US20160270401A1 - Herbicidal composition - Google Patents

Herbicidal composition Download PDF

Info

Publication number
US20160270401A1
US20160270401A1 US15/168,941 US201615168941A US2016270401A1 US 20160270401 A1 US20160270401 A1 US 20160270401A1 US 201615168941 A US201615168941 A US 201615168941A US 2016270401 A1 US2016270401 A1 US 2016270401A1
Authority
US
United States
Prior art keywords
undesired plants
flazasulfuron
inhibition rate
growth inhibition
sesbania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/168,941
Inventor
Ryu Yamada
Hiroyuki Okamoto
Takashi Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to US15/168,941 priority Critical patent/US20160270401A1/en
Publication of US20160270401A1 publication Critical patent/US20160270401A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/10Sulfones; Sulfoxides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/661,3,5-Triazines, not hydrogenated and not substituted at the ring nitrogen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N51/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds having the sequences of atoms O—N—S, X—O—S, N—N—S, O—N—N or O-halogen, regardless of the number of bonds each atom has and with no atom of these sequences forming part of a heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system

Definitions

  • the present invention relates to a herbicidal composition and a method for controlling undesired plants.
  • Patent Document 1 discloses a herbicidal composition comprising at least one acetolactate synthase inhibitor, at least one 4-hydroxyphenyl pyruvate dioxygenase-inhibitor and at least one saturated or unsaturated fatty acid.
  • Patent Document 2 discloses a composition comprising at least one sulfonylurea herbicide, diuron and hexazinone.
  • Patent Documents 1 and 2 failed to specifically disclose a remarkable synergistic effect by combination of flazasulfuron or its salt and at least one herbicidal compound selected from the group consisting of imazapic, hexazinone, mesotrione and their salts.
  • Patent Document 1 WO2008/142391
  • Patent Document 2 WO2009/054823
  • herbicidal compositions have been developed and used, but they are not necessarily sufficient to control undesired plants such as weeds to be controlled in some cases, and a herbicidal composition having high activity has been desired.
  • the present inventors have conducted extensive studies and as a result, found that a herbicidal composition having high activity can be obtained by combination of specific compounds, and accomplished the present invention.
  • the present invention provides the following (1) to (4).
  • a herbicidal composition comprising as active ingredients (A) flazasulfuron or its salt (hereinafter referred to as compound A) and (B) at least one herbicidal compound selected from the group consisting of imazapic, hexazinone, mesotrione and their salts (hereinafter referred to as compound B).
  • composition according to (1) wherein the mixing ratio of compound A to compound B is from 1:0.2 to 1:50 by the weight ratio.
  • a method for controlling undesired plants or inhibiting their growth which comprises applying a herbicidally effective amount of compound A and a herbicidally effective amount of compound B to the undesired plants or to a place where they grow.
  • a herbicidal composition having high activity can be obtained.
  • the herbicidal activity in a case where two active ingredients are combined is larger than the simple sum of the respective herbicidal activities of the two active ingredients (the expected activity), it is called a synergistic effect.
  • the activity expected by the combination of two active ingredients can be calculated as follows (Colby S. R., “Weed”, vol. 15, p. 20-22, 1967).
  • growth inhibition rate when treated with y (g/ha) of herbicide Y
  • E growth inhibition rate expected when treated with x (g/ha) of herbicide X and y (g/ha) of herbicide Y.
  • the activity by the combination can be regarded as showing a synergistic effect.
  • the herbicidal composition of the present invention shows a synergistic effect when calculated by the above formula.
  • Compound A and compound B sometimes form salts or have isomers, and they are included in the present invention so long as they are agriculturally acceptable.
  • the mixing ratio of compound A to compound B cannot generally be defined, as it varies depending upon various conditions such as the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants, and is, for example, from 1:0.2 to 1:50, preferably from 1:0.8 to 1:40, further preferably from 1:1 to 1:30 by the weight ratio.
  • herbicidally effective amounts of compounds A and B cannot generally be defined, as they vary depending upon various conditions such as the mixing ratio of compound A to B, the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants.
  • compound A is applied in an amount of from 10 to 100 g/ha, preferably from 10 to 50 g/ha
  • compound B is applied in an amount of from 20 to 500 g/ha, preferably from 40 to 400 g/ha, further preferably from 50 to 300 g/ha.
  • the herbicidal composition of the present invention may be applied to undesired plants or may be applied to a place where they grow. Further, it may be applied at any time either before or after the emergence of the undesired plants. Further, the herbicidal composition of the present invention may take various application forms such as soil application, foliar application, irrigation application, and submerged application, and it can be applied to agricultural fields such as upland fields, orchards and paddy fields, and non-cropland such as ridges of fields, fallow fields, play grounds, golf courses, vacant lands, forests, factory sites, railway sides and roadsides.
  • the herbicidal composition of the present invention can control a wide range of undesired plants such as annual weeds and perennial weeds.
  • the undesired plants to be controlled by the herbicidal composition of the present invention may, for example, be specifically cyperaceae such as green kyllinga ( Kyllinga brevifolia Rottb. var.
  • sedge Cyperus spp.
  • sedge Cyperus spp.
  • gramineae such as barnyardgrass ( Echinochloa crus - galli L., Echinochloa oryzicola vasing.
  • crabgrass Digitaria spp.
  • summergrass Digitaria ciliaris (Retz.) Koel
  • large crabgrass Diqitaria sanquinalis L.
  • violet crabgrass Diqitaria violascens Link
  • green foxtail Setaria viridis (L)
  • giant foxtail Setaria faberi Herrm.
  • goosegrass Eleusine indica L.
  • sorghum S
  • bermudagrass Cynodon dactylon Pers.
  • scrophulariaceae such as persian speedwell ( Veronica persica Poir.) or corn speedwell ( Veronica arvensis L.); compositae such as beggar ticks ( Bidens spp.) (such as hairy beggarticks ( Bidens pilosa L.), devils berggarticks ( Bidens frondosa L.), Bidens biternata (Lour.) Merr.
  • Bidens spp. such as hairy beggarticks ( Bidens pilosa L.), devils berggarticks ( Bidens frondosa L.), Bidens biternata (Lour.) Merr.
  • et Sherif or beggarticks Bidens subalternans DC.
  • hairy fleabane Conyza bonariensis (L.) Cronq.
  • horseweed Erigeron canadensis L.
  • dandelion Taraxacum officinale Weber
  • common cocklebur Xanthium strumarium L.
  • common ragweed Ambrosia artemisiifolia L.
  • leguminosae such as rattlepod or rattlebox ( Crotalaria spp.) (such as sunn-hemp ( Crotalaria juncea L.)), poison bean ( Sesbania spp.) (such as rostrate sesbania ( Sesbania rostrata Bremek.
  • sesbania pea Sesbania cannabina (Retz.) Pers.)
  • white clover Trifolium repens L
  • common lespedeza Lespedeza striata (Thunb.) Hook. et.
  • caryophyllaceae such as sticky chickweed ( Cerastium glomeratum Thuill.) or common chickweed ( Stellaria media L.); euphorbiaceae such as garden spurge ( Euphorbia hirta L.), threeseeded copperleaf ( Acalypha australis L.) or fireplant ( Euphorbia heterophylla L.); plantaginaceae such as asiatic plantain ( Plantago asiatica L.); oxalidaceae such as creeping woodsorrel ( Oxalis corniculate L.); apiaceae such as lawn pennywort ( Hydrocotyle sibthorpioides Lam.); violaceae such as violet ( Viola mandshurica W.
  • iridaceae such as blue-eyedgrass ( Sisyrinchium rosulatum Bicknell); geraniaceae such as caroling geranium ( Geranium carolinianum L.); labiatae such as purple deadnettle ( Lamium purpureum L.) or henbit ( Lamium amplexicaule L.); malvaceae such as velvetleaf ( Abutilon theophrasti MEDIC.) or prickly sida ( Sida spinosa L.); convolvulaceae such as ivy-leaved morningglory ( Ipomoea hederacea (L.) Jacq.), common morningglory ( Ipomoea purpurea ROTH), cypressvine morningglory ( Ipomoea quamoclit L.), Ipomoea grandifolia (DAMMERMANN) O'DONNELL, hairy merremia ( Merremia aegyptia (L
  • the herbicidal composition of the present invention is very useful in practical application.
  • the herbicidal composition of the present invention has a remarkable synergistic effect, and has a favorable herbicidal activity even if the doses of the respective compounds A and B are small, and accordingly the impact on the surrounding environment can be suppressed.
  • the herbicidal composition of the present invention is capable of controlling cyperaceae such as purple nutsedge ( Cyperus rotundus L.) or yellow nutsedge ( Cyperus esculentus L.); gramineae such as barnyardgrass ( Echinochloa crus - galli L., Echinochloa oryzicola vasing.), summergrass ( Digitaria ciliaris (Retz.) Koel), large crabgrass ( Digitaria sanguinalis L.), shattercane ( Sorghum bicolor (L.) Moench.), wild oat ( Avena fatua L.), guinea grass ( Panicum maximum Jacq.), signal grass ( Brachiaria spp.) or bermudagrass ( Cynodon dactylon Pers.); scrophulariaceae such as persian speedwell ( Veronica persica Poir.); compositae such as hairy beggarticks ( Bidens pilosa L.) or common c
  • euphorbiaceae such as fireplant ( Euphorbia heterophylla L.); malvaceae such as velvetleaf ( Abutilon theophrasti MEDIC.); convolvulaceae such as ivy-leaved morningglory ( Ipomoea hederacea (L.) Jacq.) or field bindweed ( Convolvulus arvensis L.); or amaranthaceae such as redroot pigweed ( Amaranthus retroflexus L.), which are problematic as noxious weeds in agricultural fields such as upland fields and orchards, and non-cropland such as golf courses, railway sides and roadsides, in a wide application timing including before and after the emergence. Further, it has a long lasting residual effect.
  • the herbicidal composition of the present invention may be mixed with or may be used in combination with other herbicides, fungicides, antibiotics, plant hormones, insecticides, fertilizers, phytotoxicity-reducing agents, etc., in addition to the above active ingredients, without departing from the intention and the scope of the present invention, whereby more excellent effects and activities may sometimes be obtained.
  • Such other herbicides may, for example, be (1) those which are believed to exhibit herbicidal effects by disturbing hormone activities of plants, (2) those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, (3) those which are believed to be converted to free radicals by themselves to form active oxygen in the plant body and show rapid herbicidal efficacy, (4) those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, (5) those which are believed to exhibit herbicidal effects characterized by bleaching activities by inhibiting chromogenesis of plants such as carotenoids, (6) those which exhibit strong herbicidal effects specifically to gramineous plants, (7) those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, (8) those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, (9) those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid bio
  • the herbicidal composition of the present invention may be prepared by mixing compound A and compound B, as active ingredients, with various agricultural additives in accordance with conventional formulation methods for agricultural chemicals, and applied in various formulations such as dusts, granules, water dispersible granules, wettable powders, tablets, pills, capsules (including a formulation packaged by a water soluble film), water-based suspensions, oil-based suspensions, microemulsions, suspoemulsions, water soluble powders, emulsifiable concentrates, soluble concentrates or pastes. It may be formed into any formulation which is commonly used in this field, so long as the object of the present invention is thereby met.
  • compound A and compound B may be mixed together for the formulation, or they may be separately formulated.
  • the additives to be used for the formulation include, for example, a solid carrier such as kaolinite, sericite, diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, clay, sodium carbonate, sodium bicarbonate, mirabilite, zeolite or starch; a solvent such as water, toluene, xylene, solvent naphtha, dioxane, dimethylsulfoxide, N,N-dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone or an alcohol; an anionic surfactant such as a salt of fatty acid, a benzoate, a polycarboxylate, a salt of alkylsulfuric acid ester, an alkyl sulfate, an alkylaryl sulfate, an alkyl diglycol ether sulfate, a salt of alcohol sulfuric acid ester, an alkyl sulfon
  • additives may suitably be selected for use alone or in combination as a mixture of two or more of them, so long as the object of the present invention is met. Further, additives other than the above-mentioned may be suitably selected for use among those known in this field. For example, various additives commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a safener, an anti-mold agent, a bubble agent, a disintegrator and a binder, may be used.
  • the mix ratio by weight of the active ingredients to such various additives in the herbicidal composition of the present invention may be from 0.001:99.999 to 95:5, preferably from about 0.005:99.995 to about 90:10.
  • a proper method can be employed among various methods depending upon various conditions such as the application site, the type of the formulation, and the type and the growth stage of the undesired plants to be controlled, and for example, the following methods may be mentioned.
  • Compound A and Compound B are mixed and formulated together, and the formulation is applied as it is.
  • Compound A and Compound B are mixed and formulated together, and the formulation is diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
  • a spreader such as a surfactant, a vegetable oil or a mineral oil
  • Compound A and compound B are separately formulated, and as the case requires, the formulations are diluted to predetermined concentrations with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added, and the formulations are applied.
  • a spreader such as a surfactant, a vegetable oil or a mineral oil
  • Compound A and compound B are separately formulated, and the formulations are mixed when diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
  • a spreader such as a surfactant, a vegetable oil or a mineral oil
  • a herbicidal composition comprising as active ingredients compound A and compound B.
  • a method for controlling undesired plants or inhibiting their growth which comprises applying a herbicidally effective amount of compound A and a herbicidally effective amount of compound B to the undesired plants or to a place where they grow.
  • composition according to [1] which contains flazasulfuron and imazapic in a mixing ratio of from 1:1 to 1:15 by the weight ratio.
  • composition according to [1] which contains flazasulfuron and hexazinone in a mixing ratio of from 1:2 to 1:30 by the weight ratio.
  • composition according to [1] which contains flazasulfuron and mesotrione in a mixing ratio of from 1:1 to 1:20 by the weight ratio.
  • composition according to [1] which contains flazasulfuron and mesotrione in a mixing ratio of from 1:3 to 1:20 by the weight ratio.
  • water dispersible granules containing flazasulfuron as an active ingredient (tradename: SHIBAGEN DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) was used as flazasulfuron, a wettable powder containing imazapic (manufactured by Wako Pure Chemical Industries, Ltd.) prepared by a conventional method was used as imazapic, a wettable powder containing hexazinone (manufactured by Wako Pure Chemical Industries, Ltd.) prepared by a conventional method was used as hexazinone, and a flowable containing mesotrione as an active ingredient (tradename: Callisto, manufactured by Syngenta) was used as mesotrione.
  • SHIBAGEN DF manufactured by Ishihara Sangyo Kaisha, Ltd.
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of summergrass ( Digitaria ciliaris (Retz.) Koeler) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of ivy-leaved morningglory ( Ipomoea hederacea (L.) Jacq.) were sown.
  • predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 2.
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of wild oat ( Avena fatua L.) were sown.
  • wild oat Avena fatua L.
  • predetermined amounts of flazasulfuron, mesotrione and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 4.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 5.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 6.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 11.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 12.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 14.
  • the growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 15.

Abstract

At present, many herbicidal compositions have been developed and used, but they are not necessarily sufficient to control undesired plants such as weeds to be controlled in some cases, and a herbicidal composition having high activity has been desired.
A herbicidal composition comprising flazasulfuron or its salt, and at least one herbicidal compound selected from the group consisting of imazapic, hexazinone, mesotrione and their salts, and a method for controlling undesired plants using it.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 14/768,318, which is a national stage of International Patent Application No. PCT/JP2014/053949, filed Feb. 19, 2014, which claims priority of JP 2013-033556, filed Feb. 22, 2013. The entire disclosures of U.S. application Ser. No. 14/768,318, International Patent Application No. PCT/JP2014/053949, and Japanese Patent Application No. 2013-033556 are expressly incorporated by reference herein.
  • TECHNICAL FIELD
  • The present invention relates to a herbicidal composition and a method for controlling undesired plants.
  • BACKGROUND ART
  • Patent Document 1 discloses a herbicidal composition comprising at least one acetolactate synthase inhibitor, at least one 4-hydroxyphenyl pyruvate dioxygenase-inhibitor and at least one saturated or unsaturated fatty acid.
  • Patent Document 2 discloses a composition comprising at least one sulfonylurea herbicide, diuron and hexazinone.
  • However, Patent Documents 1 and 2 failed to specifically disclose a remarkable synergistic effect by combination of flazasulfuron or its salt and at least one herbicidal compound selected from the group consisting of imazapic, hexazinone, mesotrione and their salts.
  • PRIOR ART DOCUMENTS Patent Documents
  • Patent Document 1: WO2008/142391
  • Patent Document 2: WO2009/054823
  • DISCLOSURE OF INVENTION Technical Problem
  • At present, many herbicidal compositions have been developed and used, but they are not necessarily sufficient to control undesired plants such as weeds to be controlled in some cases, and a herbicidal composition having high activity has been desired.
  • Solution to Problem
  • The present inventors have conducted extensive studies and as a result, found that a herbicidal composition having high activity can be obtained by combination of specific compounds, and accomplished the present invention.
  • That is, the present invention provides the following (1) to (4).
  • (1) A herbicidal composition comprising as active ingredients (A) flazasulfuron or its salt (hereinafter referred to as compound A) and (B) at least one herbicidal compound selected from the group consisting of imazapic, hexazinone, mesotrione and their salts (hereinafter referred to as compound B).
  • (2) The composition according to (1), wherein the mixing ratio of compound A to compound B is from 1:0.2 to 1:50 by the weight ratio.
  • (3) A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of compound A and a herbicidally effective amount of compound B to the undesired plants or to a place where they grow.
  • (4) The method according to (3), wherein compound A is applied in an amount of from 10 to 100 g/ha, and compound B is applied in an amount of from 20 to 500 g/ha.
  • Advantageous Effects of Invention
  • According to the present invention, a herbicidal composition having high activity can be obtained.
  • When the herbicidal activity in a case where two active ingredients are combined, is larger than the simple sum of the respective herbicidal activities of the two active ingredients (the expected activity), it is called a synergistic effect. The activity expected by the combination of two active ingredients can be calculated as follows (Colby S. R., “Weed”, vol. 15, p. 20-22, 1967).

  • E=(α+β)−(αβ)/100
  • where α: growth inhibition rate when treated with x (g/ha) of herbicide X,
  • β: growth inhibition rate when treated with y (g/ha) of herbicide Y,
  • E: growth inhibition rate expected when treated with x (g/ha) of herbicide X and y (g/ha) of herbicide Y.
  • That is, when the actual growth inhibition rate (measured value) is larger than the growth inhibition rate by the above calculation (calculated value), the activity by the combination can be regarded as showing a synergistic effect. The herbicidal composition of the present invention shows a synergistic effect when calculated by the above formula.
  • DESCRIPTION OF EMBODIMENTS
  • Compound A and compound B sometimes form salts or have isomers, and they are included in the present invention so long as they are agriculturally acceptable.
  • The mixing ratio of compound A to compound B cannot generally be defined, as it varies depending upon various conditions such as the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants, and is, for example, from 1:0.2 to 1:50, preferably from 1:0.8 to 1:40, further preferably from 1:1 to 1:30 by the weight ratio.
  • The herbicidally effective amounts of compounds A and B cannot generally be defined, as they vary depending upon various conditions such as the mixing ratio of compound A to B, the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants. However, for example, compound A is applied in an amount of from 10 to 100 g/ha, preferably from 10 to 50 g/ha, and compound B is applied in an amount of from 20 to 500 g/ha, preferably from 40 to 400 g/ha, further preferably from 50 to 300 g/ha.
  • The herbicidal composition of the present invention may be applied to undesired plants or may be applied to a place where they grow. Further, it may be applied at any time either before or after the emergence of the undesired plants. Further, the herbicidal composition of the present invention may take various application forms such as soil application, foliar application, irrigation application, and submerged application, and it can be applied to agricultural fields such as upland fields, orchards and paddy fields, and non-cropland such as ridges of fields, fallow fields, play grounds, golf courses, vacant lands, forests, factory sites, railway sides and roadsides.
  • The herbicidal composition of the present invention can control a wide range of undesired plants such as annual weeds and perennial weeds. The undesired plants to be controlled by the herbicidal composition of the present invention may, for example, be specifically cyperaceae such as green kyllinga (Kyllinga brevifolia Rottb. var. leiolepis), sedge (Cyperus spp.) (such as purple nutsedge (Cyperus rotundus L.), smallflower umbrella sedge (Cyperus difformis L.), yellow nutsedge (Cyperus esculentus L.) or amur cyperus (Cyperus microiria Steud.)); gramineae such as barnyardgrass (Echinochloa crus-galli L., Echinochloa oryzicola vasing.), crabgrass (Digitaria spp.) (such as summergrass (Digitaria ciliaris (Retz.) Koel), large crabgrass (Diqitaria sanquinalis L.), violet crabgrass (Diqitaria violascens Link) or Diqitaria horizontalis Willd.), green foxtail (Setaria viridis (L)), giant foxtail (Setaria faberi Herrm.), goosegrass (Eleusine indica L.), sorghum (Sorghum spp.) (such as johnsongrass (Sorghum halepense (L.) Pers.) or shattercane (Sorghum bicolor (L.) Moench.)), oat (Avena spp.) (such as wild oat (Avena fatua L.)), annual bluegrass (Poa annua L.), panic grass (Panicum spp.) (such as guinea grass (Panicum maximum Jacq.) or fall panicum (Panicum dichotomiflorum (L.) Michx.)), signal grass (Brachiaria spp.) (such as plantain signal grass (Brachiaria plantaqinea (LINK) Hitchc.), palisade signal grass (Brachiaria decumbens Stapf) or mauritius signal grass (Brachiaria mutica (Forssk.) Stapf)), paspalum (Paspalum spp.), itchgrass (Rottboellia cochinchinensis (LOUR.) W. D. CLAYTON) or bermudagrass (Cynodon dactylon Pers.); scrophulariaceae such as persian speedwell (Veronica persica Poir.) or corn speedwell (Veronica arvensis L.); compositae such as beggar ticks (Bidens spp.) (such as hairy beggarticks (Bidens pilosa L.), devils berggarticks (Bidens frondosa L.), Bidens biternata (Lour.) Merr. et Sherif or beggarticks (Bidens subalternans DC.)), hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Erigeron canadensis L.), dandelion (Taraxacum officinale Weber), common cocklebur (Xanthium strumarium L.) or common ragweed (Ambrosia artemisiifolia L.); leguminosae such as rattlepod or rattlebox (Crotalaria spp.) (such as sunn-hemp (Crotalaria juncea L.)), poison bean (Sesbania spp.) (such as rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or sesbania pea (Sesbania cannabina (Retz.) Pers.)), white clover (Trifolium repens L) or common lespedeza (Lespedeza striata (Thunb.) Hook. et. Arn.); caryophyllaceae such as sticky chickweed (Cerastium glomeratum Thuill.) or common chickweed (Stellaria media L.); euphorbiaceae such as garden spurge (Euphorbia hirta L.), threeseeded copperleaf (Acalypha australis L.) or fireplant (Euphorbia heterophylla L.); plantaginaceae such as asiatic plantain (Plantago asiatica L.); oxalidaceae such as creeping woodsorrel (Oxalis corniculate L.); apiaceae such as lawn pennywort (Hydrocotyle sibthorpioides Lam.); violaceae such as violet (Viola mandshurica W. Becker); iridaceae such as blue-eyedgrass (Sisyrinchium rosulatum Bicknell); geraniaceae such as caroling geranium (Geranium carolinianum L.); labiatae such as purple deadnettle (Lamium purpureum L.) or henbit (Lamium amplexicaule L.); malvaceae such as velvetleaf (Abutilon theophrasti MEDIC.) or prickly sida (Sida spinosa L.); convolvulaceae such as ivy-leaved morningglory (Ipomoea hederacea (L.) Jacq.), common morningglory (Ipomoea purpurea ROTH), cypressvine morningglory (Ipomoea quamoclit L.), Ipomoea grandifolia (DAMMERMANN) O'DONNELL, hairy merremia (Merremia aegyptia (L.) URBAN) or field bindweed (Convolvulus arvensis L.); chenopodiaceae such as common lambsquarters (Chenopodium album L.); portulacaceae such as common purslane (Portulaca oleracea L.); amaranthaceae such as pigweed (Amaranthus spp.) (such as prostrate pigweed (Amaranthus blitoides S. Wats.), livid amaranth (Amaranthus lividus L.), purple amaranth (Amaranthus blitum L.), smooth pigweed (Amaranthus hybridus L., Amaranthus patulus Bertol.), powell amaranth (Amaranthus powellii S. Wats.), slender amaranth (Amaranthus viridis L.), palmer amaranth (Amaranthus palmeri S. Wats.), redroot pigweed (Amaranthus retroflexus L.), tall waterhemp (Amaranthus tuberculatus (Moq.) Sauer.), common waterhemp (Amaranthus tamariscinus Nutt.), thorny amaranth (Amaranthus spinosus L.), ataco (Amaranthus quitensis Kunth.) or Amaranthus rudis Sauer.); solanaceae such as black nightshade (Solanum nigrum L.); polygonaceae such as spotted knotweed (Polygonum lapathifolium L.) or green smartweed (Polygonum scabrum MOENCH); cruciferae such as flexuous bittercress (Cardamine flexuosa WITH.); cucuribitaceae such as burcucumber (Sicyos anqulatus L.); or commelinaceae such as common dayflower (Commelina communis L.).
  • The herbicidal composition of the present invention is very useful in practical application. For example, the herbicidal composition of the present invention has a remarkable synergistic effect, and has a favorable herbicidal activity even if the doses of the respective compounds A and B are small, and accordingly the impact on the surrounding environment can be suppressed.
  • Further, the herbicidal composition of the present invention is capable of controlling cyperaceae such as purple nutsedge (Cyperus rotundus L.) or yellow nutsedge (Cyperus esculentus L.); gramineae such as barnyardgrass (Echinochloa crus-galli L., Echinochloa oryzicola vasing.), summergrass (Digitaria ciliaris (Retz.) Koel), large crabgrass (Digitaria sanguinalis L.), shattercane (Sorghum bicolor (L.) Moench.), wild oat (Avena fatua L.), guinea grass (Panicum maximum Jacq.), signal grass (Brachiaria spp.) or bermudagrass (Cynodon dactylon Pers.); scrophulariaceae such as persian speedwell (Veronica persica Poir.); compositae such as hairy beggarticks (Bidens pilosa L.) or common ragweed (Ambrosia artemisiifolia L.); leguminosae such as sunn-hemp (Crotalaria juncea L.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or common lespedeza (Lespedeza striata (Thunb.) Hook. et Arn.); euphorbiaceae such as fireplant (Euphorbia heterophylla L.); malvaceae such as velvetleaf (Abutilon theophrasti MEDIC.); convolvulaceae such as ivy-leaved morningglory (Ipomoea hederacea (L.) Jacq.) or field bindweed (Convolvulus arvensis L.); or amaranthaceae such as redroot pigweed (Amaranthus retroflexus L.), which are problematic as noxious weeds in agricultural fields such as upland fields and orchards, and non-cropland such as golf courses, railway sides and roadsides, in a wide application timing including before and after the emergence. Further, it has a long lasting residual effect.
  • Further, since it comprises a combination of herbicides differing in the mode of action, it can control weeds having decreased sensitivity to many herbicides.
  • In consideration of the application site of the herbicidal composition or the type or growth state of the undesired plants, the herbicidal composition of the present invention may be mixed with or may be used in combination with other herbicides, fungicides, antibiotics, plant hormones, insecticides, fertilizers, phytotoxicity-reducing agents, etc., in addition to the above active ingredients, without departing from the intention and the scope of the present invention, whereby more excellent effects and activities may sometimes be obtained.
  • Such other herbicides may, for example, be (1) those which are believed to exhibit herbicidal effects by disturbing hormone activities of plants, (2) those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, (3) those which are believed to be converted to free radicals by themselves to form active oxygen in the plant body and show rapid herbicidal efficacy, (4) those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, (5) those which are believed to exhibit herbicidal effects characterized by bleaching activities by inhibiting chromogenesis of plants such as carotenoids, (6) those which exhibit strong herbicidal effects specifically to gramineous plants, (7) those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, (8) those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, (9) those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid biosynthesis of plants, and (10) those which are believed to exhibit herbicidal effects by being parasitic on plants.
  • The herbicidal composition of the present invention may be prepared by mixing compound A and compound B, as active ingredients, with various agricultural additives in accordance with conventional formulation methods for agricultural chemicals, and applied in various formulations such as dusts, granules, water dispersible granules, wettable powders, tablets, pills, capsules (including a formulation packaged by a water soluble film), water-based suspensions, oil-based suspensions, microemulsions, suspoemulsions, water soluble powders, emulsifiable concentrates, soluble concentrates or pastes. It may be formed into any formulation which is commonly used in this field, so long as the object of the present invention is thereby met.
  • At the time of the formulation, compound A and compound B may be mixed together for the formulation, or they may be separately formulated.
  • The additives to be used for the formulation include, for example, a solid carrier such as kaolinite, sericite, diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, clay, sodium carbonate, sodium bicarbonate, mirabilite, zeolite or starch; a solvent such as water, toluene, xylene, solvent naphtha, dioxane, dimethylsulfoxide, N,N-dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone or an alcohol; an anionic surfactant such as a salt of fatty acid, a benzoate, a polycarboxylate, a salt of alkylsulfuric acid ester, an alkyl sulfate, an alkylaryl sulfate, an alkyl diglycol ether sulfate, a salt of alcohol sulfuric acid ester, an alkyl sulfonate, an alkylaryl sulfonate, an aryl sulfonate, a lignin sulfonate, an alkyldiphenylether disulfonate, a polystyrene sulfonate, a salt of alkylphosphoric acid ester, an alkylaryl phosphate, a styrylaryl phosphate, a salt of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a salt of polyoxyethylene alkylaryl ether sulfuric acid ester, a polyoxyethylene alkyl ether phosphate, a salt of polyoxyethylene alkylaryl phosphoric acid ester, a salt of polyoxyethylene aryl ether phosphoric acid ester, a naphthalene sulfonic acid condensed with formaldehyde or a salt of alkylnaphthalene sulfonic acid condensed with formaldehyde; a nonionic surfactant such as a sorbitan fatty acid ester, a glycerin fatty acid ester, a fatty acid polyglyceride, a fatty acid alcohol polyglycol ether, acetylene glycol, acetylene alcohol, an oxyalkylene block polymer, a polyoxyethylene alkyl ether, a polyoxyethylene alkylaryl ether, a polyoxyethylene styrylaryl ether, a polyoxyethylene glycol alkyl ether, polyethylene glycol, a polyoxyethylene fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene glycerin fatty acid ester, a polyoxyethylene hydrogenated castor oil or a polyoxypropylene fatty acid ester; and a vegetable oil or mineral oil such as olive oil, kapok oil, castor oil, palm oil, camellia oil, coconut oil, sesame oil, corn oil, rice bran oil, peanut oil, cottonseed oil, soybean oil, rapeseed oil, linseed oil, tung oil or liquid paraffins. These additives may suitably be selected for use alone or in combination as a mixture of two or more of them, so long as the object of the present invention is met. Further, additives other than the above-mentioned may be suitably selected for use among those known in this field. For example, various additives commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a safener, an anti-mold agent, a bubble agent, a disintegrator and a binder, may be used. The mix ratio by weight of the active ingredients to such various additives in the herbicidal composition of the present invention may be from 0.001:99.999 to 95:5, preferably from about 0.005:99.995 to about 90:10.
  • As a method of applying the herbicidal composition of the present invention, a proper method can be employed among various methods depending upon various conditions such as the application site, the type of the formulation, and the type and the growth stage of the undesired plants to be controlled, and for example, the following methods may be mentioned.
  • 1. Compound A and Compound B are mixed and formulated together, and the formulation is applied as it is.
  • 2. Compound A and Compound B are mixed and formulated together, and the formulation is diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
  • 3. Compound A and Compound B are separately formulated, and the formulations are applied as they are.
  • 4. Compound A and compound B are separately formulated, and as the case requires, the formulations are diluted to predetermined concentrations with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added, and the formulations are applied.
  • 5. Compound A and compound B are separately formulated, and the formulations are mixed when diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
  • Preferred embodiments of the present invention will be described below, but the present invention is by no means restricted thereto.
  • [1] A herbicidal composition comprising as active ingredients compound A and compound B.
  • [2] The herbicidal composition according to [1], wherein the mixing ratio of compound A to compound B is from 1:0.2 to 1:50 by the weight ratio.
  • [3] A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of compound A and a herbicidally effective amount of compound B to the undesired plants or to a place where they grow.
  • [4] The method according to [3], wherein compound A is applied in an amount of from 10 to 100 g/ha, and compound B is applied in an amount of from 20 to 500 g/ha.
  • [5] The method according to [3] or [4], wherein the undesired plants are cyperaceae, gramineae, scrophulariaceae, compositae, leguminosae, euphorbiaceae, malvaceae, convolvulaceae or amaranthaceae.
  • [6] The method according to [5], wherein the undesired plants are gramineae, scrophulariaceae, compositae, leguminosae, malvaceae or convolvulaceae.
  • [7] The composition according to [1], wherein compound B is at least one member selected from the group consisting of imazapic, hexazinone and their salts.
  • [8] The composition according to [1], wherein compound B is at least one member selected from the group consisting of imazapic, mesotrione and their salts.
  • [9] The composition according to [1], wherein compound B is imazapic.
  • [10] The composition according to [1], which contains flazasulfuron and imazapic in a mixing ratio of from 1:1 to 1:15 by the weight ratio.
  • [11] The composition according to [1], wherein compound B is hexazinone.
  • [12] The composition according to [1], which contains flazasulfuron and hexazinone in a mixing ratio of from 1:2 to 1:30 by the weight ratio.
  • [13] The composition according to [1], wherein compound B is mesotrione.
  • [14] The composition according to [1], which contains flazasulfuron and mesotrione in a mixing ratio of from 1:1 to 1:20 by the weight ratio.
  • [15] The method according to [3], wherein flazasulfuron is applied in an amount of from 10 to 50 g/ha, and imazapic is applied in an amount of from 50 to 150 g/ha.
  • [16] The method according to [15], wherein the undesired plants which are to be controlled or of which growth is to be inhibited, are gramineae scrophulariaceae, compositae, leguminosae, malvaceae or convolvulaceae.
  • [17] The method according to [16], wherein the undesired plants are summergrass (Digitaria ciliaris (Retz.) Koel), large crabgrass (Digitaria sanguinalis L.), wild oat (Avena fatua L.), persian speedwell (Veronica persica Poir.), common ragweed (Ambrosia artemisiifolia L.), common lespedeza (Lespedeza striata (Thunb.) Hook. et Arn.), velvetleaf (Abutilon theophrasti MEDIC.) or field bindweed (Convolvulus arvensis L.).
  • [18] The method according to [3], wherein flazasulfuron is applied in an amount of from 10 to 50 g/ha, and hexazinone is applied in an amount of from 100 to 300 g/ha.
  • [19] The method according to [18], wherein the undesired plants are gramineae, scrophulariaceae, malvaceae or convolvulaceae.
  • [20] The method according to [19], wherein the undesired plants are barnyardgrass (Echinochloa crus-galli L., Echinochloa oryzicola vasing.), shattercane (Sorghum bicolor (L.) Moench.), persian speedwell (Veronica persica Poir.), velvetleaf (Abutilon theophrasti MEDIC.), ivy-leaved morningglory (Ipomoea hederacea (L.) Jacq.) or field bindweed (Convolvulus arvensis L.).
  • [21] The method according to [3], wherein flazasulfuron is applied in an amount of from 10 to 50 g/ha, and mesotrione is applied in an amount of from 50 to 200 g/ha.
  • [22] The method according to [21], wherein the undesired plants are gramineae, leguminosae or convolvulaceae.
  • [23] The method according to [22], wherein the undesired plants are wild oat (Avena fatua L.), guinea grass (Panicum maximum Jacq.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or field bindweed (Convolvulus arvensis L.).
  • [24] The composition according to [1], which contains flazasulfuron and mesotrione in a mixing ratio of from 1:3 to 1:20 by the weight ratio.
  • [25] The method according to [3], wherein flazasulfuron is applied in an amount of from 10 to 30 g/ha, and mesotrione is applied in an amount of from 90 to 200 g/ha.
  • EXAMPLES
  • Now, the present invention will be described in further detail with reference to Test Examples. However, the present invention is by no means restricted to such specific Test Examples.
  • In Test Examples, water dispersible granules containing flazasulfuron as an active ingredient (tradename: SHIBAGEN DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) was used as flazasulfuron, a wettable powder containing imazapic (manufactured by Wako Pure Chemical Industries, Ltd.) prepared by a conventional method was used as imazapic, a wettable powder containing hexazinone (manufactured by Wako Pure Chemical Industries, Ltd.) prepared by a conventional method was used as hexazinone, and a flowable containing mesotrione as an active ingredient (tradename: Callisto, manufactured by Syngenta) was used as mesotrione.
  • Test Example 1
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of summergrass (Digitaria ciliaris (Retz.) Koeler) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 14th day after treatment, the state of growth of the summergrass was visually observed to determine the growth inhibition rate in accordance with the following evaluation standard. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) (calculated value) calculated by the Colby's formula are shown in Table 1.

  • Growth inhibition rate (%)=0(equivalent to the non-treated area) to 100(complete kill)
  • TABLE 1
    Growth inhibition rate (%)
    of summergrass
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  10 15
    Imazapic 150 50
    Flazasulfuron + 10 + 150 80 58
    Imazapic
  • Test Example 2
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of ivy-leaved morningglory (Ipomoea hederacea (L.) Jacq.) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the ivy-leaved morningglory was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 2.
  • TABLE 2
    Growth inhibition rate (%) of
    ivy-leaved morningglory
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 10 0
    30 0
    50 40
    Hexazinone 100 0
    200 30
    300 40
    Flazasulfuron + 10 + 300 85 40
    Hexazinone 30 + 200 78 30
    50 + 100 70 40
  • Test Example 3
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of wild oat (Avena fatua L.) were sown. On the next day, predetermined amounts of flazasulfuron, mesotrione and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the wild oat was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 3.
  • TABLE 3
    Growth inhibition rate (%) of
    wild oat
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 30 40
    Mesotrione 50 0
    100 0
    200 0
    Imazapic 50 40
    100 40
    150 60
    Flazasulfuron + 30 + 50  75 40
    Mesotrione 30 + 100 75 40
    30 + 200 80 40
    Flazasulfuron + 30 + 50  75 64
    Imazapic 30 + 100 85 64
    30 + 150 85 76
  • Test Example 4
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of guinea grass (Panicum maximum Jacq.) were sown. On the next day, predetermined amounts of flazasulfuron and mesotrione were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the guinea grass was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 4.
  • TABLE 4
    Growth inhibition rate (%) of
    guinea grass
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  10 0
    Mesotrione 200 0
    Flazasulfuron + 10 + 200 70 0
    Mesotrione
  • Test Example 5
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of field bindweed (Convolvulus arvensis L.) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the field bindweed was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 5.
  • TABLE 5
    Growth inhibition rate (%) of
    field bindweed
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 0
    Hexazinone 300 15
    Flazasulfuron + 30 + 300 75 15
    Hexazinone
  • Test Example 6
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of shattercane (Sorghum bicolor (L.) Moench.) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the shattercane was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 6.
  • TABLE 6
    Growth inhibition rate (%)
    of shattercane
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 60
    Hexazinone 100 0
    Flazasulfuron + 30 + 100 85 60
    Hexazinone
  • Test Example 7
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) were sown. On the next day, predetermined amounts of flazasulfuron and mesotrione were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 22nd day after treatment, the state of growth of the rostrate sesbania was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 7.
  • TABLE 7
    Growth inhibition rate (%)
    of rostrate sesbania
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 50 35
    Mesotrione 50 15
    Flazasulfuron + 50 + 50 60 45
    Mesotrione
  • Test Example 8
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of persian speedwell (Veronica persica Poir.) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the persian speedwell was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 8.
  • TABLE 8
    Growth inhibition rate (%)
    of persian speedwell
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 50 20
    Imazapic 50 50
    Flazasulfuron + 50 + 50 98 60
    Imazapic
  • Test Example 9
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of barnyardgrass (Echinochloa crus-galli L) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the barnyardgrass was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 9.
  • TABLE 9
    Growth inhibition rate (%) of
    barnyardgrass
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 90
    Hexazinone 100 0
    Flazasulfuron + 30 + 100 98 90
    Hexazinone
  • Test Example 10
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of persian speedwell (Veronica persica Poiret.) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the persian speedwell was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 10.
  • TABLE 10
    Growth inhibition rate (%) of
    persian speedwell
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 15
    Hexazinone 100 85
    Flazasulfuron + 30 + 100 100 87
    Hexazinone
  • Test Example 11
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of common ragweed (Ambrosia artemisiifolia L.) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the common ragweed was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 11.
  • TABLE 11
    Growth inhibition rate (%) of
    common ragweed
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  10 80
    Imazapic 150 60
    Flazasulfuron + 10 + 150 98 92
    Imazapic
  • Test Example 12
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of common lespedeza (Lespedeza striata (Thunb.) Hook. et Arn.) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the common lespedeza was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 12.
  • TABLE 12
    Growth inhibition rate (%) of
    common lespedeza
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 30 90
    Imazapic 50 0
    Flazasulfuron + 30 + 50 98 90
    Imazapic
  • Test Example 13
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of velvetleaf (Abutilon theophrasti MEDIC.) were sown. On the next day, predetermined amounts of flazasulfuron and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the velvetleaf was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 13.
  • TABLE 13
    Growth inhibition rate (%) of
    velvetleaf
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron 30 75
    Imazapic 50 30
    Flazasulfuron + 30 + 50 93 83
    Imazapic
  • Test Example 14
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of velvetleaf (Abutilon theophrasti MEDIC.) were sown. On the next day, predetermined amounts of flazasulfuron and hexazinone were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the velvetleaf was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 14.
  • TABLE 14
    Growth inhibition rate (%) of
    velvetleaf
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 20
    Hexazinone 200 30
    Flazasulfuron + 30 + 200 80 44
    Hexazinone
  • Test Example 15
  • Upland field soil was put into a 1/160,000 ha pot, and seeds of field bindweed (Convolvulus arvensis L.) were sown. On the next day, predetermined amounts of flazasulfuron, mesotrione and imazapic were diluted with water (in an amount corresponding to 300 L/ha), and applied for soil treatment by a small sprayer.
  • On the 21st day after treatment, the state of growth of the field bindweed was visually observed to determine the growth inhibition rate. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) calculated in the same manner as in Test Example 1 are shown in Table 15.
  • TABLE 15
    Growth inhibition rate (%) of
    field bindweed
    Compound Dose (g/ha) Measured value Calculated value
    Flazasulfuron  30 0
    Mesotrione 200 60
    Imazapic 150 15
    Flazasulfuron + 30 + 200 75 60
    Mesotrione
    Flazasulfuron + 30 + 150 60 15
    Imazapic
  • The entire disclosure of Japanese Patent Application No. 2013-033556 filed on Feb. 22, 2013 including specification, claims and summary is incorporated herein by reference in its entirety.

Claims (16)

What is claimed is:
1. A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidal composition comprising (A) flazasulfuron or its salt and (B) mesotrione or its salt.
2. The method composition according to claim 1, wherein the mixing ratio of (A) to (B) is from 1:1 to 1:20 by the weight ratio.
3. The method according to claim 1, wherein the undesired plants are gramineae, compositae, leguminosae, caryophyllaceae, geraniaceae, labiatae, convolvulaceae, portulacaeae or polygonaeae.
4. The method according to claim 3, wherein the undesired plants are wild oat (Avena fatua L.), annual bluegrass (Poa annua L.), guinea grass (Panicum maximum Jacq.), hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Erigeron canadensis L.), dandelion (Taraxacum officinale Weber), common ragweed (Ambrosia artemisiifolia L.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.), white clover (Trifolium repens L.), sticky chickweed (Cerastium glomeratum Thuill.), carolina geranium (Geranium carolinianum L.), henbit (Lamium amplexicaule L.), field bindweed (Convolvulus arvensis L.), common purslane (Portulaca oleracea L.), spotted knotweed (Polygonum lapathifolium L.) or green smartweed (Polygonum scabrum MOENCH).
5. The method according to claim 4, wherein the undesired plants are annual bluegrass (Poa annua L.), hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Erigeron canadensis L.), henbit (Lamium amplexicaule L.), field bindweed (Convolvulus arvensis L.) or common purslane (Portulaca oleracea L.), spotted knotweed (Polygonum lapathifolium L.) or green smartweed (Polygonum scabrum MOENCH).
6. The method according to claim 5, wherein the undesired plant is field bindweed (Convolvulus arvensis L.).
7. The method according to claim 1, wherein the undesired plants are gramineae, leguminosae or convolvulaceae.
8. The method according to claim 7, wherein the undesired plants are wild oat (Avena fatua L.), guinea grass (Panicum maximum Jacq.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or field bindweed (Convolvulus arvensis L.).
9. A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of (A) flazasulfuron or its salt and a herbicidally effective amount of (B) mesotrione and its salt, to the undesired plants or to a place where they grow.
10. The method according to claim 9, wherein (A) is applied in an amount of from 10 to 50 g/ha, and (B) is applied in an amount of from 50 to 200 g/ha.
11. The method according to claim 9, wherein the undesired plants are gramineae, compositae, leguminosae, caryophyllaceae, geraniaceae, labiatae, convolvulaceae, portulacaeae or polygonaeae.
12. The method according to claim 11, wherein the undesired plants are wild oat (Avena fatua L.), annual bluegrass (Poa annua L.), guinea grass (Panicum maximum Jacq.), hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Erigeron canadensis L.), dandelion (Taraxacum officinale Weber), common ragweed (Ambrosia artemisiifolia L.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.), white clover (Trifolium repens L.), sticky chickweed (Cerastium glomeratum Thuill.), carolina geranium (Geranium carolinianum L.), henbit (Lamium amplexicaule L.), field bindweed (Convolvulus arvensis L.), common purslane (Portulaca oleracea L.), spotted knotweed (Polygonum lapathifolium L.) or green smartweed (Polygonum scabrum MOENCH).
13. The method according to claim 12, wherein the undesired plants are annual bluegrass (Poa annua L.), hairy fleabane (Conyza bonariensis (L.) Cronq.), horseweed (Erigeron canadensis L.), henbit (Lamium amplexicaule L.), field bindweed (Convolvulus arvensis L.) or common purslane (Portulaca oleracea L.), spotted knotweed (Polygonum lapathifolium L.) or green smartweed (Polygonum scabrum MOENCH).
14. The method according to claim 13, wherein the undesired plant is field bindweed (Convolvulus arvensis L.).
15. The method according to claim 9, wherein the undesired plants are gramineae, leguminosae or convolvulaceae.
16. The method according to claim 15, wherein the undesired plants are wild oat (Avena fatua L.), guinea grass (Panicum maximum Jacq.), rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) or field bindweed (Convolvulus arvensis L.).
US15/168,941 2013-02-22 2016-05-31 Herbicidal composition Abandoned US20160270401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/168,941 US20160270401A1 (en) 2013-02-22 2016-05-31 Herbicidal composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013-033556 2013-02-22
JP2013033556 2013-02-22
PCT/JP2014/053949 WO2014129512A1 (en) 2013-02-22 2014-02-19 Herbicide composition
US201514768318A 2015-08-17 2015-08-17
US15/168,941 US20160270401A1 (en) 2013-02-22 2016-05-31 Herbicidal composition

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/053949 Continuation WO2014129512A1 (en) 2013-02-22 2014-02-19 Herbicide composition
US14/768,318 Continuation US9375013B2 (en) 2013-02-22 2014-02-19 Herbicidal composition

Publications (1)

Publication Number Publication Date
US20160270401A1 true US20160270401A1 (en) 2016-09-22

Family

ID=51391298

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/768,318 Active US9375013B2 (en) 2013-02-22 2014-02-19 Herbicidal composition
US15/168,941 Abandoned US20160270401A1 (en) 2013-02-22 2016-05-31 Herbicidal composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/768,318 Active US9375013B2 (en) 2013-02-22 2014-02-19 Herbicidal composition

Country Status (19)

Country Link
US (2) US9375013B2 (en)
EP (1) EP2959776B1 (en)
JP (1) JPWO2014129512A1 (en)
CN (1) CN105025719A (en)
AR (1) AR094858A1 (en)
AU (1) AU2014219846A1 (en)
BR (1) BR112015020018B1 (en)
CA (1) CA2901086C (en)
CL (1) CL2015002328A1 (en)
ES (1) ES2693786T3 (en)
GT (1) GT201500230A (en)
HU (1) HUE041554T2 (en)
MX (1) MX363481B (en)
PE (1) PE20151331A1 (en)
PH (1) PH12015501818B1 (en)
PT (1) PT2959776T (en)
TW (1) TWI607704B (en)
WO (1) WO2014129512A1 (en)
ZA (1) ZA201506586B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195582A1 (en) * 2017-04-26 2018-11-01 Adama Australia Pty Ltd Herbicidal formulation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106472497A (en) * 2016-08-30 2017-03-08 枣阳市众成化工有限公司 A kind of application of the wettable powder containing fluoroglycofen-ethyl
CN106376558A (en) * 2016-08-30 2017-02-08 枣阳市众成化工有限公司 Fluoroglycofen-containing wettable powder
CN113358799B (en) * 2021-07-15 2022-11-15 中山大学 Method for constructing fingerprint spectrum of fresh marigold discs and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158843A1 (en) * 2010-06-14 2011-12-22 Ishihara Sangyo Kaisha, Ltd. Herbicidal composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830827A (en) * 1995-09-21 1998-11-03 Ishihara Sangyo Kaisha, Ltd. Granular herbicidal composition comprising flazasulfuron and a sulfosuccinate or benzoate stabilizer
WO1997048276A1 (en) * 1996-06-21 1997-12-24 E.I. Du Pont De Nemours And Company Herbicidal mixtures
WO2000003592A2 (en) * 1998-07-16 2000-01-27 Aventis Cropscience Gnbh Herbicidal agents with substituted phenoxysulfonylureas
GB0114198D0 (en) * 2001-06-11 2001-08-01 Syngenta Ltd Herbicidal composition
US7659229B2 (en) 2004-04-07 2010-02-09 Helena Holding Company Herbicide formulation containing hexazinone
CN1596649A (en) * 2004-08-25 2005-03-23 马韵升 Herbicide composition containing methyl sulcotrione
GB0709710D0 (en) 2007-05-21 2007-06-27 Syngenta Ltd Herbicidal compositions
WO2009054823A2 (en) * 2007-10-23 2009-04-30 E. I. Du Pont De Nemours And Company Herbicide mixture, method for controlling undesirable vegetation and use of herbicides
US9179679B2 (en) * 2010-02-03 2015-11-10 Dow Agrosciences Llc Synergistic herbicidal composition containing penoxsulam and flazasulfuron
JP2012153643A (en) * 2011-01-26 2012-08-16 Nissan Chem Ind Ltd Agrochemical solid formulation
JP2012158566A (en) * 2011-02-02 2012-08-23 Nissan Chem Ind Ltd Stabilized herbicide solid preparation
BR102013030594B1 (en) 2013-11-28 2019-06-25 Rotam Agrochem International Company Limited HERBICIDAL COMPOSITIONS COMPRISING A HERBICIDE OF TRIAZINONE AND A HERBICIDE INHIBITOR OF ALS AND USES THEREOF

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158843A1 (en) * 2010-06-14 2011-12-22 Ishihara Sangyo Kaisha, Ltd. Herbicidal composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Armel, G.R. et al., "Strategies for control of Horseweed (Conyza canadensis) and other winter annual weeds in no-till corn," Weed Technology, Vol. 23, pages 379-383 (2009). *
CABA abstract 2009:201830 (2009). *
Callisto label, Syngenta Crop Protection LLC (2011). *
Flazasulfuron 25WG label, obtained from the internet on 3/18/2017: <https://www3.epa.gov/pesticides/chem_search/ppls/071512-00012-20080702.pdf>, 4/21/2011. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195582A1 (en) * 2017-04-26 2018-11-01 Adama Australia Pty Ltd Herbicidal formulation

Also Published As

Publication number Publication date
GT201500230A (en) 2017-07-19
PE20151331A1 (en) 2015-10-12
AR094858A1 (en) 2015-09-02
WO2014129512A1 (en) 2014-08-28
US9375013B2 (en) 2016-06-28
MX363481B (en) 2019-03-22
EP2959776A4 (en) 2016-07-20
HUE041554T2 (en) 2019-05-28
AU2014219846A1 (en) 2015-09-03
BR112015020018B1 (en) 2021-02-02
PH12015501818A1 (en) 2015-12-07
CN105025719A (en) 2015-11-04
EP2959776B1 (en) 2018-10-24
ES2693786T3 (en) 2018-12-13
US20160000085A1 (en) 2016-01-07
BR112015020018A2 (en) 2017-07-18
TW201442634A (en) 2014-11-16
ZA201506586B (en) 2017-01-25
JPWO2014129512A1 (en) 2017-02-02
MX2015010869A (en) 2015-12-01
CL2015002328A1 (en) 2015-12-28
EP2959776A1 (en) 2015-12-30
CA2901086C (en) 2022-03-08
PH12015501818B1 (en) 2015-12-07
TWI607704B (en) 2017-12-11
PT2959776T (en) 2018-11-21
CA2901086A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
US9072297B2 (en) Herbicidal composition
US9693559B2 (en) Herbicidal composition
EP2832223A1 (en) Herbicidal composition
US20160270401A1 (en) Herbicidal composition
US9420794B2 (en) Herbicidal composition
US20130040814A1 (en) Herbicidal composition
WO2013180309A1 (en) Herbicidal composition comprising nicosulfuron and bicyclopyrone

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION