structure 490 of FIG. 4B .
  • the substrate 510 may be an epoxy-based laminate substrate having a core and/or build-up layers such as, for example, an Ajinomoto Build-up Film (ABF).
  • ABSF Ajinomoto Build-up Film
  • Through substrate vias 512 are fabricated within the substrate 510 .
  • a conductive material e.g., copper
  • the conductive contact pads 514 and 516 are coupled with the through substrate vias 512 .
  • a back-side interconnect layer 570 (e.g., a solder resist build-up layer) may deposited on the back-side surface of the substrate 510 , as shown in FIG. 5B .
  • a contact layer 520 is fabricated on the front-side surface of the substrate 510 .
  • the contact layer 520 may be a dielectric layer, such as an ABF layer or other like dielectric layer.
  • the contact layer 520 is fabricated using a dielectric material lamination process.
  • conductive contacts within the contact layer 520 may be formed using a semi-additive process (SAP) to form a solid conductive material (e.g., copper) plane.
  • SAP semi-additive process
  • conductive vias 522 are formed to couple conductive contact pads 524 to the through substrate vias 512 .
  • the conductive contacts may include the conductive vias 522 and the conductive contact pads 524 .
  • a conductive trace 526 identifies a portion of the contact layer 520 that will support a semiconductor bridge.
  • a first layer of a multilayer photo-sensitive region is deposited on the contact layer 520 .
  • the multilayer photo-sensitive region may be composed of one or more layers of a photo-dielectric material, such as polybenzoxazole (PBO) or other like photo-imageable dielectric (PID) material.
  • PBO polybenzoxazole
  • PID photo-imageable dielectric
  • the deposited photo-dielectric material may be subjected to a photo process to form a first photo-sensitive layer 530 .
  • via openings 532 are fabricated within the first photo-sensitive layer 530 to expose the conductive contact pads 524 on the contact layer 520 .
  • a trench opening 534 exposes the conductive trace 526 that identifies the portion of the contact layer 520 that will support the semiconductor bridge.
  • the via openings 532 and the trench opening 534 are filled with a conductive material (e.g., copper) to form conductive vias 536 and a conductive trench 538 .
  • a conductive material e.g., copper
  • a second layer of the multilayer photo-sensitive region is deposited on the first photo-sensitive layer 530 .
  • a deposited photo-dielectric material may be subjected to a photo process to form a second photo-sensitive layer 540 on the first photo-sensitive layer 530 .
  • via openings 542 are fabricated within the second photo-sensitive layer 540 to expose conductive contact pads 539 on the first photo-sensitive layer 530 .
  • a trench opening 544 exposes the conductive trench 538 that identifies the portion of the contact layer 520 that will support the semiconductor bridge.
  • the via openings 542 and the trench opening 544 are filled with a conductive material (e.g., copper) to form conductive vias 546 and a conductive trench 548 .
  • the conductive material is deposited within the via openings 542 and the trench opening 544 on the exposed portions of conductive contact pads 539 and the conductive trench 538 .
  • a photoresist 550 is coated on the second photo-sensitive layer 540 , the conductive vias 546 and the conductive trench 548 .
  • the photoresist 550 is removed from the second photo-sensitive layer 540 to expose the conductive vias 546 .
  • the conductive trench 548 is etched to expose the contact layer 520 to form a cavity 552 .
  • the cavity 552 is provided to support a semiconductor bridge, for example, as shown in FIG. 5J .
  • a semiconductor bridge 560 is placed on the exposed portion of the contact layer 520 within the cavity 552 .
  • sidewalls of the semiconductor bridge 560 are contacted by the first photo-sensitive layer 530 and the second photo-sensitive layer 540 of the multilayer photo-sensitive region.
  • the multilayer photo-sensitive region does not contact a first surface of the semiconductor bridge 560 that is placed on the exposed portion of the contact layer 520 within the cavity 552 .
  • a second surface of the semiconductor bridge 560 opposite the first surface is exposed and separate from the multilayer photo-sensitive region. That is, the semiconductor bridge 560 is embedded within the cavity 552 , such that the exposed surface of the semiconductor bridge 560 is substantially flush with and within the cavity 552 .
  • a photoresist 554 is coated on the second photo-sensitive layer 540 , the conductive vias 546 and the exposed surface of the semiconductor bridge 560 . Once coated, the photoresist 554 is opened to form openings 556 exposing portions of the conductive vias 546 and contacts 562 ( 562 A and 562 B) of the semiconductor bridge 560 . In this arrangement, the opening 556 define front-side conductive interconnects, for example, as shown in FIG. 5J .
  • the opening 556 formed within the photoresist 554 are plated with a conductive material to form front-side conductive interconnects 564 .
  • the front-side conductive interconnects 564 are shown as conductive posts, but other arrangements of the front-side conductive interconnects 564 are possible according to aspects of the present disclosure.
  • a first conductive interconnect 564 A and a second conductive interconnect 564 B to the contacts 562 ( 562 A and 562 B) of the semiconductor bridge 560 enable die-to-die connection for a die split architecture, for example, as shown in FIG. 5K .
  • a first die 502 A and a second die 502 B are coupled to the front-side conductive interconnects 564 .
  • the first conductive interconnect 564 A and the second conductive interconnect 564 B provide the die-to-die connection for the first die 502 A and the second die 502 B through the semiconductor bridge 560 .
  • the IC package structure 500 is prepared for a package on package process by encapsulating the first die 502 A and the second die 502 B within a molding compound 504 .
  • FIG. 5M through mold via openings 506 A and 506 B are opened within the molding compound 504 to selected ones of the front-side conductive interconnects 564 .
  • FIG. 5N the through mold via openings 506 A and 506 B are plated with a conductive material to form through mold vias 508 .
  • first POP structure 580 is attached to the through mold vias 508 through first conductive interconnects 582 . Although shown as solder ball type interconnections, other types of interconnects may be used to attach the first POP structure 580 to the through mold vias 508 .
  • a microelectronic (MEP) type POP structure 590 is stacked on the IC package structure 500 and coupled to the selected ones of the front-side conductive interconnects 564 using second conductive interconnects 592 .
  • an underfill process may be performed to secure the MEP type POP 590 stacked on the IC package structure 500 .
  • FIGS. 4A and 4B illustrate POP arrangements of the IC package structures of FIGS. 5L and 5M according to aspects of the present disclosure.
  • the IC package structure 400 / 500 includes a back-side conductive interconnect 472 coupled to the back-side interconnect layer 470 / 570 and the through substrate vias 412 / 512 .
  • the back-side conductive interconnect 472 may couple a system board, a package substrate or other suitable carrier substrate (not shown).
  • the back-side conductive interconnect 472 may be configured according to a ball grid array (BGA) interconnect structure.
  • BGA ball grid array
  • FIG. 6 is a flow diagram illustrating a method 600 for fabricating a cavity bridge connection for a die split architecture according to one aspect of the disclosure.
  • a photo-sensitive layer is deposited on a surface of a substrate facing a first semiconductor die and a second semiconductor die.
  • a multilayer photo-sensitive region includes a first photo-sensitive layer 530 on a contact layer 520 and a second photo-sensitive layer 540 on the first photo-sensitive layer 530 , as shown in FIGS. 5D to 5F .
  • the photo-sensitive region is etched to form a cavity through the photo-sensitive region to the surface of the substrate.
  • the second photo-sensitive layer 540 and the first photo-sensitive layer 530 are etched to expose a portion of the contact layer 520 to form a cavity 552 .
  • a semiconductor bridge is placed within the cavity and directly on the surface of the substrate, with the photo-sensitive region contacting sidewalls of the semiconductor bridge.
  • the semiconductor bridge 560 is placed directly on the contact layer 520 of the substrate 510 . Because the cavity extends through both layers of the multilayer photo-sensitive region to the contact layer 520 , the first photo-sensitive layer 530 and the second photo-sensitive layer 540 contact only the sidewalls of the semiconductor bridge 560 .
  • the first die and the second die are attached to the IC package structure. In this arrangement, the first die and the second die are coupled together through the semiconductor bridge. For example, as shown in FIG.
  • the first die 502 A and the second die 502 B are coupled to the front-side conductive interconnects 564 .
  • the first conductive interconnect 564 A and the second conductive interconnect 564 B provide the die-to-die connection for the first die 502 A and the second die 502 B through the semiconductor bridge 560 .
  • an IC package structure includes a cavity bridge connection for a die split architecture.
  • the cavity bridge connection may be a semiconductor bridge disposed within a cavity extending through a photo-sensitive layer on a surface of a substrate.
  • the IC package structure may include a means for coupling a first die and a second die through the semiconductor bridge.
  • the coupling means is the first conductive interconnect 564 A and the second conductive interconnect 564 B to the contacts 562 ( 562 A and 562 B) of the semiconductor bridge 560 for enabling die-to-die connection for a die split architecture, as shown in FIG. 5K , configured to perform the functions recited by the coupling means.
  • the aforementioned means may be a device or any layer configured to perform the functions recited by the aforementioned means.
  • An IC package structure includes a cavity bridge connection for a die split architecture.
  • the IC package structure may be fabricated with a multilayer photo-sensitive region.
  • a semiconductor bridge is fabricated within a cavity of the multilayer photo-sensitive region. The semiconductor bridge provides a connection between a first die and a second die of the die split architecture.
  • the semiconductor bridge provides die-to-die connection for the die split architecture of an IC package structure including a core substrate.
  • a cavity is formed in the multilayer photo-sensitive region to expose a portion of a contact layer on a surface of the substrate facing the active die.
  • the semiconductor bridge is disposed within the cavity and directly on the contact layer.
  • a first photo-sensitive layer and a second photo-sensitive layer of the multilayer photo-sensitive region may directly contact the sidewalls of the semiconductor bridge, but are separate from a first layer directly on the contact layer and an exposed second layer opposite the first layer of the semiconductor bridge.
  • the IC package structure couples a first chip and a second chip that may be encapsulated within a molding compound through the semiconductor bridge.
  • the first chip and the second chip may be coupled through interconnects (e.g., front-side) of the multilayer photo-sensitive region and the contact layer.
  • the interconnects of the contact layer may be coupled with through substrate vias to a back-side interconnect layer of the IC package structure.
  • the back-side interconnect layer may facilitate communication between the first chip and the second chip and a first conductive interconnect (e.g., a ball grid array (BGA)).
  • BGA ball grid array
  • FIG. 7 is a block diagram showing an exemplary wireless communication system 700 in which an aspect of the disclosure may be advantageously employed.
  • FIG. 7 shows three remote units 720 , 730 , and 750 and two base stations 740 .
  • Remote units 720 , 730 , and 750 include IC devices 725 A, 725 C, and 725 B that include the disclosed IC package structure. It will be recognized that other devices may also include the disclosed IC package structure, such as the base stations, switching devices, and network equipment.
  • FIG. 7 shows forward link signals 780 from the base station 740 to the remote units 720 , 730 , and 750 and reverse link signals 790 from the remote units 720 , 730 , and 750 to base stations 740 .
  • remote unit 720 is shown as a mobile telephone
  • remote unit 730 is shown as a portable computer
  • remote unit 750 is shown as a fixed location remote unit in a wireless local loop system.
  • the remote units 720 , 730 , and 750 may be a mobile phone, hand-held personal communication systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA), a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as a meter reading equipment, or communications device that stores or retrieves data or computer instructions, or combinations thereof.
  • FIG. 7 illustrates remote units according to the aspects of the disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the disclosure may be suitably employed in many devices, which include the disclosed devices.
  • FIG. 8 is a block diagram illustrating a design workstation used for circuit, layout, and logic design of a semiconductor component, such as the devices disclosed above.
  • a design workstation 800 includes a hard disk 802 containing operating system software, support files, and design software such as Cadence or OrCAD.
  • the design workstation 800 also includes a display 804 to facilitate design of a circuit 806 or a semiconductor component 808 such as an IC package structure.
  • a storage medium 810 is provided for tangibly storing the design of the circuit 806 or the semiconductor component 808 .
  • the design of the circuit 806 or the semiconductor component 808 may be stored on the storage medium 810 in a file format such as GDSII or GERBER.
  • the storage medium 810 may be a CD-ROM, DVD, hard disk, flash memory, or other appropriate device.
  • the design workstation 800 includes a drive apparatus 812 for accepting input from or writing output to the storage medium 810 .
  • Data recorded on the storage medium 810 may specify logic circuit configurations, pattern data for photolithography masks, or mask pattern data for serial write tools such as electron beam lithography.
  • the data may further include logic verification data such as timing diagrams or net circuits associated with logic simulations.
  • Providing data on the storage medium 810 facilitates the design of the circuit 806 or the semiconductor component 808 by decreasing the number of processes for designing semiconductor wafers.
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • a machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a memory and executed by a processor unit.
  • Memory may be implemented within the processor unit or external to the processor unit.
  • the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program.
  • Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communication apparatus.
  • a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal
  • the processor and the storage medium may reside as discrete components in a user terminal
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c.
  • All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.
  • nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. ⁇ 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “a step for.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

An integrated circuit (IC) package structure may include a substrate. The substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die. The semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate. The semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer. The first semiconductor die and the second semiconductor die are supported by the substrate and coupled together through the semiconductor bridge.

Description

    BACKGROUND
  • 1. Field
  • Aspects of the present disclosure relate to semiconductor devices, and more particularly to a cavity bridge connection for a die split architecture.
  • 2. Background
  • The process flow for semiconductor fabrication of integrated circuits (ICs) may include front-end-of-line (FEOL), middle-of-line (MOL), and back-end-of-line (BEOL) processes. The front-end-of-line processes may include wafer preparation, isolation, well formation, gate patterning, spacer, extension and source/drain implantation, silicide formation, and dual stress liner formation. The middle-of-line process may include gate contact formation. Middle-of-line layers may include, but are not limited to, middle-of-line contacts, vias or other layers within close proximity to the semiconductor device transistors or other like active devices. The back-end-of-line processes may include a series of wafer processing steps for interconnecting the semiconductor devices created during the front-end-of-line and middle-of-line processes. Successful fabrication of modern semiconductor chip products involves an interplay between the materials and the processes employed.
  • An interposer is a die-mounting technology in which the interposer serves as a base upon which the semiconductor dies of a system on chip (SoC) are mounted. An interposer is an example of a fan out wafer level package structure. The interposer may include wiring layers of conductive traces and conductive vias for routing electrical connections between the semiconductor dies (e.g., memory modules and processors) and a system board. The interposer may include a redistribution layer (RDL) that provides a connection pattern of bond pads on the active surface of a semiconductor device (e.g., a die or chip) to a redistributed connection pattern that is more suitable for connection to the system board. In most applications, the interposer does not include active devices such as diodes and transistors.
  • Fabrication of wafer level package structures may include attachment of a semiconductor device (e.g., a die or chip) to the wafer level package structure. In a die split architecture, an interposer may provide die-to-die connection for enabling the die split architecture. Using an interposer to provide die-to-die connection, however, is expensive and involves a complicated process. In addition, using an interposer to provide the die-to-die connection may prevent fabrication of package structures with reduced thickness. That is, high density die-to-die connection may involve technical hurdles for fine line/space generation as well as an extra layer (e.g., an interposer) to prepare for packaging.
  • SUMMARY
  • An integrated circuit (IC) package structure may include a substrate. The substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die. The semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate. The semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer. The first semiconductor die and the second semiconductor die are supported by the substrate and coupled together through the semiconductor bridge.
  • A method for fabricating an integrated circuit (IC) package structure may include depositing a photo-sensitive layer(s) on a surface of a substrate facing a first semiconductor die and a second semiconductor die. The method may also include etching the photo-sensitive layer to form a cavity through the photo-sensitive layer to the surface of the substrate. The method may further include placing a semiconductor bridge within the cavity and directly on the surface of the substrate. The photo-sensitive layer may contact sidewalls of the semiconductor bridge. The method may also include attaching the first die and the second die to the IC package structure. The first die and the second die may be coupled together through the semiconductor bridge.
  • An integrated circuit (IC) package structure may include a substrate. The substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die that are supported by the substrate. The semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate. The semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer. The IC package structure may also include means for coupling the first semiconductor die and the second semiconductor die through the semiconductor bridge.
  • This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
  • FIG. 1 illustrates a perspective view of a semiconductor wafer in an aspect of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a die in accordance with an aspect of the present disclosure.
  • FIG. 3 illustrates an integrated circuit (IC) package structure according to aspects of the present disclosure.
  • FIGS. 4A and 4B illustrate package on package (POP) arrangements of an IC package structure according to aspects of the present disclosure.
  • FIGS. 5A-5O illustrate an IC package structure at various stages of fabrication according to aspects of the present disclosure.
  • FIG. 6 is a process flow diagram illustrating a method for fabricating a cavity bridge connection for a die split architecture according to aspects of the present disclosure.
  • FIG. 7 is a block diagram showing an exemplary wireless communication system in which a configuration of the disclosure may be advantageously employed.
  • FIG. 8 is a block diagram illustrating a design workstation used for circuit, layout, and logic design of a semiconductor component according to one configuration.
  • DETAILED DESCRIPTION
  • The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. It will be apparent to those skilled in the art, however, that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts. As described herein, the use of the term “and/or” is intended to represent an “inclusive OR”, and the use of the term “or” is intended to represent an “exclusive OR”.
  • Some described implementations relate to integrated circuit (IC) package structures that avoid the use of expensive interposer technology. An interposer generally serves as an intermediate layer that can be used for direct electrical interconnection between one component or substrate and a second component or substrate with the interposer positioned in between. For example, an interposer may have a pad configuration on one side that can be aligned with corresponding pads on a first component (e.g., a die), and a different pad configuration on a second side that corresponds to pads on a second component (e.g., a package substrate, system board, etc.) Interposers are widely used for integrating multiple chips on a single package. Interposer substrates can be composed of glass and quartz, organic, or other like material and normally contain a few interconnect layers.
  • Fabrication of wafer level package structures may include attachment of a semiconductor device (e.g., a die or chip) to the wafer level package structure. In a die split architecture, an interposer may be used to provide die-to-die connection for enabling the split die architecture. Using an interposer to provide die-to-die connection, however, is expensive and involves a complicated process. In addition, using an interposer to provide the die-to-die connection may prevent fabrication of package structures with reduced thickness. That is, high density die-to-die connection may involve technical hurdles for fine line/space generation as well as an extra layer (e.g., an interposer) to prepare for packaging.
  • Various aspects of the disclosure provide techniques for fabrication of an integrated circuit (IC) package structure. The process flow for semiconductor fabrication of the IC package structure may include front-end-of-line (FEOL) processes, middle-of-line (MOL) processes, and back-end-of-line (BEOL) processes. It will be understood that the term “layer” includes film and is not to be construed as indicating a vertical or horizontal thickness unless otherwise stated. As described herein, the term “substrate” may refer to a substrate of a diced wafer or may refer to a substrate of a wafer that is not diced. Similarly, the terms chip and die may be used interchangeably unless such interchanging would tax credulity.
  • An IC package structure, according to aspects of the present disclosure, includes a cavity bridge connection for a die split architecture. The IC package structure may be fabricated with a multilayer photo-sensitive region. In this aspect of the disclosure, a semiconductor bridge is fabricated within a cavity of the multilayer photo-sensitive region. The semiconductor bridge provides a connection between a first die and a second die of the die split architecture.
  • In aspects of the disclosure, the semiconductor bridge provides die-to-die connectivity for the die split architecture of an IC package structure including a core substrate. In one configuration, a cavity is formed in the multilayer photo-sensitive region to expose a portion of a contact layer on a surface of the substrate facing the active die. In this configuration, the semiconductor bridge is disposed within the cavity and directly on the contact layer. A first photo-sensitive layer and a second photo-sensitive layer of the multilayer photo-sensitive region may directly contact the sidewalls of the semiconductor bridge, but are separate from a first layer directly on the contact layer and an exposed second layer opposite the first layer of the semiconductor bridge.
  • The IC package structure couples a first chip and a second chip that may be encapsulated within a molding compound through the semiconductor bridge. In addition, the first chip and the second chip may be coupled to through interconnects (e.g., front-side) of the multilayer photo-sensitive region and the contact layer. The interconnects of the contact layer may be coupled with through substrate vias to a back-side interconnect layer of the IC package structure. The back-side interconnect layer may facilitate communication between the first chip and the second chip and a first conductive interconnect (e.g., a ball grid array (BGA)).
  • In this arrangement, a point of interconnection process (POI) and a semiconductor bridge (e.g., a premade silicon bridge) are used to provide a die-to-die connection. The semiconductor bridge can support a fine line process because the semiconductor material (e.g., silicon (Si)) observes a fine line design that exceeds the rougher design rule of a conventional bridge. The semiconductor bridge may be configured as a thin bridge embedded structure that is easy to align for die to bridge connection due to a bridge exposed bottom package surface. The semiconductor bridge also provides an alternate solution to conventional interposers for die-to-die connection. The semiconductor bridge can easily provide a thinner package for high I/O (input/out) count die-to-die connectivity.
  • FIG. 1 illustrates a perspective view of a semiconductor wafer in an aspect of the present disclosure. A wafer 100 may be a semiconductor wafer, or may be a substrate material with one or more layers of semiconductor material on a surface of the wafer 100. When the wafer 100 is a semiconductor material, it may be grown from a seed crystal using the Czochralski process, where the seed crystal is dipped into a molten bath of semiconductor material and slowly rotated and removed from the bath. The molten material then crystalizes onto the seed crystal in the orientation of the crystal.
  • The wafer 100 may be a compound material, such as gallium arsenide (GaAs) or gallium nitride (GaN), a ternary material such as indium gallium arsenide (InGaAs), quaternary materials, or any material that can be a substrate material for other semiconductor materials. Although many of the materials may be crystalline in nature, polycrystalline or amorphous materials may also be used for the wafer 100.
  • The wafer 100, or layers that are coupled to the wafer 100, may be supplied with materials that make the wafer 100 more conductive. For example, and not by way of limitation, a silicon wafer may have phosphorus or boron added to the wafer 100 to allow for electrical charge to flow in the wafer 100. These additives are referred to as dopants, and provide extra charge carriers (either electrons or holes) within the wafer 100 or portions of the wafer 100. By selecting the areas where the extra charge carriers are provided, which type of charge carriers are provided, and the amount (density) of additional charge carriers in the wafer 100, different types of electronic devices may be formed in or on the wafer 100.
  • The wafer 100 has an orientation 102 that indicates the crystalline orientation of the wafer 100. The orientation 102 may be a flat edge of the wafer 100 as shown in FIG. 1, or may be a notch or other indicia to illustrate the crystalline orientation of the wafer 100. The orientation 102 may indicate the Miller Indices for the planes of the crystal lattice in the wafer 100.
  • Once the wafer 100 has been processed as desired, the wafer 100 is divided up along dicing lines 104. The dicing lines 104 indicate where the wafer 100 is to be broken apart or separated into pieces. The dicing lines 104 may define the outline of the various integrated circuits that have been fabricated on the wafer 100.
  • Once the dicing lines 104 are defined, the wafer 100 may be sawn or otherwise separated into pieces to form die 106. Each of the die 106 may be an integrated circuit with many devices or may be a single electronic device. The physical size of the die 106, which may also be referred to as a chip or a semiconductor chip, depends at least in part on the ability to separate the wafer 100 into certain sizes, as well as the number of individual devices that the die 106 is designed to contain.
  • Once the wafer 100 has been separated into one or more die 106, the die 106 may be mounted into packaging to allow access to the devices and/or integrated circuits fabricated on the die 106. Packaging may include single in-line packaging, dual in-line packaging, motherboard packaging, flip-chip packaging, indium dot/bump packaging, or other types of devices that provide access to the die 106. The die 106 may also be directly accessed through wire bonding, probes, or other connections without mounting the die 106 into a separate package.
  • FIG. 2 illustrates a cross-sectional view of a die 106 in accordance with an aspect of the present disclosure. In the die 106, there may be a substrate 200, which may be a semiconductor material and/or may act as a mechanical support for electronic devices. The substrate 200 may be a doped semiconductor substrate, which has either electrons (designated N-channel) or holes (designated P-channel) charge carriers present throughout the substrate 200. Subsequent doping of the substrate 200 with charge carrier ions/atoms may change the charge carrying capabilities of the substrate 200.
  • Within a substrate 200 (e.g., a semiconductor substrate), there may be wells 202 and 204, which may be the source and/or drain of a field-effect transistor (FET), or wells 202 and/or 204 may be fin structures of a fin structured FET (FinFET). Wells 202 and/or 204 may also be other devices (e.g., a resistor, a capacitor, a diode, or other electronic devices) depending on the structure and other characteristics of the wells 202 and/or 204 and the surrounding structure of the substrate 200.
  • The semiconductor substrate may also have a well 206 and a well 208. The well 208 may be completely within the well 206, and, in some cases, may form a bipolar junction transistor (BJT). The well 206 may also be used as an isolation well to isolate the well 208 from electric and/or magnetic fields within the die 106.
  • Layers (e.g., 210 through 214) may be added to the die 106. The layer 210 may be, for example, an oxide or insulating layer that may isolate the wells (e.g., 202-208) from each other or from other devices on the die 106. In such cases, the layer 210 may be silicon dioxide, a polymer, a dielectric, or another electrically insulating layer. The layer 210 may also be an interconnection layer, in which case it may comprise a conductive material such as copper, tungsten, aluminum, an alloy, or other conductive or metallic materials.
  • The layer 212 may also be a dielectric or conductive layer, depending on the desired device characteristics and/or the materials of the layers (e.g., 210 and 214). The layer 214 may be an encapsulating layer, which may protect the layers (e.g., 210 and 212), as well as the wells 202-208 and the substrate 200, from external forces. For example, and not by way of limitation, the layer 214 may be a layer that protects the die 106 from mechanical damage, or the layer 214 may be a layer of material that protects the die 106 from electromagnetic or radiation damage.
  • Electronic devices designed on the die 106 may comprise many features or structural components. For example, the die 106 may be exposed to any number of methods to impart dopants into the substrate 200, the wells 202-208, and, if desired, the layers (e.g., 210-214). For example, and not by way of limitation, the die 106 may be exposed to ion implantation, deposition of dopant atoms that are driven into a crystalline lattice through a diffusion process, chemical vapor deposition, epitaxial growth, or other methods. Through selective growth, material selection, and removal of portions of the layers (e.g., 210-214), and through selective removal, material selection, and dopant concentration of the substrate 200 and the wells 202-208, many different structures and electronic devices may be formed within the scope of the present disclosure.
  • Further, the substrate 200, the wells 202-208, and the layers (e.g., 210-214) may be selectively removed or added through various processes. Chemical wet etching, chemical mechanical planarization (CMP), plasma etching, photoresist masking, damascene processes, and other methods may create the structures and devices of the present disclosure.
  • FIG. 3 illustrates an integrated circuit (IC) package structure 300 according to aspects of the present disclosure. The IC package structure 300 includes a substrate 310 having a contact layer 320 on the substrate 310 and a multilayer photo-sensitive region. The substrate 310 may be of an organic material. The substrate 310 may be an epoxy-based laminate substrate having a core and/or build-up layers such as, for example, an Ajinomoto Build-up Film (ABF) substrate. For example, the contact layer 320 may be a dielectric layer, such as an ABF layer. In this configuration, the multilayer photo-sensitive region includes a first photo-sensitive layer 330 on the contact layer 320 and a second photo-sensitive layer 340 on the first photo-sensitive layer 330. The first photo-sensitive layer 330 and the second photo-sensitive layer 340 may be a multilayer material such as polybenzoxazole (PBO) or other like photo-sensitive material.
  • In aspects of the disclosure, a semiconductor bridge 360 provides a die-to-die connection for the die split architecture of the IC package structure 300. In one configuration, a cavity (e.g., cavity 552 of FIG. 5H) is formed in the multilayer photo-sensitive region to expose a portion of the contact layer 320. In this configuration, the semiconductor bridge 360 is disposed within the cavity and directly on the contact layer 320. The first photo-sensitive layer 330 and the second photo-sensitive layer 340 directly contact the sidewalls of the semiconductor bridge 360, but are separate from a first layer directly on the contact layer 320 and an exposed second layer opposite the first layer of the semiconductor bridge 360.
  • The IC package structure 300 may couple a first chip 302A and a second chip 302B encapsulated within a molding compound 304 through the semiconductor bridge 360. In addition, the first chip 302A and the second chip 302B are also coupled through interconnects (e.g., front-side) of the multilayer photo-sensitive region (e.g., 330 and 340) and the contact layer 320. The interconnects of the contact layer 320 are coupled to through substrate vias 312 to a back-side interconnect layer 370. The back-side interconnect layer 370 may facilitate communication between the first chip 302A, the second chip 302B and a first conductive interconnect (e.g., a ball grid array (BGA)), as shown in FIGS. 4A and 4B
  • In this arrangement, a point of interconnection process (POI) and the semiconductor bridge 360 (e.g., a premade silicon bridge) are used to provide a die-to-die connection. The semiconductor bridge 360 can reduce a fine line process because the semiconductor material (e.g., silicon (Si)) observes a fine line design rule exceeding the rougher design rule of a conventional bridge. The semiconductor bridge 360 may be configured as a thin bridge embedded structure that is easy to align for die to bridge connection due to a bridge exposed bottom package surface. The semiconductor bridge 360 also provides an alternate solution to conventional interposers for die-to-die connection. The semiconductor bridge 360 can easily provide a thinner package for high I/O (input/out) count die-to-die connectivity. In this arrangement, the package structure 300 is a non-symmetric structure.
  • FIGS. 4A and 4B illustrate package on package (POP) arrangements of an IC package structure according to aspects of the present disclosure. FIG. 4A shows a conductive material filled via type POP structure 480 stacked on an IC package structure 400. In this arrangement, the IC package structure 400 includes a back-side conductive interconnect 472 coupled to a back-side interconnect layer 470 and a through substrate via 412. The back-side conductive interconnect 472 may couple to a system board, a package substrate or other suitable carrier substrate (not shown). The back-side conductive interconnect 472 may be configured according to a ball grid array (BGA) interconnect structure.
  • The IC package structure 400 also couples a first chip 402A and a second chip 402B, encapsulated within a molding compound 404, through a semiconductor bridge 460. In addition, the first chip 402A and the second chip 402B are also coupled through interconnects (e.g., front-side) of a multilayer photo-sensitive region and a contact layer 420. The multilayer photo-sensitive region includes a first photo-sensitive layer 430 on the contact layer 420 and a second photo-sensitive layer 440 on the first photo-sensitive layer 430. The interconnects of the contact layer 420 are coupled with through substrate vias 412 to the back-side interconnect layer 470. In this arrangement, front-side conductive interconnects 464 are coupled to through mold vias 408. In addition, the POP structure 480 is coupled to the through mold vias 408 through package interconnects 482.
  • FIG. 4B shows a microelectronic (MEP) type POP structure 490 stacked on the IC package structure 400. In this arrangement, the MEP type POP structure 490 is formed on a molding compound 404 surrounding the first chip 402A and the second chip 402B. Representatively, front-side conductive interconnects 464 are coupled to package interconnects 492. The MEP type POP structure 490 is coupled to the front-side conductive interconnects 464 through the package interconnects 492.
  • FIGS. 5A-5O illustrate an IC package structure 500 at various stages of fabrication according to aspects of the present disclosure. For example, FIGS. 5A-5L illustrate a sequential fabrication approach of the IC package structure 300 shown in FIG. 3. In addition, FIGS. 5L-5N illustrate a sequential approach for fabrication of the POP structure 480 of FIG. 4A. Similarly, FIG. 5O illustrates fabrication of the MEP type POP structure 490 of FIG. 4B.
  • Beginning with FIG. 5A, a substrate 510 is provided. The substrate 510 may be an epoxy-based laminate substrate having a core and/or build-up layers such as, for example, an Ajinomoto Build-up Film (ABF). Through substrate vias 512 are fabricated within the substrate 510. In addition, a conductive material (e.g., copper) may be deposited on a front-side and a back-side surfaces of the substrate 510 to form conductive contact pads 514 and 516. In this arrangement, the conductive contact pads 514 and 516 are coupled with the through substrate vias 512. Once the conductive contact pads 514 and 516 are completed, a back-side interconnect layer 570 (e.g., a solder resist build-up layer) may deposited on the back-side surface of the substrate 510, as shown in FIG. 5B.
  • In FIG. 5C, a contact layer 520 is fabricated on the front-side surface of the substrate 510. For example, the contact layer 520 may be a dielectric layer, such as an ABF layer or other like dielectric layer. In this example, the contact layer 520 is fabricated using a dielectric material lamination process. In addition, conductive contacts within the contact layer 520 may be formed using a semi-additive process (SAP) to form a solid conductive material (e.g., copper) plane. In this arrangement, conductive vias 522 are formed to couple conductive contact pads 524 to the through substrate vias 512. As described herein, the conductive contacts may include the conductive vias 522 and the conductive contact pads 524. In addition, a conductive trace 526 identifies a portion of the contact layer 520 that will support a semiconductor bridge.
  • In FIG. 5D, a first layer of a multilayer photo-sensitive region is deposited on the contact layer 520. The multilayer photo-sensitive region may be composed of one or more layers of a photo-dielectric material, such as polybenzoxazole (PBO) or other like photo-imageable dielectric (PID) material. The deposited photo-dielectric material may be subjected to a photo process to form a first photo-sensitive layer 530. In this arrangement, via openings 532 are fabricated within the first photo-sensitive layer 530 to expose the conductive contact pads 524 on the contact layer 520. In addition, a trench opening 534 exposes the conductive trace 526 that identifies the portion of the contact layer 520 that will support the semiconductor bridge.
  • In FIG. 5E, the via openings 532 and the trench opening 534 are filled with a conductive material (e.g., copper) to form conductive vias 536 and a conductive trench 538.
  • In FIG. 5F, a second layer of the multilayer photo-sensitive region is deposited on the first photo-sensitive layer 530. In this arrangement, a deposited photo-dielectric material may be subjected to a photo process to form a second photo-sensitive layer 540 on the first photo-sensitive layer 530. In this arrangement, via openings 542 are fabricated within the second photo-sensitive layer 540 to expose conductive contact pads 539 on the first photo-sensitive layer 530. In addition, a trench opening 544 exposes the conductive trench 538 that identifies the portion of the contact layer 520 that will support the semiconductor bridge.
  • In FIG. 5G, the via openings 542 and the trench opening 544 are filled with a conductive material (e.g., copper) to form conductive vias 546 and a conductive trench 548. The conductive material is deposited within the via openings 542 and the trench opening 544 on the exposed portions of conductive contact pads 539 and the conductive trench 538. In this arrangement, a photoresist 550 is coated on the second photo-sensitive layer 540, the conductive vias 546 and the conductive trench 548.
  • In FIG. 5H, the photoresist 550 is removed from the second photo-sensitive layer 540 to expose the conductive vias 546. In this arrangement, the conductive trench 548 is etched to expose the contact layer 520 to form a cavity 552. The cavity 552 is provided to support a semiconductor bridge, for example, as shown in FIG. 5J.
  • In FIG. 5I, a semiconductor bridge 560 is placed on the exposed portion of the contact layer 520 within the cavity 552. In this arrangement, sidewalls of the semiconductor bridge 560 are contacted by the first photo-sensitive layer 530 and the second photo-sensitive layer 540 of the multilayer photo-sensitive region. In this configuration, the multilayer photo-sensitive region does not contact a first surface of the semiconductor bridge 560 that is placed on the exposed portion of the contact layer 520 within the cavity 552. In addition, a second surface of the semiconductor bridge 560, opposite the first surface is exposed and separate from the multilayer photo-sensitive region. That is, the semiconductor bridge 560 is embedded within the cavity 552, such that the exposed surface of the semiconductor bridge 560 is substantially flush with and within the cavity 552.
  • As further shown in FIG. 5I, a photoresist 554 is coated on the second photo-sensitive layer 540, the conductive vias 546 and the exposed surface of the semiconductor bridge 560. Once coated, the photoresist 554 is opened to form openings 556 exposing portions of the conductive vias 546 and contacts 562 (562A and 562B) of the semiconductor bridge 560. In this arrangement, the opening 556 define front-side conductive interconnects, for example, as shown in FIG. 5J.
  • In FIG. 5J, the opening 556 formed within the photoresist 554 are plated with a conductive material to form front-side conductive interconnects 564. In this arrangement, the front-side conductive interconnects 564 are shown as conductive posts, but other arrangements of the front-side conductive interconnects 564 are possible according to aspects of the present disclosure. Representatively, a first conductive interconnect 564A and a second conductive interconnect 564B to the contacts 562 (562A and 562B) of the semiconductor bridge 560 enable die-to-die connection for a die split architecture, for example, as shown in FIG. 5K.
  • In FIG. 5K, a first die 502A and a second die 502B are coupled to the front-side conductive interconnects 564. In addition, the first conductive interconnect 564A and the second conductive interconnect 564B provide the die-to-die connection for the first die 502A and the second die 502B through the semiconductor bridge 560.
  • In FIG. 5L, the IC package structure 500 is prepared for a package on package process by encapsulating the first die 502A and the second die 502B within a molding compound 504. Once encapsulated, in FIG. 5M, through mold via openings 506A and 506B are opened within the molding compound 504 to selected ones of the front-side conductive interconnects 564. In FIG. 5N, the through mold via openings 506A and 506B are plated with a conductive material to form through mold vias 508. Next, first POP structure 580 is attached to the through mold vias 508 through first conductive interconnects 582. Although shown as solder ball type interconnections, other types of interconnects may be used to attach the first POP structure 580 to the through mold vias 508.
  • In FIG. 5O, a microelectronic (MEP) type POP structure 590 is stacked on the IC package structure 500 and coupled to the selected ones of the front-side conductive interconnects 564 using second conductive interconnects 592. In addition, an underfill process may be performed to secure the MEP type POP 590 stacked on the IC package structure 500.
  • FIGS. 4A and 4B illustrate POP arrangements of the IC package structures of FIGS. 5L and 5M according to aspects of the present disclosure. In these arrangements, the IC package structure 400/500 includes a back-side conductive interconnect 472 coupled to the back-side interconnect layer 470/570 and the through substrate vias 412/512. The back-side conductive interconnect 472 may couple a system board, a package substrate or other suitable carrier substrate (not shown). The back-side conductive interconnect 472 may be configured according to a ball grid array (BGA) interconnect structure.
  • FIG. 6 is a flow diagram illustrating a method 600 for fabricating a cavity bridge connection for a die split architecture according to one aspect of the disclosure. At block 602, a photo-sensitive layer is deposited on a surface of a substrate facing a first semiconductor die and a second semiconductor die. For example, a multilayer photo-sensitive region includes a first photo-sensitive layer 530 on a contact layer 520 and a second photo-sensitive layer 540 on the first photo-sensitive layer 530, as shown in FIGS. 5D to 5F. At block 604, the photo-sensitive region is etched to form a cavity through the photo-sensitive region to the surface of the substrate. For example, as shown in FIG. 5H, the second photo-sensitive layer 540 and the first photo-sensitive layer 530 are etched to expose a portion of the contact layer 520 to form a cavity 552.
  • Referring again to FIG. 6, at block 606, a semiconductor bridge is placed within the cavity and directly on the surface of the substrate, with the photo-sensitive region contacting sidewalls of the semiconductor bridge. For example, as shown in FIG. 5I, the semiconductor bridge 560 is placed directly on the contact layer 520 of the substrate 510. Because the cavity extends through both layers of the multilayer photo-sensitive region to the contact layer 520, the first photo-sensitive layer 530 and the second photo-sensitive layer 540 contact only the sidewalls of the semiconductor bridge 560. In block 608, the first die and the second die are attached to the IC package structure. In this arrangement, the first die and the second die are coupled together through the semiconductor bridge. For example, as shown in FIG. 5K, the first die 502A and the second die 502B are coupled to the front-side conductive interconnects 564. In addition, the first conductive interconnect 564A and the second conductive interconnect 564B provide the die-to-die connection for the first die 502A and the second die 502B through the semiconductor bridge 560.
  • In one configuration, an IC package structure includes a cavity bridge connection for a die split architecture. The cavity bridge connection may be a semiconductor bridge disposed within a cavity extending through a photo-sensitive layer on a surface of a substrate. The IC package structure may include a means for coupling a first die and a second die through the semiconductor bridge. In one aspect of the disclosure, the coupling means is the first conductive interconnect 564A and the second conductive interconnect 564B to the contacts 562 (562A and 562B) of the semiconductor bridge 560 for enabling die-to-die connection for a die split architecture, as shown in FIG. 5K, configured to perform the functions recited by the coupling means. In another aspect, the aforementioned means may be a device or any layer configured to perform the functions recited by the aforementioned means.
  • An IC package structure, according to aspects of the present disclosure, includes a cavity bridge connection for a die split architecture. The IC package structure may be fabricated with a multilayer photo-sensitive region. In this aspect of the disclosure, a semiconductor bridge is fabricated within a cavity of the multilayer photo-sensitive region. The semiconductor bridge provides a connection between a first die and a second die of the die split architecture.
  • In aspects of the disclosure, the semiconductor bridge provides die-to-die connection for the die split architecture of an IC package structure including a core substrate. In one configuration, a cavity is formed in the multilayer photo-sensitive region to expose a portion of a contact layer on a surface of the substrate facing the active die. In this configuration, the semiconductor bridge is disposed within the cavity and directly on the contact layer. A first photo-sensitive layer and a second photo-sensitive layer of the multilayer photo-sensitive region may directly contact the sidewalls of the semiconductor bridge, but are separate from a first layer directly on the contact layer and an exposed second layer opposite the first layer of the semiconductor bridge.
  • The IC package structure couples a first chip and a second chip that may be encapsulated within a molding compound through the semiconductor bridge. In addition, the first chip and the second chip may be coupled through interconnects (e.g., front-side) of the multilayer photo-sensitive region and the contact layer. The interconnects of the contact layer may be coupled with through substrate vias to a back-side interconnect layer of the IC package structure. The back-side interconnect layer may facilitate communication between the first chip and the second chip and a first conductive interconnect (e.g., a ball grid array (BGA)).
  • FIG. 7 is a block diagram showing an exemplary wireless communication system 700 in which an aspect of the disclosure may be advantageously employed. For purposes of illustration, FIG. 7 shows three remote units 720, 730, and 750 and two base stations 740. It will be recognized that wireless communication systems may have many more remote units and base stations. Remote units 720, 730, and 750 include IC devices 725A, 725C, and 725B that include the disclosed IC package structure. It will be recognized that other devices may also include the disclosed IC package structure, such as the base stations, switching devices, and network equipment. FIG. 7 shows forward link signals 780 from the base station 740 to the remote units 720, 730, and 750 and reverse link signals 790 from the remote units 720, 730, and 750 to base stations 740.
  • In FIG. 7, remote unit 720 is shown as a mobile telephone, remote unit 730 is shown as a portable computer, and remote unit 750 is shown as a fixed location remote unit in a wireless local loop system. For example, the remote units 720, 730, and 750 may be a mobile phone, hand-held personal communication systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA), a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as a meter reading equipment, or communications device that stores or retrieves data or computer instructions, or combinations thereof. Although FIG. 7 illustrates remote units according to the aspects of the disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the disclosure may be suitably employed in many devices, which include the disclosed devices.
  • FIG. 8 is a block diagram illustrating a design workstation used for circuit, layout, and logic design of a semiconductor component, such as the devices disclosed above. A design workstation 800 includes a hard disk 802 containing operating system software, support files, and design software such as Cadence or OrCAD. The design workstation 800 also includes a display 804 to facilitate design of a circuit 806 or a semiconductor component 808 such as an IC package structure. A storage medium 810 is provided for tangibly storing the design of the circuit 806 or the semiconductor component 808. The design of the circuit 806 or the semiconductor component 808 may be stored on the storage medium 810 in a file format such as GDSII or GERBER. The storage medium 810 may be a CD-ROM, DVD, hard disk, flash memory, or other appropriate device. Furthermore, the design workstation 800 includes a drive apparatus 812 for accepting input from or writing output to the storage medium 810.
  • Data recorded on the storage medium 810 may specify logic circuit configurations, pattern data for photolithography masks, or mask pattern data for serial write tools such as electron beam lithography. The data may further include logic verification data such as timing diagrams or net circuits associated with logic simulations. Providing data on the storage medium 810 facilitates the design of the circuit 806 or the semiconductor component 808 by decreasing the number of processes for designing semiconductor wafers.
  • For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. A machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory and executed by a processor unit. Memory may be implemented within the processor unit or external to the processor unit. As used herein, the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the technology of the disclosure as defined by the appended claims. For example, relational terms, such as “above” and “below” are used with respect to a substrate or electronic device. Of course, if the substrate or electronic device is inverted, above becomes below, and vice versa. Additionally, if oriented sideways, above and below may refer to sides of a substrate or electronic device. Moreover, the scope of the present application is not intended to be limited to the particular configurations of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding configurations described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
  • Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
  • The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • The steps of a method or algorithm described in connection with the disclosure may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal In the alternative, the processor and the storage medium may reside as discrete components in a user terminal
  • In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “a step for.”

Claims (30)

1. An integrated circuit (IC) package structure, comprising:
a substrate;
a semiconductor bridge having a first surface directly on a surface of the substrate facing a first semiconductor die and a second semiconductor die, the semiconductor bridge disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate and having an exposed, second surface substantially flush with the photo-sensitive layer; and
the first semiconductor die and the second semiconductor die supported by the substrate and coupled together through the semiconductor bridge.
2. The integrated circuit package structure of claim 1, in which the substrate further comprises a contact layer including a dielectric layer on a core substrate and at least one conductive contact surrounded by the dielectric layer.
3. The integrated circuit package structure of claim 1, in which the photo-sensitive layer comprises a multilayer photo-sensitive region including layers of a photo-imageable dielectric (PID) material.
4. The integrated circuit package structure of claim 3, in which the PID material comprises polybenzoxazole (PBO).
5. The integrated circuit package structure of claim 1 in which the substrate is a non-symmetric structure including a solder resist build-up layer opposite the surface of the substrate facing the first semiconductor die and the second semiconductor die.
6. The integrated circuit package structure of claim 1, in which the photo-sensitive layer directly contacts sidewalls of the semiconductor bridge.
7. The integrated circuit package structure of claim 1, in which the substrate comprises an Ajinomoto Build-up Film (ABF) substrate.
8. The integrated circuit package structure of claim 1, in which a package is coupled to a molding compound surrounding the first semiconductor die and the second semiconductor die.
9. The integrated circuit package structure of claim 1, in which a package is directly stacked on a molding compound surrounding the first semiconductor die and the second semiconductor die.
10. The integrated circuit package structure of claim 1, incorporated into at least one of a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
11. A method for fabricating an integrated circuit (IC) package structure, comprising:
depositing at least one photo-sensitive layer on a surface of a substrate facing a first semiconductor die and a second semiconductor die;
etching the photo-sensitive layer to form a cavity through the photo-sensitive layer to the surface of the substrate;
placing a semiconductor bridge within the cavity and directly on the surface of the substrate, the photo-sensitive layer contacting sidewalls of the semiconductor bridge; and then
attaching the first die and the second die to the IC package structure, in which the first die and the second die are coupled together through the semiconductor bridge.
12. The method for fabricating the IC package structure of claim 11, further comprising:
fabricating a contact layer on the substrate, the contact layer including at least one first conductive contact coupled to a through substrate via; and
fabricating at least one second conductive contact within the photo-sensitive layer and coupled to the at least one first conductive contact and configured to couple a first conductive interconnect to the contact layer.
13. The method for fabricating the IC package structure of claim 12, in which attaching further comprises coupling the first die and the second die to the IC package structure using the first conductive interconnect.
14. The method for fabricating the IC package structure of claim 11, further comprising coupling a package to a molding compound surrounding the first semiconductor die and the second semiconductor die to form a package-on-package (POP) IC structure.
15. The method for fabricating the IC package structure of claim 11, further comprising incorporating the IC package structure into at least one of a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
16. An integrated circuit (IC) package structure, comprising:
a substrate;
a semiconductor bridge having a first surface directly on a surface of the substrate facing a first semiconductor die and a second semiconductor die supported by the substrate, the semiconductor bridge disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate and having an exposed, second surface substantially flush with the photo-sensitive layer; and
means for coupling the first semiconductor die and the second semiconductor die through the semiconductor bridge.
17. The integrated circuit package structure of claim 16, in which the substrate further comprises a contact layer including a dielectric layer on a core substrate and at least one conductive contact surrounded by the dielectric layer.
18. The integrated circuit package structure of claim 16, in which the photo-sensitive layer comprises a multilayer photo-sensitive region including layers of a photo-imageable dielectric (PID) material.
19. The integrated circuit package structure of claim 18, in which the PID material comprises polybenzoxazole (PBO).
20. The integrated circuit package structure of claim 16 in which the substrate is a non-symmetric structure including a solder resist build-up layer opposite the surface of the substrate facing the first semiconductor die and the second semiconductor die.
21. The integrated circuit package structure of claim 16, in which the photo-sensitive layer directly contacts sidewalls of the semiconductor bridge.
22. The integrated circuit package structure of claim 16, in which the substrate comprises an Ajinomoto Build-up Film (ABF) substrate.
23. The integrated circuit package structure of claim 16, in which a package is coupled to a molding compound surrounding the first semiconductor die and the second semiconductor die.
24. The integrated circuit package structure of claim 16, in which a package is directly stacked on a molding compound surrounding the first semiconductor die and the second semiconductor die.
25. The integrated circuit package structure of claim 16, incorporated into at least one of a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
26. A method for fabricating an integrated circuit (IC) package structure, comprising:
a step for depositing at least one photo-sensitive layer on a surface of a substrate facing a first semiconductor die and a second semiconductor die;
a step for etching the photo-sensitive layer to form a cavity through the photo-sensitive layer to the surface of the substrate;
a step for placing a semiconductor bridge within the cavity and directly on the surface of the substrate, the photo-sensitive layer contacting sidewalls of the semiconductor bridge; and then
a step for attaching the first die and the second die to the IC package structure, in which the first die and the second die are coupled together through the semiconductor bridge.
27. The method for fabricating the IC package structure of claim 26, further comprising:
a step for fabricating a contact layer on the substrate, the contact layer including at least one first conductive contact coupled to a through substrate via; and
a step for fabricating at least one second conductive contact within the photo-sensitive layer and coupled to the at least one first conductive contact and configured to couple a first conductive interconnect to the contact layer.
28. The method for fabricating the IC package structure of claim 27, in which the step for attaching further comprises a step for coupling the first die and the second die to the IC package structure using the first conductive interconnect.
29. The method for fabricating the IC package structure of claim 26, further comprising a step for coupling a package to a molding compound surrounding the first semiconductor die and the second semiconductor die to form a package on package (POP) IC structure.
30. The method for fabricating the IC package structure of claim 26, further comprising a step for incorporating the IC package structure into at least one of a music player, a video player, an entertainment unit, a navigation device, a communications device, a personal digital assistant (PDA), a fixed location data unit, and a computer.
US14/673,435 2015-03-30 2015-03-30 Cavity bridge connection for die split architecture Active US9443824B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/673,435 US9443824B1 (en) 2015-03-30 2015-03-30 Cavity bridge connection for die split architecture
PCT/US2016/021278 WO2016160283A1 (en) 2015-03-30 2016-03-07 Cavity bridge connection for die split architecture
CN201680019399.5A CN107431027B (en) 2015-03-30 2016-03-07 The cavity bridging for splitting framework for tube core connects
US15/261,731 US20160379959A1 (en) 2015-03-30 2016-09-09 Cavity bridge connection for die split architecture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/673,435 US9443824B1 (en) 2015-03-30 2015-03-30 Cavity bridge connection for die split architecture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/261,731 Continuation US20160379959A1 (en) 2015-03-30 2016-09-09 Cavity bridge connection for die split architecture

Publications (2)

Publication Number Publication Date
US9443824B1 US9443824B1 (en) 2016-09-13
US20160293572A1 true US20160293572A1 (en) 2016-10-06

Family

ID=55745799

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/673,435 Active US9443824B1 (en) 2015-03-30 2015-03-30 Cavity bridge connection for die split architecture
US15/261,731 Abandoned US20160379959A1 (en) 2015-03-30 2016-09-09 Cavity bridge connection for die split architecture

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/261,731 Abandoned US20160379959A1 (en) 2015-03-30 2016-09-09 Cavity bridge connection for die split architecture

Country Status (3)

Country Link
US (2) US9443824B1 (en)
CN (1) CN107431027B (en)
WO (1) WO2016160283A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331087A1 (en) * 2017-05-11 2018-11-15 SK Hynix Inc. Stacked semiconductor package having mold vias and method for manufacturing the same
US10535608B1 (en) 2018-07-24 2020-01-14 International Business Machines Corporation Multi-chip package structure having chip interconnection bridge which provides power connections between chip and package substrate
US10580738B2 (en) 2018-03-20 2020-03-03 International Business Machines Corporation Direct bonded heterogeneous integration packaging structures
TWI722959B (en) * 2020-08-20 2021-03-21 欣興電子股份有限公司 Chip package structure
US11094637B2 (en) 2019-11-06 2021-08-17 International Business Machines Corporation Multi-chip package structures having embedded chip interconnect bridges and fan-out redistribution layers
US11164817B2 (en) 2019-11-01 2021-11-02 International Business Machines Corporation Multi-chip package structures with discrete redistribution layers
US20220375866A1 (en) * 2021-05-21 2022-11-24 Intel Corporation Hybrid conductive vias for electronic substrates
US11538753B2 (en) * 2016-12-30 2022-12-27 Intel Corporation Electronic chip with under-side power block
WO2023022179A1 (en) * 2021-08-20 2023-02-23 アオイ電子株式会社 Semiconductor module, method for producing same, electronic device, electronic module and method for producing electronic device
US20230135165A1 (en) * 2016-09-30 2023-05-04 Intel Corporation Device and method of very high density routing used with embedded multi-die interconnect bridge
US12087695B2 (en) 2018-06-29 2024-09-10 Intel Corporation Hybrid fan-out architecture with EMIB and glass core for heterogeneous die integration applications
US12125793B2 (en) 2023-09-28 2024-10-22 Intel Corporation Hybrid fan-out architecture with EMIB and glass core for heterogeneous die integration applications

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069734B2 (en) 2014-12-11 2021-07-20 Invensas Corporation Image sensor device
US9576918B2 (en) * 2015-05-20 2017-02-21 Intel IP Corporation Conductive paths through dielectric with a high aspect ratio for semiconductor devices
DE112015007213B4 (en) * 2015-12-22 2021-08-19 Intel Corporation SEMICONDUCTOR PACKAGE WITH THROUGH-BRIDGE-DIE-CONNECTIONS AND METHOD FOR MANUFACTURING A SEMICONDUCTOR PACKAGE
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures
KR102632563B1 (en) 2016-08-05 2024-02-02 삼성전자주식회사 Semiconductor Package
TWI669797B (en) * 2016-11-16 2019-08-21 矽品精密工業股份有限公司 Substrate electronic device and method of manufacturing electronic device
US11031341B2 (en) 2017-03-29 2021-06-08 Intel Corporation Side mounted interconnect bridges
US11430740B2 (en) 2017-03-29 2022-08-30 Intel Corporation Microelectronic device with embedded die substrate on interposer
US10217720B2 (en) * 2017-06-15 2019-02-26 Invensas Corporation Multi-chip modules formed using wafer-level processing of a reconstitute wafer
US10510721B2 (en) 2017-08-11 2019-12-17 Advanced Micro Devices, Inc. Molded chip combination
US10340253B2 (en) * 2017-09-26 2019-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and method of manufacturing the same
US10784202B2 (en) * 2017-12-01 2020-09-22 International Business Machines Corporation High-density chip-to-chip interconnection with silicon bridge
US10651126B2 (en) * 2017-12-08 2020-05-12 Applied Materials, Inc. Methods and apparatus for wafer-level die bridge
US10163798B1 (en) 2017-12-22 2018-12-25 Intel Corporation Embedded multi-die interconnect bridge packages with lithotgraphically formed bumps and methods of assembling same
KR102101712B1 (en) * 2018-03-21 2020-04-21 (주)심텍 Printed Circuit Board with Bridge Substrate
US10872862B2 (en) * 2018-03-29 2020-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having bridge structure for connection between semiconductor dies and method of fabricating the same
US10593628B2 (en) * 2018-04-24 2020-03-17 Advanced Micro Devices, Inc. Molded die last chip combination
WO2020010265A1 (en) 2018-07-06 2020-01-09 Invensas Bonding Technologies, Inc. Microelectronic assemblies
US10622290B2 (en) * 2018-07-11 2020-04-14 Texas Instruments Incorporated Packaged multichip module with conductive connectors
TWI662676B (en) 2018-08-31 2019-06-11 欣興電子股份有限公司 Circuit carrier with embedded substrate, manufacturing method thereof and chip package structure
CN110896066B (en) * 2018-09-13 2022-08-30 欣兴电子股份有限公司 Circuit carrier plate with embedded substrate, manufacturing method thereof and chip packaging structure
MY202246A (en) * 2018-10-22 2024-04-19 Intel Corp Devices and methods for signal integrity protection technique
KR102530320B1 (en) 2018-11-21 2023-05-09 삼성전자주식회사 Semiconductor package
US11289424B2 (en) * 2018-11-29 2022-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Package and method of manufacturing the same
US11282761B2 (en) * 2018-11-29 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of manufacturing the same
TW202101744A (en) * 2018-12-20 2021-01-01 日商索尼半導體解決方案公司 Backside-illuminated solid-state imaging device, method for manufacturing backside-illuminated solid-state imaging device, imaging device, and electronic equipment
US11476200B2 (en) * 2018-12-20 2022-10-18 Nanya Technology Corporation Semiconductor package structure having stacked die structure
KR102708730B1 (en) * 2019-01-25 2024-09-23 에스케이하이닉스 주식회사 Semiconductor package including bridge die
US20200243449A1 (en) * 2019-01-30 2020-07-30 Powertech Technology Inc. Package structure and manufacturing method thereof
US11088100B2 (en) * 2019-02-21 2021-08-10 Powertech Technology Inc. Semiconductor package and manufacturing method thereof
US11037877B2 (en) * 2019-03-14 2021-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and method of manufacturing the same
US20200335443A1 (en) * 2019-04-17 2020-10-22 Intel Corporation Coreless architecture and processing strategy for emib-based substrates with high accuracy and high density
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
US10923430B2 (en) 2019-06-30 2021-02-16 Advanced Micro Devices, Inc. High density cross link die with polymer routing layer
US11569172B2 (en) * 2019-08-08 2023-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices and methods of manufacture
US11270946B2 (en) * 2019-08-30 2022-03-08 Stmicroelectronics Pte Ltd Package with electrical interconnection bridge
US11404337B2 (en) * 2019-12-27 2022-08-02 Apple Inc. Scalable extreme large size substrate integration
CN113140520A (en) * 2020-01-19 2021-07-20 江苏长电科技股份有限公司 Packaging structure and forming method thereof
US11289453B2 (en) * 2020-02-27 2022-03-29 Qualcomm Incorporated Package comprising a substrate and a high-density interconnect structure coupled to the substrate
US12027448B2 (en) * 2020-03-24 2024-07-02 Intel Corporation Open cavity bridge power delivery architectures and processes
US11631647B2 (en) 2020-06-30 2023-04-18 Adeia Semiconductor Bonding Technologies Inc. Integrated device packages with integrated device die and dummy element
US11728273B2 (en) 2020-09-04 2023-08-15 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US11764177B2 (en) 2020-09-04 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded structure with interconnect structure
US12119304B2 (en) 2020-09-25 2024-10-15 Apple Inc. Very fine pitch and wiring density organic side by side chiplet integration
KR20220062913A (en) 2020-11-09 2022-05-17 삼성전기주식회사 Printed circuit board with embedded bridge
US11594491B2 (en) 2021-04-30 2023-02-28 Qualcomm Incorporated Multi-die interconnect
US20230065615A1 (en) * 2021-08-27 2023-03-02 Advanced Semiconductor Engineering, Inc. Electronic device
WO2023177848A1 (en) * 2022-03-18 2023-09-21 Celestial Al Inc. Optical multi-die interconnect bridge (omib)
CN115332220B (en) * 2022-07-15 2024-03-22 珠海越芯半导体有限公司 Packaging structure for realizing chip interconnection and manufacturing method thereof
US20240030204A1 (en) * 2022-07-22 2024-01-25 Intel Corporation Multi-die panel-level high performance computing components
CN115763281B (en) * 2022-11-24 2024-08-16 海光集成电路设计(北京)有限公司 Fan-out chip packaging method and fan-out chip packaging structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861669B2 (en) 2001-11-22 2006-12-20 ソニー株式会社 Manufacturing method of multichip circuit module
JP2010205877A (en) 2009-03-03 2010-09-16 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor device, semiconductor device, and electronic device
US8288854B2 (en) 2010-05-19 2012-10-16 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for making the same
US9167694B2 (en) * 2010-11-02 2015-10-20 Georgia Tech Research Corporation Ultra-thin interposer assemblies with through vias
US8742576B2 (en) 2012-02-15 2014-06-03 Oracle International Corporation Maintaining alignment in a multi-chip module using a compressible structure
US9429427B2 (en) * 2012-12-19 2016-08-30 Intel Corporation Inductive inertial sensor architecture and fabrication in packaging build-up layers
US9236366B2 (en) 2012-12-20 2016-01-12 Intel Corporation High density organic bridge device and method
US9673131B2 (en) 2013-04-09 2017-06-06 Intel Corporation Integrated circuit package assemblies including a glass solder mask layer
US9147663B2 (en) 2013-05-28 2015-09-29 Intel Corporation Bridge interconnection with layered interconnect structures
JP2014236187A (en) 2013-06-05 2014-12-15 イビデン株式会社 Wiring board and manufacturing method therefor
US9147638B2 (en) 2013-07-25 2015-09-29 Intel Corporation Interconnect structures for embedded bridge
US20150048515A1 (en) 2013-08-15 2015-02-19 Chong Zhang Fabrication of a substrate with an embedded die using projection patterning and associated package configurations
US9542522B2 (en) * 2014-09-19 2017-01-10 Intel Corporation Interconnect routing configurations and associated techniques
US9537199B2 (en) * 2015-03-19 2017-01-03 International Business Machines Corporation Package structure having an integrated waveguide configured to communicate between first and second integrated circuit chips

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12014989B2 (en) * 2016-09-30 2024-06-18 Intel Corporation Device and method of very high density routing used with embedded multi-die interconnect bridge
US20230135165A1 (en) * 2016-09-30 2023-05-04 Intel Corporation Device and method of very high density routing used with embedded multi-die interconnect bridge
US12040276B2 (en) 2016-09-30 2024-07-16 Intel Corporation Device and method of very high density routing used with embedded multi-die interconnect bridge
US11538753B2 (en) * 2016-12-30 2022-12-27 Intel Corporation Electronic chip with under-side power block
US11257801B2 (en) 2017-05-11 2022-02-22 SK Hynix Inc. Stacked semiconductor package having mold vias and method for manufacturing the same
US10418353B2 (en) * 2017-05-11 2019-09-17 SK Hynix Inc. Stacked semiconductor package having mold vias and method for manufacturing the same
US20180331087A1 (en) * 2017-05-11 2018-11-15 SK Hynix Inc. Stacked semiconductor package having mold vias and method for manufacturing the same
US10580738B2 (en) 2018-03-20 2020-03-03 International Business Machines Corporation Direct bonded heterogeneous integration packaging structures
US11177217B2 (en) 2018-03-20 2021-11-16 International Business Machines Corporation Direct bonded heterogeneous integration packaging structures
US12087695B2 (en) 2018-06-29 2024-09-10 Intel Corporation Hybrid fan-out architecture with EMIB and glass core for heterogeneous die integration applications
US10804204B2 (en) 2018-07-24 2020-10-13 International Business Machines Corporation Multi-chip package structure having chip interconnection bridge which provides power connections between chip and package substrate
US10535608B1 (en) 2018-07-24 2020-01-14 International Business Machines Corporation Multi-chip package structure having chip interconnection bridge which provides power connections between chip and package substrate
US11164817B2 (en) 2019-11-01 2021-11-02 International Business Machines Corporation Multi-chip package structures with discrete redistribution layers
US11094637B2 (en) 2019-11-06 2021-08-17 International Business Machines Corporation Multi-chip package structures having embedded chip interconnect bridges and fan-out redistribution layers
US11574875B2 (en) 2019-11-06 2023-02-07 International Business Machines Corporation Multi-chip package structures having embedded chip interconnect bridges and fan-out redistribution layers
TWI722959B (en) * 2020-08-20 2021-03-21 欣興電子股份有限公司 Chip package structure
US11410971B2 (en) 2020-08-20 2022-08-09 Unimicron Technology Corp. Chip package structure
US20220375866A1 (en) * 2021-05-21 2022-11-24 Intel Corporation Hybrid conductive vias for electronic substrates
WO2023022179A1 (en) * 2021-08-20 2023-02-23 アオイ電子株式会社 Semiconductor module, method for producing same, electronic device, electronic module and method for producing electronic device
US12125793B2 (en) 2023-09-28 2024-10-22 Intel Corporation Hybrid fan-out architecture with EMIB and glass core for heterogeneous die integration applications

Also Published As

Publication number Publication date
US20160379959A1 (en) 2016-12-29
US9443824B1 (en) 2016-09-13
WO2016160283A1 (en) 2016-10-06
CN107431027B (en) 2018-12-11
CN107431027A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
US9443824B1 (en) Cavity bridge connection for die split architecture
US9583462B2 (en) Damascene re-distribution layer (RDL) in fan out split die application
US10157823B2 (en) High density fan out package structure
US9472425B2 (en) Power distribution improvement using pseudo-ESR control of an embedded passive capacitor
US20180315672A1 (en) Sacrificial test pads for inline test access
KR101309549B1 (en) Panelized backside processing for thin semiconductors
US10833017B2 (en) Contact for semiconductor device
US9496181B2 (en) Sub-fin device isolation
US10636737B2 (en) Structure and method of metal wraparound for low via resistance
US9966426B2 (en) Augmented capacitor structure for high quality (Q)-factor radio frequency (RF) applications
TW202243179A (en) Package comprising a substrate and interconnect device configured for diagonal routing
TW202201866A (en) Distributed feedback (dfb) laser on silicon and integrated device comprising a dfb laser on silicon
KR20130031845A (en) Process for improving package warpage and connection reliability through use of a backside mold configuration (bsmc)
US10566413B2 (en) MIM capacitor containing negative capacitance material
US9984029B2 (en) Variable interconnect pitch for improved performance
CN221201166U (en) Semiconductor device package
CN221613889U (en) Semiconductor device package
TW202433679A (en) Metal pocket fanout package
TW202331958A (en) Package comprising a substrate with post interconnects and a solder resist layer having a cavity
US20160284595A1 (en) Selective analog and radio frequency performance modification

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WE, HONG BOK;LEE, JAE SIK;KIM, DONG WOOK;REEL/FRAME:035622/0355

Effective date: 20150427

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8