US20160256197A9 - Dynamic fixation assemblies with inner core and outer coil-like member - Google Patents
Dynamic fixation assemblies with inner core and outer coil-like member Download PDFInfo
- Publication number
- US20160256197A9 US20160256197A9 US14/557,945 US201414557945A US2016256197A9 US 20160256197 A9 US20160256197 A9 US 20160256197A9 US 201414557945 A US201414557945 A US 201414557945A US 2016256197 A9 US2016256197 A9 US 2016256197A9
- Authority
- US
- United States
- Prior art keywords
- shank
- receiver
- coil
- top surface
- retainer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7035—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7019—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
- A61B17/7026—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
- A61B17/7028—Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the flexible part being a coil spring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7032—Screws or hooks with U-shaped head or back through which longitudinal rods pass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7035—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
- A61B17/7037—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8625—Shanks, i.e. parts contacting bone tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/864—Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7011—Longitudinal element being non-straight, e.g. curved, angled or branched
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
- A61B2090/037—Automatic limiting or abutting means, e.g. for safety with a frangible part, e.g. by reduced diameter
Definitions
- U.S. Ser. No. 11/522,503 is also a continuation-in-part of U.S. Ser. No. 11/328,481, filed Jan. 9, 2006, now U.S. Pat. No. 7,862,587, which is incorporated by reference herein.
- U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 11/272,508, filed Nov. 10, 2005 that claims the benefit of U.S. Provisional Application No. 60/630,536, filed Nov.
- U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 10/996,289, filed Nov. 23, 2004, now U.S. Pat. No. 8,152,810, which is incorporated by reference herein.
- U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 10/789,149, filed Feb. 27, 2004, now U.S. Pat. No. 7,160,300, which is incorporated by reference herein.
- U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 11/178,854, filed Jul.
- U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 10/986,377, filed Nov. 10, 2004, now U.S. Pat. No. 7,833,250, which is incorporated by reference herein.
- U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 11/024,543, filed Dec. 20, 2004, now U.S. Pat. No. 7,204,838, which is incorporated by reference herein.
- the present invention is directed to dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members and cooperating bone anchors or fasteners for such assemblies, the connecting members being attached to at least two bone fasteners.
- longitudinal connecting members have been designed that are of a material, size and shape to largely resist flexure, extension, torsion, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused.
- longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially rigid support in all planes.
- Fusion has some undesirable side effects.
- One apparent side effect is the immobilization of a portion of the spine.
- fusion may result in a strengthened portion of the spine, it also has been linked to more rapid degeneration and even hyper-mobility and collapse of spinal motion segments that are adjacent to the portion of the spine being fused, reducing or eliminating the ability of such spinal joints to move in a more normal relation to one another. In certain instances, fusion has also failed to provide pain relief.
- Fatigue strength can be tensile or distraction, compression, shear, torsion, bending, or a combination of these.
- the complex dynamic conditions associated with spinal movement therefore provide quite a challenge for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member.
- Polyaxial bone screw assemblies include longitudinal connecting members that provide dynamic, protected motion of the spine.
- One aspect of the invention is a dynamic medical implant assembly that includes at least two bone attachment structures and further includes an elastic and flexible longitudinal connecting member having an inner cylindrical core and an outer coil-like member. In a neutral unloaded position, the outer coil-like member is in contact with and attached to the cylindrical core at only one location. The cylindrical core is receivable in the coil-like member along a substantial length thereof. The outer coil-like member is thus in sliding engagement with the inner cylindrical core in both an axial direction and torsionally about a substantial length of the core when the core is fixed with respect to coil-like member at a discrete location, for example at ends thereof.
- the inner cylindrical core includes a helical thread for cooperating with the outer coil-like member.
- the thread may be integral with or otherwise fixed to the inner cylindrical core.
- the thread of the cylindrical core has substantially the same pitch as the helical slit of the outer coil-like member and is thus threadably receivable in the outer member adjacent to the internal surface and extending along a substantial length of the outer member.
- the outer coil-like member is in sliding engagement with the inner cylindrical core in a direction along the axis and torsionally when the core is fixed to and/or in contact with the coil-like member at one end thereof.
- the inner thread is sized and shaped to extend only partially into the helical slit of the outer core.
- the thread is spaced from the coil surfaces defining the helical slit, such that there is an axial gap between the core thread and the surfaces defining the helical slit.
- the threaded core and the coil may be coated, using methods such as ion bonding, to provide an ultra hard, ultra thin, ultra smooth and ultra slick coating to provide wear resistant hardness and limited wear debris between the contact surfaces.
- one or more threaded inserts are provided that slidingly mate with the inner cylindrical core and threadably cooperate with the outer coil-like member.
- the inner core further includes a support structure fixedly attached or integral thereto, that may be, for example, a solid rod disposed at an end of the inner core and sized and shaped to extend outwardly away from the coil-like member.
- the support structure may be in the form of a helical projection disposed at any desired location along the inner core and sized and shaped to protect the outer coil-like flexible member from being crushed or otherwise deformed by a closure member or compression insert pressing against the flexible member at the bone attachment structure.
- One or more tubular adjustable support structures are also provided, each with a helical projection for cooperation with the outer coil-like member.
- the tubular support structures are receivable on the inner core with the thread thereof receivable in the slit of the coil-like member and also extendible therethrough.
- the outer coil-like member is clamped to each of the bone attachment structures at the location of the fixed and adjustable tubular supports, with the projection of each respective support extending through the slit in the outer flexible member directly resisting clamping pressure exerted by a closure structure or other compression member or insert that captures or otherwise connects with the longitudinal connecting member within a receiver of the attachment structure.
- the outer coil-like member includes an internal substantially cylindrical surface and an external substantially cylindrical surface.
- the outer coil-like member further defines a helical slit extending through the internal surface and the external surface and also preferably runs along a substantial length of the coil-like member and may include the entire length of the coil-like member.
- the cylindrical core is thus receivable in the outer member adjacent to the internal surface and extends along a substantial length of the outer member, the outer coil-like member being moveable with respect to the inner cylindrical core in a direction along the axis and torsionally when the core is fixed to and/or in contact with the coil-like member at least one location. While the illustrated embodiment of the invention are illustrated as linear, it is foreseen that they could be curvilinear.
- the inner cylindrical core may be connected to the coil-like member with a snap-on, press fit, or other type of connection.
- an end portion of the helical thread may be thickened to engage the coil-like member surfaces at the helical slit thereof, and be of a radial length to completely extend through the helical slit of the coil-like member.
- the thread winding along a remainder of the core has an outer diameter that is reduced, such that any other bone attachment structures along the length of the core and coil combination do not press against the thread of the core, but press exclusively against the coil outer cylindrical surface.
- the outer coil-like member external surface is clamped to each of the bone attachment structures in such a manner that the inner cylindrical core remains movable with respect to the outer coil-like member internal surface and also with at least one bone attachment structure and therefore the cylindrical core does not participate in or provide any means for torsional elasticity or axial compression and distraction along the coil-like member.
- upper and lower compression members disposed in each of the bone attachment structures have radiused inner surfaces sized and shaped for exclusive frictional engagement with the outer coil-like member external surface. The compression members cooperate to clamp only the outer coil to one or more of the bone attachment structures and not crush or otherwise press against the inner cylindrical core on at least one end thereof.
- the inner cylindrical core remains in slidable relationship with respect to the outer coil-like member along a length thereof.
- the upper and lower compression members directly contact one another, with the upper compression member pressing upon both the lower compression member and the outer coil-like member.
- the compression members cooperate with a closure structure that includes an outer fastener and an inner set screw. The outer fastener is pressable upon the lower compression member while the inner set screw is pressable on the upper compression member, the upper and lower compression members being in slidable contact.
- the bone attachment structure includes a shank or other anchor that has a surface altered by a surface roughening treatment and/or a coating to provide a bioactive interface between the bone attachment structure and a vertebra, or at least some component of bone bonding or bone ingrowth into the bone screw shank or other anchor.
- Such assemblies may include bone screw shanks that are either treated to provide for a roughened or porous surface, such as by plasma spraying, cleaning or coating.
- such treatment may include coating with a metal to create a scaffold for bone ingrowth or coating with other materials such as calcium phosphate bio-ceramics including hydroxyapatite and tri-calcium phosphate that actively take part in bone bonding.
- a further aspect of the invention includes providing the longitudinal connecting member with a coating, slit filling and/or covering or sheath sized and shaped to prevent bone and/or soft tissue ingrowth on or in the coil-like member and the helical slit or slits formed thereby.
- the inner core and/or internal surface of the coil-like member can be coated, chemically treated or sheathed with hard, low friction materials to improve performance and decrease wear debris.
- the smooth cylindrical or threaded inner core may be fixedly attached or integral with an additional connecting member at one end thereof, that is illustrated herein as a rod having a length for attachment to at least one and up to a plurality of bone screws.
- the illustrated additional connecting member is solid, but may be hollow, and typically has a diameter greater than a diameter of the inner core but of equal, greater or lesser diameter than an outer diameter of the coil-like member.
- the additional connecting member is typically cylindrical, having a circular cross section, but may also be of other shapes including rectangular, square, or other polygonal or curved cross sections.
- An object of the present invention is to overcome one or more of the problems with bone attachment assemblies described above.
- An object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include an inner core insertable into an outer coil-like portion that is movable relative to the inner core when implanted.
- Another object of the invention is to provide dynamic medical implant stabilization assemblies that include bone screws having an affinity to bone.
- a bone fixation assembly that includes a receiver with an open channel, a shank pivotally, hingedly, or otherwise connected to the receiver, a longitudinal connecting member having a coil-like outer portion and an inner cylindrical core, a first lower compression structure disposed between the shank and the connecting member and a second upper compression structure disposed between the connecting member and a closure, the first and second compression members engaging the coil-like outer portion without engaging the inner cylindrical core.
- a further or alternative object of the invention is to provide adjustable inserts for such longitudinal connecting members for placement within a bone screw receiver or other bone attachment member, providing for adequate gripping and clamping of the longitudinal assembly as well as directly resisting clamping pressure, thus protecting the longitudinal member from deformation due to clamping forces.
- Another object of the invention is to provide a more rigid or solid connecting member surface, if desired, such as a solid rod portion integral or otherwise fixed to the inner core for bone screw attachment to such solid surface. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone screws and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
- FIG. 1 is an exploded and partial front elevational view of a dynamic fixation connecting member assembly according to the invention including a coil-like member and a cylindrical core.
- FIG. 2 is an exploded and partial cross-sectional view taken along the line 2 - 2 of FIG. 1 .
- FIG. 3 is a cross-sectional view of the coil-like member, taken along the line 3 - 3 of FIG. 1 .
- FIG. 4 is a cross-sectional view of the cylindrical core, taken along the line 4 - 4 of FIG. 1 .
- FIG. 5 is a partial and exploded perspective view of a dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, a first lower compression member, the dynamic fixation connecting member assembly of FIG. 1 , a second upper compression member and a closure member.
- FIG. 6 is an enlarged perspective view of an assembled dynamic fixation assembly of FIG. 5 with portions broken away to show detail thereof.
- FIG. 7 is an enlarged and partial cross-sectional view taken along the line 7 - 7 of FIG. 6 of the receiver, the first and second compression members, the dynamic fixation connecting member assembly and the closure member, also shown with the shank in side elevation implanted in a vertebra and disposed at an angle with respect to the receiver.
- FIG. 8 is an enlarged and partial cross-sectional view, similar to FIG. 7 , shown without the closure member and showing the dynamic fixation connecting member assembly and the second upper compression member removed and further showing a different sized connecting member and cooperating upper compression member for insertion in the receiver.
- FIG. 9 is an enlarged and partial cross-sectional view, similar to FIGS. 7 and 8 , showing the different sized connecting member and cooperating upper compression member fully inserted in the receiver with the same closure top as illustrated in FIG. 7 .
- FIG. 10 is an exploded and partial front elevational view of a second embodiment of a dynamic fixation connecting member assembly according to the invention including a coil-like outer member and an inner threaded core.
- FIG. 11 is an exploded and partial cross-sectional view taken along the line 11 - 11 of FIG. 10 .
- FIG. 12 is a partial front elevational view of the dynamic fixation connecting member of FIG. 10 , showing the threaded core fully inserted in the coil-like member.
- FIG. 13 is an enlarged and partial cross-sectional view taken along the line 13 - 13 of FIG. 12 .
- FIG. 14 is a partial and exploded perspective view of the dynamic fixation assembly according to the invention illustrated in FIG. 5 replacing the connecting member assembly of FIGS. 1-4 with the connecting member assembly of FIGS. 10-13 .
- FIG. 15 is an enlarged perspective view of an assembled dynamic fixation assembly of FIG. 14 with portions broken away to show detail thereof.
- FIG. 16 is an enlarged and partial cross-sectional view taken along the line 16 - 16 of FIG. 15 and along the line 16 - 16 of FIG. 12 , but shown with the shank in side elevation implanted in a vertebra and disposed at an angle with respect to the receiver.
- FIG. 17 is an enlarged and partial cross-sectional view, similar to FIG. 16 , showing a second bone screw assembly attached to the dynamic fixation assembly of FIG. 1 near an end thereof, along the line 17 - 17 of FIG. 12 , and with a further portion broken away to show detail thereof.
- FIG. 18 is an exploded front elevational view of a third embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member and an inner threaded core.
- FIG. 19 is an enlarged front elevational view of the dynamic fixation connecting member of FIG. 18 , showing the threaded core fully inserted in the coil-like member.
- FIG. 20 is an enlarged cross-sectional view taken along the line 20 - 20 of FIG. 19 .
- FIG. 21 is an enlarged and partial cross-sectional view of a portion of the assembly shown in FIG. 20 .
- FIG. 22 is an enlarged, partial and exploded perspective view of a second, alternative dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, a first lower compression member, the dynamic fixation connecting member assembly of FIG. 10 , a second upper compression member and a closure member.
- FIG. 23 is an enlarged front elevational view of the closure member of FIG. 22 .
- FIG. 24 is a cross-sectional view taken along the line 24 - 24 of FIG. 23 .
- FIG. 25 is an enlarged top plan view of the closure member of FIG. 23 .
- FIG. 26 is an enlarged perspective view of the upper compression member of FIG. 22 .
- FIG. 27 is an enlarged front elevational view of the upper compression member of FIG. 26 .
- FIG. 28 is an enlarged side elevational view of the upper compression member of FIG. 26 .
- FIG. 29 is an enlarged and partial cross-sectional view of the closure member, similar to FIG. 24 and further showing the upper compression member in front elevation prior to attachment to the closure member.
- FIG. 30 is an enlarged and partial cross-sectional view of the closure member and front elevational view of the upper compression member, similar to FIG. 29 , showing the upper compression member attached to the closure member and free to rotate with respect thereto.
- FIG. 31 is an enlarged and partial front elevational view of the assembly of FIG. 22 with portions broken away to show the detail thereof and further showing the upper compression member and closure member partially inserted in the receiver.
- FIG. 32 is an enlarged and partial front elevational view similar to FIG. 31 showing the upper compression member and closure member fully seated in the receiver prior to removal of the closure member break-off head.
- FIG. 33 is an enlarged and partial front elevational view of the assembly of FIG. 22 with portions broken away to show the detail thereof, and further showing the closure member break-off head removed.
- FIG. 34 is an enlarged and partial front elevational view, similar to FIG. 32 , with portions broken away to show the detail thereof and further showing the longitudinal connecting member assembly and upper compression structure of FIG. 32 being replaced by a solid rod and a replacement upper compression structure.
- FIG. 35 is an exploded and partial front elevational view of a fourth embodiment of a dynamic fixation connecting member assembly according to the invention including a coil-like member, a cylindrical core with fixed integral and adjustable supports having helically wound projections.
- FIG. 36 is a partial cross-sectional view taken along the line 36 - 36 of FIG. 35 .
- FIG. 37 is a partial and exploded perspective view of a third embodiment of a dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, the dynamic fixation connecting member assembly of FIG. 35 , and a closure member.
- FIG. 38 is an enlarged perspective view of an adjustable support of FIG. 35 .
- FIG. 39 is a perspective view showing three bone screw assemblies according to FIG. 37 with the dynamic fixation connecting member assembly of FIG. 35 and including two adjustable supports of FIG. 38 , with a portion exploded and portions broken away to show detail thereof.
- FIG. 40 is an exploded and partial front elevational view of a fifth embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member, an inner cylindrical core and a solid rod integral to the cylindrical core.
- FIG. 41 is an exploded and partial cross-sectional view taken along the line 41 - 41 of FIG. 40 .
- FIG. 42 is a cross-sectional view of the inner coil-like member, taken along the line 42 - 42 of FIG. 40 .
- FIG. 43 is an exploded and partial front elevational view of a sixth embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member a threaded inner cylindrical core and a solid rod integral with the threaded core.
- FIG. 44 is an exploded and partial front elevational view of a seventh embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member, an inner cylindrical core, at least one threaded insert and a solid rod integral with the cylindrical core.
- the reference numeral 1 generally designates a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention.
- the connecting member assembly 1 includes an outer, cannulated coil-like connecting member 4 and a solid cylindrical core or insert 8 , receivable in the coil-like member 4 and fixed thereto at only one end of the inert 8 as will be described more fully below.
- the dynamic connecting member assembly 1 cooperates with at least a pair of fixed or polyaxial bone screw assemblies according to the invention, one of such assemblies, generally 10 , being shown in the drawings.
- the assembly 10 includes a shank 14 that further includes a body 16 integral with an upwardly extending, substantially cylindrical upper end or capture structure 18 ; a receiver or head 20 ; a retaining and articulating structure 22 ; a first lower compression structure 24 and a second upper compression structure 26 .
- the shank 14 , the receiver 20 , the retaining and articulating structure 22 and the first compression structure 24 are preferably assembled prior to implantation of the shank body 16 into a vertebra 28 . It is noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of the assemblies 1 and 10 in actual use.
- FIGS. 5-7 further show a closure structure, generally 30 , of the invention for capturing the longitudinal connecting member assembly 1 within the receiver 20 .
- the closure structure 30 presses against the second compression structure 26 that in turn presses against the outer coil-like member 4 that in turn presses against the compression structure 24 .
- the compression structure 24 in turn presses against the retaining and articulating structure 22 that is threadably mated or in other ways connected to the capture structure 18 .
- the compression structure 26 also presses against the compression structure 24 and the compression structures 24 and 26 bias the retaining and articulating structure 22 into fixed frictional contact with the receiver 20 , so as to substantially attach and orient the longitudinal connecting member assembly 1 relative to the vertebra 28 and yet allow for relative movement of the outer coil-like member 4 with respect to the inner cylindrical core 8 , providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 1 and two or more connected assemblies 10 .
- the coil-like member 4 is also able to twist or turn with respect to the cylindrical core 8 , providing relief for torsional stresses.
- the solid inner core 8 does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of the outer coil 4 .
- the receiver 20 , the shank 14 , the retaining and articulating structure 22 and the compression structures 24 and 26 cooperate in such a manner that the receiver 20 and the shank 14 can be secured at any of a plurality of angles, articulations or rotational alignments relative to one another and within a selected range of angles both from side to side and from front to rear, to enable flexible or articulated engagement of the receiver 20 with the shank 14 until both are locked or fixed relative to each other.
- the connecting assembly 1 could involve the use of an upper compression member in an open receiver that is integral or fixed in position with respect to a bone screw shank or bone hook, or that the receiver could have limited angular movement with respect to the shank, such as a hinged connection.
- the longitudinal connecting member assembly 1 is elongate, with the outer coil-like member 4 being made from metal or metal alloys or other suitable materials, including plastic polymers, PEEK and UHMWP, and the inner cylindrical core 8 also made from plastics, such as polyurethanes, or metals, preferably from a metal or metal alloy that is coated or covered with a thin, hard slick material applied to it or chemically treated on it.
- the core 8 includes a solid elongate, smooth-surfaced cylinder 40 having a central axis A. It may at times include a stop or rim 42 integral or fixedly attached to the cylinder 40 at an end 43 thereof. The stop 42 is substantially coaxial with the cylinder 40 .
- the stop 42 includes a flat abutment surface 44 and an outer cylindrical surface 46 .
- a snap-on attachment nob or nub 48 protrudes in a radial direction from a lower portion 49 of the elongate cylinder 40 and near the end 43 thereof. Near an opposite end 50 thereof, the cylinder 40 does not include structure for fixed attachment to the coil-like member 4 .
- the cylinder 40 has a substantially uniform outer radius that is slightly smaller than an inner radius of an internal substantially cylindrical surface 54 of the coil-like member 4 , providing a slight gap 51 about the cylinder 40 ( FIG. 7 ), substantially annular in cross-section, located between the cylinder 40 and the surface 54 when the cylinder 40 is inserted into and fully received by the coil-like member 4 .
- the gap 51 that spans along a substantial length of the cylinder 40 from the lower portion 49 to the end 50 allows for sliding, axial (back and forth) movement of the coil-like member 4 with respect to the cylinder 40 , along the axis A as well as twisting or torsional movement by the member 4 .
- the coil-like member 4 is also substantially cylindrical with an external substantially cylindrical surface 52 and the internal substantially cylindrical and smooth surface 54 previously identified herein.
- the surface 54 defines a bore 56 with a circular cross section, the bore 56 extending completely or substantially through the coil-like member 4 .
- the member 4 has a substantially flat and annular end surface 58 and a substantially flat and annular opposite end surface 59 .
- the member 4 further includes a helical slit 60 that extends therethrough from the external surface 52 to the internal surface 54 and beginning at a location 62 near the end surface 58 and winding along an entire or substantial length of the coil-like member 4 .
- the slit 60 illustrated in FIG. 1 runs through the end surface 59 (shown in phantom).
- the slit 60 may end at or near the end surface 59 . It is also foreseen that the slit 60 may extend through the end surface 58 .
- a circular, U-shaped surface 66 defines a recess 68 at the internal surface 54 and located between the end surface 58 and the location 62 marking the beginning of the helical slit 60 .
- the recess 68 is substantially annular and is sized and shaped to receive the nob 48 at any location therealong when the inner core 8 is received in the outer coil-like member 4 with the surface 58 abutting the surface 44 .
- the cooperation between the nob 48 and the recess 68 provides a “snap” fit between the core 8 and the outer coil-like member 4 , fixing the core 8 to the member 4 at the respective ends 43 and 58 .
- the coil-like member internal cylindrical surface 54 is of a slightly greater diameter than an outer diameter of the cylinder 40 , allowing for axially directed sliding movement of the coil-like member 4 with respect to the solid cylinder 40 . It is foreseen that the lower portion 49 of the cylinder 40 may have a diameter slightly greater than the diameter of a remainder of the solid cylinder 40 , providing for frictional engagement between the lower portion 49 and the internal surface 54 of the coil-like member 4 , giving some additional attachment and reinforcement of the snap fit between the member 4 and the core 8 near or at the nob 48 .
- the core 8 When the cylindrical core 8 is inserted in the coil-like member 4 and the nob 48 engages the recess 68 , the core 8 extends completely or substantially through the bore 56 along the axis A and along a substantial length of the coil-like member 4 to near the end surface 59 , with the end surface 50 being near or adjacent the end surface 59 .
- the coil-like member 4 is not fixed to the solid core 8 at or near the end surfaces 50 and 59 .
- the bone screw assembly 10 is sized and shaped to frictionally engage the coil-like member 4 without crushing or otherwise frictionally engaging or fixing the coil-like member 4 against the core 8 within any cooperating bone screw assembly 10 , thus allowing for relative movement between the coil-like member 4 and the solid core 8 along a substantial length of the assembly 1 .
- the core 8 may be sized and made from such materials as to provide for a relatively more rigid assembly 1 or a relatively more flexible assembly 1 with respect to flex or bendability along the assembly 1 . Such flexibility therefore may be varied by changing the outer diameter of the core 8 and thus likewise changing the diametric size of the coil-like member 4 . Also, it is noted that longer assemblies 1 may need to be stiffer and thus larger in diameter than shorter assemblies 1 . In addition, since the distance between the bone screw assembly receivers or heads can vary, the coil-case assembly may need to be more or less stiff.
- an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either the external surface 52 or the internal surface 54 of the coil-like member 4 .
- Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4 is not hindered and thus any relative movement between the coil-like member 4 and the cylindrical core 8 is not hindered or prevented.
- the shank 14 of the bone screw assembly 10 is elongate, with the shank body 16 having a helically wound, radially outwardly extending bone implantable thread 122 axially extending from near a tip 124 of the body 16 to near a slanted or sloped surface 126 that is adjacent to a smooth cylindrical surface 128 located adjacent to the capture structure 18 .
- the laterally projecting cylindrical surface 128 includes a buttress stop feature for frictional engagement with and placement of the retaining and articulating structure 22 .
- the body 16 utilizing the thread 122 for gripping and advancement is implanted into the vertebra 28 leading with the tip 124 and driven down into the vertebra 28 with an installation or driving tool so as to be implanted in the vertebra 28 to near the sloped surface 126 .
- an outer surface 129 of the shank body 16 that includes the thread 121 and extends between the surface 126 and the tip 124 is coated, perforated, made porous or otherwise treated 130 .
- the treatment 130 may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the surface 129 , such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth.
- Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca 3 (PO 4 ) 2 , tetra-calcium phosphate (Ca 4 P 2 O 9 ), amorphous calcium phosphate and hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ).
- Coating with hydroxyapatite for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.
- the sloped surface 126 extends radially outward and axially upward from the shank body 16 to the cylindrical projection 128 . Further extending axially from the projection 128 is the capture structure 18 that provides a connective or capture apparatus disposed at a distance from the threaded shank body 16 and thus at a distance from the vertebra 28 when the body 16 is implanted in the vertebra 28 .
- the capture structure 18 is configured for connecting the shank 14 to the receiver 20 and capturing the shank 14 in the receiver 20 .
- the capture structure 18 has an outer substantially cylindrical surface 134 having a helically wound guide and advancement structure thereon which in the illustrated embodiment is a V-shaped thread 136 extending from adjacent the cylindrical surface 128 to adjacent an annular top or upper surface 138 .
- the upper surface 138 is disposed substantially perpendicular to an axis of rotation B of the shank 14 .
- a diameter of the cylindrical surface 134 measured between roots of the thread 136 is smaller than a diameter of the projected cylindrical surface 128 .
- a diameter measured between crests of the thread 136 is illustrated equal to and may be smaller than the diameter of the cylindrical surface 128 .
- a hex-shaped driving formation 144 extends from the upper surface 138 into the capture structure 18 .
- the driving formation 144 is sized and shaped to cooperate with a hex-driver for rotating and driving the shank body 16 into bone. It is foreseen that other driving features or apertures, such as slotted, tri-wing, hexalobular (such as the 6-point star shaped pattern sold under the trademark TORX), spanner, or the like may also be utilized according to the invention.
- the shank 14 is cannulated with a small central bore 149 extending an entire length of the shank along axis B.
- the bore 149 is coaxial with the threaded body 16 and the capture structure outer surface 134 , providing a passage through the shank interior for a length of wire or pin inserted into the vertebra 28 prior to the insertion of the shank body 16 , the wire or pin providing a guide for insertion of the shank body 16 into the vertebra 28 .
- the receiver 20 includes a base 150 integral with a pair of opposed upstanding arms 152 that extend from the base 150 to a top surface 154 .
- the arms 152 form a U-shaped cradle and define a U-shaped channel 156 between the arms 152 and include an upper opening 157 and a lower seat 158 having substantially the same radius as the outer coil-like member 4 of the longitudinal connecting member assembly 1 for operably snugly receiving the member assembly 1 .
- Each of the arms 152 has an interior surface that defines an inner cylindrical profile and includes a partial helically wound guide and advancement structure 162 .
- the guide and advancement structure 162 is a partial helically wound flangeform configured to mate under rotation with a similar structure on the closure member 30 , as described more fully below.
- the guide and advancement structure 162 could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the closure 30 downward between the arms 152 and having such a nature as to resist splaying of the arms 152 when the closure 30 is advanced into the U-shaped channel 156 .
- Each of the arms 152 includes a V-shaped or undercut tool engagement groove 164 formed on a substantially planar outer surface 166 thereof which may be used for holding the receiver 20 with a holding tool (not shown) having projections that are received within the grooves 164 during implantation of the shank body 16 into the vertebra 28 .
- the grooves 164 may also cooperate with a holding tool during bone screw assembly and during subsequent installation of the connecting member 1 and closure 30 . It is foreseen that tool receiving grooves or apertures may be configured in a variety of shapes and sizes and be disposed at other locations on the arms 152 .
- a chamber or cavity 178 Communicating with the U-shaped channel 156 and located within the base 150 of the receiver 20 is a chamber or cavity 178 partially defined by an inner cylindrical surface 180 and a substantially spherical seating surface 182 , the cavity 178 opening upwardly into the U-shaped channel 156 .
- the base 150 further includes a restrictive neck 183 adjacent the seating surface 182 .
- the neck 183 defines an opening or bore communicating with the cavity 178 and a lower exterior 186 of the base 150 .
- the neck 183 is conically counterbored or beveled to widen the angular range of the shank 14 .
- the neck 183 is sized and shaped to be smaller than a radial dimension of a fixed or fully expanded retaining and articulating structure 22 so as to form a restriction at the location of the neck 183 relative to the retaining and articulating structure 22 , to prevent the structure 22 from passing from the cavity 178 and out into the lower exterior 186 of the receiver 20 when the retaining and articulating structure 22 is seated on the seating surface 182 .
- the retaining and articulating structure could be compressible (such as where such structure has a missing section) and could be loaded through the neck 183 and then allowed to expand and fully seat in the spherical seating surface 182 .
- Other bottom loading capture structures could be utilized.
- the retaining and articulating structure 22 has an operational central axis that is the same as the elongate axis B associated with the shank 14 .
- the retaining and articulating structure 22 has a central bore 190 that passes entirely through the structure 22 from a top surface 192 to a bottom surface 194 thereof.
- An inner cylindrical surface 196 defines a substantial portion of the bore 190 , the surface 196 having a helically wound guide and advancement structure thereon as shown by a v-shaped helical rib or thread 198 extending from adjacent the top surface 192 to near the bottom surface 194 .
- helical rib 198 Although a simple helical rib 198 is shown in the drawings, it is foreseen that other helical structures including other types of threads, such as buttress and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in an alternative embodiment of the present invention.
- the inner cylindrical surface 196 with the thread 198 are configured to mate under rotation with the capture structure outer surface 134 and helical guide and advancement structure or thread 136 .
- the illustrated retaining and articulating structure 22 has a radially outer partially spherically shaped surface 204 sized and shaped to mate with the partial spherically shaped seating surface 182 of the receiver and having a radius approximately equal to the radius associated with the surface 182 .
- the retaining and articulating structure radius is larger than the radius of the neck 183 of the receiver 20 .
- the outer partially spherically shaped surface 204 may be a high friction surface such as a knurled surface or the like.
- the retaining and articulating structure outer surface may be elliptical or ellipsoid in shape rather than spheroid in shape.
- Such an elliptical surface would be sized and shaped to contact and seat within a substantially spherical seating surface, such as the seating surface 182 .
- Such an ellipsoid structure may be attachable to the shank upper portion by threads, a pin, compression, or the like as previously described with respect to the substantially spherical retaining and articulating structure 22 .
- an ellipsoid retaining structure may be integral with the bone screw shank and may include threads that allow the ellipsoid to be threadably received into a base of a bone screw receiver.
- other types of retaining structure, articulating and not, could be used to keep the upper end of the shank contained within the receiver.
- the illustrated retaining and articulating structure top surface 192 extends from the central bore 190 to the outer surface 204 .
- the top surface 192 is disposed perpendicular to an axis of rotation of the structure 22 .
- the bottom surface 294 also is disposed perpendicular to the structure 22 axis of rotation.
- the lower compression structure 24 includes a body 210 of substantially circular cross-section integral with a pair of upstanding arms 212 .
- the body 210 and arms 212 form a generally U-shaped, open, through-channel 214 having a partially U-shaped bottom seating surface 216 having a radius substantially conforming to an outer radius of the coil-like member 4 and thus configured to operably snugly engage the coil member 4 at the outer surface 52 thereof.
- the arms 212 disposed on either side of the channel 214 each include a top surface 218 that is parallel to an annular bottom surface 220 .
- the compression structure 24 includes a substantially cylindrical outer surface 222 and an inner cylindrical wall 224 defining a central through-bore extending along a central axis of the compression structure 24 .
- the top surface 218 and the bottom surface 220 are substantially parallel. Extending between the inner cylindrical wall 224 and the bottom surface 220 is a curved or spherical surface 226 sized and shaped to frictionally engage and mate with the outer spherical surface 204 of the retaining and articulating structure 22 .
- the cylindrical surface 222 has a diameter slightly smaller than a diameter between crests of the guide and advancement structure 162 allowing for top loading of the compression structure 24 .
- the cylindrical surface 222 diameter and a height of the compression structure 24 measured from the top surface 218 to the bottom surface 220 are sized such that the compression structure 24 is received within the cylindrical surface 180 of the receiver 20 below the guide and advancement structure 162 , but the bottom surface 220 is spaced from a surface 227 of the receiver base 150 regardless of the angular position of the shank 14 with respect to the receiver 20 .
- the upper or second compression structure 26 includes a body 230 of substantially circular cross-section integral with a pair of downwardly extending arms 232 .
- the body 230 and the arms 232 form a generally U-shaped, open, through-channel having a substantially U-shaped seating surface 236 having a radius substantially conforming to the outer radius of the coil-like member 4 and thus configured to operably snugly engage the coil member 4 at the external surface 52 thereof opposite the first or lower compression structure 24 .
- the arms 232 each included a bottom surface 238 that is parallel to a planar top surface 240 .
- the compression structure 26 includes a substantially cylindrical outer surface 242 .
- a pin 244 of substantially circular cross section is disposed centrally on the top surface 240 and extends upwardly therefrom, being sized and shaped to fit within a central aperture of the closure 30 to be discussed more fully below.
- the cylindrical surface 242 has a diameter slightly smaller than a diameter between crests of the guide and advancement structure 162 allowing for top loading of the compression structure 26 .
- the second compression structure 26 is sized and shaped to abut against both the compression structure 24 and the coil-like member 4 when pressed upon by the closure 30 , allowing for clamping of the coil-like member 4 between the insert 26 and the insert 24 as well as additional compressive force being placed against the compression structure 24 that in turn presses the retaining and articulating structure 22 against the spherical seating surface 182 of the receiver 20 , clamping the bone screw shank 14 into a fixed angular position with respect to the receiver 20 as illustrated in FIG. 7 .
- the closure structure 30 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the upstanding arms 152 of the receiver 20 .
- the closure structure 30 is rotatable between the spaced arms 152 , but could be a slide-in closure structure.
- the illustrated structure closure structure 30 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form 250 .
- the illustrated guide and advancement structure 250 operably joins with the guide and advancement structure 162 disposed on the interior of the arms 152 .
- the flange form 250 has a protrusion 251 that projects rearwardly from a trailing surface thereof that effectively locks the closure structure 30 to the structure 162 within which it is set so as to prevent splaying of the arms 152 upon which mating guide and advancement structure 162 is mounted.
- the guide and advancement structure 250 utilized in accordance with the present invention may take other forms, including those described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference.
- the guide and advancement structure 250 could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structure for operably guiding under rotation and advancing the closure structure 30 downward between the arms 152 and having such a nature as to resist splaying of the arms 152 when the closure structure 30 is advanced into the U-shaped channel 156 .
- the closure structure 30 includes a lower surface 256 having a central recess 258 formed thereon.
- the recess 258 is substantially cylindrical having a central axis operationally coaxial with the receiver 20 and the second compression structure 26 .
- the lower surface 256 is planar.
- the central recess 258 is sized and shaped to receive the pin 244 of the compression structure 26 , with the lower surface 256 frictionally engaging the top planar surface 240 of the compression structure 26 when fully mated therewith, as illustrated in FIG. 7 .
- the closure structure 30 has a top surface 260 with an internal drive in the form of an aperture 262 , illustrated as a star-shaped internal drive, for example, sold under the trademark TORX.
- a driving tool (not shown) sized and shaped for engagement with the internal drive 262 is used for both rotatable engagement and, if needed, disengagement of the closure 30 from the arms 152 .
- a star-shaped internal drive 258 is shown in the drawings, the tool engagement structure may take a variety of tool-engaging forms and may include but is not limited to a hex shape or more than one aperture of various shapes.
- closure structure 30 may alternatively include a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 70 to 140 inch pounds.
- a closure structure would also include a base having an internal drive to be used for closure removal.
- the lower surface 256 engages the upper compression structure 26 that in turn engages the outer coil-like member 4 of the connecting assembly 1 .
- the closure structure 30 is rotated, using a tool engaged with the inner drive 262 until a selected pressure is reached at which point the longitudinal connecting assembly 1 is urged toward, but not completely to the lower seat 158 of the channel 156 .
- the coil-like member 4 braces against the lower compression structure 24 .
- the pressure placed on the outer surface of the coil-like member 4 by the closure structure 30 is sufficient to clamp the member 4 between the upper and lower compression structures 24 and 26 , but not enough to crush or press the coil-like member 4 into fixed engagement with the cylinder 40 of the core 8 because of the engagement of the lower surfaces 238 of the compression structure 26 with the top surfaces 218 of the compression structure 24 .
- Engagement between the surfaces 238 and 218 allow for additional torquing of the closure structure 30 to fix the bone screw shank 14 between the compression structure 24 and the receiver seating surface 182 , without crushing the coil-like member 4 against the core 8 .
- about 50 to about 80 inch pounds of pressure are required for fixing the connecting assembly 1 in place without crushing the coil-like member 4 against the core 8 .
- the retaining and articulating structure 22 Prior to the polyaxial bone screw assembly 10 being implanted in the vertebra 28 , the retaining and articulating structure 22 is typically first inserted or top-loaded, into the receiver U-shaped channel 156 , and then into the cavity 178 to dispose the structure 22 adjacent the inner seating surface 182 of the receiver 20 .
- the shank capture structure 18 is preloaded, inserted or bottom-loaded into the receiver 20 at the neck bore 183 .
- the retaining and articulating structure 22 now disposed in the receiver 20 is coaxially aligned with the shank capture structure 18 so that the helical v-shaped thread 136 rotatingly mates with the thread 198 of the retaining and articulating structure 22 .
- the shank 14 and/or the retaining and articulating structure 22 are rotated to fully mate the structures 136 and 198 , fixing the capture structure 18 to the retaining and articulating structure 22 .
- the shank 14 is in slidable and rotatable engagement with respect to the receiver 20 , while the retaining and articulating structure 22 and the lower aperture or neck 183 of the receiver 20 cooperate to maintain the shank body 16 in rotational relation with the receiver 20 .
- the shank body 16 can be rotated through a substantial angular rotation relative to the receiver 20 , both from side to side and from front to rear so as to substantially provide a universal or ball joint wherein the angle of rotation is only restricted by engagement of the sloped surface 126 of the shank body 16 with the neck 183 of the receiver 20 .
- the compression structure 24 is then loaded into the receiver 20 with the U-shaped seating surface 216 aligned with the receiver 20 U-shaped channel 156 .
- the compression structure 24 is initially top or down-loaded into the receiver 20 until the arms 212 are disposed adjacent to the surface 180 and the bottom spherical surface 226 is in contact with the surface 204 of the retaining and articulating structure 22 .
- the shank 14 , the receiver 20 and the compression structure 24 central axes are aligned along axis B, providing access to the hex-shaped formation 144 on the shank capture structure 18 through the central bore formed by the inner cylindrical wall 224 of the compression structure 24 .
- the assembly 10 is then typically screwed into a bone, such as the vertebra 28 , by rotation of the shank 14 using a driving tool (not shown) with an Allen type driving formation that operably drives and rotates the shank 14 by engagement thereof with the shank at the driving formation 144 .
- a driving tool (not shown) with an Allen type driving formation that operably drives and rotates the shank 14 by engagement thereof with the shank at the driving formation 144 .
- the hex-shaped driving formation 144 may be replaced by other types of foot print type tool engaging formations or recesses.
- the retaining structure and the shank may also be crimped together so as to not come apart with rotation.
- each vertebra 28 may be pre-drilled to minimize stressing the bone.
- each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for the bone screw cannula 149 of the bone screw shank and provides a guide for the placement and angle of the shank 14 with respect to the vertebra 28 .
- a further tap hole may be made and the shank body 16 is then driven into the vertebra 28 , by rotation of the driving tool (not shown). It is foreseen that the screws and the longitudinal connecting member can be inserted in a percutaneous or minimally invasive surgical manner.
- the longitudinal connecting member assembly 1 is assembled by inserting the cylinder 40 of the core 8 into the bore 56 defined by the inner cylindrical surface 54 of the coil-like member 4 .
- the end 50 of the core 8 is placed into the open end 58 of the coil-like member 4 and the member 4 is moved toward the stop or rim 42 until the nub 48 snaps into the recess 68 , with the end 58 preferably in frictional contact with the flat abutment surface 44 .
- the connecting member assembly 1 is eventually positioned in an open or percutaneous manner within the U-shaped channels 156 of two or more bone screw assemblies 10 .
- the assembly 1 can be straight, pre-bent or curvilinear.
- the second or upper compression structure 24 is then placed in each assembly 10 with the U-shaped seating surface 236 facing the coil-like member 4 .
- the closure structure 30 is then inserted into and advanced between the arms 152 . As the closure structure 30 is rotated between the arms 152 , the central recess or aperture 258 receives the pin 244 of the compression member 26 , centering the member 26 with respect to the receiver 20 and the connecting member assembly 1 .
- the cylindrical surfaces 216 and 236 of the compression structures 24 and 26 respectively, cradle and protect the coil-like member 4 from crushing against the core 8 .
- the upper and lower compression structures 24 and 26 provide for the gap 51 to exist between the cylinder 40 of the core 8 and the coil-like member 4 such that relative movement between the cylinder 40 and the member 4 is possible, along substantially the entire length of the cylinder 40 with the exception of the end portion 49 that is attached to the member 4 with the snap-on nob 48 and cooperating recess 68 formed by the inner surface 66 .
- disassembly is accomplished by using the driving tool (not shown) with a star-shaped driving formation on the closure structure 30 internal drive 262 to rotate and remove the closure structure 39 from the receiver 20 . Disassembly of the assembly 10 is accomplished in reverse order to the procedure described previously herein for assembly.
- the polyaxial bone screw assembly 10 advantageously allows for the removal and replacement of the longitudinal connecting member assembly 1 with another longitudinal connecting member having a different overall or outer diameter, utilizing the same receiver 20 and the same lower compression structure 24 .
- the flexible longitudinal member connecting assembly 1 having an outer diameter F may be removed and replaced by a more rigid assembly, such as a solid rod 280 having an outer diameter G that is smaller than the diameter F of the outer coil-like member 4 .
- the rod 280 is inserted into the receiver opening 157 followed by a cooperating upper compression structure 286 , and then the closure structure 30 is re-inserted and tightened within the receiver 20 .
- the upper compression structure 286 is substantially similar to the compression structure 26 with the exception that the structure 286 is sized and shaped to include a mating surface 288 for closely cooperating with and contacting an outer cylindrical surface 290 of the longitudinal connecting member 280 .
- the surface 288 has an inner radius of curvature almost identical to an outer radius of curvature of the surface 290 .
- the compression structure 286 further includes an upper pin 292 identical or substantially similar to the pin 244 described previously with respect to the compression structure 26 .
- the pin 292 is receivable in the central recess 258 of the closure structure 30 , ensuring that when fully assembled in the receiver 20 , the compression structure 26 is properly centered and in full contact with the rod 280 , which in turn centers the rod 280 with respect to the lower compression member 24 for optimum contact between the rod 280 and the lower compression member 24 . It is not necessary that the lower compression member 24 be in contact with the rod 280 along the entire surface 216 thereof for adequate capture and fixing of the solid rod 280 with respect to the receiver 20 and the shank 14 .
- the reference numeral 1 A generally designates a second embodiment of a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention.
- the connecting member assembly 1 A includes an outer, cannulated coil-like connecting member 4 A and a substantially cylindrical core or insert 8 A, having an outer helical thread 9 A, the core being threadably receivable in the coil-like member 4 A and fixed thereto at only one end of the core 8 A as will be described more fully below.
- the dynamic connecting member assembly 1 A cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, one of such assemblies, generally 10 , shown in FIGS. 14-17 and previously described herein with reference to FIGS. 5-9 .
- the closure structure 30 also shown in FIGS.
- relief e.g., shock absorption
- the coil-like member 4 A is also able to twist or turn with respect to the cylindrical core 8 A, providing relief for torsional stresses.
- the inner core 8 A does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of the outer coil 4 A.
- the longitudinal connecting member assembly 1 A is elongate, with both the outer coil-like member 4 A and the inner core 8 A being made from metal, metal alloys, composites or other suitable materials, including plastic polymers, such as ultra-high molecular weight polyethylene (UHMWP) and/or polyetheretherketone (PEEK). Also, in order to result in adequate hardness and low or no wear debris, the member 4 A surfaces and the core 8 A surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
- UHMWP ultra-high molecular weight polyethylene
- PEEK polyetheretherketone
- the member 4 A surfaces and the core 8 A surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
- the core 8 A illustrated in the drawing figures is solid, elongate cylinder, having a central axis AA. It is foreseen that the core 8 A may also be a hollow cylinder.
- the core 8 A includes a smooth cylindrical surface 40 A.
- the core 8 A may include a stop or rim 42 A integral or fixedly attached to the core 8 A at an end 43 A thereof.
- the stop 42 A is substantially coaxial with the cylinder 40 A. In the embodiment shown, the stop 42 A includes a flat abutment surface 44 A and an outer cylindrical surface 46 A.
- the stop 42 A may be replaced by an elongate connecting member, such as a solid rod, allowing for more rigid support, and fusion, if desired, along a portion of the spine adjacent to the spine portion receiving dynamic stabilization by the connector 1 A.
- the helical thread 9 A extends radially outwardly from the surface 40 A of the inner core 8 A and winds about the inner core 8 substantially along a length thereof.
- the illustrated thread 9 A includes an end portion 47 A having a thickness and radially length greater than a remainder portion 48 A of the thread 9 A.
- the end portion 47 A is sized and shaped to have an axial length along the axis AA that corresponds to a width of the receiver 20 that receives and clamps the assembly 1 A into engagement with the assembly 10 .
- the core 8 A is sized and shaped to attach to the coil-like member 4 A at the cylinder end 43 A, with the end portion 47 A of the thread 9 A frictionally engaging the coil-like member 4 A as will be described more fully below.
- the core 8 A does not include structure for fixed attachment to the coil-like member 4 A.
- the cylindrical surface 40 A has a substantially uniform outer radius that is slightly smaller than an inner radius of an internal substantially cylindrical surface 54 A of the coil-like member 4 A, providing a slight gap 51 A about the cylindrical surface 40 A, annular in cross-section, located between the cylindrical surface 40 A and the surface 54 A when the inner core 8 A is inserted and threaded into and fully received by the coil-like member 4 A.
- the gap 51 A that spans along the length of the cylinder 40 A from near the end stop 42 A to the end 50 A allows for limited sliding, axial (back and forth) movement of the coil-like member 4 A with respect to the core 8 A, along the axis AA as well as some twisting or torsional movement by the member 4 A about the core 8 A.
- the outer coil-like member 4 A is also substantially cylindrical with an external substantially cylindrical surface 52 A and the internal substantially cylindrical and smooth surface 54 A previously identified herein.
- the surface 54 A defines a bore 56 A with a circular cross section, the bore 56 A extending completely or substantially through the coil-like member 4 A.
- the member 4 A has a substantially flat and annular end surface 58 A and a curved or bullet-nosed opposite end 59 A. It is noted that in some embodiments, the end surface 59 A may also be substantially flat and annular.
- the bullet-nosed end 59 A allows for ease in implanting the assembly 1 A, particularly in minimally invasive or less invasive procedures, that may be percutaneous in nature.
- the member 4 A further includes a helical slit 60 A that extends therethrough from the external surface 52 A to the internal surface 54 A and beginning at a location 62 A at the end surface 58 A and winding along an entire or substantial length of the coil-like member 4 A.
- the slit 60 A runs to near the bullet nose end 59 A.
- the slit 60 A extends through the end surface 58 A to allow for threadably mating the thread 9 A of the inner core 8 A with the slit 60 A.
- the cooperation between the thickened end portion 47 A of the thread 9 A and the surfaces defining the slit 60 A provide a friction or press fit between the inner core 8 A and the outer coil-like member 4 A, fixing the core 8 A to the member 4 A near the respective ends 43 A and 58 A, but allowing for an axial gap or space between the remainder portion 48 A of the thread 9 A and the surfaces defining the slit 60 A.
- an outer surface 70 A of the thread portion 47 A is flush with the outer coil surface 52 A.
- a bone screw assembly 10 receiving and fixing the dynamic fixation assembly 1 A near the stop or rim 42 A frictionally engages both the outer surface 52 A of the coil-like member 4 A and the outer surface 70 A of the thread 9 A of the inner core 8 A.
- the coil-like member internal cylindrical surface 54 A is of a slightly greater diameter than an outer diameter of the cylindrical surface 40 A, allowing for axially directed sliding movement of the coil-like member 4 A with respect to the solid cylinder 40 A along the thread portion 48 A.
- a portion of the cylindrical surface 40 A near the end 43 A may have a diameter slightly greater than the diameter of a remainder of the cylindrical surface 40 A, providing for frictional engagement between the surface 40 A and the internal surface 54 A of the coil-like member 4 A, giving some additional attachment and reinforcement of the friction fit between the thread portion 47 A and the member 4 A near the end 43 A.
- the core 8 A When the cylindrical inner core 8 A is inserted in the coil-like member 4 A and the thread portion 47 A frictionally engages the coil-like member 4 A at the slit 60 A, the core 8 A extends completely or substantially through the bore 56 A along the axis AA and along a substantial length of the coil-like member 4 A to near the end surface 59 A, with the end surface 50 A being near or adjacent the end surface 59 A.
- the coil-like member 4 A is not fixed to the solid core 8 A at or near the end surfaces 50 A and 59 A.
- an outer surface 72 A of the portion 48 A of the thread 9 A is not flush with the outer surface 52 A of the coil-like member, but rather inset or positioned radially inwardly of the surface 52 A, such that when the bone screw assembly 10 frictionally engages the surface 52 A, the surface 72 A is spaced from the bone screw assembly 10 .
- the bone screw assembly 10 is sized and shaped to frictionally engage the coil-like member 4 A without crushing or otherwise frictionally engaging or fixing the coil-like member 4 A against the core 8 A within a cooperating bone screw assembly 10 located along the coil-like member 4 A receiving the portion 48 A of the thread 9 A, thus allowing for relative movement between the coil-like member 4 A and the core 8 A.
- the substantial portion 48 A of the thread 9 A of the inner core 8 A is sized and shaped such that the thread portion 48 A is uniformly spaced from the surfaces defining the helical slit 60 A of the coil-like member 4 A.
- the substantially square thread 9 A includes a leading surface 74 A and a trailing surface 76 A.
- the coil-like member has surfaces 78 A and 80 A that form the helical slit 60 A. All along the thread portion 48 A, the thread surface 74 A is spaced from the surface coil surface 78 A and the thread surface 76 A is spaced from the coil surface 80 A.
- This spacing along with the gap 51 A between the outer cylindrical surface 40 A of the thread 9 A and the inner surface 54 A of the coil-like member 4 A, allows for axial and twisting movement of the inner core 8 A with respect to the coil-like member 4 A until an axial movement or motion is sufficient to cause the surface 74 A to abut against the surface 78 A and/or the surface 76 A to abut against the surface 80 A.
- the square thread 48 A could be V-shaped or some other shape.
- the pitch of the slit 60 A is substantially the same as the pitch of the thread 9 A of the core 8 A.
- Pitch is the distance measured parallel to the axis AA, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis.
- the amount or degree of pitch of the thread 9 A and the slit 60 A may be chosen based upon the rigidity or stiffness requirements for the assembly 1 A and shock absorption desired.
- pitch i.e., forming a more acute angle between the slant of the thread 9 A and the slit 60 A with respect to the axis AA and therefore increasing the distance between corresponding points on adjacent thread forms in the same axial plane
- a benefit of increasing pitch is a lessening of impact loading between the thread 9 A and the surfaces of the member 4 A defining the helical slit 60 A.
- the inner core 8 A may be sized and made from such materials as to provide for a relatively more rigid assembly 1 A or a relatively more flexible assembly 1 A with respect to flex or bendability along the assembly 1 A. Such flexibility therefore may be varied by changing the outer diameter of the inner core 8 A and thus likewise changing the diametric size of the coil-like member 4 A. Also, it is noted that longer assemblies 1 A may need to be stiffer and thus larger in diameter than shorter assemblies 1 A. In addition, since the distance between the bone screw assembly heads can vary, the coil-like assembly may need to be more or less stiff.
- an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either the external surface 52 A or the internal surface 54 A of the coil-like member 4 A.
- Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4 A is not hindered and thus any relative movement between the coil-like member 4 A and the cylindrical core 8 is not hindered or prevented.
- the longitudinal connecting member assembly 1 A cooperates with the bone screw assembly 10 and the closure structure 30 in the same manner as previously described herein with respect to the longitudinal connecting member assembly 1 .
- the longitudinal connecting member assembly 1 A is first assembled by inserting the inner core 8 A into the bore 56 A defined by the inner cylindrical surface 54 A of the coil-like member 4 A.
- the end 50 A of the inner core 8 A is placed into the open end 58 A of the coil-like member 4 A with the thread 9 A being received by the slit 60 A at the location 62 A.
- the core 8 A is then rotated, advancing the thread portion 48 A toward the nose 59 A until the thread portion 47 A engages the surfaces 78 A and 80 A that form the slit 60 A, with the surface 44 A of the stop 42 A abutting against the end surface 58 A of the coil-like member.
- the thread portion 47 A having a thickness greater than the portion 48 A, frictionally engages the surfaces 78 A and 80 A at respective surfaces 74 A and 76 A, fixing the core 8 A to the coil-like member 4 A near the stop 42 A.
- the connecting member assembly 1 A is eventually positioned in an open or percutaneous manner within the U-shaped channels 156 of two or more bone screw assemblies 10 .
- the second or upper compression structure 24 is then placed in each assembly 10 with the U-shaped seating surface 236 facing the coil-like member 4 A.
- the closure structure 30 is then inserted into and advanced between the arms 152 . It is noted that it is also possible to insert the closure structure pre-attached to the upper compression structure with the two parts snapped together. As the closure structure 30 is rotated between the arms 152 , the central recess or aperture 258 receives the pin 244 of the compression member 26 , centering the member 26 with respect to the receiver 20 and the connecting member assembly 1 A.
- the compression structure 26 also presses against the compression structure 24 at the surface 218 as the closure structure is torqued 30 , clamping the shank body 16 into a fixed position with respect to the receiver 20 .
- the cylindrical surfaces 216 and 236 of the compression structures 24 and 26 respectively, cradle and protect the coil-like member 4 A from crushing against the inner core 8 A.
- the compression structures 24 and 26 allow for maintaining the gap 51 A between the cylindrical surface 40 A of the core 8 A and the coil-like member 4 A, and also keep the thread portion 48 A spaced from the surfaces 78 A and 80 A that form the slit 60 A and the outer surface 72 A of the thread portion 48 A spaced from the compression members, such that relative movement between the inner core 8 A and the member 4 A is possible, along a length of the core 8 A having the thread portion 48 A thereon.
- a second bone screw assembly 10 ′ is illustrated, attached to the assembly 1 A near the end stop 42 A at the location of the thicker thread portion 47 A.
- the assembly 10 ′ includes a shank 14 ′, a receiver 20 ′, a retaining and articulating structure 22 ′, a first compression structure 24 ′, a second compression structure 26 ′ and a closure structure 30 ′ the same or substantially similar to the respective shank 14 , receiver 20 , retaining and articulating structure 22 , first compression structure 24 , second compression structure 26 and closure structure 30 of the assembly 10 , and all other corresponding structure previously described herein with respect to the assembly 10 .
- FIG. 17 a second bone screw assembly 10 ′ is illustrated, attached to the assembly 1 A near the end stop 42 A at the location of the thicker thread portion 47 A.
- the assembly 10 ′ includes a shank 14 ′, a receiver 20 ′, a retaining and articulating structure 22 ′, a first compression structure 24 ′, a second compression structure 26
- the outer surface 70 A of the thread portion 47 A is flush with the outer surface 52 A of the coil-like member 4 A. Therefore, the compression structures 24 ′ and 26 ′ engage both the surfaces 52 A and 70 A when the closure structure 30 ′ engages the receiver 20 ′ and the compression structure 26 ′, fixing both the coil-like member 4 A and the inner core 8 A within the receiver 20 ′ of the assembly 10 ′.
- disassembly is accomplished by using the driving tool (not shown) with a star-shaped driving formation on the closure structure 30 internal drive 262 to rotate and remove the closure structure 39 from the receiver 20 .
- Disassembly of the assembly 10 or 10 ′ is accomplished in reverse order to the procedure described previously herein for assembly.
- the connecting member assembly 301 includes an outer, cannulated coil-like connecting member 304 and a substantially cylindrical core or insert 308 , having an outer helical thread 309 extending radially from an outer cylindrical surface 340 , the core 308 being threadably receivable in the coil-like member 304 and fixed thereto at only one end near an end stop 342 , the thread 309 sized and shaped to be received in spaced relation to a helical slit 360 of the coil-like member 304 .
- the dynamic connecting member assembly 301 cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, such as the assembly 10 previously described herein.
- the connecting member assembly 301 is substantially similar to the assembly 1 A with the exception that the thread 309 is substantially uniform in size and shape along an entire length thereof, having an outer surface 372 that is disposed radially inwardly of an outer surface 352 of the coil-like member 304 , similar to the surface 72 A of the thread portion 48 A of the assembly 1 A.
- the core 308 Near the end stop 342 , the core 308 includes a cylindrical portion 384 of greater diameter than the remaining cylindrical surface 340 , the portion 384 sized and shaped to provide a frictional press fit between the coil-like member 304 and the core 308 at only the portion 384 , when the core 308 is fully received in the coil-like member 304 .
- the core cylindrical surface 340 and the thread 309 are in slidable engagement with the coil-like member 304 .
- assemblies 1 A, 301 and 10 advantageously allow for replacement of the assembly 1 A or 301 with other connecting member assemblies (dynamic or rigid) having the same or reduced outer diameter.
- the closure structures 30 may be removed, followed by removal of the upper compression structure 26 , followed by removal of the assembly 1 A or 301 and then an assembly 1 A or 301 may be implanted having a slit with greater pitch but the same outer diameter.
- Such an assembly may be more rigid, but would be sized and shaped to properly engage both the lower compression structure 24 and the upper compression structure 26 and be cradled, with the outer coil being held rigidly in place thereby.
- the reference numeral 401 generally designates an alternative polyaxial bone screw assembly according to the invention for use with the dynamic stabilization longitudinal connecting member assemblies 1 , 1 A and 301 previously described herein and the assemblies 1 B, 1 C, 1 D and 1 E described below.
- the bone screw assembly 401 includes a shank 414 that further includes a body 416 integral with an upwardly extending, substantially cylindrical upper end or capture structure 418 ; a receiver or head 420 having a central axis C; a retaining and articulating structure 422 ; a first lower compression structure 424 and a second upper compression structure 426 .
- the shank 414 , the receiver 420 , the retaining and articulating structure 422 and the first compression structure 424 are preferably assembled prior to implantation of the shank body 416 into a vertebra (not shown).
- the shank 414 , the receiver 420 and the retaining and articulating structure 422 are identical or substantially similar to the shank 14 , receiver 20 and retaining and articulating structure 22 previously described herein with respect to the bone screw assembly 10 and such discussion is incorporated by reference herein with respect to the assembly 401 .
- the lower compression structure 424 and the upper compression structure 426 are substantially similar to the respective lower compression structure 24 and the upper compression structure 26 of the assembly 10 , with the exception that they cooperate with one another in a slidable fashion rather than abut one another.
- the upper compression structure 426 is receivable in the lower compression structure 424 , with the compression structures cooperating independently with a nested set-screw type closure structure, generally 430 , in a manner that will be described in greater detail
- FIGS. 22-25 show the nested set-screw type closure structure 430 of the invention for capturing the longitudinal connecting member assemblies according to the invention, such as the assembly 1 A, within the receiver 420 .
- the closure structure 430 includes an outer fastener 432 and an uploaded set screw 434 .
- the fastener 432 includes a base 436 integral or otherwise attached to a break-off head 438 .
- the base 436 cooperates with the receiver 420 to capture the longitudinal connecting member 1 A (or any other longitudinal connecting member according to the invention) within the bone screw receiver 420 .
- the break-off installation head 438 includes an internal drive or aperture 440 sized and shaped for engagement with a tool (not shown) for installing the fastener 432 to the bone screw receiver 420 and thereafter separating the break-off head 438 from a respective base 436 when installation torque exceeds selected levels.
- the base 436 of the fastener portion 432 is substantially cylindrical, having an axis of rotation D and an external surface 450 having a guide and advancement structure 452 disposed thereon.
- the guide and advancement structure 452 is matingly attachable to a guide and advancement structure 453 of the bone screw receiver 420 .
- the cooperating guide and advancement structures 452 and 453 can be of any type, including V-type threads, buttress threads, reverse angle threads, or square threads, and are preferably helically wound flange forms that interlock and are splay resistant, and thus do not exert radially outward forces on the arms of the receiver 420 , thereby avoiding tendencies toward splaying of the receiver arms when the fastener portion 432 is tightly torqued into the receiver 420 .
- the fastener portion 432 includes an internal, centrally located bore 454 .
- the bore 454 is substantially defined by a guide and advancement structure, shown in FIG. 24 as an internal V-shaped thread 456 .
- the thread 456 is sized and shaped to receive the threaded set screw 434 therein as will be discussed in more detail below.
- a traditional V-shaped thread 456 is shown, it is foreseen that other types of helical guide and advancement structures may be used.
- an abutment shoulder 460 Near a top of the base 436 , an abutment shoulder 460 , extends uniformly radially inwardly.
- the abutment shoulder 460 is spaced from the V-shaped thread 456 and sized and shaped to be a stop for the set screw 434 , prohibiting the set screw 434 from advancing upwardly out of the base 436 .
- the set screw may be equipped with an outwardly extending abutment feature near a base thereof, with complimentary alterations made in the fastener base 436 , such that the set screw 434 would be prohibited from advancing upwardly out of the top of the base 436 due to abutment of such outwardly extending feature against a surface of the base 436 .
- An inner cylindrical wall 462 separates the abutment shoulder 460 from the thread 456 .
- the cylindrical wall 462 has a diameter equal to or slightly greater than a root or major diameter of the internal thread 456 .
- the wall 462 partially defines a cylindrical space or passage 464 for axial adjustable placement of the screw 434 with respect to the longitudinal connecting member 1 A.
- the fastener break-off head 438 is integral or otherwise attached to the fastener 432 at a neck or weakened region 466 .
- the neck 466 is dimensioned in thickness to control the torque at which the break-off head 438 separates from the fastener 432 .
- the preselected separation torque of the neck 466 is designed to provide secure engagement between the fastener 432 and the lower compression structure 424 that in turn presses against the retaining and articulating structure 422 that is threadably mated to the shank 414 , clamping the shank 414 in a desired angular orientation with respect to the receiver 420 and the longitudinal connecting member 1 A.
- the fastener 432 thus captures the longitudinal connecting member 1 A within the receiver 420 before the head 438 separates, by abutting against the lower compression member 512 without making contact with the coil-like member 4 A.
- 120 inch pounds of force may be a selected break-off torque to lock the bone screw shank in place without placing any pressure on the coil-like member 4 A.
- the illustrated internal driving feature 440 of the break-off head 438 enables positive, non-slip engagement of the head 438 by an installation and torquing tool. Separation of the break-off head 438 leaves only the more compact base 436 of the fastener 432 installed in the bone screw receiver 420 , so that the installed fastener 432 has a low profile.
- the set screw 434 may then be rotated and moved downwardly into secure engagement with the coil-like member 4 A without forcing the coil-like member into contact with the threaded core 8 A.
- the base 436 of the fastener 432 preferably includes a ramped or incline surface or structure 468 for cooperating frictional engagement with an inclined surface 469 of the lower compression structure 424 as best illustrated in FIGS. 31 and 32 .
- Both surfaces 468 and 469 slope downwardly radially from the guide and advancement structure 452 toward the axes C and D when the fastener and compression structures are assembled in the receiver 420 . Ramped contact between the fastener 432 and the lower compression structure 424 strengthens the structure 424 and prevents capture of the upper compression structure 426 .
- the uploadable set screw 434 has a substantially annular and planar top 476 and a substantially annular and planar bottom 477 .
- the screw 434 is substantially cylindrical in shape and coaxial with the fastener 432 .
- the screw 434 includes an outer cylindrical surface 478 disposed near the bottom 477 and a threaded surface 480 extending from the top 476 to the cylindrical surface 478 .
- the v-shaped thread 480 is sized and shaped to be received by and mated with the inner thread 456 of the fastener base 436 in a nested, coaxial relationship.
- the set screw 434 includes a central aperture 486 formed in the top 476 and defined by side walls 488 that define a driving feature similar to but of smaller dimensions than the driving feature 440 of the fastener 432 .
- the driving feature further includes a seating surface or bottom 489 , aiding in a positive, non-slip engagement by a set screw installment and removal tool (not shown) that may be inserted through the aperture formed by the driving feature 440 of the fastener 432 and then into the aperture 486 and into engagement with the walls 488 defining the set screw driving feature.
- a lower central aperture or bore 490 extends between the central aperture 486 and the bottom 477 of the set screw 434 .
- the bore 490 is sized and shaped to receive and hold an upper portion of the upper compression structure 426 as will be described more fully below.
- the central set screw aperture 486 cooperates with the central internal bore 454 of the fastener 432 for accessing and uploading the set screw 434 into the fastener 432 prior to engagement with the bone screw receiver 420 .
- the set screw 434 is rotated by a tool engaging the drive feature walls 488 to place the set screw bottom 477 into frictional engagement with the outer coil-like member 4 A.
- Such frictional engagement is therefore readily controllable by a surgeon so that the coil-like member 4 A remains in slidable engagement with the thread 9 A of the core 8 A.
- the set screw 434 may be rotated to a further extent to result in pressure being placed on the thread 9 A and/or the core 8 A by the coil-like member 4 A, resulting in a fixed engagement between the set screw, coil and core.
- the longitudinal connecting member 1 A there are circumstances under which it is desirable or necessary to release the longitudinal connecting member 1 A from the bone screw assembly 401 .
- the tool that engages and rotates the set screw 434 at the driving feature 488 may be used to remove both the set screw 434 and attached fastener base 436 as a single unit, with the set screw 434 contacting and contained within the base 436 by the abutment shoulder 460 .
- the lower compression structure 424 includes a substantially cylindrical body 510 integral with a pair of upstanding arms 512 .
- the body 510 and arms 512 form a generally U-shaped, open, through-channel 514 having a partially U-shaped bottom seating surface 516 having a radius substantially conforming to an outer radius of the coil-like member 4 A and thus configured to operably snugly engage the coil member 4 A at the outer surface 52 A thereof.
- the arms 512 disposed on either side of the channel 514 each include a top flanged portion 518 , each portion 518 including the ramped or inclined surface 469 previously described herein, sized and shaped to engage the inclined surface 468 of the fastener 432 .
- the compression structure 424 further includes a bottom surface 520 and a substantially cylindrical outer surface 522 .
- An inner cylindrical wall 524 defining a central through-bore extends along a central axis of the compression structure 424 and extends between the seating surface 516 and a substantially spherical surface 526 .
- the surface 526 extends between the inner cylindrical wall 524 and the bottom surface 520 .
- the surface 526 is substantially similar to the spherical surface 226 of the compression structure 24 previously described herein, the surface 526 being sized and shaped to frictionally engage and mate with the outer spherical surface of the retaining and articulating structure 422 .
- the cylindrical surface 522 has an outer diameter slightly smaller than a diameter between crests of the guide and advancement structure 453 of the receiver 420 allowing for top loading of the compression structure 424 .
- the top surface portions 518 disposed on each of the upstanding arms 512 may be snapped into place within the receiver 420 during installation as the arms 512 have sufficient flexibility so that the flanged arms 512 may be pressed toward one another during top loading, with the flanged top portions 518 clearing the guide and advancement structure 453 .
- the lower compression structure 424 is sized such that the compression structure 424 is ultimately received within the cylindrical surface of the receiver 420 below the guide and advancement structure 453 with the flanged top portions 518 received in recesses formed below the guide and advancement structure 453 and the bottom surface 520 being spaced from the receiver base.
- the receiver 420 fully receives the lower compression structure 424 and blocks the structure 424 from spreading or splaying in any direction. It is noted that assembly of the shank 414 and the retaining structure 422 within the receiver 420 , followed by insertion of the lower compression structure 424 into the receiver 420 are assembly steps typically performed at the factory, advantageously providing a surgeon with a polyaxial bone screw with the lower insert firmly snapped into place and thus ready for insertion into a vertebra.
- the through-channel 514 is sized and shaped such that the upper compression structure 426 is receivable in the channel 514 between opposed upper substantially planar walls 528 that define an upper portion of the channel 514 near the top surfaces 469 , each wall 528 extending upwardly to a respective inclined surface 469 .
- Adequate clearance is provided such that the upper compression structure 426 is in slightly spaced or in sliding relationship with the walls 528 , allowing for independent movement of the upper compression structure 426 with respect to the lower compression structure 424 and thus into greater or lesser frictional engagement with the coil-like member 4 A by pressure being placed directly on the upper compression structure 426 by the set screw 434 .
- the upper or second compression structure 426 includes a body 530 having a pair of downwardly extending legs 532 .
- the body 530 and the legs 532 form a generally U-shaped, open, through-channel having a substantially U-shaped seating surface 536 having a radius substantially conforming to the outer radius of the coil-like member 4 A and thus configured to operably snugly engage the coil member 4 A at the external surface 52 A thereof opposite the seating surface 516 of the lower compression structure 424 .
- the legs 532 each include a bottom surface 538 that is substantially parallel to a planar top surface 540 .
- the compression structure 426 includes a pair of opposed curved outer surfaces 542 substantially perpendicular to the top surface 540 and extending between the top surface 540 and the seating surface 536 .
- the curved surfaces 542 further extend along the legs 532 and terminate at the bottom surfaces 538 .
- a pair of opposed substantially planar outer surfaces 543 are disposed between the curved surfaces 542 and are also disposed substantially perpendicular to the top surface 540 , each planar surface 543 extending between the top surface 540 and a respective bottom surface 538 .
- a pin 544 of substantially circular cross section is disposed centrally on the top surface 540 and extends upwardly therefrom, being sized and shaped to fit within the centrally located lower bore 490 formed in the set screw 434 .
- the pin 544 further includes a substantially cylindrical base 546 and a U-shaped channel 548 formed by a pair of opposed, flanged arms 550 that extend from the base 546 upwardly and substantially parallel to one another.
- Each of the flanged arms includes a partially conical surface portion 551 and a flat bottom surface 552 that is substantially parallel to the top planar surface 540 of the compression structure body 530 . As illustrated in FIGS.
- the pin 544 is receivable in the bore 440 with surfaces forming the bore pressing and deforming the flanged arms 550 toward one another as the upper compression structure 426 is pressed against the set screw 434 that has already been up-loaded into a fastener portion 432 .
- the flanged arms 550 return to the original upright and substantially parallel form with the surfaces 552 being in contact with and seated upon a portion of the bottom surface 489 as illustrated in FIG. 30 .
- the flanged arms 550 thus keep the compression structure 426 attached to the set screw 434 and yet rotatable with respect thereto about an axis of rotation E of the cylindrical base 546 of the structure that is coaxial with the axis D of the set screw 434 and fastener 432 , providing a centered relationship between the closure structure 430 and the compression structure 426 while allowing the compression structure 426 to freely rotate into a position centered over and in gripping engagement with the longitudinal connecting member 1 when assembled thereon. Furthermore, if removal of the fastener and uploaded set screw is desired, the attached compression structure 426 is advantageously removed along therewith.
- the set screw 434 is assembled with the fastener 432 by inserting a set screw tool (not shown) through the bore 454 of the fastener 432 and into the aperture 486 of the set screw 434 , with outer features of the tool engaging the inner walls 488 of the set screw 434 .
- the set screw 434 is then uploaded into the fastener 432 by rotation of the set screw 434 with respect to the fastener 432 to mate the set screw thread 480 with the fastener inner thread 456 until the set screw top surface 476 is spaced from the abutment shoulder 460 , but substantially nested in the fastener 432 , with only the cylindrical surface 478 extending from the fastener base 436 .
- the upper compression structure 424 is then attached to the set screw 434 as previously described with the pin 544 being received by the bore 490 and inserted therethrough until the arms 550 are disposed within the aperture 486 , with the lower surfaces 552 of the flanged arms seated on the bottom 489 of the set screw aperture 486 , capturing the flanged arms 550 within the aperture 486 .
- the nested assembly shown in FIG. 24 and attached to an upper compression structure as shown in FIGS. 29 and 30 is now pre-assembled and ready for use with a bone screw receiver 420 and cooperating longitudinal connecting member assembly 1 A.
- the longitudinal connecting member 1 A is eventually placed in the bone screw receiver 420 that has been previously attached to the bone screw shank 414 , retaining and articulating structure 422 and lower compression structure 424 .
- a driving tool (not shown) is used to rotate the closure structure by engagement with the drive feature 440 of the break-off head 438 , mating the guide and advancement structures 452 and 453 .
- the fastener inclined surface 468 frictionally engages the inclined surface 469 of the lower compression structure 424 , that in turn presses against the retaining and articulating structure 422 that is threadably mated to the capture structure at the shank upper end 418 , biasing the retaining and articulating structure 422 into fixed frictional contact with the receiver 420 , such that the receiver 420 and the shank 414 can be independently secured at a desired angle with respect to the receiver while the longitudinal connecting member 1 A remains movable within the receiver and yet substantially captured between the compression structures 424 and 426 .
- the closure structure is rotated until a selected pressure is reached at which time the head 438 breaks off, preferably about 80 to about 120 inch pounds that adequately fixes the bone screw shank 414 with respect to the receiver 420 .
- the upper compression structure 426 is preferably in contact with the coil-like member 4 A, but placing little if any pressure thereon.
- a set screw driving tool (not shown) is inserted into the drive feature 488 and the set screw 434 is rotated downwardly, into contact with the coil-like member, pressing the coil-like member 4 A to a desired amount, preferably enough to substantially attach and orient the longitudinal connecting member assembly 1 A relative to the vertebrae and yet allow for some relative movement of the outer coil-like member 4 A with respect to the inner core 8 A, providing some relief (e.g., shock absorption) with respect to flexion, extension, compressive and distractive forces placed on the assembly 1 A and two or more connected bone screw assemblies 401 .
- the coil-like member 4 A is also able to twist or turn with respect to the threaded core 8 A, providing relief for torsional stresses.
- the solid core 8 A does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of the outer coil 4 A.
- the pressure placed on the outer surface of the coil-like member 4 A by the set screw 434 is sufficient to clamp the member 4 A between the upper and lower compression structures 424 and 426 , but not enough to crush or press the coil-like member 4 A into fixed engagement with the inner core 8 A.
- the cooperation between the compression members 424 and 426 cradles the assembly 1 A therebetween due to the cylindrical inner surfaces thereof, with pressure from the independent set screw 434 upon the upper compression member 426 of preferably approximately only 50 to about 80 inch pounds, that in turn places such pressure on the coil-like member 4 A.
- the set screw 434 may be rotated further, placing additional pressure on the coil-like member and further limiting or blocking relative movement between the core 8 A and the coil-like member 4 A.
- the polyaxial bone screw assembly 401 advantageously allows for the removal and replacement of the longitudinal connecting member assembly 1 A with another longitudinal connecting member having a different overall or outer diameter, utilizing the same receiver 420 and the same lower compression structure 424 .
- the flexible longitudinal member connecting assembly 1 A is removed and replaced by a more rigid assembly, such as a solid rod 570 having an outer diameter that is smaller than an outer diameter of the coil-like member 4 A.
- the rod 570 is inserted into the receiver 420 followed by a cooperating upper compression structure 572 attached to a replacement break-off head closure structure 430 ′ identical to the closure structure 430 .
- the upper compression structure 572 is substantially similar to the compression structure 426 with the exception that the structure 572 is sized and shaped to include a mating surface 574 for closely cooperating with and contacting an outer cylindrical surface of the replacement longitudinal connecting member 570 . It is not necessary that the lower compression member 424 be in full contact with the rod 570 for adequate capture and fixing of the solid rod 570 with respect to the receiver 420 and the shank 414 as the rod 570 is centered and received fully by the replacement upper compression structure 572 that also includes a pin (not shown) that is centrally received in the set screw 434 ′ of the replacement closure structure 430 ′.
- the reference numeral 1 B generally designates a non-fusion dynamic stabilization flexible longitudinal connecting member assembly according to the present invention.
- the connecting member assembly 1 B includes an outer, cannulated coil-like connecting member 4 B and a solid cylindrical core 6 B receivable in the coil-like member 4 B.
- the cylindrical core 6 B generally includes at least one integral support member 8 B and one or more adjustable support members 9 B slidably mountable on the core 6 B.
- Each support member 8 B and 9 B includes an outer helically wound projection 12 B and 13 B, respectively, adapted for cooperation with the coil-like member 4 B as will be described more fully below.
- the dynamic connecting member assembly 1 B cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, one such assembly, generally 10 B, is shown in FIG. 37 and three polyaxial bone screw assemblies 10 B are shown in FIG. 39 , cooperating with one dynamic connecting member assembly 1 B.
- the assembly 10 B includes a shank 14 B that further includes a body 16 B integral with an upwardly extending, substantially cylindrical upper end or capture structure 18 B; a receiver or head 20 B; and a retaining and articulating structure 22 B.
- the shank 14 B, the receiver 20 B, and the retaining and articulating structure 22 B are preferably assembled prior to implantation of the shank body 16 B into a vertebra (not shown).
- FIGS. 37 and 39 further show a closure structure 30 B of the invention for capturing the longitudinal connecting member assembly 1 B within the receiver 20 B.
- the closure structure 30 B presses against the outer coil-like member 4 B and also the helical projection 12 B or 13 B of a respective support 8 B or 9 B that is disposed within the coil-like member 4 B. Therefore, the flexible coil-like member 4 B is not crushed or otherwise deformed by the closure structure 30 B.
- the support 9 B in addition to supporting the coil-like member 4 B, the support 9 B allows for relative movement between the core 6 B and the portion of the coil-like member 4 B supported by the support 9 B.
- the coil-like member 4 B supported by the support 8 B or 9 B in turn presses against the shank upper portion 18 B that is threadably mated to the retaining and articulating structure 22 B.
- the retaining and articulating structure 22 B is in turn pressed into fixed frictional contact with the receiver 20 B, so as to substantially attach and orient the longitudinal connecting member assembly 1 B relative to the vertebra and yet allow for relative movement of the coil-like member 4 B with respect to the inner cylindrical core 6 B, providing relief (e.g., shock absorption) with respect to tensile and compressive forces placed on the assembly 1 B and two or more connected assemblies 10 B.
- the adjustable supports 9 B are slidably attached to the core 6 B, the coil-like member 4 B may twist or turn with respect to the cylindrical core 6 B, providing relief for torsional stresses.
- the solid inner core 6 B does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of the outer coil-like member 4 B.
- the receiver 20 B, the shank 14 B, and the retaining and articulating structure 22 B cooperate in such a manner that the receiver 20 B and the shank 14 B can be secured at any of a plurality of angles, articulations or rotational alignments relative to one another and within a selected range of angles both from side to side and from front to rear, to enable flexible or articulated engagement of the receiver 20 B with the shank 14 B until both are locked or fixed relative to each other.
- the connecting assembly 1 B may be inserted into a receiver for a hook or into a receiver that is fixed in position with respect to a bone screw shank, such as a bone screw receiver with an integral shank extending therefrom, or within a receiver with limited angular movement with respect to the shank, such as a hinged connection.
- the longitudinal connecting member assembly 1 B is elongate, with the outer coil-like member 4 B being made from metal or metal alloy or other suitable materials, including plastics and composites; and the solid inner cylindrical core 6 B, and the supports 8 B and 9 B also being made from metal, metal alloy, plastic or composite material.
- the coil-like member 4 B may be made from a metallic material, such as titanium, while the core member 6 B and attached support 8 B may be made from polyethylene, such as an ultra high molecular weight polyethylene.
- the core may be made from metal and the coil-like member made from some other material.
- Another alternative is to coat either the coil-like member 4 B or the core 6 B with a material other than metal such that adjacent, sliding surfaces are not both metallic. Such metal to non-metal cooperation desirably results in at most, minor amounts of particulate matter formed between cooperating surfaces of the coil-like member 4 B, the core 6 B and the supports 8 B and 9 B.
- the core 6 B is solid and elongate, having a central axis AB and a smooth cylindrical surface 40 B.
- the support 8 B is integral or otherwise fixedly attached to the core 6 B at the cylindrical surface 40 B.
- the support 8 B that is integral to the core 6 B is at a location 42 B disposed substantially centrally between an end 44 B and an opposite end 45 B of the elongate core 6 B. It is noted however, that the integral or fixed support 8 B may be at any location along the axis AB.
- the integral support 8 B is typically located near the end 44 B or the end 45 B of the core (not shown) when only two bone screw assemblies 10 B are used to hold a connecting assembly 1 B. It may also be desirable to have the fixed support 8 B be near the end 44 B or the end 45 B when a longer assembly 1 B is implanted using three or more bone screw assemblies.
- the fixed or integral support 8 B may be at any location along a length of the core 6 B, providing support for the coil-like member 4 B at a particular bone screw assembly 10 B, the surgeon then readily adjusting the location of any other slidingly mountable support 9 B based upon the location or locations of the other bone screw assemblies 10 B being used to hold the connecting member assembly 1 B in place.
- the helical projections 12 B and 13 B of the respective supports 8 B and 9 B are sized and shaped to extend radially from the cylindrical surface 40 B and wind about the surface 40 B along the axis AB.
- An axially directed length L of each helical form or projection 12 B and 13 B is sized to fit partially or completely within the receiver 20 B of the bone screw assembly 10 B, providing stability to a portion of the coil-like member 4 B that is at least partially received within the receiver 20 B and pressed upon by the closure structure 30 B.
- the projections 12 B and 13 B are sized and shaped to cooperate with the coil-like member 4 B in size and helical pitch, extending radially into a helical slit of the member 4 B as will be described in greater detail below.
- an inner cylindrical wall 48 B defines a through-bore 49 B sized and shaped to receive the core 6 B and slidingly mate with the outer cylindrical surface 40 B thereof.
- the support 9 B has an outer cylindrical surface 52 B from which the helical projection 13 B extends.
- the integral support 8 B also includes an outer cylindrical surface 54 B from which the helical projection 12 B extends.
- the cylindrical surfaces 52 B and 54 are both smooth and identical or substantially similar in outer radius and diameter. The radii of the cylindrical surfaces 52 B and 54 B are slightly smaller than an inner radius of an inner surface 55 B of the coil-like member 4 B, providing for sliding engagement between the surfaces 52 B, 54 B and the inner surface 55 B.
- the cylindrical surface 40 B of the core 6 B has a substantially uniform outer radius that is slightly smaller than the radii of the surfaces 52 B and 54 B, providing a gap of annular cross-section between the surface 40 B and the inner surface 55 B when the core 6 B is inserted in the coil-like member 4 B and fully received in the coil-like member 4 B.
- the core 6 B can move relative to the coil-like member 4 B along the axis AB, including the portions of the core 6 B within bone screw assemblies 10 B in which the coil-like member 4 B is supported by a sliding, adjustable support 9 B.
- the coil-like member 4 B is substantially cylindrical with an outer substantially cylindrical surface 62 B and the inner substantially cylindrical and smooth surface 55 B previously identified herein.
- the surface 55 B defines a bore 66 B with a circular cross section, the bore 66 B extending completely through the coil-like member 4 B.
- the member 4 B has an end surface 68 B and an opposite end surface 69 B.
- the member 4 B further includes a helical slit 72 B that extends therethrough from the outer surface 62 B to the inner surface 55 B and beginning near the end surface 68 B and winding along an entire length of the coil-like member 4 B to near the end surface 69 B.
- the slit 72 B may extend through one or both of the end surfaces 68 B and 69 B.
- a width measured across the slit 72 B is only slightly larger than a width of the helical projections 12 B and 13 B, such that when the coil-like member 4 B engages the supports 8 B and 9 B, the respective projections 12 B and 13 B snugly fit with the member 4 B by extending there into at the slit 72 B, with respective end surfaces 76 B and 77 B of the projections 12 B and 13 B being substantially flush with the outer cylindrical surface 62 B of the member 4 B.
- the member 4 B When the cylindrical core 6 B is inserted in the coil-like member 4 B the member 4 B is rotated about the core 6 B at the fixed support 8 B until the core 6 B extends completely through the bore 66 B along the axis AB and substantially along an entire length of the coil-like member 4 B as shown in FIG. 36 . Initially, the coil-like member 4 B is only attached to the core 6 B by the projection 12 B of the support 8 B extending into the slit 72 B. The member 4 B is not otherwise fixedly attached to the solid core 6 B.
- a support 9 B may then be rotated about the core 6 B with the projection 13 B being fed through the slit 72 B until a desired location of the support 9 B is reached along the axis A corresponding to a location of a bone screw assembly 10 B relative to the bone screw assembly 10 B cooperating with the coil-like member 4 B at the support 8 B. Any additional supports 9 B (for supporting the member 4 B at any additional bone screw assemblies 10 B) are fed into the coil-like member in the same manner until such supports 9 B are at desired locations along the coil-like member 4 B.
- the core 6 B may be sized and/or made from such materials so as to provide for a relatively rigid assembly or a relatively flexible assembly with respect to flex or bendability along the assembly 1 B. Such flexibility therefore may be varied by changing the outer diameter of the core 6 B and thus likewise changing the diametric size of the coil-like member 4 B or by changing the material from which the core 6 B and/or coil-like member 4 B are made. Also, it is noted that longer assemblies 1 B may need to be stiffer and thus larger in diameter than shorter assemblies 1 B. The flexibility of the assembly 1 B may also be varied by varying the pitch of the helical slit 72 B.
- an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either the outer surface 62 B or the inner surface 55 B of the coil-like member 4 B.
- Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4 B is not hindered and thus any relative movement between the coil-like member 4 B and the cylindrical core 6 B is not hindered or prevented.
- Such a sheath-like structure could also capture any wear debris.
- the shank 14 B of the bone screw assembly 10 B is elongate, with the shank body 16 B having a helically wound bone implantable thread 124 B extending from near a neck 126 B located adjacent to the capture structure 18 B to a tip 128 B of the body 16 B and extending radially outward therefrom.
- the body 16 B utilizing the thread 124 B for gripping and advancement is implanted into a vertebra leading with the tip 128 B and driven down into the vertebra with an installation or driving tool (not shown), so as to be implanted in the vertebra to near the neck 126 B.
- the shank 14 B has an elongate axis of rotation generally identified by the reference letter BB.
- an outer surface 129 B of the shank body 16 B that includes the thread 124 B and extends between the neck 126 B and the tip 128 B is coated, perforated, made porous or otherwise treated 130 B.
- the treatment 130 B may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the surface 129 B, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth.
- Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca 3 (PO 4 ) 2 , tetra-calcium phosphate (Ca 4 P 2 O 9 ), amorphous calcium phosphate and hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ).
- Coating with hydroxyapatite for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.
- the neck 126 B of the shank 14 B extends axially outward and upward from the shank body 16 B.
- the neck 126 B is of reduced radius as compared to an adjacent top 132 B of the body 16 B.
- the capture structure 18 B Further extending axially and outwardly from the neck 126 B is the capture structure 18 B that provides a connective or capture apparatus disposed at a distance from the body top 132 B and thus at a distance from the vertebra when the body 16 B is implanted in the vertebra.
- the capture structure 18 B is configured for connecting the shank 14 B to the receiver 20 B and capturing the shank 14 B in the receiver 20 B.
- the capture structure 18 B has an outer substantially cylindrical surface having a helically wound guide and advancement structure thereon which in the illustrated embodiment is a V-shaped thread 136 B extending from near the neck 126 B to adjacent to a seating surface 138 B.
- a simple thread 136 B is shown in the drawings, it is foreseen that other structures including other types of threads, such as buttress, square and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in alternative embodiments of the present invention.
- the shank 14 B further includes a tool engagement structure 140 B disposed near a top end surface 142 B thereof for engagement of a driving tool (not shown).
- the driving tool is configured to fit about the tool engagement structure 140 B so as to form a socket and mating projection for both driving and rotating the shank body 16 B into the vertebra.
- the tool engagement structure 140 B is in the shape of a hexagonally shaped extension head coaxial with both the threaded shank body 16 B and the threaded capture structure 18 B.
- the top end surface 142 B of the shank 14 B is preferably curved or dome-shaped as shown in the drawings, for positive engagement with the longitudinal connecting assembly 1 B, when the bone screw assembly 10 B is assembled, as shown in FIG. 39 and in any alignment of the shank 14 B relative to the receiver 20 B.
- the surface 142 B is smooth. While not required in accordance with the practice of the invention, the surface 142 B may be scored or knurled to further increase frictional engagement between the surface 142 B and the assembly 1 B.
- the shank 14 B shown in the drawings is cannulated, having a small central bore 144 B extending an entire length of the shank 14 B along the axis BB.
- the bore 144 B is of circular cross-section and has a first circular opening 146 B at the shank tip 128 and a second circular opening 148 B at the top surface 142 B.
- the bore 144 B is coaxial with the threaded body 16 B and the capture structure outer surface.
- the bore 144 B provides a passage through the shank 14 B interior for a length of wire (not shown) inserted into the vertebra prior to the insertion of the shank body 16 B, the wire providing a guide for insertion of the shank body 16 B into the vertebra.
- the receiver 20 B includes a base 150 B integral with a pair of opposed upstanding arms 152 B that extend from the base 150 B to a top surface 154 B.
- the arms 152 B form a U-shaped cradle and define a U-shaped channel 156 B between the arms 152 B and include an upper opening 157 B and a lower seat 158 B having substantially the same radius as the outer coil-like member 4 B of the longitudinal connecting member assembly 1 B for operably snugly receiving the member assembly 1 B.
- Each of the arms 152 B has an interior surface that defines an inner cylindrical profile and includes a partial helically wound guide and advancement structure 162 B.
- the guide and advancement structure 162 B is a partial helically wound flangeform configured to mate under rotation with a similar structure on the closure member 30 B, as described more fully below.
- the guide and advancement structure 162 B could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the closure 30 B downward between the arms 152 B and having such a nature as to resist splaying of the arms 152 B when the closure 30 B is advanced into the U-shaped channel 156 B.
- Each of the arms 152 B includes a V-shaped-like undercut tool engagement groove 164 B formed on a substantially planar outer surface 166 B thereof which may be used for holding the receiver 20 B with a holding tool (not shown) having projections that are received within the grooves 164 B during implantation of the shank body 16 B into the vertebra.
- the grooves 164 B may also cooperate with a holding tool during bone screw assembly and during subsequent installation of the connecting member 1 B and closure 30 B. It is foreseen that tool attachment receiving grooves or apertures may be configured in a variety of sizes and shapes, including radiused, and be disposed at other locations on the arms 152 B.
- a chamber or cavity 178 B Communicating with the U-shaped channel 156 B and located within the base 150 B of the receiver 20 B is a chamber or cavity 178 B partially defined by an inner substantially spherical seating surface 182 B, the cavity 178 B opening upwardly into the U-shaped channel 156 B.
- the base 150 B further includes a restrictive neck 183 B adjacent the seating surface 182 B.
- the neck 183 B defines an opening or bore communicating with the cavity 178 B and a lower exterior 186 B of the base 150 B.
- the neck 183 B is conically counterbored or beveled to widen the angular range of the shank 14 B.
- the neck 183 B is sized and shaped to be smaller than a radial dimension of a fixed or fully expanded retaining and articulating structure 22 B so as to form a restriction at the location of the neck 183 B relative to the retaining and articulating structure 22 B, to prevent the structure 22 B from passing from the cavity 178 B and out into the lower exterior 186 B of the receiver 20 B when the retaining and articulating structure 22 B is seated on the seating surface 182 B.
- the retaining and articulating structure could be compressible (such as where such structure has a missing section) and could be up-loaded through the neck 183 B and then allowed to expand and fully seat in the spherical seating surface 182 B.
- a retaining and articulating structure may or may not articulate with respect to the receiver, but rather be in a collet or ring shape that is fixed or stationary with respect to the receiver and articulates with respect to the shank.
- the retaining and articulating structure 22 B has an operational central axis that is the same as the elongate axis BB associated with the shank 14 B.
- the retaining and articulating structure 22 B has a central bore 190 B that passes entirely through the structure 22 B from a top surface 192 B to a bottom surface 194 B thereof.
- An inner cylindrical surface defines a substantial portion of the bore 190 B and has a helically wound guide and advancement structure thereon as shown by a v-shaped helical rib or thread 198 B extending from adjacent the top surface 192 B to near the bottom surface 194 B.
- helical rib 198 B is shown in the drawings, it is foreseen that other helical structures including other types of threads, such as buttress, square and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in an alternative embodiment of the present invention. Also, non-helical spline capture designs could be used.
- the inner thread 198 B is configured to mate under rotation with the capture structure outer surface guide and advancement structure or thread 136 B.
- the illustrated retaining and articulating structure 22 B has a radially outer partially spherically shaped surface 200 B sized and shaped to mate with the partial spherically shaped seating surface 182 B of the receiver and having a radius approximately equal to the radius associated with the surface 182 B.
- the retaining and articulating structure radius is larger than the radius of the neck 183 B of the receiver 20 B.
- the outer partially spherically shaped surface 200 B may be a high friction surface such as a knurled surface, a shot-pinging surface, sand-blasted surface or the like.
- the closure structure 30 B can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the upstanding arms 152 B of the receiver 20 B.
- the closure structure 30 B is rotatable between the spaced arms 152 B. It is foreseen the closure structure could be slidingly side-loading.
- the illustrated structure closure structure 30 B is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form 250 B.
- the illustrated guide and advancement structure 250 B operably joins with the guide and advancement structure 162 B disposed on the interior of the arms 152 B.
- the guide and advancement structure 250 B utilized in accordance with the present invention may take the forms described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference. It is also foreseen that according to the invention the guide and advancement structure 250 B could alternatively be a buttress thread, a square head, a reverse angle thread or other thread like or non-thread-like helically wound advancement structure for operably guiding under rotation and advancing the closure structure 30 B downward between the arms 152 B and having such a nature as to resist splaying of the arms 152 B when the closure structure 30 B is advanced into the U-shaped channel 156 B. Again, the closure could be a side-loading wedge-like structure with a radiused bottom.
- the closure structure 30 B includes a lower substantially planar surface 256 B.
- the surface 256 B frictionally engages both the coil-like member 4 B and a surface 76 B or 77 B of a respective support 8 B or 9 B when rotated between the arms 152 B and fully mated with the receiver 20 B.
- the closure structure 30 B has a top surface 260 B having an internal drive in the form of an aperture 262 B, illustrated as a hex-shaped inner drive.
- a driving tool (not shown) sized and shaped for engagement with the internal drive 262 B is used for both rotatable engagement and, if needed, disengagement, of the closure 30 B from the arms 152 B.
- the tool engagement structure may take a variety of tool-engaging forms and may include but is not limited to a star-shaped internal drive, for example, sold under the trademark TORX, or more than one aperture of various shapes. It is also foreseen that the closure structure 30 B may alternatively include a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 80 to 140 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal.
- the lower surface 256 B engages both the coil-like member 4 B and the projections 12 B or 13 B of a respective support 8 B or 9 B of the connecting assembly 1 B.
- the closure structure 30 B is rotated, using a tool engaged with the inner drive 262 B until a selected pressure is reached at which point the longitudinal connecting assembly 1 B is urged toward, but not completely to the lower seat 158 B of the channel 156 B.
- the coil-like member 4 B and cooperating support 8 B or 9 B press directly against the upper surface 142 B of the shank 14 B.
- the pressure placed on the assembly 1 B by the closure structure 30 B is sufficient to clamp the member 4 B between the structure 30 B and the shank 14 B, but the flexible coil-like member 4 B is not crushed or otherwise deformed because of the support provided by the projection 12 B or 13 B, with such projection directly resisting the clamping pressure as the projection 12 B or 13 B is flush with an outer surface of the coil-like member 4 B.
- the retaining and articulating structure 22 B is typically first inserted or top-loaded, into the receiver U-shaped channel 156 B, and then into the cavity 178 B to dispose the structure 22 B adjacent the inner seating surface 182 B of the receiver 20 B.
- the shank capture structure 18 B is preloaded, inserted or bottom-loaded into the receiver 20 B at the neck bore 183 B.
- the retaining and articulating structure 22 B, now disposed in the receiver 20 B is coaxially aligned with the shank capture structure 18 B so that the helical v-shaped thread 136 B rotatingly mates with the thread 198 B of the retaining and articulating structure 22 B.
- the shank 14 B and/or the retaining and articulating structure 22 B are rotated to fully mate the structures 136 B and 198 B, fixing the capture structure 18 B to the retaining and articulating structure 22 B. At this time the shank 14 B is in slidable and rotatable engagement with respect to the receiver 20 B, while the retaining and articulating structure 22 B and the lower aperture or neck 183 B of the receiver 20 B cooperate to maintain the shank body 16 B in rotational relation with the receiver 20 B.
- the shank body 16 B can be rotated through a substantial angular rotation relative to the receiver 20 B, both from side to side and from front to rear so as to substantially provide a universal or ball joint wherein the angle of rotation is only restricted by engagement of the neck 126 B of the shank body 16 B with the neck 183 B of the receiver 20 B.
- the assembly 10 B is then typically screwed into a vertebra by rotation of the shank 14 B using a driving tool (not shown) with a socket that operably drives and rotates the shank 14 B by engagement thereof with the shank at the tool engagement structure 140 B.
- a driving tool (not shown) with a socket that operably drives and rotates the shank 14 B by engagement thereof with the shank at the tool engagement structure 140 B.
- the hex-shaped driving formation 140 B may be replaced by other types of outer or inner tool engaging formations or recesses.
- the retaining structure and the shank may also be crimped together so as to not come apart with rotation or a one-way unlocking thread form could be used.
- At least two and up to a plurality of bone screw assemblies 10 B are implanted into vertebrae for use with the longitudinal connecting member assembly 1 B.
- Each vertebra may be pre-drilled to minimize stressing the bone.
- each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for the bone screw cannula 144 B of the bone screw shank and provides a guide for the placement and angle of the shank 14 B with respect to the vertebra.
- a further tap hole may be made and the shank body 16 B is then driven into the vertebra by rotation of the driving tool (not shown).
- the longitudinal connecting member assembly 1 B is assembled by inserting the core 6 B into the bore 66 B defined by the inner cylindrical surface 55 B of the coil-like member 4 B.
- the end 44 B of the core 6 B is placed into the open end 69 B of the coil-like member 4 B and the member 4 B is moved in an axial direction AB toward the fixed support 8 B.
- the support 8 B abuts the end 69 B, the coil-like member 4 B is rotated with respect to the core 6 B, with the projection 12 B extending into the slit 72 B and the coil-like member 4 B winding about the projection 12 B.
- Rotation of the coil-like member 4 B with respect to the core 6 B is continued until the fixed support 8 B is at a desired location and the core 6 B is substantially received within the coil-like member 4 B along an entire length thereof.
- the location 42 B of the support 8 B along the core 6 B corresponds to a location of a bone screw assembly 10 B that has been implanted.
- An adjustable support 9 B is then inserted onto the core 6 B at either end 44 B or 45 B, depending upon the relative location of a second bone screw assembly 10 B that has been implanted.
- the adjustable support 9 B slidingly mounts on the core 6 B and is then rotated such that the projection 13 B is guided into the slit 72 B and wound therethrough, with the outer surface 77 B flush with the outer surface 62 B of the coil-like member 4 B.
- the support 9 B is rotated until the support is at a distance from the support 8 B that corresponds to a distance between two implanted bone screw assemblies 10 B. If the assembly 1 B is to be connected to more than two bone screw assemblies 10 B, additional supports 9 B are mounted on the core 6 B and rotated within the coil-like member 4 B in similar fashion.
- a tool (not shown) sized and shaped to engage the support 9 B within the bore 66 B is utilized to rotate the supports 9 B.
- the connecting member assembly 1 B is eventually positioned within the U-shaped channels 156 B of two or more bone screw assemblies 10 B with the supports 8 B and 9 B located within the receivers 20 B.
- the closure structure 30 B is then inserted into and advanced between the arms 152 B.
- the surface 256 B makes contact with the coil-like member 4 B outer surface 62 B and either the outer surface 76 B of the projection 12 B or the outer surface 77 B of the projection 13 B uniformly pressing the assembly 1 B against the shank top surface 142 B, pressing the retaining and articulating structure outer surface 200 B against the seating surface 182 B to set the angle of articulation of the shank body 16 B with respect to the receiver 20 B.
- the supports 8 B and 9 B protect the coil-like member 4 B from being deformed and thus, at the support 9 B, the core 6 B remains in sliding engagement with the support 9 B.
- disassembly is accomplished by using the closure driving tool (not shown) on the closure structure internal drive 262 B to rotate and remove the closure structure 30 B from the receiver 20 B.
- Disassembly of the assembly 10 B is accomplished in reverse order to the procedure described previously herein for assembly. It is foreseen that the assembly could use fixed integral bone anchors, such as screws and hooks.
- a fifth embodiment of a dynamic longitudinal connecting member assembly according to the invention is substantially identical to the assembly 1 illustrated in FIGS. 1-4 , with the exception that the stop 42 is replaced by a connecting member having a solid outer surface illustrated by a rod 42 C.
- the assembly 1 C includes an outer coil-like member 4 C and an inner solid cylindrical core 8 C identical or substantially similar to the respective coil-like member 4 and the inner core 8 of the connecting member assembly 1 previously described herein. Therefore details of the coil-like member 4 C and the inner core 8 C will not be repeated here.
- the inner core 8 C is fixed or integral with a longitudinal connecting member extension or solid rod 42 C.
- the rod 42 C is integral or fixedly attached to the inner core 8 C at a first end 43 C thereof.
- the rod 42 C is substantially coaxial with the inner core 8 C and may be of any desired length, measured from the end 43 C to an opposite end 44 C, for attaching to one or more bone screw assemblies.
- the illustrated rod 42 C is solid, but it is foreseen that it may be hollow.
- the rod 42 C has a circular cross section, but may also be of other shapes including rectangular, square, and other polygonal and curved cross-sections. In the embodiment shown, the rod 42 C includes a flat abutment surface 45 C and an outer cylindrical surface 46 C.
- the cylindrical surface 46 C has an outer diameter that is approximately the same as an outer diameter of the coil-like member 4 C allowing for attachment of the same size polyaxial bone screw assembly 10 or 401 .
- a variety of hook and bone screw assemblies may cooperate with the solid rod surface 46 C, including, but not limited to the polyaxial bone screw assembly 10 B described herein and also the bone screw assembly described in detail in U.S. Pat. No. 6,716,214, incorporated by reference herein.
- the rod 42 C is preferably of a length for secure attachment to at least one bone screw with at least one other cooperating bone screw assembly 10 or 401 being attached to the longitudinal connecting member at the coil-like member 4 C, similar to what is illustrated and described herein with respect to the coil-like member 4 and shown in FIGS. 5-7 and 14-15 .
- the rod 42 C may be of a longer length to cooperate and attach with two or more bone screws, each implanted on separate vertebra.
- an assembly 1 C according to the invention may be used to provide protected movement of the spine along the coil-like member 4 C and spinal fusion along the length of the rod 42 C. It is foreseen that the rods 42 C and 8 C could be curvilinear in use.
- the inner core 8 C includes a cylindrical portion 48 C of greater diameter than the remaining cylindrical surface of the core 8 C, the portion 48 C sized and shaped to provide a frictional press fit between the coil-like member 4 C and the inner core 8 C at only the portion 48 C, when the inner core 8 C is fully received in the coil-like member 4 C.
- the coil-like member 4 C is movable or slidable along the inner core 8 C.
- Other structure may be used to attach the coil-like member 4 C to the inner core 8 C at only one location, such as the snap-on nob 48 and cooperating recess 68 of the assembly 1 previously described herein.
- a sixth embodiment of a dynamic longitudinal connecting member assembly according to the invention is substantially identical to the assembly 1 A illustrated in FIGS. 10-13 , with the exception that the stop 42 A has been replaced by a solid connecting member or rod 42 D.
- the assembly 1 D includes an outer coil-like member 4 D and an inner solid cylindrical core 8 D having a helical thread 9 D identical or substantially similar to the respective coil-like member 4 A, the inner core 8 A and the thread 9 A of the connecting member assembly 1 A previously described herein. Therefore details of the coil-like member 4 D and the inner threaded core 8 D will not be repeated here.
- the connecting members could be curvilinear.
- the inner core 8 D is fixed or integral with a longitudinal connecting member extension illustrated as a solid rod 42 D.
- the rod 42 D is attached to the inner core 8 D at a first end 43 D thereof.
- the rod 42 D is substantially coaxial with the inner core 8 D and may be of any desired length, measured from the end 43 D to an opposite end 44 D, for attaching to one or more bone screw assemblies.
- the illustrated rod 42 D is solid, but it is foreseen that it may be hollow.
- the rod 42 D has a circular cross section, but may also be of other shapes including rectangular, square, and other polygonal and/or curved cross-sections.
- the rod 42 D includes a flat abutment surface 45 D and an outer cylindrical surface 46 D.
- the cylindrical surface 46 D has an outer diameter that is approximately the same as an outer diameter of the coil-like member 4 D allowing for attachment of the same size polyaxial bone screw assembly 10 or 401 .
- a variety of bone screw assemblies may cooperate with the solid rod surface 46 D, including, but not limited to the polyaxial bone screw assembly 10 B described herein and also the bone screw assembly described in detail in U.S. Pat. No. 6,716,214, incorporated by reference herein.
- the rod 42 D is preferably of a length for secure attachment to at least one bone screw with at least one other cooperating bone screw assembly 10 or 401 being attached to the longitudinal connecting member at the coil-like member 4 D, similar to what is illustrated and described herein with respect to the coil-like member 4 A and shown, for example, in FIGS. 14-15 and 22 . If a patient requires more rigid support along a substantial portion of the spine, the rod 42 D may be of a longer length to cooperate and attach with two or more bone screws, each implanted on separate vertebra. Thus, an assembly 1 D according to the invention may be used to provide protected movement of the spine along the coil-like member 4 D and spinal fusion along the length of the rod 42 D.
- a seventh embodiment of a dynamic longitudinal connecting member assembly according to the invention is substantially identical to the assembly 1 B illustrated in FIGS. 35-36 , with the exception that a solid connecting member or rod 42 E is integral or otherwise fixed to an inner cylindrical core 6 E.
- the assembly 1 E includes an outer coil-like member 4 E, the inner core 6 E, and at least one threaded insert 9 E receivable on the core 6 E, identical or substantially similar to the respective coil-like member 4 B, the inner core 6 B and the threaded inserts 9 B of the connecting member assembly 1 B previously described herein. Therefore details of the coil-like member 4 E, core 6 E and insert 9 E will not be repeated here.
- the core 6 B may also include one or more fixed threaded support similar or identical to the support 8 B previously described herein with respect to the core 6 B.
- the inner core 6 E is fixed or integral with a longitudinal connecting member extension illustrated as a solid rod 42 E near an end 43 E thereof.
- the rod 42 E is substantially coaxial with the inner core 6 E and may be of any desired length, measured from the end 43 E to an opposite end 44 E, for attaching to one or more bone screw assemblies.
- the illustrated rod 42 E is identical or substantially similar to the rods 42 C and 42 D described previously herein with the respective assemblies 1 C and 1 D.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Neurology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
A dynamic fixation medical implant includes a longitudinal connecting member assembly having an elongate coil-like outer member and an inner cylindrical core attached to the outer member at only one end thereof. Some assemblies include a second longitudinal connecting member in the form of a rod that is fixed to the inner core and extends outwardly from the assembly. Certain assemblies include a threaded core or threaded inserts that cooperate with a helical slit of the coil-like outer member. Two or more cooperating bone screw assemblies attach to the connecting member assembly. The bone screw assemblies may include upper and lower compression members for affixing to and cradling the coil-like outer member only, allowing relative movement between the outer member and the inner cylindrical core. Press fit or snap-on features attach one end of the coil-like outer member to one end of the inner cylindrical core.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/815,054, filed Jan. 28, 2013, now U.S. Pat. No. ______, which is a continuation of U.S. patent application Ser. No. 12/804,580, filed Jul. 23, 2010, now U.S. Pat. No. 8,394,133, which is a continuation of U.S. patent application Ser. No. 11/522,503, filed Sep. 14, 2006, now U.S. Pat. No. 7,766,915, all of which are incorporated by reference herein. U.S. Ser. No. 11/522,503 claims the benefit of the following U.S. Provisional Applications: No. 60/722,300, filed Sep. 30, 2005; No. 60/725,445, filed Oct. 11, 2005; No. 60/728,912, filed Oct. 21, 2005; No. 60/736,112, filed Nov. 10, 2005; and No. 60/832,644, filed Jul. 21, 2006, all of which are incorporated by reference herein. U.S. Ser. No. 11/522,503 is also a continuation-in-part of U.S. Ser. No. 11/328,481, filed Jan. 9, 2006, now U.S. Pat. No. 7,862,587, which is incorporated by reference herein. U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 11/272,508, filed Nov. 10, 2005 that claims the benefit of U.S. Provisional Application No. 60/630,536, filed Nov. 23, 2004, both of which are incorporated by reference herein. U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 10/996,289, filed Nov. 23, 2004, now U.S. Pat. No. 8,152,810, which is incorporated by reference herein. U.S. Ser. No. 11/328,481 is a continuation-in-part of U.S. Ser. No. 10/789,149, filed Feb. 27, 2004, now U.S. Pat. No. 7,160,300, which is incorporated by reference herein. U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 11/178,854, filed Jul. 11, 2005, now U.S. Pat. No. 7,789,896, that claims benefit of U.S. Provisional Application No. 60/655,239, filed Feb. 22, 2005, both of which are incorporated by reference herein. U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 10/986,377, filed Nov. 10, 2004, now U.S. Pat. No. 7,833,250, which is incorporated by reference herein. U.S. Ser. No. 11/522,503 is a continuation-in-part of U.S. Ser. No. 11/024,543, filed Dec. 20, 2004, now U.S. Pat. No. 7,204,838, which is incorporated by reference herein.
- The present invention is directed to dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members and cooperating bone anchors or fasteners for such assemblies, the connecting members being attached to at least two bone fasteners.
- Historically, it has been common to fuse adjacent vertebrae that are placed in fixed relation by the installation therealong of bone screws or other bone anchors and cooperating longitudinal connecting members or other elongate members. Fusion results in the permanent immobilization of one or more of the intervertebral joints. Because the anchoring of bone screws, hooks and other types of anchors directly to a vertebra can result in significant forces being placed on the vertebra, and such forces may ultimately result in the loosening of the bone screw or other anchor from the vertebra, fusion allows for the growth and development of a bone counterpart to the longitudinal connecting member that can maintain the spine in the desired position even if the implants ultimately fail or are removed. Because fusion has been a desired component of spinal stabilization procedures, longitudinal connecting members have been designed that are of a material, size and shape to largely resist flexure, extension, torsion, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused. Thus, longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially rigid support in all planes.
- Fusion, however, has some undesirable side effects. One apparent side effect is the immobilization of a portion of the spine. Furthermore, although fusion may result in a strengthened portion of the spine, it also has been linked to more rapid degeneration and even hyper-mobility and collapse of spinal motion segments that are adjacent to the portion of the spine being fused, reducing or eliminating the ability of such spinal joints to move in a more normal relation to one another. In certain instances, fusion has also failed to provide pain relief.
- An alternative to fusion and the use of more rigid longitudinal connecting members or other rigid structure has been a “soft” or “dynamic” stabilization approach in which a flexible loop-, S-, C- or U-shaped member or a coil-like and/or a spring-like member is utilized as an elastic longitudinal connecting member fixed between a pair of pedicle screws in an attempt to create, as much as possible, a normal loading pattern between the vertebrae in flexion, extension, distraction, compression, side bending and torsion. Problems may arise with such devices, however, including lack of adequate spinal support and lack of fatigue strength or endurance limit. Fatigue strength has been defined as the repeated loading and unloading of a specific stress on a material structure until it fails. Fatigue strength can be tensile or distraction, compression, shear, torsion, bending, or a combination of these. The complex dynamic conditions associated with spinal movement therefore provide quite a challenge for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member.
- Polyaxial bone screw assemblies according to the invention include longitudinal connecting members that provide dynamic, protected motion of the spine. One aspect of the invention is a dynamic medical implant assembly that includes at least two bone attachment structures and further includes an elastic and flexible longitudinal connecting member having an inner cylindrical core and an outer coil-like member. In a neutral unloaded position, the outer coil-like member is in contact with and attached to the cylindrical core at only one location. The cylindrical core is receivable in the coil-like member along a substantial length thereof. The outer coil-like member is thus in sliding engagement with the inner cylindrical core in both an axial direction and torsionally about a substantial length of the core when the core is fixed with respect to coil-like member at a discrete location, for example at ends thereof.
- According to another aspect of the invention, the inner cylindrical core includes a helical thread for cooperating with the outer coil-like member. The thread may be integral with or otherwise fixed to the inner cylindrical core. The thread of the cylindrical core has substantially the same pitch as the helical slit of the outer coil-like member and is thus threadably receivable in the outer member adjacent to the internal surface and extending along a substantial length of the outer member. The outer coil-like member is in sliding engagement with the inner cylindrical core in a direction along the axis and torsionally when the core is fixed to and/or in contact with the coil-like member at one end thereof. The inner thread is sized and shaped to extend only partially into the helical slit of the outer core. Furthermore, the thread is spaced from the coil surfaces defining the helical slit, such that there is an axial gap between the core thread and the surfaces defining the helical slit. The threaded core and the coil may be coated, using methods such as ion bonding, to provide an ultra hard, ultra thin, ultra smooth and ultra slick coating to provide wear resistant hardness and limited wear debris between the contact surfaces.
- According to another aspect of the invention, one or more threaded inserts are provided that slidingly mate with the inner cylindrical core and threadably cooperate with the outer coil-like member. The inner core further includes a support structure fixedly attached or integral thereto, that may be, for example, a solid rod disposed at an end of the inner core and sized and shaped to extend outwardly away from the coil-like member. Alternatively or additionally, the support structure may be in the form of a helical projection disposed at any desired location along the inner core and sized and shaped to protect the outer coil-like flexible member from being crushed or otherwise deformed by a closure member or compression insert pressing against the flexible member at the bone attachment structure. One or more tubular adjustable support structures are also provided, each with a helical projection for cooperation with the outer coil-like member. The tubular support structures are receivable on the inner core with the thread thereof receivable in the slit of the coil-like member and also extendible therethrough. In one of the illustrated embodiments, the outer coil-like member is clamped to each of the bone attachment structures at the location of the fixed and adjustable tubular supports, with the projection of each respective support extending through the slit in the outer flexible member directly resisting clamping pressure exerted by a closure structure or other compression member or insert that captures or otherwise connects with the longitudinal connecting member within a receiver of the attachment structure.
- In the illustrated embodiments, the outer coil-like member includes an internal substantially cylindrical surface and an external substantially cylindrical surface. The outer coil-like member further defines a helical slit extending through the internal surface and the external surface and also preferably runs along a substantial length of the coil-like member and may include the entire length of the coil-like member. The cylindrical core is thus receivable in the outer member adjacent to the internal surface and extends along a substantial length of the outer member, the outer coil-like member being moveable with respect to the inner cylindrical core in a direction along the axis and torsionally when the core is fixed to and/or in contact with the coil-like member at least one location. While the illustrated embodiment of the invention are illustrated as linear, it is foreseen that they could be curvilinear.
- In certain embodiments of the invention, the inner cylindrical core may be connected to the coil-like member with a snap-on, press fit, or other type of connection. Alternatively or additionally, when the inner core includes a helical thread, an end portion of the helical thread may be thickened to engage the coil-like member surfaces at the helical slit thereof, and be of a radial length to completely extend through the helical slit of the coil-like member. This creates a type of press fit between the core and coil-like member that is reinforced when a bone attachment structure placed at the press fit location presses against both the coil and a portion of the thread of the core. The thread winding along a remainder of the core has an outer diameter that is reduced, such that any other bone attachment structures along the length of the core and coil combination do not press against the thread of the core, but press exclusively against the coil outer cylindrical surface.
- According to an aspect of the invention, the outer coil-like member external surface is clamped to each of the bone attachment structures in such a manner that the inner cylindrical core remains movable with respect to the outer coil-like member internal surface and also with at least one bone attachment structure and therefore the cylindrical core does not participate in or provide any means for torsional elasticity or axial compression and distraction along the coil-like member. Specifically, upper and lower compression members disposed in each of the bone attachment structures have radiused inner surfaces sized and shaped for exclusive frictional engagement with the outer coil-like member external surface. The compression members cooperate to clamp only the outer coil to one or more of the bone attachment structures and not crush or otherwise press against the inner cylindrical core on at least one end thereof. Thus the inner cylindrical core remains in slidable relationship with respect to the outer coil-like member along a length thereof. In certain embodiments the upper and lower compression members directly contact one another, with the upper compression member pressing upon both the lower compression member and the outer coil-like member. In another illustrated embodiment, the compression members cooperate with a closure structure that includes an outer fastener and an inner set screw. The outer fastener is pressable upon the lower compression member while the inner set screw is pressable on the upper compression member, the upper and lower compression members being in slidable contact.
- According to another aspect of the invention, the bone attachment structure includes a shank or other anchor that has a surface altered by a surface roughening treatment and/or a coating to provide a bioactive interface between the bone attachment structure and a vertebra, or at least some component of bone bonding or bone ingrowth into the bone screw shank or other anchor. Such assemblies may include bone screw shanks that are either treated to provide for a roughened or porous surface, such as by plasma spraying, cleaning or coating. Furthermore, such treatment may include coating with a metal to create a scaffold for bone ingrowth or coating with other materials such as calcium phosphate bio-ceramics including hydroxyapatite and tri-calcium phosphate that actively take part in bone bonding. A further aspect of the invention includes providing the longitudinal connecting member with a coating, slit filling and/or covering or sheath sized and shaped to prevent bone and/or soft tissue ingrowth on or in the coil-like member and the helical slit or slits formed thereby. In addition, the inner core and/or internal surface of the coil-like member can be coated, chemically treated or sheathed with hard, low friction materials to improve performance and decrease wear debris.
- According to a further aspect of the invention, the smooth cylindrical or threaded inner core may be fixedly attached or integral with an additional connecting member at one end thereof, that is illustrated herein as a rod having a length for attachment to at least one and up to a plurality of bone screws. The illustrated additional connecting member is solid, but may be hollow, and typically has a diameter greater than a diameter of the inner core but of equal, greater or lesser diameter than an outer diameter of the coil-like member. The additional connecting member is typically cylindrical, having a circular cross section, but may also be of other shapes including rectangular, square, or other polygonal or curved cross sections.
- Therefore, it is an object of the present invention to overcome one or more of the problems with bone attachment assemblies described above. An object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include an inner core insertable into an outer coil-like portion that is movable relative to the inner core when implanted. Another object of the invention is to provide dynamic medical implant stabilization assemblies that include bone screws having an affinity to bone. Also, it is an object of the invention to provide a bone fixation assembly that includes a receiver with an open channel, a shank pivotally, hingedly, or otherwise connected to the receiver, a longitudinal connecting member having a coil-like outer portion and an inner cylindrical core, a first lower compression structure disposed between the shank and the connecting member and a second upper compression structure disposed between the connecting member and a closure, the first and second compression members engaging the coil-like outer portion without engaging the inner cylindrical core. A further or alternative object of the invention is to provide adjustable inserts for such longitudinal connecting members for placement within a bone screw receiver or other bone attachment member, providing for adequate gripping and clamping of the longitudinal assembly as well as directly resisting clamping pressure, thus protecting the longitudinal member from deformation due to clamping forces. Another object of the invention is to provide a more rigid or solid connecting member surface, if desired, such as a solid rod portion integral or otherwise fixed to the inner core for bone screw attachment to such solid surface. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone screws and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
- Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
- The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
-
FIG. 1 is an exploded and partial front elevational view of a dynamic fixation connecting member assembly according to the invention including a coil-like member and a cylindrical core. -
FIG. 2 is an exploded and partial cross-sectional view taken along the line 2-2 ofFIG. 1 . -
FIG. 3 is a cross-sectional view of the coil-like member, taken along the line 3-3 ofFIG. 1 . -
FIG. 4 is a cross-sectional view of the cylindrical core, taken along the line 4-4 ofFIG. 1 . -
FIG. 5 is a partial and exploded perspective view of a dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, a first lower compression member, the dynamic fixation connecting member assembly ofFIG. 1 , a second upper compression member and a closure member. -
FIG. 6 is an enlarged perspective view of an assembled dynamic fixation assembly ofFIG. 5 with portions broken away to show detail thereof. -
FIG. 7 is an enlarged and partial cross-sectional view taken along the line 7-7 ofFIG. 6 of the receiver, the first and second compression members, the dynamic fixation connecting member assembly and the closure member, also shown with the shank in side elevation implanted in a vertebra and disposed at an angle with respect to the receiver. -
FIG. 8 is an enlarged and partial cross-sectional view, similar toFIG. 7 , shown without the closure member and showing the dynamic fixation connecting member assembly and the second upper compression member removed and further showing a different sized connecting member and cooperating upper compression member for insertion in the receiver. -
FIG. 9 is an enlarged and partial cross-sectional view, similar toFIGS. 7 and 8 , showing the different sized connecting member and cooperating upper compression member fully inserted in the receiver with the same closure top as illustrated inFIG. 7 . -
FIG. 10 is an exploded and partial front elevational view of a second embodiment of a dynamic fixation connecting member assembly according to the invention including a coil-like outer member and an inner threaded core. -
FIG. 11 is an exploded and partial cross-sectional view taken along the line 11-11 ofFIG. 10 . -
FIG. 12 is a partial front elevational view of the dynamic fixation connecting member ofFIG. 10 , showing the threaded core fully inserted in the coil-like member. -
FIG. 13 is an enlarged and partial cross-sectional view taken along the line 13-13 ofFIG. 12 . -
FIG. 14 is a partial and exploded perspective view of the dynamic fixation assembly according to the invention illustrated inFIG. 5 replacing the connecting member assembly ofFIGS. 1-4 with the connecting member assembly ofFIGS. 10-13 . -
FIG. 15 is an enlarged perspective view of an assembled dynamic fixation assembly ofFIG. 14 with portions broken away to show detail thereof. -
FIG. 16 is an enlarged and partial cross-sectional view taken along the line 16-16 ofFIG. 15 and along the line 16-16 ofFIG. 12 , but shown with the shank in side elevation implanted in a vertebra and disposed at an angle with respect to the receiver. -
FIG. 17 is an enlarged and partial cross-sectional view, similar toFIG. 16 , showing a second bone screw assembly attached to the dynamic fixation assembly ofFIG. 1 near an end thereof, along the line 17-17 ofFIG. 12 , and with a further portion broken away to show detail thereof. -
FIG. 18 is an exploded front elevational view of a third embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member and an inner threaded core. -
FIG. 19 is an enlarged front elevational view of the dynamic fixation connecting member ofFIG. 18 , showing the threaded core fully inserted in the coil-like member. -
FIG. 20 is an enlarged cross-sectional view taken along the line 20-20 ofFIG. 19 . -
FIG. 21 is an enlarged and partial cross-sectional view of a portion of the assembly shown inFIG. 20 . -
FIG. 22 is an enlarged, partial and exploded perspective view of a second, alternative dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, a first lower compression member, the dynamic fixation connecting member assembly ofFIG. 10 , a second upper compression member and a closure member. -
FIG. 23 is an enlarged front elevational view of the closure member ofFIG. 22 . -
FIG. 24 is a cross-sectional view taken along the line 24-24 ofFIG. 23 . -
FIG. 25 is an enlarged top plan view of the closure member ofFIG. 23 . -
FIG. 26 is an enlarged perspective view of the upper compression member ofFIG. 22 . -
FIG. 27 is an enlarged front elevational view of the upper compression member ofFIG. 26 . -
FIG. 28 is an enlarged side elevational view of the upper compression member ofFIG. 26 . -
FIG. 29 is an enlarged and partial cross-sectional view of the closure member, similar toFIG. 24 and further showing the upper compression member in front elevation prior to attachment to the closure member. -
FIG. 30 is an enlarged and partial cross-sectional view of the closure member and front elevational view of the upper compression member, similar toFIG. 29 , showing the upper compression member attached to the closure member and free to rotate with respect thereto. -
FIG. 31 is an enlarged and partial front elevational view of the assembly ofFIG. 22 with portions broken away to show the detail thereof and further showing the upper compression member and closure member partially inserted in the receiver. -
FIG. 32 is an enlarged and partial front elevational view similar toFIG. 31 showing the upper compression member and closure member fully seated in the receiver prior to removal of the closure member break-off head. -
FIG. 33 is an enlarged and partial front elevational view of the assembly ofFIG. 22 with portions broken away to show the detail thereof, and further showing the closure member break-off head removed. -
FIG. 34 is an enlarged and partial front elevational view, similar toFIG. 32 , with portions broken away to show the detail thereof and further showing the longitudinal connecting member assembly and upper compression structure ofFIG. 32 being replaced by a solid rod and a replacement upper compression structure. -
FIG. 35 is an exploded and partial front elevational view of a fourth embodiment of a dynamic fixation connecting member assembly according to the invention including a coil-like member, a cylindrical core with fixed integral and adjustable supports having helically wound projections. -
FIG. 36 is a partial cross-sectional view taken along the line 36-36 ofFIG. 35 . -
FIG. 37 is a partial and exploded perspective view of a third embodiment of a dynamic fixation bone screw assembly according to the invention including a bone screw shank, a receiver, a retaining structure, the dynamic fixation connecting member assembly ofFIG. 35 , and a closure member. -
FIG. 38 is an enlarged perspective view of an adjustable support ofFIG. 35 . -
FIG. 39 is a perspective view showing three bone screw assemblies according toFIG. 37 with the dynamic fixation connecting member assembly ofFIG. 35 and including two adjustable supports ofFIG. 38 , with a portion exploded and portions broken away to show detail thereof. -
FIG. 40 is an exploded and partial front elevational view of a fifth embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member, an inner cylindrical core and a solid rod integral to the cylindrical core. -
FIG. 41 is an exploded and partial cross-sectional view taken along the line 41-41 ofFIG. 40 . -
FIG. 42 is a cross-sectional view of the inner coil-like member, taken along the line 42-42 ofFIG. 40 . -
FIG. 43 is an exploded and partial front elevational view of a sixth embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member a threaded inner cylindrical core and a solid rod integral with the threaded core. -
FIG. 44 is an exploded and partial front elevational view of a seventh embodiment of a dynamic fixation connecting member assembly according to the invention including an outer coil-like member, an inner cylindrical core, at least one threaded insert and a solid rod integral with the cylindrical core. - As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
- With reference to
FIGS. 1-7 , the reference numeral 1 generally designates a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention. The connecting member assembly 1 includes an outer, cannulated coil-like connectingmember 4 and a solid cylindrical core orinsert 8, receivable in the coil-like member 4 and fixed thereto at only one end of the inert 8 as will be described more fully below. The dynamic connecting member assembly 1 cooperates with at least a pair of fixed or polyaxial bone screw assemblies according to the invention, one of such assemblies, generally 10, being shown in the drawings. With reference toFIGS. 5-7 , theassembly 10 includes ashank 14 that further includes abody 16 integral with an upwardly extending, substantially cylindrical upper end or capturestructure 18; a receiver orhead 20; a retaining and articulatingstructure 22; a firstlower compression structure 24 and a secondupper compression structure 26. Theshank 14, thereceiver 20, the retaining and articulatingstructure 22 and thefirst compression structure 24 are preferably assembled prior to implantation of theshank body 16 into avertebra 28. It is noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of theassemblies 1 and 10 in actual use. -
FIGS. 5-7 further show a closure structure, generally 30, of the invention for capturing the longitudinal connecting member assembly 1 within thereceiver 20. Upon installation, which will be described in greater detail below, theclosure structure 30 presses against thesecond compression structure 26 that in turn presses against the outer coil-like member 4 that in turn presses against thecompression structure 24. Thecompression structure 24 in turn presses against the retaining and articulatingstructure 22 that is threadably mated or in other ways connected to thecapture structure 18. As will be discussed in greater detail below, thecompression structure 26 also presses against thecompression structure 24 and thecompression structures structure 22 into fixed frictional contact with thereceiver 20, so as to substantially attach and orient the longitudinal connecting member assembly 1 relative to thevertebra 28 and yet allow for relative movement of the outer coil-like member 4 with respect to the innercylindrical core 8, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 1 and two or moreconnected assemblies 10. The coil-like member 4 is also able to twist or turn with respect to thecylindrical core 8, providing relief for torsional stresses. However, the solidinner core 8 does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of theouter coil 4. - Furthermore, the
receiver 20, theshank 14, the retaining and articulatingstructure 22 and thecompression structures receiver 20 and theshank 14 can be secured at any of a plurality of angles, articulations or rotational alignments relative to one another and within a selected range of angles both from side to side and from front to rear, to enable flexible or articulated engagement of thereceiver 20 with theshank 14 until both are locked or fixed relative to each other. Alternatively, it is foreseen that the connecting assembly 1 could involve the use of an upper compression member in an open receiver that is integral or fixed in position with respect to a bone screw shank or bone hook, or that the receiver could have limited angular movement with respect to the shank, such as a hinged connection. - The longitudinal connecting member assembly 1, best illustrated in
FIGS. 1-4 is elongate, with the outer coil-like member 4 being made from metal or metal alloys or other suitable materials, including plastic polymers, PEEK and UHMWP, and the innercylindrical core 8 also made from plastics, such as polyurethanes, or metals, preferably from a metal or metal alloy that is coated or covered with a thin, hard slick material applied to it or chemically treated on it. Specifically, thecore 8 includes a solid elongate, smooth-surfacedcylinder 40 having a central axis A. It may at times include a stop or rim 42 integral or fixedly attached to thecylinder 40 at anend 43 thereof. Thestop 42 is substantially coaxial with thecylinder 40. In the embodiment shown, thestop 42 includes aflat abutment surface 44 and an outercylindrical surface 46. A snap-on attachment nob ornub 48 protrudes in a radial direction from alower portion 49 of theelongate cylinder 40 and near theend 43 thereof. Near anopposite end 50 thereof, thecylinder 40 does not include structure for fixed attachment to the coil-like member 4. Thecylinder 40 has a substantially uniform outer radius that is slightly smaller than an inner radius of an internal substantiallycylindrical surface 54 of the coil-like member 4, providing aslight gap 51 about the cylinder 40 (FIG. 7 ), substantially annular in cross-section, located between thecylinder 40 and thesurface 54 when thecylinder 40 is inserted into and fully received by the coil-like member 4. Thegap 51 that spans along a substantial length of thecylinder 40 from thelower portion 49 to theend 50 allows for sliding, axial (back and forth) movement of the coil-like member 4 with respect to thecylinder 40, along the axis A as well as twisting or torsional movement by themember 4. - The coil-
like member 4 is also substantially cylindrical with an external substantiallycylindrical surface 52 and the internal substantially cylindrical andsmooth surface 54 previously identified herein. Thesurface 54 defines abore 56 with a circular cross section, thebore 56 extending completely or substantially through the coil-like member 4. Themember 4 has a substantially flat andannular end surface 58 and a substantially flat and annularopposite end surface 59. Themember 4 further includes ahelical slit 60 that extends therethrough from theexternal surface 52 to theinternal surface 54 and beginning at alocation 62 near theend surface 58 and winding along an entire or substantial length of the coil-like member 4. Theslit 60 illustrated inFIG. 1 runs through the end surface 59 (shown in phantom). Alternatively, it is foreseen that theslit 60 may end at or near theend surface 59. It is also foreseen that theslit 60 may extend through theend surface 58. A circular,U-shaped surface 66 defines arecess 68 at theinternal surface 54 and located between theend surface 58 and thelocation 62 marking the beginning of thehelical slit 60. Therecess 68 is substantially annular and is sized and shaped to receive thenob 48 at any location therealong when theinner core 8 is received in the outer coil-like member 4 with thesurface 58 abutting thesurface 44. The cooperation between thenob 48 and therecess 68 provides a “snap” fit between thecore 8 and the outer coil-like member 4, fixing thecore 8 to themember 4 at the respective ends 43 and 58. - The coil-like member internal
cylindrical surface 54 is of a slightly greater diameter than an outer diameter of thecylinder 40, allowing for axially directed sliding movement of the coil-like member 4 with respect to thesolid cylinder 40. It is foreseen that thelower portion 49 of thecylinder 40 may have a diameter slightly greater than the diameter of a remainder of thesolid cylinder 40, providing for frictional engagement between thelower portion 49 and theinternal surface 54 of the coil-like member 4, giving some additional attachment and reinforcement of the snap fit between themember 4 and thecore 8 near or at thenob 48. When thecylindrical core 8 is inserted in the coil-like member 4 and thenob 48 engages therecess 68, thecore 8 extends completely or substantially through thebore 56 along the axis A and along a substantial length of the coil-like member 4 to near theend surface 59, with theend surface 50 being near or adjacent theend surface 59. The coil-like member 4 is not fixed to thesolid core 8 at or near the end surfaces 50 and 59. Furthermore, as will be described more fully below, thebone screw assembly 10 is sized and shaped to frictionally engage the coil-like member 4 without crushing or otherwise frictionally engaging or fixing the coil-like member 4 against thecore 8 within any cooperatingbone screw assembly 10, thus allowing for relative movement between the coil-like member 4 and thesolid core 8 along a substantial length of the assembly 1. - It is noted that the
core 8 may be sized and made from such materials as to provide for a relatively more rigid assembly 1 or a relatively more flexible assembly 1 with respect to flex or bendability along the assembly 1. Such flexibility therefore may be varied by changing the outer diameter of thecore 8 and thus likewise changing the diametric size of the coil-like member 4. Also, it is noted that longer assemblies 1 may need to be stiffer and thus larger in diameter than shorter assemblies 1. In addition, since the distance between the bone screw assembly receivers or heads can vary, the coil-case assembly may need to be more or less stiff. - It is foreseen that in order to keep scar tissue from growing into the coil-
like member 4 through thehelical slit 60, an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either theexternal surface 52 or theinternal surface 54 of the coil-like member 4. Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4 is not hindered and thus any relative movement between the coil-like member 4 and thecylindrical core 8 is not hindered or prevented. - The
shank 14 of thebone screw assembly 10, best illustrated inFIGS. 5-7 , is elongate, with theshank body 16 having a helically wound, radially outwardly extending boneimplantable thread 122 axially extending from near atip 124 of thebody 16 to near a slanted or slopedsurface 126 that is adjacent to a smoothcylindrical surface 128 located adjacent to thecapture structure 18. The laterally projectingcylindrical surface 128 includes a buttress stop feature for frictional engagement with and placement of the retaining and articulatingstructure 22. During use, thebody 16 utilizing thethread 122 for gripping and advancement is implanted into thevertebra 28 leading with thetip 124 and driven down into thevertebra 28 with an installation or driving tool so as to be implanted in thevertebra 28 to near thesloped surface 126. - To provide a biologically active interface with the bone, an
outer surface 129 of theshank body 16 that includes the thread 121 and extends between thesurface 126 and thetip 124 is coated, perforated, made porous or otherwise treated 130. Thetreatment 130 may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in thesurface 129, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding. - The
sloped surface 126 extends radially outward and axially upward from theshank body 16 to thecylindrical projection 128. Further extending axially from theprojection 128 is thecapture structure 18 that provides a connective or capture apparatus disposed at a distance from the threadedshank body 16 and thus at a distance from thevertebra 28 when thebody 16 is implanted in thevertebra 28. - The
capture structure 18 is configured for connecting theshank 14 to thereceiver 20 and capturing theshank 14 in thereceiver 20. Thecapture structure 18 has an outer substantiallycylindrical surface 134 having a helically wound guide and advancement structure thereon which in the illustrated embodiment is a V-shapedthread 136 extending from adjacent thecylindrical surface 128 to adjacent an annular top orupper surface 138. Theupper surface 138 is disposed substantially perpendicular to an axis of rotation B of theshank 14. A diameter of thecylindrical surface 134 measured between roots of thethread 136 is smaller than a diameter of the projectedcylindrical surface 128. A diameter measured between crests of thethread 136 is illustrated equal to and may be smaller than the diameter of thecylindrical surface 128. Although asimple thread 136 is shown in the drawings, it is foreseen that other structures including other types of threads, such as buttress, square and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in place of thethread 136 in alternative embodiments of the present invention. - A hex-shaped
driving formation 144 extends from theupper surface 138 into thecapture structure 18. The drivingformation 144 is sized and shaped to cooperate with a hex-driver for rotating and driving theshank body 16 into bone. It is foreseen that other driving features or apertures, such as slotted, tri-wing, hexalobular (such as the 6-point star shaped pattern sold under the trademark TORX), spanner, or the like may also be utilized according to the invention. - In the illustrated embodiment, the
shank 14 is cannulated with a smallcentral bore 149 extending an entire length of the shank along axis B. Thebore 149 is coaxial with the threadedbody 16 and the capture structureouter surface 134, providing a passage through the shank interior for a length of wire or pin inserted into thevertebra 28 prior to the insertion of theshank body 16, the wire or pin providing a guide for insertion of theshank body 16 into thevertebra 28. - Also with reference to
FIGS. 5-7 , thereceiver 20 includes a base 150 integral with a pair of opposedupstanding arms 152 that extend from the base 150 to atop surface 154. Thearms 152 form a U-shaped cradle and define aU-shaped channel 156 between thearms 152 and include anupper opening 157 and alower seat 158 having substantially the same radius as the outer coil-like member 4 of the longitudinal connecting member assembly 1 for operably snugly receiving the member assembly 1. - Each of the
arms 152 has an interior surface that defines an inner cylindrical profile and includes a partial helically wound guide andadvancement structure 162. In the illustrated embodiment, the guide andadvancement structure 162 is a partial helically wound flangeform configured to mate under rotation with a similar structure on theclosure member 30, as described more fully below. However, it is foreseen that the guide andadvancement structure 162 could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing theclosure 30 downward between thearms 152 and having such a nature as to resist splaying of thearms 152 when theclosure 30 is advanced into theU-shaped channel 156. - Each of the
arms 152 includes a V-shaped or undercuttool engagement groove 164 formed on a substantially planarouter surface 166 thereof which may be used for holding thereceiver 20 with a holding tool (not shown) having projections that are received within thegrooves 164 during implantation of theshank body 16 into thevertebra 28. Thegrooves 164 may also cooperate with a holding tool during bone screw assembly and during subsequent installation of the connecting member 1 andclosure 30. It is foreseen that tool receiving grooves or apertures may be configured in a variety of shapes and sizes and be disposed at other locations on thearms 152. - Communicating with the
U-shaped channel 156 and located within thebase 150 of thereceiver 20 is a chamber orcavity 178 partially defined by an innercylindrical surface 180 and a substantiallyspherical seating surface 182, thecavity 178 opening upwardly into theU-shaped channel 156. The base 150 further includes arestrictive neck 183 adjacent theseating surface 182. Theneck 183 defines an opening or bore communicating with thecavity 178 and alower exterior 186 of thebase 150. Theneck 183 is conically counterbored or beveled to widen the angular range of theshank 14. Theneck 183 is sized and shaped to be smaller than a radial dimension of a fixed or fully expanded retaining and articulatingstructure 22 so as to form a restriction at the location of theneck 183 relative to the retaining and articulatingstructure 22, to prevent thestructure 22 from passing from thecavity 178 and out into thelower exterior 186 of thereceiver 20 when the retaining and articulatingstructure 22 is seated on theseating surface 182. It is foreseen that the retaining and articulating structure could be compressible (such as where such structure has a missing section) and could be loaded through theneck 183 and then allowed to expand and fully seat in thespherical seating surface 182. Other bottom loading capture structures could be utilized. - The retaining and articulating
structure 22 has an operational central axis that is the same as the elongate axis B associated with theshank 14. The retaining and articulatingstructure 22 has acentral bore 190 that passes entirely through thestructure 22 from atop surface 192 to abottom surface 194 thereof. An innercylindrical surface 196 defines a substantial portion of thebore 190, thesurface 196 having a helically wound guide and advancement structure thereon as shown by a v-shaped helical rib orthread 198 extending from adjacent thetop surface 192 to near thebottom surface 194. Although a simplehelical rib 198 is shown in the drawings, it is foreseen that other helical structures including other types of threads, such as buttress and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in an alternative embodiment of the present invention. The innercylindrical surface 196 with thethread 198 are configured to mate under rotation with the capture structureouter surface 134 and helical guide and advancement structure orthread 136. - The illustrated retaining and articulating
structure 22 has a radially outer partially spherically shapedsurface 204 sized and shaped to mate with the partial spherically shapedseating surface 182 of the receiver and having a radius approximately equal to the radius associated with thesurface 182. The retaining and articulating structure radius is larger than the radius of theneck 183 of thereceiver 20. Although not required, it is foreseen that the outer partially spherically shapedsurface 204 may be a high friction surface such as a knurled surface or the like. - It is also foreseen that the retaining and articulating structure outer surface may be elliptical or ellipsoid in shape rather than spheroid in shape. Such an elliptical surface would be sized and shaped to contact and seat within a substantially spherical seating surface, such as the
seating surface 182. Such an ellipsoid structure may be attachable to the shank upper portion by threads, a pin, compression, or the like as previously described with respect to the substantially spherical retaining and articulatingstructure 22. Furthermore, it is foreseen that an ellipsoid retaining structure may be integral with the bone screw shank and may include threads that allow the ellipsoid to be threadably received into a base of a bone screw receiver. Again, it is foreseen that other types of retaining structure, articulating and not, could be used to keep the upper end of the shank contained within the receiver. - The illustrated retaining and articulating structure
top surface 192 extends from thecentral bore 190 to theouter surface 204. Thetop surface 192 is disposed perpendicular to an axis of rotation of thestructure 22. The bottom surface 294 also is disposed perpendicular to thestructure 22 axis of rotation. - The
lower compression structure 24 includes abody 210 of substantially circular cross-section integral with a pair ofupstanding arms 212. Thebody 210 andarms 212 form a generally U-shaped, open, through-channel 214 having a partially U-shapedbottom seating surface 216 having a radius substantially conforming to an outer radius of the coil-like member 4 and thus configured to operably snugly engage thecoil member 4 at theouter surface 52 thereof. Thearms 212 disposed on either side of thechannel 214 each include atop surface 218 that is parallel to anannular bottom surface 220. Thecompression structure 24 includes a substantially cylindricalouter surface 222 and an innercylindrical wall 224 defining a central through-bore extending along a central axis of thecompression structure 24. Thetop surface 218 and thebottom surface 220 are substantially parallel. Extending between the innercylindrical wall 224 and thebottom surface 220 is a curved orspherical surface 226 sized and shaped to frictionally engage and mate with the outerspherical surface 204 of the retaining and articulatingstructure 22. Thecylindrical surface 222 has a diameter slightly smaller than a diameter between crests of the guide andadvancement structure 162 allowing for top loading of thecompression structure 24. Thecylindrical surface 222 diameter and a height of thecompression structure 24 measured from thetop surface 218 to thebottom surface 220 are sized such that thecompression structure 24 is received within thecylindrical surface 180 of thereceiver 20 below the guide andadvancement structure 162, but thebottom surface 220 is spaced from asurface 227 of thereceiver base 150 regardless of the angular position of theshank 14 with respect to thereceiver 20. - The upper or
second compression structure 26 includes abody 230 of substantially circular cross-section integral with a pair of downwardly extendingarms 232. Thebody 230 and thearms 232 form a generally U-shaped, open, through-channel having a substantiallyU-shaped seating surface 236 having a radius substantially conforming to the outer radius of the coil-like member 4 and thus configured to operably snugly engage thecoil member 4 at theexternal surface 52 thereof opposite the first orlower compression structure 24. Thearms 232 each included abottom surface 238 that is parallel to a planartop surface 240. Thecompression structure 26 includes a substantially cylindricalouter surface 242. Apin 244 of substantially circular cross section is disposed centrally on thetop surface 240 and extends upwardly therefrom, being sized and shaped to fit within a central aperture of theclosure 30 to be discussed more fully below. Thecylindrical surface 242 has a diameter slightly smaller than a diameter between crests of the guide andadvancement structure 162 allowing for top loading of thecompression structure 26. Thesecond compression structure 26 is sized and shaped to abut against both thecompression structure 24 and the coil-like member 4 when pressed upon by theclosure 30, allowing for clamping of the coil-like member 4 between theinsert 26 and theinsert 24 as well as additional compressive force being placed against thecompression structure 24 that in turn presses the retaining and articulatingstructure 22 against thespherical seating surface 182 of thereceiver 20, clamping thebone screw shank 14 into a fixed angular position with respect to thereceiver 20 as illustrated inFIG. 7 . - With reference to
FIGS. 5-7 , theclosure structure 30 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on theupstanding arms 152 of thereceiver 20. Theclosure structure 30 is rotatable between the spacedarms 152, but could be a slide-in closure structure. The illustratedstructure closure structure 30 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of aflange form 250. The illustrated guide andadvancement structure 250 operably joins with the guide andadvancement structure 162 disposed on the interior of thearms 152. In the illustrated embodiment, theflange form 250 has aprotrusion 251 that projects rearwardly from a trailing surface thereof that effectively locks theclosure structure 30 to thestructure 162 within which it is set so as to prevent splaying of thearms 152 upon which mating guide andadvancement structure 162 is mounted. The guide andadvancement structure 250 utilized in accordance with the present invention may take other forms, including those described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference. It is also foreseen that according to the invention the guide andadvancement structure 250 could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structure for operably guiding under rotation and advancing theclosure structure 30 downward between thearms 152 and having such a nature as to resist splaying of thearms 152 when theclosure structure 30 is advanced into theU-shaped channel 156. - The
closure structure 30 includes alower surface 256 having acentral recess 258 formed thereon. Therecess 258 is substantially cylindrical having a central axis operationally coaxial with thereceiver 20 and thesecond compression structure 26. Thelower surface 256 is planar. Thecentral recess 258 is sized and shaped to receive thepin 244 of thecompression structure 26, with thelower surface 256 frictionally engaging the topplanar surface 240 of thecompression structure 26 when fully mated therewith, as illustrated inFIG. 7 . - The
closure structure 30 has atop surface 260 with an internal drive in the form of anaperture 262, illustrated as a star-shaped internal drive, for example, sold under the trademark TORX. A driving tool (not shown) sized and shaped for engagement with theinternal drive 262 is used for both rotatable engagement and, if needed, disengagement of theclosure 30 from thearms 152. Although a star-shapedinternal drive 258 is shown in the drawings, the tool engagement structure may take a variety of tool-engaging forms and may include but is not limited to a hex shape or more than one aperture of various shapes. It is also foreseen that theclosure structure 30 may alternatively include a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 70 to 140 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal. - During installation, the
lower surface 256 engages theupper compression structure 26 that in turn engages the outer coil-like member 4 of the connecting assembly 1. Theclosure structure 30 is rotated, using a tool engaged with theinner drive 262 until a selected pressure is reached at which point the longitudinal connecting assembly 1 is urged toward, but not completely to thelower seat 158 of thechannel 156. In turn, the coil-like member 4 braces against thelower compression structure 24. The pressure placed on the outer surface of the coil-like member 4 by theclosure structure 30 is sufficient to clamp themember 4 between the upper andlower compression structures like member 4 into fixed engagement with thecylinder 40 of thecore 8 because of the engagement of thelower surfaces 238 of thecompression structure 26 with thetop surfaces 218 of thecompression structure 24. Engagement between thesurfaces closure structure 30 to fix thebone screw shank 14 between thecompression structure 24 and thereceiver seating surface 182, without crushing the coil-like member 4 against thecore 8. For example, about 50 to about 80 inch pounds of pressure are required for fixing the connecting assembly 1 in place without crushing the coil-like member 4 against thecore 8. However, about 80 to about 120 inch pounds pressure may be required for fixing thebone screw shank 14 with respect to thereceiver 20. The cooperation between thecompression members surfaces compression members like member 4. - Prior to the polyaxial
bone screw assembly 10 being implanted in thevertebra 28, the retaining and articulatingstructure 22 is typically first inserted or top-loaded, into the receiverU-shaped channel 156, and then into thecavity 178 to dispose thestructure 22 adjacent theinner seating surface 182 of thereceiver 20. Theshank capture structure 18 is preloaded, inserted or bottom-loaded into thereceiver 20 at the neck bore 183. The retaining and articulatingstructure 22, now disposed in thereceiver 20 is coaxially aligned with theshank capture structure 18 so that the helical v-shapedthread 136 rotatingly mates with thethread 198 of the retaining and articulatingstructure 22. Theshank 14 and/or the retaining and articulatingstructure 22 are rotated to fully mate thestructures capture structure 18 to the retaining and articulatingstructure 22. At this time theshank 14 is in slidable and rotatable engagement with respect to thereceiver 20, while the retaining and articulatingstructure 22 and the lower aperture orneck 183 of thereceiver 20 cooperate to maintain theshank body 16 in rotational relation with thereceiver 20. Theshank body 16 can be rotated through a substantial angular rotation relative to thereceiver 20, both from side to side and from front to rear so as to substantially provide a universal or ball joint wherein the angle of rotation is only restricted by engagement of the slopedsurface 126 of theshank body 16 with theneck 183 of thereceiver 20. - In the embodiment shown, the
compression structure 24 is then loaded into thereceiver 20 with theU-shaped seating surface 216 aligned with thereceiver 20U-shaped channel 156. Thecompression structure 24 is initially top or down-loaded into thereceiver 20 until thearms 212 are disposed adjacent to thesurface 180 and the bottomspherical surface 226 is in contact with thesurface 204 of the retaining and articulatingstructure 22. To ready theassembly 10 for implantation into bone, theshank 14, thereceiver 20 and thecompression structure 24 central axes are aligned along axis B, providing access to the hex-shapedformation 144 on theshank capture structure 18 through the central bore formed by the innercylindrical wall 224 of thecompression structure 24. - The
assembly 10 is then typically screwed into a bone, such as thevertebra 28, by rotation of theshank 14 using a driving tool (not shown) with an Allen type driving formation that operably drives and rotates theshank 14 by engagement thereof with the shank at the drivingformation 144. It is foreseen that in other embodiments according to the invention, the hex-shapeddriving formation 144 may be replaced by other types of foot print type tool engaging formations or recesses. Through the driving formation aperture, the retaining structure and the shank may also be crimped together so as to not come apart with rotation. - At least two and up to a plurality of
bone screw assemblies 10 are implanted into vertebrae for use with the longitudinal connecting member assembly 1. Eachvertebra 28 may be pre-drilled to minimize stressing the bone. Furthermore, when a cannulated bone screw shank is utilized, each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for thebone screw cannula 149 of the bone screw shank and provides a guide for the placement and angle of theshank 14 with respect to thevertebra 28. A further tap hole may be made and theshank body 16 is then driven into thevertebra 28, by rotation of the driving tool (not shown). It is foreseen that the screws and the longitudinal connecting member can be inserted in a percutaneous or minimally invasive surgical manner. - With particular reference to
FIGS. 1-4 , the longitudinal connecting member assembly 1 is assembled by inserting thecylinder 40 of thecore 8 into thebore 56 defined by the innercylindrical surface 54 of the coil-like member 4. Theend 50 of thecore 8 is placed into theopen end 58 of the coil-like member 4 and themember 4 is moved toward the stop or rim 42 until the nub 48 snaps into therecess 68, with theend 58 preferably in frictional contact with theflat abutment surface 44. - The connecting member assembly 1 is eventually positioned in an open or percutaneous manner within the
U-shaped channels 156 of two or morebone screw assemblies 10. The assembly 1 can be straight, pre-bent or curvilinear. The second orupper compression structure 24 is then placed in eachassembly 10 with theU-shaped seating surface 236 facing the coil-like member 4. Theclosure structure 30 is then inserted into and advanced between thearms 152. As theclosure structure 30 is rotated between thearms 152, the central recess oraperture 258 receives thepin 244 of thecompression member 26, centering themember 26 with respect to thereceiver 20 and the connecting member assembly 1. Continued rotation of theclosure structure 30 results in engagement between thesurfaces compression member 26 against the coil-like member 4 at theseating surface 236 of thecompression member 26 and the outer substantially cylindrical, butdiscontinuous surface 52 of the coil-like member 4. The coil-like member 4 in turn presses downwardly against theseating surface 216 of thelower compression structure 24, pressing thestructure 24 downwardly into engagement with the retaining and articulating structureouter surface 204 to set the angle of articulation of theshank body 16 with respect to thereceiver 20. As previously described, thecompression structure 26 also presses against thecompression structure 24 at thesurface 218 as the closure structure is torqued 30, clamping theshank body 16 into a fixed position with respect to thereceiver 20. However, thecylindrical surfaces compression structures like member 4 from crushing against thecore 8. Thus, although torquing of theclosure structure 30 against thecompression structure 26 clamps the coil-like member 4 with enough force to keep themember 4 in a fixed position in thereceiver 20, the upper andlower compression structures gap 51 to exist between thecylinder 40 of thecore 8 and the coil-like member 4 such that relative movement between thecylinder 40 and themember 4 is possible, along substantially the entire length of thecylinder 40 with the exception of theend portion 49 that is attached to themember 4 with the snap-onnob 48 and cooperatingrecess 68 formed by theinner surface 66. As will be described more fully below, in some embodiments according to the invention it is possible to insert the closure structure pre-attached to the upper compression structure with the two parts snapped together. - If removal of the assembly 1 from any of the
assemblies 10 is necessary, or if it is desired to release the assembly 1 at a particular location, disassembly is accomplished by using the driving tool (not shown) with a star-shaped driving formation on theclosure structure 30internal drive 262 to rotate and remove the closure structure 39 from thereceiver 20. Disassembly of theassembly 10 is accomplished in reverse order to the procedure described previously herein for assembly. - The polyaxial
bone screw assembly 10 according to the invention advantageously allows for the removal and replacement of the longitudinal connecting member assembly 1 with another longitudinal connecting member having a different overall or outer diameter, utilizing thesame receiver 20 and the samelower compression structure 24. For example, as illustrated inFIGS. 8 and 9 , the flexible longitudinal member connecting assembly 1 having an outer diameter F may be removed and replaced by a more rigid assembly, such as asolid rod 280 having an outer diameter G that is smaller than the diameter F of the outer coil-like member 4. Therod 280 is inserted into thereceiver opening 157 followed by a cooperatingupper compression structure 286, and then theclosure structure 30 is re-inserted and tightened within thereceiver 20. Theupper compression structure 286 is substantially similar to thecompression structure 26 with the exception that thestructure 286 is sized and shaped to include amating surface 288 for closely cooperating with and contacting an outercylindrical surface 290 of the longitudinal connectingmember 280. For example, in the embodiment shown, thesurface 288 has an inner radius of curvature almost identical to an outer radius of curvature of thesurface 290. Thecompression structure 286 further includes anupper pin 292 identical or substantially similar to thepin 244 described previously with respect to thecompression structure 26. Thepin 292 is receivable in thecentral recess 258 of theclosure structure 30, ensuring that when fully assembled in thereceiver 20, thecompression structure 26 is properly centered and in full contact with therod 280, which in turn centers therod 280 with respect to thelower compression member 24 for optimum contact between therod 280 and thelower compression member 24. It is not necessary that thelower compression member 24 be in contact with therod 280 along theentire surface 216 thereof for adequate capture and fixing of thesolid rod 280 with respect to thereceiver 20 and theshank 14. - With reference to
FIGS. 10-13 , the reference numeral 1A generally designates a second embodiment of a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention. The connecting member assembly 1A includes an outer, cannulated coil-like connectingmember 4A and a substantially cylindrical core or insert 8A, having an outerhelical thread 9A, the core being threadably receivable in the coil-like member 4A and fixed thereto at only one end of thecore 8A as will be described more fully below. The dynamic connecting member assembly 1A cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, one of such assemblies, generally 10, shown inFIGS. 14-17 and previously described herein with reference toFIGS. 5-9 . Theclosure structure 30 also shown inFIGS. 14-17 and previously described herein with respect toFIGS. 5-7 , also cooperates with the connecting member 1A and thebone screw assembly 10 in the manner previously described herein with respect to the connecting member 1. Thebone screw assembly 10 and cooperatingclosure 30, and in particular, thecompression structures structure 22 into fixed frictional contact with thereceiver 20, so as to substantially attach and orient the longitudinal connecting member assembly 1A relative to thevertebra 28 and yet allow for some relative movement of the outer coil-like member 4A with respect to the innercylindrical core 8A, providing relief (e.g., shock absorption) with respect to flexion, extension and compressive and distractive forces placed on the assembly 1A and two or moreconnected assemblies 10. The coil-like member 4A is also able to twist or turn with respect to thecylindrical core 8A, providing relief for torsional stresses. However, theinner core 8A does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of theouter coil 4A. - The longitudinal connecting member assembly 1A, best illustrated in
FIGS. 10-13 is elongate, with both the outer coil-like member 4A and theinner core 8A being made from metal, metal alloys, composites or other suitable materials, including plastic polymers, such as ultra-high molecular weight polyethylene (UHMWP) and/or polyetheretherketone (PEEK). Also, in order to result in adequate hardness and low or no wear debris, themember 4A surfaces and thecore 8A surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments. - The
core 8A illustrated in the drawing figures is solid, elongate cylinder, having a central axis AA. It is foreseen that thecore 8A may also be a hollow cylinder. Thecore 8A includes a smoothcylindrical surface 40A. Thecore 8A may include a stop orrim 42A integral or fixedly attached to thecore 8A at anend 43A thereof. Thestop 42A is substantially coaxial with thecylinder 40A. In the embodiment shown, thestop 42A includes aflat abutment surface 44A and an outercylindrical surface 46A. As will be described in more detail below, thestop 42A may be replaced by an elongate connecting member, such as a solid rod, allowing for more rigid support, and fusion, if desired, along a portion of the spine adjacent to the spine portion receiving dynamic stabilization by the connector 1A. - The
helical thread 9A extends radially outwardly from thesurface 40A of theinner core 8A and winds about theinner core 8 substantially along a length thereof. The illustratedthread 9A includes anend portion 47A having a thickness and radially length greater than aremainder portion 48A of thethread 9A. Theend portion 47A is sized and shaped to have an axial length along the axis AA that corresponds to a width of thereceiver 20 that receives and clamps the assembly 1A into engagement with theassembly 10. Thecore 8A is sized and shaped to attach to the coil-like member 4A at thecylinder end 43A, with theend portion 47A of thethread 9A frictionally engaging the coil-like member 4A as will be described more fully below. Near anopposite end 50A thereof, thecore 8A does not include structure for fixed attachment to the coil-like member 4A. Thecylindrical surface 40A has a substantially uniform outer radius that is slightly smaller than an inner radius of an internal substantiallycylindrical surface 54A of the coil-like member 4A, providing aslight gap 51A about thecylindrical surface 40A, annular in cross-section, located between thecylindrical surface 40A and thesurface 54A when theinner core 8A is inserted and threaded into and fully received by the coil-like member 4A. Thegap 51A that spans along the length of thecylinder 40A from near the end stop 42A to theend 50A allows for limited sliding, axial (back and forth) movement of the coil-like member 4A with respect to thecore 8A, along the axis AA as well as some twisting or torsional movement by themember 4A about thecore 8A. - The outer coil-
like member 4A is also substantially cylindrical with an external substantiallycylindrical surface 52A and the internal substantially cylindrical andsmooth surface 54A previously identified herein. Thesurface 54A defines abore 56A with a circular cross section, thebore 56A extending completely or substantially through the coil-like member 4A. Themember 4A has a substantially flat andannular end surface 58A and a curved or bullet-nosedopposite end 59A. It is noted that in some embodiments, theend surface 59A may also be substantially flat and annular. The bullet-nosed end 59A allows for ease in implanting the assembly 1A, particularly in minimally invasive or less invasive procedures, that may be percutaneous in nature. Themember 4A further includes ahelical slit 60A that extends therethrough from theexternal surface 52A to theinternal surface 54A and beginning at alocation 62A at theend surface 58A and winding along an entire or substantial length of the coil-like member 4A. In the illustrated embodiment 1A, theslit 60A runs to near thebullet nose end 59A. Theslit 60A extends through theend surface 58A to allow for threadably mating thethread 9A of theinner core 8A with theslit 60A. The cooperation between thethickened end portion 47A of thethread 9A and the surfaces defining theslit 60A provide a friction or press fit between theinner core 8A and the outer coil-like member 4A, fixing thecore 8A to themember 4A near the respective ends 43A and 58A, but allowing for an axial gap or space between theremainder portion 48A of thethread 9A and the surfaces defining theslit 60A. When theinner core 8A is fully assembled within the coil-like member 4A, anouter surface 70A of thethread portion 47A is flush with theouter coil surface 52A. Thus, abone screw assembly 10 receiving and fixing the dynamic fixation assembly 1A near the stop orrim 42A frictionally engages both theouter surface 52A of the coil-like member 4A and theouter surface 70A of thethread 9A of theinner core 8A. In the illustrated embodiment, the coil-like member internalcylindrical surface 54A is of a slightly greater diameter than an outer diameter of thecylindrical surface 40A, allowing for axially directed sliding movement of the coil-like member 4A with respect to thesolid cylinder 40A along thethread portion 48A. It is foreseen that a portion of thecylindrical surface 40A near theend 43A may have a diameter slightly greater than the diameter of a remainder of thecylindrical surface 40A, providing for frictional engagement between thesurface 40A and theinternal surface 54A of the coil-like member 4A, giving some additional attachment and reinforcement of the friction fit between thethread portion 47A and themember 4A near theend 43A. When the cylindricalinner core 8A is inserted in the coil-like member 4A and thethread portion 47A frictionally engages the coil-like member 4A at theslit 60A, thecore 8A extends completely or substantially through thebore 56A along the axis AA and along a substantial length of the coil-like member 4A to near theend surface 59A, with theend surface 50A being near or adjacent theend surface 59A. The coil-like member 4A is not fixed to thesolid core 8A at or near the end surfaces 50A and 59A. Also anouter surface 72A of theportion 48A of thethread 9A is not flush with theouter surface 52A of the coil-like member, but rather inset or positioned radially inwardly of thesurface 52A, such that when thebone screw assembly 10 frictionally engages thesurface 52A, thesurface 72A is spaced from thebone screw assembly 10. Furthermore, similar to what was previously described with respect to the connector 1, thebone screw assembly 10 is sized and shaped to frictionally engage the coil-like member 4A without crushing or otherwise frictionally engaging or fixing the coil-like member 4A against thecore 8A within a cooperatingbone screw assembly 10 located along the coil-like member 4A receiving theportion 48A of thethread 9A, thus allowing for relative movement between the coil-like member 4A and thecore 8A. - As shown in the drawing figures, and in particular reference to
FIGS. 13 and 16 , thesubstantial portion 48A of thethread 9A of theinner core 8A is sized and shaped such that thethread portion 48A is uniformly spaced from the surfaces defining thehelical slit 60A of the coil-like member 4A. In particular, the substantiallysquare thread 9A includes aleading surface 74A and a trailingsurface 76A. The coil-like member hassurfaces helical slit 60A. All along thethread portion 48A, thethread surface 74A is spaced from thesurface coil surface 78A and thethread surface 76A is spaced from thecoil surface 80A. This spacing, along with thegap 51A between the outercylindrical surface 40A of thethread 9A and theinner surface 54A of the coil-like member 4A, allows for axial and twisting movement of theinner core 8A with respect to the coil-like member 4A until an axial movement or motion is sufficient to cause thesurface 74A to abut against thesurface 78A and/or thesurface 76A to abut against thesurface 80A. It is foreseen that thesquare thread 48A could be V-shaped or some other shape. - For the desired spacial alignment of the
thread 9A with respect to theslit 60A to occur, the pitch of theslit 60A is substantially the same as the pitch of thethread 9A of thecore 8A. Pitch is the distance measured parallel to the axis AA, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis. The amount or degree of pitch of thethread 9A and theslit 60A may be chosen based upon the rigidity or stiffness requirements for the assembly 1A and shock absorption desired. For example, it is noted that increasing the pitch (i.e., forming a more acute angle between the slant of thethread 9A and theslit 60A with respect to the axis AA and therefore increasing the distance between corresponding points on adjacent thread forms in the same axial plane) results in a stiffer assembly with respect to bending and axial displacements. Furthermore, a benefit of increasing pitch is a lessening of impact loading between thethread 9A and the surfaces of themember 4A defining thehelical slit 60A. Stated in another way, when there is relative movement between the coil-like member 4A and thecore 8A such thatsurfaces thread portion 48A abut against or make momentary impact withsurfaces slit 60A, when the pitch is greater, the facingsurfaces surfaces thread portion 48A and the surfaces of themember 4A that define theslit 60A, thus improving shock absorption. - It is noted that the
inner core 8A may be sized and made from such materials as to provide for a relatively more rigid assembly 1A or a relatively more flexible assembly 1A with respect to flex or bendability along the assembly 1A. Such flexibility therefore may be varied by changing the outer diameter of theinner core 8A and thus likewise changing the diametric size of the coil-like member 4A. Also, it is noted that longer assemblies 1A may need to be stiffer and thus larger in diameter than shorter assemblies 1A. In addition, since the distance between the bone screw assembly heads can vary, the coil-like assembly may need to be more or less stiff. - It is foreseen that in order to keep scar tissue from growing into the coil-
like member 4A through thehelical slit 60A, an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either theexternal surface 52A or theinternal surface 54A of the coil-like member 4A. Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4A is not hindered and thus any relative movement between the coil-like member 4A and thecylindrical core 8 is not hindered or prevented. - The longitudinal connecting member assembly 1A cooperates with the
bone screw assembly 10 and theclosure structure 30 in the same manner as previously described herein with respect to the longitudinal connecting member assembly 1. With particular reference toFIGS. 10-13 , the longitudinal connecting member assembly 1A is first assembled by inserting theinner core 8A into thebore 56A defined by the innercylindrical surface 54A of the coil-like member 4A. Theend 50A of theinner core 8A is placed into theopen end 58A of the coil-like member 4A with thethread 9A being received by theslit 60A at thelocation 62A. Thecore 8A is then rotated, advancing thethread portion 48A toward thenose 59A until thethread portion 47A engages thesurfaces slit 60A, with thesurface 44A of thestop 42A abutting against theend surface 58A of the coil-like member. As illustrated inFIG. 13 , thethread portion 47A, having a thickness greater than theportion 48A, frictionally engages thesurfaces respective surfaces core 8A to the coil-like member 4A near thestop 42A. - The connecting member assembly 1A is eventually positioned in an open or percutaneous manner within the
U-shaped channels 156 of two or morebone screw assemblies 10. The second orupper compression structure 24 is then placed in eachassembly 10 with theU-shaped seating surface 236 facing the coil-like member 4A. Theclosure structure 30 is then inserted into and advanced between thearms 152. It is noted that it is also possible to insert the closure structure pre-attached to the upper compression structure with the two parts snapped together. As theclosure structure 30 is rotated between thearms 152, the central recess oraperture 258 receives thepin 244 of thecompression member 26, centering themember 26 with respect to thereceiver 20 and the connecting member assembly 1A. Continued rotation of theclosure structure 30 results in engagement between thesurfaces compression member 26 against the coil-like member 4A at theseating surface 236 of thecompression member 26 and the outer substantially cylindrical, butdiscontinuous surface 52A of the coil-like member 4A. The coil-like member 4A in turn presses downwardly against theseating surface 216 of thelower compression structure 24, pressing thestructure 24 downwardly into engagement with the retaining and articulating structureouter surface 204 to set the angle of articulation of theshank body 16 with respect to thereceiver 20. - With particular reference to
FIG. 16 , thecompression structure 26 also presses against thecompression structure 24 at thesurface 218 as the closure structure is torqued 30, clamping theshank body 16 into a fixed position with respect to thereceiver 20. However, thecylindrical surfaces compression structures like member 4A from crushing against theinner core 8A. Thus, although torquing of theclosure structure 30 against thecompression structure 26 clamps the coil-like member 4A with enough force to keep themember 4A in a fixed position in thereceiver 20, thecompression structures gap 51A between thecylindrical surface 40A of thecore 8A and the coil-like member 4A, and also keep thethread portion 48A spaced from thesurfaces slit 60A and theouter surface 72A of thethread portion 48A spaced from the compression members, such that relative movement between theinner core 8A and themember 4A is possible, along a length of thecore 8A having thethread portion 48A thereon. - With reference to
FIG. 17 , a secondbone screw assembly 10′ is illustrated, attached to the assembly 1A near the end stop 42A at the location of thethicker thread portion 47A. Theassembly 10′ includes ashank 14′, areceiver 20′, a retaining and articulatingstructure 22′, afirst compression structure 24′, asecond compression structure 26′ and aclosure structure 30′ the same or substantially similar to therespective shank 14,receiver 20, retaining and articulatingstructure 22,first compression structure 24,second compression structure 26 andclosure structure 30 of theassembly 10, and all other corresponding structure previously described herein with respect to theassembly 10. As illustrated inFIG. 17 , theouter surface 70A of thethread portion 47A is flush with theouter surface 52A of the coil-like member 4A. Therefore, thecompression structures 24′ and 26′ engage both thesurfaces closure structure 30′ engages thereceiver 20′ and thecompression structure 26′, fixing both the coil-like member 4A and theinner core 8A within thereceiver 20′ of theassembly 10′. - If removal of the assembly 1A from any of the
assemblies closure structure 30internal drive 262 to rotate and remove the closure structure 39 from thereceiver 20. Disassembly of theassembly - With reference to
FIGS. 18-21 an alternative embodiment of a dynamic longitudinal connecting member assembly, generally 301 is illustrated. The connectingmember assembly 301 includes an outer, cannulated coil-like connectingmember 304 and a substantially cylindrical core or insert 308, having an outerhelical thread 309 extending radially from an outercylindrical surface 340, thecore 308 being threadably receivable in the coil-like member 304 and fixed thereto at only one end near anend stop 342, thethread 309 sized and shaped to be received in spaced relation to ahelical slit 360 of the coil-like member 304. The dynamic connectingmember assembly 301 cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, such as theassembly 10 previously described herein. - The connecting
member assembly 301 is substantially similar to the assembly 1A with the exception that thethread 309 is substantially uniform in size and shape along an entire length thereof, having anouter surface 372 that is disposed radially inwardly of anouter surface 352 of the coil-like member 304, similar to thesurface 72A of thethread portion 48A of the assembly 1A. Near theend stop 342, thecore 308 includes acylindrical portion 384 of greater diameter than the remainingcylindrical surface 340, theportion 384 sized and shaped to provide a frictional press fit between the coil-like member 304 and thecore 308 at only theportion 384, when thecore 308 is fully received in the coil-like member 304. Thus, other than at theportion 384, the corecylindrical surface 340 and thethread 309 are in slidable engagement with the coil-like member 304. - It is noted that
assemblies assembly 1A or 301 with other connecting member assemblies (dynamic or rigid) having the same or reduced outer diameter. For example, if it is found that a patient requires a connecting member with additional rigidity, theclosure structures 30 may be removed, followed by removal of theupper compression structure 26, followed by removal of theassembly 1A or 301 and then anassembly 1A or 301 may be implanted having a slit with greater pitch but the same outer diameter. Such an assembly may be more rigid, but would be sized and shaped to properly engage both thelower compression structure 24 and theupper compression structure 26 and be cradled, with the outer coil being held rigidly in place thereby. If, it is desired to replace theassembly 1A or 301 with a rigid rod having an outer diameter that is smaller than the outer diameter of theassembly 1A or 301, such a rod may be placed on thelower compression structure 24. Then, an upper compression structure sized and shaped to cooperate with both the rigid rod and theclosure structure 30 can be utilized to hold the rigid rod properly centered in place within thereceiver 20. The fact that such a rigid rod of reduced diameter would not be closely held by thelower compression structure 24 is not of concern because the upper compression structure in combination with theclosure structure 30 provides adequate centering support. - With reference to
FIGS. 22-34 , thereference numeral 401 generally designates an alternative polyaxial bone screw assembly according to the invention for use with the dynamic stabilization longitudinal connectingmember assemblies 1, 1A and 301 previously described herein and the assemblies 1B, 1C, 1D and 1E described below. Thebone screw assembly 401 includes ashank 414 that further includes abody 416 integral with an upwardly extending, substantially cylindrical upper end or capturestructure 418; a receiver orhead 420 having a central axis C; a retaining and articulatingstructure 422; a firstlower compression structure 424 and a secondupper compression structure 426. Theshank 414, thereceiver 420, the retaining and articulatingstructure 422 and thefirst compression structure 424 are preferably assembled prior to implantation of theshank body 416 into a vertebra (not shown). Theshank 414, thereceiver 420 and the retaining and articulatingstructure 422 are identical or substantially similar to theshank 14,receiver 20 and retaining and articulatingstructure 22 previously described herein with respect to thebone screw assembly 10 and such discussion is incorporated by reference herein with respect to theassembly 401. Thelower compression structure 424 and theupper compression structure 426 are substantially similar to the respectivelower compression structure 24 and theupper compression structure 26 of theassembly 10, with the exception that they cooperate with one another in a slidable fashion rather than abut one another. In particular, theupper compression structure 426 is receivable in thelower compression structure 424, with the compression structures cooperating independently with a nested set-screw type closure structure, generally 430, in a manner that will be described in greater detail below. -
FIGS. 22-25 show the nested set-screwtype closure structure 430 of the invention for capturing the longitudinal connecting member assemblies according to the invention, such as the assembly 1A, within thereceiver 420. Theclosure structure 430 includes anouter fastener 432 and an uploadedset screw 434. Thefastener 432 includes a base 436 integral or otherwise attached to a break-offhead 438. Thebase 436 cooperates with thereceiver 420 to capture the longitudinal connecting member 1A (or any other longitudinal connecting member according to the invention) within thebone screw receiver 420. The break-offinstallation head 438 includes an internal drive oraperture 440 sized and shaped for engagement with a tool (not shown) for installing thefastener 432 to thebone screw receiver 420 and thereafter separating the break-offhead 438 from arespective base 436 when installation torque exceeds selected levels. - The
base 436 of thefastener portion 432 is substantially cylindrical, having an axis of rotation D and anexternal surface 450 having a guide andadvancement structure 452 disposed thereon. The guide andadvancement structure 452 is matingly attachable to a guide andadvancement structure 453 of thebone screw receiver 420. The cooperating guide andadvancement structures receiver 420, thereby avoiding tendencies toward splaying of the receiver arms when thefastener portion 432 is tightly torqued into thereceiver 420. - The
fastener portion 432 includes an internal, centrally located bore 454. At thebase 436 thebore 454 is substantially defined by a guide and advancement structure, shown inFIG. 24 as an internal V-shapedthread 456. Thethread 456 is sized and shaped to receive the threadedset screw 434 therein as will be discussed in more detail below. Although a traditional V-shapedthread 456 is shown, it is foreseen that other types of helical guide and advancement structures may be used. Near a top of thebase 436, anabutment shoulder 460, extends uniformly radially inwardly. Theabutment shoulder 460 is spaced from the V-shapedthread 456 and sized and shaped to be a stop for theset screw 434, prohibiting theset screw 434 from advancing upwardly out of thebase 436. It is foreseen that alternatively, the set screw may be equipped with an outwardly extending abutment feature near a base thereof, with complimentary alterations made in thefastener base 436, such that theset screw 434 would be prohibited from advancing upwardly out of the top of thebase 436 due to abutment of such outwardly extending feature against a surface of thebase 436. - An inner
cylindrical wall 462 separates theabutment shoulder 460 from thethread 456. Thecylindrical wall 462 has a diameter equal to or slightly greater than a root or major diameter of theinternal thread 456. Thewall 462 partially defines a cylindrical space orpassage 464 for axial adjustable placement of thescrew 434 with respect to the longitudinal connecting member 1A. - The fastener break-off
head 438 is integral or otherwise attached to thefastener 432 at a neck or weakenedregion 466. Theneck 466 is dimensioned in thickness to control the torque at which the break-offhead 438 separates from thefastener 432. The preselected separation torque of theneck 466 is designed to provide secure engagement between thefastener 432 and thelower compression structure 424 that in turn presses against the retaining and articulatingstructure 422 that is threadably mated to theshank 414, clamping theshank 414 in a desired angular orientation with respect to thereceiver 420 and the longitudinal connecting member 1A. Thefastener 432 thus captures the longitudinal connecting member 1A within thereceiver 420 before thehead 438 separates, by abutting against thelower compression member 512 without making contact with the coil-like member 4A. For example, 120 inch pounds of force may be a selected break-off torque to lock the bone screw shank in place without placing any pressure on the coil-like member 4A. The illustratedinternal driving feature 440 of the break-offhead 438 enables positive, non-slip engagement of thehead 438 by an installation and torquing tool. Separation of the break-offhead 438 leaves only the morecompact base 436 of thefastener 432 installed in thebone screw receiver 420, so that the installedfastener 432 has a low profile. As will be described in greater detail below, theset screw 434 may then be rotated and moved downwardly into secure engagement with the coil-like member 4A without forcing the coil-like member into contact with the threadedcore 8A. - The
base 436 of thefastener 432 preferably includes a ramped or incline surface orstructure 468 for cooperating frictional engagement with aninclined surface 469 of thelower compression structure 424 as best illustrated inFIGS. 31 and 32 . Bothsurfaces advancement structure 452 toward the axes C and D when the fastener and compression structures are assembled in thereceiver 420. Ramped contact between thefastener 432 and thelower compression structure 424 strengthens thestructure 424 and prevents capture of theupper compression structure 426. - The
uploadable set screw 434 has a substantially annular and planar top 476 and a substantially annular andplanar bottom 477. Thescrew 434 is substantially cylindrical in shape and coaxial with thefastener 432. Thescrew 434 includes an outercylindrical surface 478 disposed near the bottom 477 and a threadedsurface 480 extending from the top 476 to thecylindrical surface 478. The v-shapedthread 480 is sized and shaped to be received by and mated with theinner thread 456 of thefastener base 436 in a nested, coaxial relationship. - As illustrated, for example, in
FIGS. 24 and 25 , Theset screw 434 includes acentral aperture 486 formed in the top 476 and defined byside walls 488 that define a driving feature similar to but of smaller dimensions than the drivingfeature 440 of thefastener 432. The driving feature further includes a seating surface orbottom 489, aiding in a positive, non-slip engagement by a set screw installment and removal tool (not shown) that may be inserted through the aperture formed by the drivingfeature 440 of thefastener 432 and then into theaperture 486 and into engagement with thewalls 488 defining the set screw driving feature. A lower central aperture or bore 490 extends between thecentral aperture 486 and thebottom 477 of theset screw 434. Thebore 490 is sized and shaped to receive and hold an upper portion of theupper compression structure 426 as will be described more fully below. - With reference to
FIG. 24 , the centralset screw aperture 486 cooperates with the centralinternal bore 454 of thefastener 432 for accessing and uploading theset screw 434 into thefastener 432 prior to engagement with thebone screw receiver 420. After theclosure structure 430 is inserted and rotated in thebone screw receiver 420, and the break-offhead 438 is broken off, theset screw 434 is rotated by a tool engaging thedrive feature walls 488 to place theset screw bottom 477 into frictional engagement with the outer coil-like member 4A. Such frictional engagement is therefore readily controllable by a surgeon so that the coil-like member 4A remains in slidable engagement with thethread 9A of thecore 8A. Furthermore, if desired, theset screw 434 may be rotated to a further extent to result in pressure being placed on thethread 9A and/or thecore 8A by the coil-like member 4A, resulting in a fixed engagement between the set screw, coil and core. - There are circumstances under which it is desirable or necessary to release the longitudinal connecting member 1A from the
bone screw assembly 401. For example, it might be necessary for a surgeon to re-adjust components of a spinal fixation system, including the longitudinal connecting member 1A, during an implant procedure, following an injury to a person with such a system implanted. In such circumstances, the tool that engages and rotates theset screw 434 at thedriving feature 488 may be used to remove both theset screw 434 and attachedfastener base 436 as a single unit, with theset screw 434 contacting and contained within thebase 436 by theabutment shoulder 460. Thus, rotation of the set screw tool engaged with theset screw 434 backs both theset screw 434 and thefastener base 436 out of the guide andadvancement structure 453 in thereceiver 420, thereby releasing the longitudinal connecting member 1A for removal from thebone screw receiver 420 or repositioning of the longitudinal connecting member 1A. It is foreseen that other removal structures such as side slots or other screw receiving and engagement structures may be used to engage theset screw 434 that is nested in thefastener base 436. - With reference to
FIGS. 22, 31 and 32 , thelower compression structure 424 includes a substantiallycylindrical body 510 integral with a pair ofupstanding arms 512. Thebody 510 andarms 512 form a generally U-shaped, open, through-channel 514 having a partially U-shapedbottom seating surface 516 having a radius substantially conforming to an outer radius of the coil-like member 4A and thus configured to operably snugly engage thecoil member 4A at theouter surface 52A thereof. Thearms 512 disposed on either side of thechannel 514 each include a topflanged portion 518, eachportion 518 including the ramped orinclined surface 469 previously described herein, sized and shaped to engage theinclined surface 468 of thefastener 432. Thecompression structure 424 further includes abottom surface 520 and a substantially cylindricalouter surface 522. An innercylindrical wall 524 defining a central through-bore extends along a central axis of thecompression structure 424 and extends between theseating surface 516 and a substantiallyspherical surface 526. Thesurface 526 extends between the innercylindrical wall 524 and thebottom surface 520. Thesurface 526 is substantially similar to thespherical surface 226 of thecompression structure 24 previously described herein, thesurface 526 being sized and shaped to frictionally engage and mate with the outer spherical surface of the retaining and articulatingstructure 422. Thecylindrical surface 522 has an outer diameter slightly smaller than a diameter between crests of the guide andadvancement structure 453 of thereceiver 420 allowing for top loading of thecompression structure 424. Thetop surface portions 518 disposed on each of theupstanding arms 512 may be snapped into place within thereceiver 420 during installation as thearms 512 have sufficient flexibility so that theflanged arms 512 may be pressed toward one another during top loading, with the flangedtop portions 518 clearing the guide andadvancement structure 453. Thelower compression structure 424 is sized such that thecompression structure 424 is ultimately received within the cylindrical surface of thereceiver 420 below the guide andadvancement structure 453 with the flangedtop portions 518 received in recesses formed below the guide andadvancement structure 453 and thebottom surface 520 being spaced from the receiver base. Thereceiver 420 fully receives thelower compression structure 424 and blocks thestructure 424 from spreading or splaying in any direction. It is noted that assembly of theshank 414 and the retainingstructure 422 within thereceiver 420, followed by insertion of thelower compression structure 424 into thereceiver 420 are assembly steps typically performed at the factory, advantageously providing a surgeon with a polyaxial bone screw with the lower insert firmly snapped into place and thus ready for insertion into a vertebra. The through-channel 514 is sized and shaped such that theupper compression structure 426 is receivable in thechannel 514 between opposed upper substantiallyplanar walls 528 that define an upper portion of thechannel 514 near thetop surfaces 469, eachwall 528 extending upwardly to a respectiveinclined surface 469. Adequate clearance is provided such that theupper compression structure 426 is in slightly spaced or in sliding relationship with thewalls 528, allowing for independent movement of theupper compression structure 426 with respect to thelower compression structure 424 and thus into greater or lesser frictional engagement with the coil-like member 4A by pressure being placed directly on theupper compression structure 426 by theset screw 434. - With reference to
FIGS. 26-30 , the upper orsecond compression structure 426 includes abody 530 having a pair of downwardly extendinglegs 532. Thebody 530 and thelegs 532 form a generally U-shaped, open, through-channel having a substantiallyU-shaped seating surface 536 having a radius substantially conforming to the outer radius of the coil-like member 4A and thus configured to operably snugly engage thecoil member 4A at theexternal surface 52A thereof opposite theseating surface 516 of thelower compression structure 424. Thelegs 532 each include abottom surface 538 that is substantially parallel to a planartop surface 540. Thecompression structure 426 includes a pair of opposed curvedouter surfaces 542 substantially perpendicular to thetop surface 540 and extending between thetop surface 540 and theseating surface 536. Thecurved surfaces 542 further extend along thelegs 532 and terminate at the bottom surfaces 538. A pair of opposed substantially planarouter surfaces 543 are disposed between thecurved surfaces 542 and are also disposed substantially perpendicular to thetop surface 540, eachplanar surface 543 extending between thetop surface 540 and arespective bottom surface 538. - A
pin 544 of substantially circular cross section is disposed centrally on thetop surface 540 and extends upwardly therefrom, being sized and shaped to fit within the centrally locatedlower bore 490 formed in theset screw 434. Thepin 544 further includes a substantiallycylindrical base 546 and aU-shaped channel 548 formed by a pair of opposed,flanged arms 550 that extend from the base 546 upwardly and substantially parallel to one another. Each of the flanged arms includes a partiallyconical surface portion 551 and aflat bottom surface 552 that is substantially parallel to the topplanar surface 540 of thecompression structure body 530. As illustrated inFIGS. 29 and 30 , thepin 544 is receivable in thebore 440 with surfaces forming the bore pressing and deforming theflanged arms 550 toward one another as theupper compression structure 426 is pressed against theset screw 434 that has already been up-loaded into afastener portion 432. Once theconical surface portions 551 clear thebore 440 and enter theset screw aperture 486, theflanged arms 550 return to the original upright and substantially parallel form with thesurfaces 552 being in contact with and seated upon a portion of thebottom surface 489 as illustrated inFIG. 30 . Theflanged arms 550 thus keep thecompression structure 426 attached to theset screw 434 and yet rotatable with respect thereto about an axis of rotation E of thecylindrical base 546 of the structure that is coaxial with the axis D of theset screw 434 andfastener 432, providing a centered relationship between theclosure structure 430 and thecompression structure 426 while allowing thecompression structure 426 to freely rotate into a position centered over and in gripping engagement with the longitudinal connecting member 1 when assembled thereon. Furthermore, if removal of the fastener and uploaded set screw is desired, the attachedcompression structure 426 is advantageously removed along therewith. - With reference to
FIGS. 24 and 29-33 , in use, theset screw 434 is assembled with thefastener 432 by inserting a set screw tool (not shown) through thebore 454 of thefastener 432 and into theaperture 486 of theset screw 434, with outer features of the tool engaging theinner walls 488 of theset screw 434. Theset screw 434 is then uploaded into thefastener 432 by rotation of theset screw 434 with respect to thefastener 432 to mate theset screw thread 480 with the fastenerinner thread 456 until the setscrew top surface 476 is spaced from theabutment shoulder 460, but substantially nested in thefastener 432, with only thecylindrical surface 478 extending from thefastener base 436. Theupper compression structure 424 is then attached to theset screw 434 as previously described with thepin 544 being received by thebore 490 and inserted therethrough until thearms 550 are disposed within theaperture 486, with thelower surfaces 552 of the flanged arms seated on thebottom 489 of theset screw aperture 486, capturing theflanged arms 550 within theaperture 486. The nested assembly shown inFIG. 24 and attached to an upper compression structure as shown inFIGS. 29 and 30 is now pre-assembled and ready for use with abone screw receiver 420 and cooperating longitudinal connecting member assembly 1A. - With reference to
FIGS. 31 and 32 , the longitudinal connecting member 1A is eventually placed in thebone screw receiver 420 that has been previously attached to thebone screw shank 414, retaining and articulatingstructure 422 andlower compression structure 424. A driving tool (not shown) is used to rotate the closure structure by engagement with thedrive feature 440 of the break-offhead 438, mating the guide andadvancement structures surface 468 frictionally engages theinclined surface 469 of thelower compression structure 424, that in turn presses against the retaining and articulatingstructure 422 that is threadably mated to the capture structure at the shankupper end 418, biasing the retaining and articulatingstructure 422 into fixed frictional contact with thereceiver 420, such that thereceiver 420 and theshank 414 can be independently secured at a desired angle with respect to the receiver while the longitudinal connecting member 1A remains movable within the receiver and yet substantially captured between thecompression structures FIG. 33 , the closure structure is rotated until a selected pressure is reached at which time thehead 438 breaks off, preferably about 80 to about 120 inch pounds that adequately fixes thebone screw shank 414 with respect to thereceiver 420. When the break-off head is removed, theupper compression structure 426 is preferably in contact with the coil-like member 4A, but placing little if any pressure thereon. Then, a set screw driving tool (not shown) is inserted into thedrive feature 488 and theset screw 434 is rotated downwardly, into contact with the coil-like member, pressing the coil-like member 4A to a desired amount, preferably enough to substantially attach and orient the longitudinal connecting member assembly 1A relative to the vertebrae and yet allow for some relative movement of the outer coil-like member 4A with respect to theinner core 8A, providing some relief (e.g., shock absorption) with respect to flexion, extension, compressive and distractive forces placed on the assembly 1A and two or more connectedbone screw assemblies 401. The coil-like member 4A is also able to twist or turn with respect to the threadedcore 8A, providing relief for torsional stresses. However, thesolid core 8A does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of theouter coil 4A. In most instances, the pressure placed on the outer surface of the coil-like member 4A by theset screw 434 is sufficient to clamp themember 4A between the upper andlower compression structures like member 4A into fixed engagement with theinner core 8A. The cooperation between thecompression members independent set screw 434 upon theupper compression member 426 of preferably approximately only 50 to about 80 inch pounds, that in turn places such pressure on the coil-like member 4A. However, if desired, theset screw 434 may be rotated further, placing additional pressure on the coil-like member and further limiting or blocking relative movement between thecore 8A and the coil-like member 4A. - The polyaxial
bone screw assembly 401 according to the invention advantageously allows for the removal and replacement of the longitudinal connecting member assembly 1A with another longitudinal connecting member having a different overall or outer diameter, utilizing thesame receiver 420 and the samelower compression structure 424. For example, as illustrated inFIG. 34 , the flexible longitudinal member connecting assembly 1A is removed and replaced by a more rigid assembly, such as asolid rod 570 having an outer diameter that is smaller than an outer diameter of the coil-like member 4A. Therod 570 is inserted into thereceiver 420 followed by a cooperatingupper compression structure 572 attached to a replacement break-offhead closure structure 430′ identical to theclosure structure 430. Theupper compression structure 572 is substantially similar to thecompression structure 426 with the exception that thestructure 572 is sized and shaped to include amating surface 574 for closely cooperating with and contacting an outer cylindrical surface of the replacement longitudinal connectingmember 570. It is not necessary that thelower compression member 424 be in full contact with therod 570 for adequate capture and fixing of thesolid rod 570 with respect to thereceiver 420 and theshank 414 as therod 570 is centered and received fully by the replacementupper compression structure 572 that also includes a pin (not shown) that is centrally received in theset screw 434′ of thereplacement closure structure 430′. - With reference to
FIGS. 35-39 , the reference numeral 1B generally designates a non-fusion dynamic stabilization flexible longitudinal connecting member assembly according to the present invention. The connecting member assembly 1B includes an outer, cannulated coil-like connectingmember 4B and a solidcylindrical core 6B receivable in the coil-like member 4B. Thecylindrical core 6B generally includes at least one integral support member 8B and one or moreadjustable support members 9B slidably mountable on thecore 6B. Eachsupport member 8B and 9B includes an outer helically woundprojection like member 4B as will be described more fully below. - The dynamic connecting member assembly 1B cooperates with at least a pair of polyaxial bone screw assemblies according to the invention, one such assembly, generally 10B, is shown in
FIG. 37 and three polyaxial bone screw assemblies 10B are shown inFIG. 39 , cooperating with one dynamic connecting member assembly 1B. With reference toFIG. 37 , the assembly 10B includes ashank 14B that further includes abody 16B integral with an upwardly extending, substantially cylindrical upper end or capturestructure 18B; a receiver orhead 20B; and a retaining and articulating structure 22B. Theshank 14B, thereceiver 20B, and the retaining and articulating structure 22B are preferably assembled prior to implantation of theshank body 16B into a vertebra (not shown). -
FIGS. 37 and 39 further show aclosure structure 30B of the invention for capturing the longitudinal connecting member assembly 1B within thereceiver 20B. Upon installation, which will be described in greater detail below, theclosure structure 30B presses against the outer coil-like member 4B and also thehelical projection respective support 8B or 9B that is disposed within the coil-like member 4B. Therefore, the flexible coil-like member 4B is not crushed or otherwise deformed by theclosure structure 30B. With respect to thesupport 9B, in addition to supporting the coil-like member 4B, thesupport 9B allows for relative movement between the core 6B and the portion of the coil-like member 4B supported by thesupport 9B. The coil-like member 4B supported by thesupport 8B or 9B in turn presses against the shankupper portion 18B that is threadably mated to the retaining and articulating structure 22B. - As will be discussed in greater detail below, the retaining and articulating structure 22B is in turn pressed into fixed frictional contact with the
receiver 20B, so as to substantially attach and orient the longitudinal connecting member assembly 1B relative to the vertebra and yet allow for relative movement of the coil-like member 4B with respect to the innercylindrical core 6B, providing relief (e.g., shock absorption) with respect to tensile and compressive forces placed on the assembly 1B and two or more connected assemblies 10B. Also, because theadjustable supports 9B are slidably attached to thecore 6B, the coil-like member 4B may twist or turn with respect to thecylindrical core 6B, providing relief for torsional stresses. The solidinner core 6B, however, does not participate in or provide any means for torsional elasticity or axial compression and distraction along a length of the outer coil-like member 4B. Furthermore, thereceiver 20B, theshank 14B, and the retaining and articulating structure 22B cooperate in such a manner that thereceiver 20B and theshank 14B can be secured at any of a plurality of angles, articulations or rotational alignments relative to one another and within a selected range of angles both from side to side and from front to rear, to enable flexible or articulated engagement of thereceiver 20B with theshank 14B until both are locked or fixed relative to each other. Alternatively, it is foreseen that the connecting assembly 1B may be inserted into a receiver for a hook or into a receiver that is fixed in position with respect to a bone screw shank, such as a bone screw receiver with an integral shank extending therefrom, or within a receiver with limited angular movement with respect to the shank, such as a hinged connection. - The longitudinal connecting member assembly 1B, illustrated in
FIGS. 35-38 , is elongate, with the outer coil-like member 4B being made from metal or metal alloy or other suitable materials, including plastics and composites; and the solid innercylindrical core 6B, and thesupports 8B and 9B also being made from metal, metal alloy, plastic or composite material. In order to reduce the production of micro wear debris, that in turn may cause inflammation, it is possible to make the coil-like member 4B from a different material than thecore 6B. For example, the coil-like member 4B may be made from a metallic material, such as titanium, while thecore member 6B and attached support 8B may be made from polyethylene, such as an ultra high molecular weight polyethylene. Also, it may be desirable to coat the components with thin, hard, super-slick and super-smooth substances or otherwise design thesupport 9B such that wear debris does not occur between thesupport 9B and thecore 6B. Such combinations result in lower friction between thecomponents like member 4B or thecore 6B with a material other than metal such that adjacent, sliding surfaces are not both metallic. Such metal to non-metal cooperation desirably results in at most, minor amounts of particulate matter formed between cooperating surfaces of the coil-like member 4B, thecore 6B and thesupports 8B and 9B. - With reference to
FIGS. 35-39 , thecore 6B is solid and elongate, having a central axis AB and a smoothcylindrical surface 40B. The support 8B is integral or otherwise fixedly attached to thecore 6B at thecylindrical surface 40B. In the illustrated embodiment of the assembly 1B shown inFIGS. 35-39 , that is designed for use with three bone screw assemblies 10B, the support 8B that is integral to thecore 6B is at alocation 42B disposed substantially centrally between anend 44B and anopposite end 45B of theelongate core 6B. It is noted however, that the integral or fixed support 8B may be at any location along the axis AB. For example, the integral support 8B is typically located near theend 44B or theend 45B of the core (not shown) when only two bone screw assemblies 10B are used to hold a connecting assembly 1B. It may also be desirable to have the fixed support 8B be near theend 44B or theend 45B when a longer assembly 1B is implanted using three or more bone screw assemblies. Thus the fixed or integral support 8B may be at any location along a length of thecore 6B, providing support for the coil-like member 4B at a particular bone screw assembly 10B, the surgeon then readily adjusting the location of any other slidinglymountable support 9B based upon the location or locations of the other bone screw assemblies 10B being used to hold the connecting member assembly 1B in place. - The
helical projections respective supports 8B and 9B are sized and shaped to extend radially from thecylindrical surface 40B and wind about thesurface 40B along the axis AB. An axially directed length L of each helical form orprojection receiver 20B of the bone screw assembly 10B, providing stability to a portion of the coil-like member 4B that is at least partially received within thereceiver 20B and pressed upon by theclosure structure 30B. Theprojections like member 4B in size and helical pitch, extending radially into a helical slit of themember 4B as will be described in greater detail below. - With respect to the
support 9B, an innercylindrical wall 48B defines a through-bore 49B sized and shaped to receive thecore 6B and slidingly mate with the outercylindrical surface 40B thereof. Thesupport 9B has an outercylindrical surface 52B from which thehelical projection 13B extends. The integral support 8B also includes an outercylindrical surface 54B from which thehelical projection 12B extends. Thecylindrical surfaces cylindrical surfaces inner surface 55B of the coil-like member 4B, providing for sliding engagement between thesurfaces inner surface 55B. Furthermore thecylindrical surface 40B of thecore 6B has a substantially uniform outer radius that is slightly smaller than the radii of thesurfaces surface 40B and theinner surface 55B when thecore 6B is inserted in the coil-like member 4B and fully received in the coil-like member 4B. Thus, with the exception of the one location wherein the fixed support 8B engages the coil-like member 4B within a bone screw assembly 10B, thecore 6B can move relative to the coil-like member 4B along the axis AB, including the portions of thecore 6B within bone screw assemblies 10B in which the coil-like member 4B is supported by a sliding,adjustable support 9B. Twisting or torsional movement of the coil-like member 4B is possible between bone screw assemblies 10B, with both the support 8B and the support or supports 9B fixing the coil-like member 4B within areceiver 20B. However, because of the helically wound nature of thesupports 8B and 9B, the coil-like member 4B is not crushed by aclosure structure 30B pressing thereon. - The coil-
like member 4B is substantially cylindrical with an outer substantiallycylindrical surface 62B and the inner substantially cylindrical andsmooth surface 55B previously identified herein. Thesurface 55B defines abore 66B with a circular cross section, thebore 66B extending completely through the coil-like member 4B. Themember 4B has anend surface 68B and anopposite end surface 69B. Themember 4B further includes ahelical slit 72B that extends therethrough from theouter surface 62B to theinner surface 55B and beginning near theend surface 68B and winding along an entire length of the coil-like member 4B to near theend surface 69B. Alternatively, it is foreseen that theslit 72B may extend through one or both of the end surfaces 68B and 69B. A width measured across theslit 72B is only slightly larger than a width of thehelical projections like member 4B engages thesupports 8B and 9B, therespective projections member 4B by extending there into at theslit 72B, with respective end surfaces 76B and 77B of theprojections cylindrical surface 62B of themember 4B. - When the
cylindrical core 6B is inserted in the coil-like member 4B themember 4B is rotated about thecore 6B at the fixed support 8B until thecore 6B extends completely through thebore 66B along the axis AB and substantially along an entire length of the coil-like member 4B as shown inFIG. 36 . Initially, the coil-like member 4B is only attached to thecore 6B by theprojection 12B of the support 8B extending into theslit 72B. Themember 4B is not otherwise fixedly attached to thesolid core 6B. Asupport 9B may then be rotated about thecore 6B with theprojection 13B being fed through theslit 72B until a desired location of thesupport 9B is reached along the axis A corresponding to a location of a bone screw assembly 10B relative to the bone screw assembly 10B cooperating with the coil-like member 4B at the support 8B. Anyadditional supports 9B (for supporting themember 4B at any additional bone screw assemblies 10B) are fed into the coil-like member in the same manner untilsuch supports 9B are at desired locations along the coil-like member 4B. - It is noted that the
core 6B may be sized and/or made from such materials so as to provide for a relatively rigid assembly or a relatively flexible assembly with respect to flex or bendability along the assembly 1B. Such flexibility therefore may be varied by changing the outer diameter of thecore 6B and thus likewise changing the diametric size of the coil-like member 4B or by changing the material from which thecore 6B and/or coil-like member 4B are made. Also, it is noted that longer assemblies 1B may need to be stiffer and thus larger in diameter than shorter assemblies 1B. The flexibility of the assembly 1B may also be varied by varying the pitch of thehelical slit 72B. - It is foreseen that in order to keep scar tissue from growing into the coil-
like member 4B through thehelical slit 72B, an inner or outer sleeve or sheath-like structure may be placed, adhered or otherwise applied to either theouter surface 62B or theinner surface 55B of the coil-like member 4B. Such a sheath-like structure would be of a size and shape such that axial movement of the coil-like member 4B is not hindered and thus any relative movement between the coil-like member 4B and thecylindrical core 6B is not hindered or prevented. Such a sheath-like structure could also capture any wear debris. - The
shank 14B of the bone screw assembly 10B, best illustrated inFIG. 37 , is elongate, with theshank body 16B having a helically wound boneimplantable thread 124B extending from near a neck 126B located adjacent to thecapture structure 18B to atip 128B of thebody 16B and extending radially outward therefrom. During use, thebody 16B utilizing thethread 124B for gripping and advancement is implanted into a vertebra leading with thetip 128B and driven down into the vertebra with an installation or driving tool (not shown), so as to be implanted in the vertebra to near the neck 126B. Theshank 14B has an elongate axis of rotation generally identified by the reference letter BB. - To provide a biologically active interface with the bone, an
outer surface 129B of theshank body 16B that includes thethread 124B and extends between the neck 126B and thetip 128B is coated, perforated, made porous or otherwise treated 130B. Thetreatment 130B may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in thesurface 129B, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding. - The neck 126B of the
shank 14B extends axially outward and upward from theshank body 16B. The neck 126B is of reduced radius as compared to an adjacent top 132B of thebody 16B. Further extending axially and outwardly from the neck 126B is thecapture structure 18B that provides a connective or capture apparatus disposed at a distance from the body top 132B and thus at a distance from the vertebra when thebody 16B is implanted in the vertebra. Thecapture structure 18B is configured for connecting theshank 14B to thereceiver 20B and capturing theshank 14B in thereceiver 20B. Thecapture structure 18B has an outer substantially cylindrical surface having a helically wound guide and advancement structure thereon which in the illustrated embodiment is a V-shapedthread 136B extending from near the neck 126B to adjacent to aseating surface 138B. Although asimple thread 136B is shown in the drawings, it is foreseen that other structures including other types of threads, such as buttress, square and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in alternative embodiments of the present invention. - The
shank 14B further includes a tool engagement structure 140B disposed near atop end surface 142B thereof for engagement of a driving tool (not shown). The driving tool is configured to fit about the tool engagement structure 140B so as to form a socket and mating projection for both driving and rotating theshank body 16B into the vertebra. Specifically in the embodiment shown inFIG. 37 , the tool engagement structure 140B is in the shape of a hexagonally shaped extension head coaxial with both the threadedshank body 16B and the threadedcapture structure 18B. - The
top end surface 142B of theshank 14B is preferably curved or dome-shaped as shown in the drawings, for positive engagement with the longitudinal connecting assembly 1B, when the bone screw assembly 10B is assembled, as shown inFIG. 39 and in any alignment of theshank 14B relative to thereceiver 20B. In certain embodiments, thesurface 142B is smooth. While not required in accordance with the practice of the invention, thesurface 142B may be scored or knurled to further increase frictional engagement between thesurface 142B and the assembly 1B. - The
shank 14B shown in the drawings is cannulated, having a smallcentral bore 144B extending an entire length of theshank 14B along the axis BB. Thebore 144B is of circular cross-section and has a firstcircular opening 146B at theshank tip 128 and a secondcircular opening 148B at thetop surface 142B. Thebore 144B is coaxial with the threadedbody 16B and the capture structure outer surface. Particularly useful in minimally and less invasive surgery, thebore 144B provides a passage through theshank 14B interior for a length of wire (not shown) inserted into the vertebra prior to the insertion of theshank body 16B, the wire providing a guide for insertion of theshank body 16B into the vertebra. - Also with reference to
FIGS. 37 and 39 , thereceiver 20B includes abase 150B integral with a pair of opposed upstanding arms 152B that extend from thebase 150B to atop surface 154B. The arms 152B form a U-shaped cradle and define a U-shaped channel 156B between the arms 152B and include anupper opening 157B and alower seat 158B having substantially the same radius as the outer coil-like member 4B of the longitudinal connecting member assembly 1B for operably snugly receiving the member assembly 1B. - Each of the arms 152B has an interior surface that defines an inner cylindrical profile and includes a partial helically wound guide and
advancement structure 162B. In the illustrated embodiment, the guide andadvancement structure 162B is a partial helically wound flangeform configured to mate under rotation with a similar structure on theclosure member 30B, as described more fully below. However, it is foreseen that the guide andadvancement structure 162B could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing theclosure 30B downward between the arms 152B and having such a nature as to resist splaying of the arms 152B when theclosure 30B is advanced into the U-shaped channel 156B. - Each of the arms 152B includes a V-shaped-like undercut
tool engagement groove 164B formed on a substantially planarouter surface 166B thereof which may be used for holding thereceiver 20B with a holding tool (not shown) having projections that are received within thegrooves 164B during implantation of theshank body 16B into the vertebra. Thegrooves 164B may also cooperate with a holding tool during bone screw assembly and during subsequent installation of the connecting member 1B andclosure 30B. It is foreseen that tool attachment receiving grooves or apertures may be configured in a variety of sizes and shapes, including radiused, and be disposed at other locations on the arms 152B. - Communicating with the U-shaped channel 156B and located within the
base 150B of thereceiver 20B is a chamber or cavity 178B partially defined by an inner substantially spherical seating surface 182B, the cavity 178B opening upwardly into the U-shaped channel 156B. Thebase 150B further includes arestrictive neck 183B adjacent the seating surface 182B. Theneck 183B defines an opening or bore communicating with the cavity 178B and a lower exterior 186B of thebase 150B. Theneck 183B is conically counterbored or beveled to widen the angular range of theshank 14B. Theneck 183B is sized and shaped to be smaller than a radial dimension of a fixed or fully expanded retaining and articulating structure 22B so as to form a restriction at the location of theneck 183B relative to the retaining and articulating structure 22B, to prevent the structure 22B from passing from the cavity 178B and out into the lower exterior 186B of thereceiver 20B when the retaining and articulating structure 22B is seated on the seating surface 182B. It is foreseen that the retaining and articulating structure could be compressible (such as where such structure has a missing section) and could be up-loaded through theneck 183B and then allowed to expand and fully seat in the spherical seating surface 182B. It is further noted that a retaining and articulating structure may or may not articulate with respect to the receiver, but rather be in a collet or ring shape that is fixed or stationary with respect to the receiver and articulates with respect to the shank. - In the embodiment shown, the retaining and articulating structure 22B has an operational central axis that is the same as the elongate axis BB associated with the
shank 14B. The retaining and articulating structure 22B has acentral bore 190B that passes entirely through the structure 22B from a top surface 192B to abottom surface 194B thereof. An inner cylindrical surface defines a substantial portion of thebore 190B and has a helically wound guide and advancement structure thereon as shown by a v-shaped helical rib or thread 198B extending from adjacent the top surface 192B to near thebottom surface 194B. Although a simple helical rib 198B is shown in the drawings, it is foreseen that other helical structures including other types of threads, such as buttress, square and reverse angle threads, and non threads, such as helically wound flanges with interlocking surfaces, may be alternatively used in an alternative embodiment of the present invention. Also, non-helical spline capture designs could be used. The inner thread 198B is configured to mate under rotation with the capture structure outer surface guide and advancement structure orthread 136B. - The illustrated retaining and articulating structure 22B has a radially outer partially spherically shaped
surface 200B sized and shaped to mate with the partial spherically shaped seating surface 182B of the receiver and having a radius approximately equal to the radius associated with the surface 182B. The retaining and articulating structure radius is larger than the radius of theneck 183B of thereceiver 20B. Although not required, it is foreseen that the outer partially spherically shapedsurface 200B may be a high friction surface such as a knurled surface, a shot-pinging surface, sand-blasted surface or the like. - With reference to
FIGS. 37 and 39 , theclosure structure 30B can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the upstanding arms 152B of thereceiver 20B. Theclosure structure 30B is rotatable between the spaced arms 152B. It is foreseen the closure structure could be slidingly side-loading. The illustratedstructure closure structure 30B is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of aflange form 250B. The illustrated guide andadvancement structure 250B operably joins with the guide andadvancement structure 162B disposed on the interior of the arms 152B. The guide andadvancement structure 250B utilized in accordance with the present invention may take the forms described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference. It is also foreseen that according to the invention the guide andadvancement structure 250B could alternatively be a buttress thread, a square head, a reverse angle thread or other thread like or non-thread-like helically wound advancement structure for operably guiding under rotation and advancing theclosure structure 30B downward between the arms 152B and having such a nature as to resist splaying of the arms 152B when theclosure structure 30B is advanced into the U-shaped channel 156B. Again, the closure could be a side-loading wedge-like structure with a radiused bottom. - The
closure structure 30B includes a lower substantially planar surface 256B. The surface 256B frictionally engages both the coil-like member 4B and asurface 76B or 77B of arespective support 8B or 9B when rotated between the arms 152B and fully mated with thereceiver 20B. Theclosure structure 30B has atop surface 260B having an internal drive in the form of anaperture 262B, illustrated as a hex-shaped inner drive. A driving tool (not shown) sized and shaped for engagement with theinternal drive 262B is used for both rotatable engagement and, if needed, disengagement, of theclosure 30B from the arms 152B. Although a hex-shapedinternal drive 262B is shown in the drawings, the tool engagement structure may take a variety of tool-engaging forms and may include but is not limited to a star-shaped internal drive, for example, sold under the trademark TORX, or more than one aperture of various shapes. It is also foreseen that theclosure structure 30B may alternatively include a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 80 to 140 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal. - During installation, the lower surface 256B engages both the coil-
like member 4B and theprojections respective support 8B or 9B of the connecting assembly 1B. Theclosure structure 30B is rotated, using a tool engaged with theinner drive 262B until a selected pressure is reached at which point the longitudinal connecting assembly 1B is urged toward, but not completely to thelower seat 158B of the channel 156B. In turn, the coil-like member 4B and cooperatingsupport 8B or 9B press directly against theupper surface 142B of theshank 14B. The pressure placed on the assembly 1B by theclosure structure 30B is sufficient to clamp themember 4B between thestructure 30B and theshank 14B, but the flexible coil-like member 4B is not crushed or otherwise deformed because of the support provided by theprojection projection like member 4B. - In use, prior to the polyaxial bone screw assembly 10B being implanted in a vertebra, the retaining and articulating structure 22B is typically first inserted or top-loaded, into the receiver U-shaped channel 156B, and then into the cavity 178B to dispose the structure 22B adjacent the inner seating surface 182B of the
receiver 20B. Theshank capture structure 18B is preloaded, inserted or bottom-loaded into thereceiver 20B at the neck bore 183B. The retaining and articulating structure 22B, now disposed in thereceiver 20B is coaxially aligned with theshank capture structure 18B so that the helical v-shapedthread 136B rotatingly mates with the thread 198B of the retaining and articulating structure 22B. Theshank 14B and/or the retaining and articulating structure 22B are rotated to fully mate thestructures 136B and 198B, fixing thecapture structure 18B to the retaining and articulating structure 22B. At this time theshank 14B is in slidable and rotatable engagement with respect to thereceiver 20B, while the retaining and articulating structure 22B and the lower aperture orneck 183B of thereceiver 20B cooperate to maintain theshank body 16B in rotational relation with thereceiver 20B. Theshank body 16B can be rotated through a substantial angular rotation relative to thereceiver 20B, both from side to side and from front to rear so as to substantially provide a universal or ball joint wherein the angle of rotation is only restricted by engagement of the neck 126B of theshank body 16B with theneck 183B of thereceiver 20B. - The assembly 10B is then typically screwed into a vertebra by rotation of the
shank 14B using a driving tool (not shown) with a socket that operably drives and rotates theshank 14B by engagement thereof with the shank at the tool engagement structure 140B. It is foreseen that in other embodiments according to the invention, the hex-shaped driving formation 140B may be replaced by other types of outer or inner tool engaging formations or recesses. The retaining structure and the shank may also be crimped together so as to not come apart with rotation or a one-way unlocking thread form could be used. - At least two and up to a plurality of bone screw assemblies 10B are implanted into vertebrae for use with the longitudinal connecting member assembly 1B. Each vertebra may be pre-drilled to minimize stressing the bone. Furthermore, when minimally invasive surgical techniques are followed and a cannulated bone screw shank is utilized, each vertebra will have a guide wire or pin (not shown) inserted therein that is shaped for the
bone screw cannula 144B of the bone screw shank and provides a guide for the placement and angle of theshank 14B with respect to the vertebra. A further tap hole may be made and theshank body 16B is then driven into the vertebra by rotation of the driving tool (not shown). - With particular reference to
FIG. 37 , the longitudinal connecting member assembly 1B is assembled by inserting thecore 6B into thebore 66B defined by the innercylindrical surface 55B of the coil-like member 4B. Theend 44B of thecore 6B is placed into theopen end 69B of the coil-like member 4B and themember 4B is moved in an axial direction AB toward the fixed support 8B. When the support 8B abuts theend 69B, the coil-like member 4B is rotated with respect to thecore 6B, with theprojection 12B extending into theslit 72B and the coil-like member 4B winding about theprojection 12B. Rotation of the coil-like member 4B with respect to thecore 6B is continued until the fixed support 8B is at a desired location and thecore 6B is substantially received within the coil-like member 4B along an entire length thereof. Thelocation 42B of the support 8B along thecore 6B corresponds to a location of a bone screw assembly 10B that has been implanted. Anadjustable support 9B is then inserted onto thecore 6B at eitherend adjustable support 9B slidingly mounts on thecore 6B and is then rotated such that theprojection 13B is guided into theslit 72B and wound therethrough, with theouter surface 77B flush with theouter surface 62B of the coil-like member 4B. Thesupport 9B is rotated until the support is at a distance from the support 8B that corresponds to a distance between two implanted bone screw assemblies 10B. If the assembly 1B is to be connected to more than two bone screw assemblies 10B,additional supports 9B are mounted on thecore 6B and rotated within the coil-like member 4B in similar fashion. A tool (not shown) sized and shaped to engage thesupport 9B within thebore 66B is utilized to rotate thesupports 9B. - The connecting member assembly 1B is eventually positioned within the U-shaped channels 156B of two or more bone screw assemblies 10B with the
supports 8B and 9B located within thereceivers 20B. Theclosure structure 30B is then inserted into and advanced between the arms 152B. As theclosure structure 30B is rotated between the arms 152B, the surface 256B makes contact with the coil-like member 4Bouter surface 62B and either the outer surface 76B of theprojection 12B or theouter surface 77B of theprojection 13B uniformly pressing the assembly 1B against theshank top surface 142B, pressing the retaining and articulating structureouter surface 200B against the seating surface 182B to set the angle of articulation of theshank body 16B with respect to thereceiver 20B. However, thesupports 8B and 9B protect the coil-like member 4B from being deformed and thus, at thesupport 9B, thecore 6B remains in sliding engagement with thesupport 9B. - If removal of the assembly 1B from any of the assemblies 10B is necessary, or if it is desired to release the assembly 1B at a particular location, disassembly is accomplished by using the closure driving tool (not shown) on the closure structure
internal drive 262B to rotate and remove theclosure structure 30B from thereceiver 20B. Disassembly of the assembly 10B is accomplished in reverse order to the procedure described previously herein for assembly. It is foreseen that the assembly could use fixed integral bone anchors, such as screws and hooks. - With reference to
FIGS. 40-42 , a fifth embodiment of a dynamic longitudinal connecting member assembly according to the invention, generally 1C, is substantially identical to the assembly 1 illustrated inFIGS. 1-4 , with the exception that thestop 42 is replaced by a connecting member having a solid outer surface illustrated by arod 42C. In particular, the assembly 1C includes an outer coil-like member 4C and an inner solid cylindrical core 8C identical or substantially similar to the respective coil-like member 4 and theinner core 8 of the connecting member assembly 1 previously described herein. Therefore details of the coil-like member 4C and the inner core 8C will not be repeated here. - The inner core 8C is fixed or integral with a longitudinal connecting member extension or
solid rod 42C. Therod 42C is integral or fixedly attached to the inner core 8C at afirst end 43C thereof. Therod 42C is substantially coaxial with the inner core 8C and may be of any desired length, measured from theend 43C to anopposite end 44C, for attaching to one or more bone screw assemblies. The illustratedrod 42C is solid, but it is foreseen that it may be hollow. Therod 42C has a circular cross section, but may also be of other shapes including rectangular, square, and other polygonal and curved cross-sections. In the embodiment shown, therod 42C includes a flat abutment surface 45C and an outercylindrical surface 46C. In the illustrated embodiment, thecylindrical surface 46C has an outer diameter that is approximately the same as an outer diameter of the coil-like member 4C allowing for attachment of the same size polyaxialbone screw assembly flexible rod 42C that may be of smaller diameter than the diameter of the coil-like member 4C, or in other instances, a slightly larger diameter, stiffer rod, each requiring a different sized bone screw receiver or receiver components. It is noted that a variety of hook and bone screw assemblies may cooperate with thesolid rod surface 46C, including, but not limited to the polyaxial bone screw assembly 10B described herein and also the bone screw assembly described in detail in U.S. Pat. No. 6,716,214, incorporated by reference herein. Therod 42C is preferably of a length for secure attachment to at least one bone screw with at least one other cooperatingbone screw assembly like member 4C, similar to what is illustrated and described herein with respect to the coil-like member 4 and shown inFIGS. 5-7 and 14-15 . If a patient requires more rigid support along a substantial portion of the spine, therod 42C may be of a longer length to cooperate and attach with two or more bone screws, each implanted on separate vertebra. Thus, an assembly 1C according to the invention may be used to provide protected movement of the spine along the coil-like member 4C and spinal fusion along the length of therod 42C. It is foreseen that therods 42C and 8C could be curvilinear in use. - Near the
end 43C, the inner core 8C includes acylindrical portion 48C of greater diameter than the remaining cylindrical surface of the core 8C, theportion 48C sized and shaped to provide a frictional press fit between the coil-like member 4C and the inner core 8C at only theportion 48C, when the inner core 8C is fully received in the coil-like member 4C. Thus, other than at theportion 48C, the coil-like member 4C is movable or slidable along the inner core 8C. Other structure may be used to attach the coil-like member 4C to the inner core 8C at only one location, such as the snap-onnob 48 and cooperatingrecess 68 of the assembly 1 previously described herein. - With reference to
FIG. 43 , a sixth embodiment of a dynamic longitudinal connecting member assembly according to the invention, generally 1D, is substantially identical to the assembly 1A illustrated inFIGS. 10-13 , with the exception that thestop 42A has been replaced by a solid connecting member orrod 42D. In particular, the assembly 1D includes an outer coil-like member 4D and an inner solidcylindrical core 8D having ahelical thread 9D identical or substantially similar to the respective coil-like member 4A, theinner core 8A and thethread 9A of the connecting member assembly 1A previously described herein. Therefore details of the coil-like member 4D and the inner threadedcore 8D will not be repeated here. Again, the connecting members could be curvilinear. - The
inner core 8D is fixed or integral with a longitudinal connecting member extension illustrated as asolid rod 42D. Therod 42D is attached to theinner core 8D at afirst end 43D thereof. In the embodiment shown, therod 42D is substantially coaxial with theinner core 8D and may be of any desired length, measured from theend 43D to anopposite end 44D, for attaching to one or more bone screw assemblies. The illustratedrod 42D is solid, but it is foreseen that it may be hollow. Therod 42D has a circular cross section, but may also be of other shapes including rectangular, square, and other polygonal and/or curved cross-sections. In the embodiment shown, therod 42D includes aflat abutment surface 45D and an outercylindrical surface 46D. In the illustrated embodiment, thecylindrical surface 46D has an outer diameter that is approximately the same as an outer diameter of the coil-like member 4D allowing for attachment of the same size polyaxialbone screw assembly flexible rod 42D that may be of smaller diameter than the diameter of the coil-like member 4D, or in other instances, a slightly larger diameter, stiffer rod, each requiring a different sized bone screw receiver or receiver components. It is noted that a variety of bone screw assemblies may cooperate with thesolid rod surface 46D, including, but not limited to the polyaxial bone screw assembly 10B described herein and also the bone screw assembly described in detail in U.S. Pat. No. 6,716,214, incorporated by reference herein. Therod 42D is preferably of a length for secure attachment to at least one bone screw with at least one other cooperatingbone screw assembly like member 4A and shown, for example, inFIGS. 14-15 and 22 . If a patient requires more rigid support along a substantial portion of the spine, therod 42D may be of a longer length to cooperate and attach with two or more bone screws, each implanted on separate vertebra. Thus, an assembly 1D according to the invention may be used to provide protected movement of the spine along the coil-like member 4D and spinal fusion along the length of therod 42D. - With reference to
FIG. 44 , a seventh embodiment of a dynamic longitudinal connecting member assembly according to the invention, generally 1E, is substantially identical to the assembly 1B illustrated inFIGS. 35-36 , with the exception that a solid connecting member orrod 42E is integral or otherwise fixed to an inner cylindrical core 6E. In particular, the assembly 1E includes an outer coil-like member 4E, the inner core 6E, and at least one threadedinsert 9E receivable on the core 6E, identical or substantially similar to the respective coil-like member 4B, theinner core 6B and the threadedinserts 9B of the connecting member assembly 1B previously described herein. Therefore details of the coil-like member 4E, core 6E and insert 9E will not be repeated here. Although not shown inFIG. 44 , thecore 6B may also include one or more fixed threaded support similar or identical to the support 8B previously described herein with respect to thecore 6B. - The inner core 6E is fixed or integral with a longitudinal connecting member extension illustrated as a
solid rod 42E near anend 43E thereof. Therod 42E is substantially coaxial with the inner core 6E and may be of any desired length, measured from theend 43E to an opposite end 44E, for attaching to one or more bone screw assemblies. The illustratedrod 42E is identical or substantially similar to therods - It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
Claims (15)
1-14. (canceled)
15. A polyaxial bone anchor assembly comprising:
a) a shank having an upper portion with a capture structure, and a tool receiving recess on a top surface thereof;
b) a receiver, the shank being bottom-loaded into a lower opening of the receiver;
c) a retainer having a central opening, so as to mate with the shank capture structure and allow a tool access to the recess, the retainer holding the shank in the receiver and when joined with the shank, pivots with the shank, the capture structure being configured to prevent the shank upper portion from being pushed up and out of the retainer once the retainer has joined with the shank, the shank top surface extending to at least a top surface on the retainer; and
d) an insert having a bottom surface configured for polyaxial surface engagement with the retainer.
16. The polyaxial bone anchor assembly of claim 15 , wherein the retainer top surface is positioned substantially flush with respect to the top surface of the shank.
17. The polyaxial bone anchor assembly of claim 15 , wherein the retainer is threadably secured to the shank.
18. The polyaxial bone anchor assembly of claim 15 , wherein the receiver further comprising circumferential opposed horizontal radiused grooves near a top surface thereof.
19. A polyaxial bone anchor assembly comprising:
a) a shank having lower structure adapted for anchoring to a bone of a patient and an upper end portion with an internal drive socket recess therein and a capture structure thereon, the upper end portion having a top surface;
b) a receiver having an interior cavity that operably receives the shank upper end portion through a lower opening therein and an upper channel having a top surface for receiving a connecting member;
c) a pressure insert operably located in the cavity and at least partially between the shank and the connecting member when the connecting member is located in the channel;
d) a retainer to mate with the shank capture structure and pivot with the shank in the receiver cavity, the retainer having a top surface and a central opening for mating with the shank capture structure and to allow a tool access to the shank drive socket recess when mated;
e) the insert adapted to have polyaxial engagement with the retainer; and wherein
f) the shank capture structure has a laterally facing external surface configured to prohibit the shank upper end portion from being pushed up and out of the retainer once mated together; and wherein the shank top surface extends up to at least the retainer top surface.
20. The polyaxial bone anchor assembly of claim 19 , wherein the receiver further comprising opposed horizontal radiused grooves.
21. A polyaxial bone anchor assembly comprising:
a) a shank having lower structure adapted for anchoring to a bone of a patient and an upper end portion with an internal drive socket recess therein and opening onto a top surface thereof, and a capture structure thereon;
b) a receiver having an interior cavity that operably receives the shank upper end portion through a lower opening therein and an upper channel having a top surface for receiving a connecting member;
c) a pressure insert operably located in the receiver and at least partially between the shank and the connecting member when the connecting member is located in the channel;
d) a retainer to mate with the shank capture structure and pivot with the shank in the receiver cavity, the retainer having a top surface, the shank top surface extending up to at least the retainer top surface;
e) the insert adapted to have polyaxial engagement with the retainer; and wherein
f) the shank capture structure has a laterally facing external surface configured to prohibit the shank upper end portion from being pushed up and out of the retainer once mated together.
22. The polyaxial bone anchor assembly of claim 21 , wherein the receiver further comprising opposed horizontal radiused grooves.
23. A polyaxial bone anchor assembly comprising:
a) a shank having lower structure adapted for anchoring to a bone of a patient and an upper end portion with an internal drive socket recess therein and opening onto a top surface thereof, and a capture structure thereon;
b) a receiver having an interior cavity that operably receives the shank upper end portion through a lower opening therein and an upper channel having a top surface for receiving a connecting member;
c) a pressure insert operably located in the receiver and at least partially between the shank and the connecting member when the connecting member is located in the channel;
d) a retainer to mate with the shank capture structure and pivot with the shank in the receiver cavity, the retainer having a top surface, the shank top surface extending up to at least the retainer top surface;
e) the insert adapted to have polyaxial engagement with the retainer; and wherein
f) the shank capture structure has a radiused external surface configured to engage the receiver interior cavity.
24. The polyaxial bone anchor assembly of claim 23 , wherein the receiver further comprising opposed horizontal radiused grooves.
25. A polyaxial bone anchor assembly comprising:
a) a receiver defining a central bore and having a top portion and a bottom portion, the bottom portion having a first recess communicating with the central bore and having a bottom opening, the bottom opening having a width;
b) a shank having an upper portion and a lower portion for fixation to a bore, the upper portion having a shank upper portion top surface and a capture structure with a maximum width smaller than the receiver bottom opening width, so as to be able to pass through the receiver bottom opening, the shank upper portion having a second recess opening onto the shank upper portion top surface thereof, the second recess being sized and shaped to receive a tool therein for operably rotating the shank for installation and removal, the shank upper portion has a radiused surface for engaging the receiver first recess;
c) an independent retaining and articulating structure mateable with the shank upper portion capture structure, the retaining and articulating structure having a contact surface configured for slidable engagement with the receiver at the bottom portion defining the recess, the retaining and articulating structure having a retaining and articulating structure top surface, the shank upper portion top surface extending up to at least the retaining and articulating structure top surface; the shank and retaining and articulating structure pivoting together within the receiver; and
d) a compression structure insertable through a top opening of the central bore of the receiver, and pressable against the retaining and articulating structure.
26. The polyaxial bone anchor assembly of claim 25 , wherein the receiver further comprising opposed horizontal radiused grooves.
27. A polyaxial bone anchor assembly comprising:
a) a shank having an upper portion with a capture structure, and a tool receiving recess on a top surface thereof;
b) a receiver having opposed horizontal radiused grooves and a lower opening, the shank being bottom-loaded into the lower opening of the receiver;
c) a retainer having a central opening, so as to mate with the shank capture structure and allow a tool access to the recess, the retainer holding the shank in the receiver and when joined with the shank, pivots with the shank, the capture structure being configured to prevent the shank upper portion from being pushed up and out of the retainer once the retainer has joined with the shank, the shank top surface extending to at least a top surface on the retainer;
d) a lower compression insert disposed in a receiver of the bone screw, the lower compression insert having a seating surface for the longitudinal connecting member, first and second upstanding arms, the arms operatively receiving the longitudinal connecting member and extending above a top surface thereof, the insert cooperating with the receiver to lock the polyaxial bone screw shank; and
e) a two-piece closure having a closed outer ring fastener with a continuously wound external thread and threaded central bore, and an inner set screw, the closed outer ring fastener directly engaging the receiver and the first and second arms of the lower compression insert and independently locking the shank with respect to the receiver.
28. A polyaxial bone anchor assembly comprising:
a) a shank having a lower body for fixation to a bone and an upper portion, the upper portion having a capture structure thereon;
b) a receiver having a top portion and a base, the receiver top portion defining an open channel for receiving a longitudinal connecting member therein, the base having an internal surface partially defining a cavity configured to allow polyaxial motion of the shank capture structure with respect to the receiver, the channel communicating with the cavity, the cavity communicating with an exterior surface of the base through a lower opening from which extends the shank body;
c) a lower compression insert disposed in the receiver, the insert having a seating surface for the longitudinal connecting member and positioned above the shank capture structure when the capture structure is received in the cavity; and
d) a two-piece closure having a closed outer ring fastener positioned in the receiver channel entirely above the longitudinal member, an inner set screw extending from a bottom surface of the ring fastener, the outer ring fastener directly engaging an inner surface of the receiver top portion, and having a helically wound structure in engagement with the receiver, the inner set screw having a lower internal tool abutment surface near a flat bottom thereof, and biasing the longitudinal connecting member toward and against the lower compression insert seating surface.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/557,945 US9662143B2 (en) | 2004-02-27 | 2014-12-02 | Dynamic fixation assemblies with inner core and outer coil-like member |
US15/419,740 US10039571B2 (en) | 2004-02-27 | 2017-01-30 | Bone anchor receiver with top loaded snap in place insert |
US16/033,742 US10299835B2 (en) | 2004-11-10 | 2018-07-12 | Pivotal bone anchor receiver assembly with rod and retainer engaging compression insert and bottom loaded shank |
US16/057,563 US10695101B2 (en) | 2005-02-22 | 2018-08-07 | Bone anchor assembly with bottom loaded shank and insert engaging retainer |
US16/394,748 US10543020B2 (en) | 2004-11-10 | 2019-04-25 | Pivotal bone anchor assembly with snap-in-place pressure insert spaced apart from shank |
US16/671,527 US11045229B2 (en) | 2005-09-30 | 2019-11-01 | Bone anchor receiver with outer tool engaging grooves above an internal insert constraining recess |
US16/690,909 US10874437B2 (en) | 2005-09-30 | 2019-11-21 | Pivotal bone anchor assembly with snap in place insert |
US16/904,816 US11013537B2 (en) | 2005-02-22 | 2020-06-18 | Pivotal bone anchor assembly with bottom loaded shank and insert engaging retainer |
US17/136,779 US11134993B2 (en) | 2005-09-30 | 2020-12-29 | Pivotal bone anchor assembly with snap-in-place insert |
US17/328,737 US11419638B2 (en) | 2005-02-22 | 2021-05-24 | Pivotal bone anchor assembly with cannulated shank having a planar top surface surrounding an internal drive socket |
US17/493,190 US11849977B2 (en) | 2005-09-30 | 2021-10-04 | Pivotal bone anchor assembly with receiver having horizontal and vertical tool engagement grooves |
US17/878,780 US11737790B2 (en) | 2005-02-22 | 2022-08-01 | Pivotal bone anchor assembly with preloaded articulating retainer and bottom loaded shank |
US18/339,130 US11957386B2 (en) | 2005-09-30 | 2023-06-21 | Pivotal bone anchor assembly having a downwardly-displaceable snap-in-place insert and method of assembly |
US18/449,427 US12102357B2 (en) | 2005-02-22 | 2023-08-14 | Pivotal bone anchor assembly with cannulated shank having a planar top surface and method of assembly |
US18/635,994 US20240252213A1 (en) | 2005-09-30 | 2024-04-15 | Method of assembling a pivotal bone anchor assembly with snap-in-place insert |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/789,149 US7160300B2 (en) | 2004-02-27 | 2004-02-27 | Orthopedic implant rod reduction tool set and method |
US10/986,377 US7833250B2 (en) | 2004-11-10 | 2004-11-10 | Polyaxial bone screw with helically wound capture connection |
US63053604P | 2004-11-23 | 2004-11-23 | |
US10/996,289 US8152810B2 (en) | 2004-11-23 | 2004-11-23 | Spinal fixation tool set and method |
US11/024,543 US7204838B2 (en) | 2004-12-20 | 2004-12-20 | Medical implant fastener with nested set screw and method |
US65523905P | 2005-02-22 | 2005-02-22 | |
US11/178,854 US7789896B2 (en) | 2005-02-22 | 2005-07-11 | Polyaxial bone screw assembly |
US72230005P | 2005-09-30 | 2005-09-30 | |
US72544505P | 2005-10-11 | 2005-10-11 | |
US72891205P | 2005-10-21 | 2005-10-21 | |
US73611205P | 2005-11-10 | 2005-11-10 | |
US11/272,508 US9050148B2 (en) | 2004-02-27 | 2005-11-10 | Spinal fixation tool attachment structure |
US11/328,481 US7862587B2 (en) | 2004-02-27 | 2006-01-09 | Dynamic stabilization assemblies, tool set and method |
US83264406P | 2006-07-21 | 2006-07-21 | |
US11/522,503 US7766915B2 (en) | 2004-02-27 | 2006-09-14 | Dynamic fixation assemblies with inner core and outer coil-like member |
US12/804,580 US8394133B2 (en) | 2004-02-27 | 2010-07-23 | Dynamic fixation assemblies with inner core and outer coil-like member |
US13/815,054 US8900272B2 (en) | 2004-02-27 | 2013-01-28 | Dynamic fixation assemblies with inner core and outer coil-like member |
US14/557,945 US9662143B2 (en) | 2004-02-27 | 2014-12-02 | Dynamic fixation assemblies with inner core and outer coil-like member |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/815,054 Continuation US8900272B2 (en) | 2004-02-27 | 2013-01-28 | Dynamic fixation assemblies with inner core and outer coil-like member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/419,740 Continuation US10039571B2 (en) | 2004-02-27 | 2017-01-30 | Bone anchor receiver with top loaded snap in place insert |
Publications (3)
Publication Number | Publication Date |
---|---|
US20150182258A1 US20150182258A1 (en) | 2015-07-02 |
US20160256197A9 true US20160256197A9 (en) | 2016-09-08 |
US9662143B2 US9662143B2 (en) | 2017-05-30 |
Family
ID=39420704
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/522,503 Expired - Fee Related US7766915B2 (en) | 2003-06-18 | 2006-09-14 | Dynamic fixation assemblies with inner core and outer coil-like member |
US12/804,580 Expired - Lifetime US8394133B2 (en) | 2003-06-18 | 2010-07-23 | Dynamic fixation assemblies with inner core and outer coil-like member |
US13/815,054 Expired - Lifetime US8900272B2 (en) | 2004-02-27 | 2013-01-28 | Dynamic fixation assemblies with inner core and outer coil-like member |
US14/557,945 Expired - Lifetime US9662143B2 (en) | 2004-02-27 | 2014-12-02 | Dynamic fixation assemblies with inner core and outer coil-like member |
US15/419,740 Active US10039571B2 (en) | 2004-02-27 | 2017-01-30 | Bone anchor receiver with top loaded snap in place insert |
US16/033,742 Active US10299835B2 (en) | 2004-11-10 | 2018-07-12 | Pivotal bone anchor receiver assembly with rod and retainer engaging compression insert and bottom loaded shank |
US16/394,748 Expired - Fee Related US10543020B2 (en) | 2004-11-10 | 2019-04-25 | Pivotal bone anchor assembly with snap-in-place pressure insert spaced apart from shank |
US16/671,527 Active US11045229B2 (en) | 2005-09-30 | 2019-11-01 | Bone anchor receiver with outer tool engaging grooves above an internal insert constraining recess |
US16/690,909 Active US10874437B2 (en) | 2005-09-30 | 2019-11-21 | Pivotal bone anchor assembly with snap in place insert |
US17/136,779 Active US11134993B2 (en) | 2005-09-30 | 2020-12-29 | Pivotal bone anchor assembly with snap-in-place insert |
US17/493,190 Active US11849977B2 (en) | 2005-09-30 | 2021-10-04 | Pivotal bone anchor assembly with receiver having horizontal and vertical tool engagement grooves |
US18/339,130 Active US11957386B2 (en) | 2005-09-30 | 2023-06-21 | Pivotal bone anchor assembly having a downwardly-displaceable snap-in-place insert and method of assembly |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/522,503 Expired - Fee Related US7766915B2 (en) | 2003-06-18 | 2006-09-14 | Dynamic fixation assemblies with inner core and outer coil-like member |
US12/804,580 Expired - Lifetime US8394133B2 (en) | 2003-06-18 | 2010-07-23 | Dynamic fixation assemblies with inner core and outer coil-like member |
US13/815,054 Expired - Lifetime US8900272B2 (en) | 2004-02-27 | 2013-01-28 | Dynamic fixation assemblies with inner core and outer coil-like member |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/419,740 Active US10039571B2 (en) | 2004-02-27 | 2017-01-30 | Bone anchor receiver with top loaded snap in place insert |
US16/033,742 Active US10299835B2 (en) | 2004-11-10 | 2018-07-12 | Pivotal bone anchor receiver assembly with rod and retainer engaging compression insert and bottom loaded shank |
US16/394,748 Expired - Fee Related US10543020B2 (en) | 2004-11-10 | 2019-04-25 | Pivotal bone anchor assembly with snap-in-place pressure insert spaced apart from shank |
US16/671,527 Active US11045229B2 (en) | 2005-09-30 | 2019-11-01 | Bone anchor receiver with outer tool engaging grooves above an internal insert constraining recess |
US16/690,909 Active US10874437B2 (en) | 2005-09-30 | 2019-11-21 | Pivotal bone anchor assembly with snap in place insert |
US17/136,779 Active US11134993B2 (en) | 2005-09-30 | 2020-12-29 | Pivotal bone anchor assembly with snap-in-place insert |
US17/493,190 Active US11849977B2 (en) | 2005-09-30 | 2021-10-04 | Pivotal bone anchor assembly with receiver having horizontal and vertical tool engagement grooves |
US18/339,130 Active US11957386B2 (en) | 2005-09-30 | 2023-06-21 | Pivotal bone anchor assembly having a downwardly-displaceable snap-in-place insert and method of assembly |
Country Status (6)
Country | Link |
---|---|
US (12) | US7766915B2 (en) |
EP (1) | EP1933770A4 (en) |
JP (3) | JP5161096B2 (en) |
AU (2) | AU2006303888B2 (en) |
CA (2) | CA2621997A1 (en) |
WO (1) | WO2007047079A2 (en) |
Families Citing this family (229)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812185B1 (en) * | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US20160242816A9 (en) * | 2001-05-09 | 2016-08-25 | Roger P. Jackson | Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms |
US10729469B2 (en) * | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US8523913B2 (en) | 2002-09-06 | 2013-09-03 | Roger P. Jackson | Helical guide and advancement flange with break-off extensions |
US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
US8172885B2 (en) | 2003-02-05 | 2012-05-08 | Pioneer Surgical Technology, Inc. | Bone plate system |
US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
US6716214B1 (en) | 2003-06-18 | 2004-04-06 | Roger P. Jackson | Polyaxial bone screw with spline capture connection |
US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
US8926670B2 (en) | 2003-06-18 | 2015-01-06 | Roger P. Jackson | Polyaxial bone screw assembly |
US8137386B2 (en) | 2003-08-28 | 2012-03-20 | Jackson Roger P | Polyaxial bone screw apparatus |
US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US8398682B2 (en) | 2003-06-18 | 2013-03-19 | Roger P. Jackson | Polyaxial bone screw assembly |
US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US8377102B2 (en) * | 2003-06-18 | 2013-02-19 | Roger P. Jackson | Polyaxial bone anchor with spline capture connection and lower pressure insert |
US20050203513A1 (en) * | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
CA2555868C (en) | 2004-02-27 | 2011-09-06 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US8475495B2 (en) | 2004-04-08 | 2013-07-02 | Globus Medical | Polyaxial screw |
US7503924B2 (en) | 2004-04-08 | 2009-03-17 | Globus Medical, Inc. | Polyaxial screw |
FR2870718B1 (en) * | 2004-05-25 | 2006-09-22 | Spine Next Sa | TREATMENT ASSEMBLY FOR THE DEGENERATION OF AN INTERVERTEBRAL DISC |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
US8308782B2 (en) | 2004-11-23 | 2012-11-13 | Jackson Roger P | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation |
EP1719468A1 (en) * | 2004-12-17 | 2006-11-08 | Zimmer GmbH | Intervertebral stabilization system |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
US12102357B2 (en) | 2005-02-22 | 2024-10-01 | Roger P. Jackson | Pivotal bone anchor assembly with cannulated shank having a planar top surface and method of assembly |
US10076361B2 (en) | 2005-02-22 | 2018-09-18 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
US8403962B2 (en) | 2005-02-22 | 2013-03-26 | Roger P. Jackson | Polyaxial bone screw assembly |
US7794481B2 (en) * | 2005-04-22 | 2010-09-14 | Warsaw Orthopedic, Inc. | Force limiting coupling assemblies for spinal implants |
US7625394B2 (en) * | 2005-08-05 | 2009-12-01 | Warsaw Orthopedic, Inc. | Coupling assemblies for spinal implants |
AU2006283126A1 (en) * | 2005-08-24 | 2007-03-01 | Thomson Licensing | Method for graphical scaling of LCDs in mobile television devices |
WO2007038429A1 (en) | 2005-09-27 | 2007-04-05 | Endius, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
US8057519B2 (en) * | 2006-01-27 | 2011-11-15 | Warsaw Orthopedic, Inc. | Multi-axial screw assembly |
US7833252B2 (en) | 2006-01-27 | 2010-11-16 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US7722652B2 (en) | 2006-01-27 | 2010-05-25 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US7815663B2 (en) * | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US7842072B2 (en) * | 2006-03-16 | 2010-11-30 | Zimmer Spine, Inc. | Spinal fixation device with variable stiffness |
WO2007122494A2 (en) * | 2006-04-21 | 2007-11-01 | Precimed, S.A. | Dynamic intervertebral stabilization system |
EP2308402A3 (en) * | 2006-05-15 | 2011-04-27 | Biomet Spain Orthopaedics S.L. | Surgical screw system |
US7922748B2 (en) * | 2006-06-16 | 2011-04-12 | Zimmer Spine, Inc. | Removable polyaxial housing for a pedicle screw |
US20080009863A1 (en) * | 2006-06-23 | 2008-01-10 | Zimmer Spine, Inc. | Pedicle screw distractor and associated method of use |
ES2453196T3 (en) * | 2006-08-24 | 2014-04-04 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device |
US20080077143A1 (en) * | 2006-09-25 | 2008-03-27 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US7947045B2 (en) * | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
CA2670988C (en) | 2006-12-08 | 2014-03-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US20080161853A1 (en) * | 2006-12-28 | 2008-07-03 | Depuy Spine, Inc. | Spine stabilization system with dynamic screw |
US8029544B2 (en) * | 2007-01-02 | 2011-10-04 | Zimmer Spine, Inc. | Spine stiffening device |
US8366745B2 (en) * | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8435268B2 (en) * | 2007-01-19 | 2013-05-07 | Reduction Technologies, Inc. | Systems, devices and methods for the correction of spinal deformities |
US10792074B2 (en) | 2007-01-22 | 2020-10-06 | Roger P. Jackson | Pivotal bone anchor assemly with twist-in-place friction fit insert |
US20080195153A1 (en) * | 2007-02-08 | 2008-08-14 | Matthew Thompson | Dynamic spinal deformity correction |
EP2162079B1 (en) * | 2007-02-14 | 2016-07-06 | Flex Technology Inc. | Flexible spine components |
US10842535B2 (en) * | 2007-02-14 | 2020-11-24 | William R. Krause | Flexible spine components having multiple slots |
US8292929B2 (en) * | 2007-03-16 | 2012-10-23 | Zimmer Spine, Inc. | Dynamic spinal stabilization system and method of using the same |
US8057516B2 (en) | 2007-03-21 | 2011-11-15 | Zimmer Spine, Inc. | Spinal stabilization system with rigid and flexible elements |
US8052727B2 (en) | 2007-03-23 | 2011-11-08 | Zimmer Gmbh | System and method for insertion of flexible spinal stabilization element |
CN101652106A (en) * | 2007-04-09 | 2010-02-17 | 新特斯有限责任公司 | Bone fixation element |
US7922725B2 (en) | 2007-04-19 | 2011-04-12 | Zimmer Spine, Inc. | Method and associated instrumentation for installation of spinal dynamic stabilization system |
US10085772B2 (en) * | 2007-04-30 | 2018-10-02 | Globus Medical, Inc. | Flexible spine stabilization system |
US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
US8016832B2 (en) * | 2007-05-02 | 2011-09-13 | Zimmer Spine, Inc. | Installation systems for spinal stabilization system and related methods |
US20080312694A1 (en) * | 2007-06-15 | 2008-12-18 | Peterman Marc M | Dynamic stabilization rod for spinal implants and methods for manufacturing the same |
US8292925B2 (en) | 2007-06-19 | 2012-10-23 | Zimmer Spine, Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
WO2009006604A1 (en) | 2007-07-03 | 2009-01-08 | Pioneer Surgical Technology, Inc. | Bone plate system |
US8361126B2 (en) | 2007-07-03 | 2013-01-29 | Pioneer Surgical Technology, Inc. | Bone plate system |
EP2803327A1 (en) * | 2007-07-13 | 2014-11-19 | George Frey | Systems for spinal stabilization |
EP2178451A2 (en) * | 2007-08-07 | 2010-04-28 | Synthes GmbH | Dynamic cable system |
US8080038B2 (en) * | 2007-08-17 | 2011-12-20 | Jmea Corporation | Dynamic stabilization device for spine |
US20090082815A1 (en) * | 2007-09-20 | 2009-03-26 | Zimmer Gmbh | Spinal stabilization system with transition member |
US20090088782A1 (en) * | 2007-09-28 | 2009-04-02 | Missoum Moumene | Flexible Spinal Rod With Elastomeric Jacket |
US20090093846A1 (en) * | 2007-10-04 | 2009-04-09 | Zimmer Spine Inc. | Pre-Curved Flexible Member For Providing Dynamic Stability To A Spine |
US20090093843A1 (en) * | 2007-10-05 | 2009-04-09 | Lemoine Jeremy J | Dynamic spine stabilization system |
ES2363562T3 (en) * | 2007-10-11 | 2011-08-09 | Biedermann Motech Gmbh | CONNECTION OF FORCED ADJUSTMENT TO SECURE A ROD IN A SURGICAL DEVICE, FOR EXAMPLE IN A SPINAL STABILIZATION DEVICE. |
US20090099608A1 (en) * | 2007-10-12 | 2009-04-16 | Aesculap Implant Systems, Inc. | Rod assembly for dynamic posterior stabilization |
US20090099606A1 (en) * | 2007-10-16 | 2009-04-16 | Zimmer Spine Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
EP3162311B1 (en) | 2007-10-31 | 2019-11-20 | Wright Medical Technology, Inc. | Orthopedic device |
US7947064B2 (en) * | 2007-11-28 | 2011-05-24 | Zimmer Spine, Inc. | Stabilization system and method |
US8252028B2 (en) | 2007-12-19 | 2012-08-28 | Depuy Spine, Inc. | Posterior dynamic stabilization device |
US9232968B2 (en) * | 2007-12-19 | 2016-01-12 | DePuy Synthes Products, Inc. | Polymeric pedicle rods and methods of manufacturing |
US7967848B2 (en) * | 2008-01-16 | 2011-06-28 | Custom Spine, Inc. | Spring-loaded dynamic pedicle screw assembly |
FR2926976B1 (en) * | 2008-02-04 | 2011-01-14 | Spinevision | DYNAMIC STABILIZATION ELEMENT FOR VERTEBRATES. |
US8007522B2 (en) | 2008-02-04 | 2011-08-30 | Depuy Spine, Inc. | Methods for correction of spinal deformities |
USD620109S1 (en) | 2008-02-05 | 2010-07-20 | Zimmer Spine, Inc. | Surgical installation tool |
US9277940B2 (en) * | 2008-02-05 | 2016-03-08 | Zimmer Spine, Inc. | System and method for insertion of flexible spinal stabilization element |
US9060813B1 (en) | 2008-02-29 | 2015-06-23 | Nuvasive, Inc. | Surgical fixation system and related methods |
US20090240284A1 (en) * | 2008-03-24 | 2009-09-24 | David Scott Randol | Stabilization rods |
EP2105101B2 (en) * | 2008-03-28 | 2013-09-11 | BIEDERMANN MOTECH GmbH | Bone anchoring device |
US20090254125A1 (en) * | 2008-04-03 | 2009-10-08 | Daniel Predick | Top Loading Polyaxial Spine Screw Assembly With One Step Lockup |
US20090326582A1 (en) * | 2008-04-10 | 2009-12-31 | Marcus Songer | Dynamic Rod |
KR20110008033A (en) * | 2008-04-22 | 2011-01-25 | 신세스 게엠바하 | Bone fixation element with reduction tabs |
EP2441403B1 (en) * | 2008-04-28 | 2013-07-31 | Biedermann Technologies GmbH & Co. KG | Rod-shaped implant, in particular for spinal stabilization, method and tool for producing the same |
US20090326583A1 (en) * | 2008-06-25 | 2009-12-31 | Missoum Moumene | Posterior Dynamic Stabilization System With Flexible Ligament |
US20090326584A1 (en) * | 2008-06-27 | 2009-12-31 | Michael Andrew Slivka | Spinal Dynamic Stabilization Rods Having Interior Bumpers |
US20100004693A1 (en) * | 2008-07-01 | 2010-01-07 | Peter Thomas Miller | Cam locking spine stabilization system and method |
EP2306914B1 (en) * | 2008-07-03 | 2016-11-23 | William R. Krause | Flexible spine components having a concentric slot |
US8118837B2 (en) * | 2008-07-03 | 2012-02-21 | Zimmer Spine, Inc. | Tapered-lock spinal rod connectors and methods for use |
US8167914B1 (en) | 2008-07-16 | 2012-05-01 | Zimmer Spine, Inc. | Locking insert for spine stabilization and method of use |
US20100015456A1 (en) | 2008-07-16 | 2010-01-21 | Eastman Chemical Company | Thermoplastic formulations for enhanced paintability toughness and melt process ability |
US8197512B1 (en) * | 2008-07-16 | 2012-06-12 | Zimmer Spine, Inc. | System and method for spine stabilization using resilient inserts |
EP2442739A1 (en) | 2008-08-01 | 2012-04-25 | Jackson, Roger P. | Longitudinal connecting member with sleeved tensioned cords |
US8287571B2 (en) | 2008-08-12 | 2012-10-16 | Blackstone Medical, Inc. | Apparatus for stabilizing vertebral bodies |
EP2160988B1 (en) * | 2008-09-04 | 2012-12-26 | Biedermann Technologies GmbH & Co. KG | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
EP2355725B1 (en) | 2008-09-05 | 2017-03-08 | Synthes GmbH | Bone fixation assembly |
EP2484300B1 (en) * | 2008-09-05 | 2015-05-20 | Biedermann Technologies GmbH & Co. KG | Stabilization device for bones, in particular for the spinal column |
US8083740B2 (en) * | 2008-09-28 | 2011-12-27 | Maryam Eslami | Device for facilitating the healing of bone including Olecranan |
ES2392362T3 (en) * | 2008-10-08 | 2012-12-10 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device and stabilization device for bone parts or vertebrae |
US20100114165A1 (en) * | 2008-11-04 | 2010-05-06 | Abbott Spine, Inc. | Posterior dynamic stabilization system with pivoting collars |
US20100137908A1 (en) * | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
US9055979B2 (en) * | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
EP2198792A1 (en) * | 2008-12-19 | 2010-06-23 | Sepitec Foundation | Implant system for stabilising bones |
US8137356B2 (en) | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
US8641734B2 (en) * | 2009-02-13 | 2014-02-04 | DePuy Synthes Products, LLC | Dual spring posterior dynamic stabilization device with elongation limiting elastomers |
US8414630B2 (en) * | 2009-03-10 | 2013-04-09 | Marc Evan Richelsoph | Active bone screw |
CA2794019C (en) | 2009-03-24 | 2019-09-10 | Stabiliz Orthopedics, LLC | Orthopedic fixation device with bioresorbable layer |
JP2012524623A (en) | 2009-04-23 | 2012-10-18 | スパイナル・エレメンツ・インコーポレーテッド | Lateral connector |
WO2010144458A1 (en) * | 2009-06-08 | 2010-12-16 | Reduction Technologies Inc. | Systems, methods and devices for correcting spinal deformities |
US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
US8876869B1 (en) | 2009-06-19 | 2014-11-04 | Nuvasive, Inc. | Polyaxial bone screw assembly |
US8876867B2 (en) | 2009-06-24 | 2014-11-04 | Zimmer Spine, Inc. | Spinal correction tensioning system |
US9320543B2 (en) * | 2009-06-25 | 2016-04-26 | DePuy Synthes Products, Inc. | Posterior dynamic stabilization device having a mobile anchor |
US20110009906A1 (en) * | 2009-07-13 | 2011-01-13 | Zimmer Spine, Inc. | Vertebral stabilization transition connector |
US20110066187A1 (en) * | 2009-09-11 | 2011-03-17 | Zimmer Spine, Inc. | Spinal stabilization system |
WO2011043805A1 (en) | 2009-10-05 | 2011-04-14 | Roger Jackson P | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
JP5844737B2 (en) | 2009-11-10 | 2016-01-20 | ニューヴェイジヴ,インコーポレイテッド | Device for performing spine surgery |
US8328849B2 (en) * | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
US8636655B1 (en) | 2010-01-19 | 2014-01-28 | Ronald Childs | Tissue retraction system and related methods |
US9445844B2 (en) * | 2010-03-24 | 2016-09-20 | DePuy Synthes Products, Inc. | Composite material posterior dynamic stabilization spring rod |
US8740945B2 (en) * | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
US20230404629A1 (en) | 2010-05-14 | 2023-12-21 | Roger P. Jackson | Pivotal bone anchor assembly and method for use thereof |
US9113960B2 (en) * | 2010-06-08 | 2015-08-25 | Globus Medical, Inc. | Conforming bone stabilization receiver |
US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
EP2613719A1 (en) | 2010-09-08 | 2013-07-17 | Roger P. Jackson | Dynamic stabilization members with elastic and inelastic sections |
EP2436325B1 (en) * | 2010-10-01 | 2013-11-27 | Spinelab AG | Spinal implant for stabilising and reinforcing spinal bodies |
US8961569B2 (en) | 2010-10-04 | 2015-02-24 | Genesys Spine | Locking pedicle screw devices, methods, and systems |
EP2635212A4 (en) | 2010-11-02 | 2013-11-20 | Jackson Roger P | Polyaxial bone anchor with pop-on shank and pivotable retainer |
US20120158137A1 (en) * | 2010-12-15 | 2012-06-21 | Leo Arieh Pinczewski | Peek-rich bone screw |
BR112013019837B1 (en) * | 2011-02-04 | 2020-12-01 | Spinesave Ag | bone screw and fixing element |
US9198692B1 (en) | 2011-02-10 | 2015-12-01 | Nuvasive, Inc. | Spinal fixation anchor |
US9387013B1 (en) | 2011-03-01 | 2016-07-12 | Nuvasive, Inc. | Posterior cervical fixation system |
WO2012128825A1 (en) | 2011-03-24 | 2012-09-27 | Jackson Roger P | Polyaxial bone anchor with compound articulation and pop-on shank |
EP2505155A1 (en) * | 2011-03-31 | 2012-10-03 | Spinelab AG | Spinal implant for stabilising and reinforcing spinal bodies of a spine |
EP2505154A1 (en) * | 2011-03-31 | 2012-10-03 | Spinelab AG | Spinal implant |
US9307972B2 (en) | 2011-05-10 | 2016-04-12 | Nuvasive, Inc. | Method and apparatus for performing spinal fusion surgery |
US9993269B2 (en) | 2011-07-15 | 2018-06-12 | Globus Medical, Inc. | Orthopedic fixation devices and methods of installation thereof |
US9198694B2 (en) | 2011-07-15 | 2015-12-01 | Globus Medical, Inc. | Orthopedic fixation devices and methods of installation thereof |
US9186187B2 (en) | 2011-07-15 | 2015-11-17 | Globus Medical, Inc. | Orthopedic fixation devices and methods of installation thereof |
US9358047B2 (en) | 2011-07-15 | 2016-06-07 | Globus Medical, Inc. | Orthopedic fixation devices and methods of installation thereof |
US8888827B2 (en) | 2011-07-15 | 2014-11-18 | Globus Medical, Inc. | Orthopedic fixation devices and methods of installation thereof |
US10022171B2 (en) * | 2011-07-26 | 2018-07-17 | Scott & White Healthcare | Bone screws and bone screw systems |
US9060818B2 (en) * | 2011-09-01 | 2015-06-23 | DePuy Synthes Products, Inc. | Bone implants |
US8956361B2 (en) | 2011-12-19 | 2015-02-17 | Amendia, Inc. | Extended tab bone screw system |
US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
US20130211451A1 (en) * | 2012-02-09 | 2013-08-15 | Anulex Technologies, Inc. | Bone anchor and related instrumentation and methods |
AU2013259052B2 (en) | 2012-05-11 | 2017-09-14 | Orthopediatrics Corp. | Surgical connectors and instrumentation |
FR2990840B1 (en) | 2012-05-28 | 2017-01-20 | Safe Orthopaedics | INSTRUMENTATION SYSTEM FOR REALIZING A SURGICAL INTERVENTION ON VERTEBRATES COMPRISING MEANS OF TEMPORARY BLOCKING |
US10327818B2 (en) | 2012-06-18 | 2019-06-25 | Bruce Francis Hodgson | Method and apparatus for the treatment of scoliosis |
GB2517643A (en) * | 2012-06-18 | 2015-02-25 | Bruce Francis Hodgson | Method and apparatus for the treatment of scoliosis |
US9572598B2 (en) | 2012-08-09 | 2017-02-21 | Spine Craft, LLC | Uniplanar surgical screw assembly |
US9179957B2 (en) | 2012-08-09 | 2015-11-10 | Spinecraft, LLC | Systems, assemblies and methods for spinal derotation |
US9782204B2 (en) | 2012-09-28 | 2017-10-10 | Medos International Sarl | Bone anchor assemblies |
US9339300B2 (en) * | 2012-11-05 | 2016-05-17 | University of Medical Center of Johannes Guten University Mainz | Dynamic stabilizing device for bones |
US9763702B2 (en) | 2012-11-16 | 2017-09-19 | DePuy Synthes Products, Inc. | Bone fixation assembly |
US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
US8865261B2 (en) | 2012-12-06 | 2014-10-21 | Eastman Chemical Company | Extrusion coating of elongated substrates |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
WO2014117107A1 (en) | 2013-01-28 | 2014-07-31 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
US20140277153A1 (en) | 2013-03-14 | 2014-09-18 | DePuy Synthes Products, LLC | Bone Anchor Assemblies and Methods With Improved Locking |
US10342582B2 (en) * | 2013-03-14 | 2019-07-09 | DePuy Synthes Products, Inc. | Bone anchor assemblies and methods with improved locking |
US9724145B2 (en) | 2013-03-14 | 2017-08-08 | Medos International Sarl | Bone anchor assemblies with multiple component bottom loading bone anchors |
US9259247B2 (en) | 2013-03-14 | 2016-02-16 | Medos International Sarl | Locking compression members for use with bone anchor assemblies and methods |
US9775660B2 (en) | 2013-03-14 | 2017-10-03 | DePuy Synthes Products, Inc. | Bottom-loading bone anchor assemblies and methods |
US20140276895A1 (en) * | 2013-03-15 | 2014-09-18 | Roger P. Jackson | Tower tool for minimally invasive surgery |
US9744707B2 (en) | 2013-10-18 | 2017-08-29 | Eastman Chemical Company | Extrusion-coated structural members having extruded profile members |
US9920526B2 (en) * | 2013-10-18 | 2018-03-20 | Eastman Chemical Company | Coated structural members having improved resistance to cracking |
US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
US9498255B2 (en) | 2013-12-31 | 2016-11-22 | Blackstone Medical, Inc. | Translational pedicle screw systems |
US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
US20150297265A1 (en) * | 2014-04-22 | 2015-10-22 | Alan J. Arena | Remote Operated Adjustable Spine Device |
US10758274B1 (en) * | 2014-05-02 | 2020-09-01 | Nuvasive, Inc. | Spinal fixation constructs and related methods |
US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
AU2015302333B2 (en) | 2014-08-13 | 2020-05-07 | Nuvasive, Inc. | Minimally disruptive retractor and associated methods for spinal surgery |
US10543021B2 (en) | 2014-10-21 | 2020-01-28 | Roger P. Jackson | Pivotal bone anchor assembly having an open ring positioner for a retainer |
US11219471B2 (en) | 2014-10-21 | 2022-01-11 | Roger P. Jackson | Pivotal bone anchor receiver having an insert with post-placement tool deployment |
US9742914B2 (en) * | 2014-10-21 | 2017-08-22 | Nexidia Inc. | Agent evaluation system |
DE202016005347U1 (en) * | 2015-10-06 | 2016-10-07 | Joimax Gmbh | Device for attaching a rod to a bone |
US9861410B2 (en) | 2016-05-06 | 2018-01-09 | Medos International Sarl | Methods, devices, and systems for blood flow |
US10485596B2 (en) * | 2016-12-06 | 2019-11-26 | Medos International Sàrl | Longitudinally-adjustable bone anchors and related methods |
US20180228516A1 (en) * | 2017-02-14 | 2018-08-16 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US20180303605A1 (en) * | 2017-04-25 | 2018-10-25 | Shaun Tanner | Tissue Fixation Systems, Delivery Tools, and Associated Kits and Methods |
WO2018209177A1 (en) * | 2017-05-12 | 2018-11-15 | Cutting Edge Spine Llc | Implants for tissue fixation and fusion |
EP3501457A1 (en) * | 2017-12-20 | 2019-06-26 | Materialise N.V. | Flexible porous implant fixation system |
US11419653B2 (en) * | 2018-08-24 | 2022-08-23 | Blue Sky Technologies, LLC | Surgical fastener |
US11712272B2 (en) * | 2018-12-18 | 2023-08-01 | Frank J. Schwab | Technologies for lines coupled to spines |
EP3897414B1 (en) | 2018-12-21 | 2024-10-23 | Paradigm Spine, LLC | Modular spine stabilization system and associated instruments |
WO2021127251A1 (en) | 2019-12-17 | 2021-06-24 | Jackson Roger P | Bone anchor assembly with closed ring retainer and internal snap ring |
US20210186565A1 (en) * | 2019-12-20 | 2021-06-24 | Warsaw Orthopedic, Inc. | Anti-Splay Head and Set Screw for Spinal Fixation |
US11723691B2 (en) * | 2019-12-25 | 2023-08-15 | Apifix Ltd | Biasing device for spinal device |
US11877779B2 (en) | 2020-03-26 | 2024-01-23 | Xtant Medical Holdings, Inc. | Bone plate system |
USD956233S1 (en) * | 2020-04-24 | 2022-06-28 | Solco Biomedical Co., Ltd. | Cervical screw |
WO2022108875A1 (en) | 2020-11-19 | 2022-05-27 | K2M, Inc. | Modular head assembly for spinal fixation |
US11751915B2 (en) | 2021-07-09 | 2023-09-12 | Roger P. Jackson | Modular spinal fixation system with bottom-loaded universal shank heads |
US11771473B2 (en) * | 2022-02-04 | 2023-10-03 | Phoenyx Spinal Technologies, Inc. | Polyaxial pedicle screw |
Family Cites Families (1504)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US154864A (en) | 1874-09-08 | Improvement in bolts and nuts | ||
DE373809C (en) | 1923-04-16 | Willy Seck | Fuel sucker | |
US791548A (en) | 1903-05-23 | 1905-06-06 | Hollow Screw Company | Set-screw. |
US854956A (en) | 1906-11-16 | 1907-05-28 | Charles F Martin | Veterinary surgical instrument. |
US1300275A (en) | 1914-09-03 | 1919-04-15 | Johnson Service Co | Screw-threaded fastening. |
US1330673A (en) | 1919-07-16 | 1920-02-10 | Anderson Ross | Drift for staybolt-sleeves |
US1472464A (en) | 1922-06-13 | 1923-10-30 | David F Murphy | Inside pipe wrench |
GB203508A (en) | 1922-08-24 | 1923-09-13 | Thomas Turner Hindle | Improvements in and relating to set screws for securing wheels, bosses, collars, and the like, upon shafts and the like |
US2083092A (en) | 1936-01-20 | 1937-06-08 | Joseph R Richer | Screw |
BE434038A (en) | 1938-04-28 | |||
US2243717A (en) | 1938-09-20 | 1941-05-27 | Moreira Franciseo Elias Godoy | Surgical device |
US2239352A (en) | 1939-02-23 | 1941-04-22 | Economy Screw Corp | Setscrew and method of producing same |
US2295314A (en) | 1940-05-04 | 1942-09-08 | Ernest C Whitney | Setscrew |
US2346346A (en) | 1941-01-21 | 1944-04-11 | Anderson Roger | Fracture immobilization splint |
US2362999A (en) | 1943-06-28 | 1944-11-21 | Hewitt Elmer Spencer | Screwhead |
US2445978A (en) | 1945-05-07 | 1948-07-27 | Domnic V Stellin | Socket head screw |
US2579438A (en) | 1946-02-15 | 1951-12-18 | Puy Mfg Company Inc De | Screw holding screw driver |
US2537029A (en) | 1946-08-06 | 1951-01-09 | Phillips Screw Co | Method for manufacturing screw drivers |
US2524095A (en) | 1946-11-26 | 1950-10-03 | Robert D Powers | Screw driver with elementgripping jaws |
US2531892A (en) | 1947-01-27 | 1950-11-28 | Richard T Reese | Bolt and nut fixture |
US2532972A (en) | 1947-04-18 | 1950-12-05 | Donald D Vertin | Screw holder and starter |
US2532815A (en) | 1947-08-29 | 1950-12-05 | Hagerstown Engineering Company | Special lock screw |
US2553337A (en) | 1948-09-21 | 1951-05-15 | Julius E Shafer | Bearing assembly |
US2669896A (en) * | 1951-01-19 | 1954-02-23 | Robert S Clough | Retractable jaw wrench having parallel resilient jaws |
US2778265A (en) | 1953-06-15 | 1957-01-22 | Set Screw & Mfg Company | Solid cup-point set screw |
US2877681A (en) | 1954-04-16 | 1959-03-17 | Set Screw & Mfg Company | Screw having deformable temporary head disposed in a groove |
US2813450A (en) | 1954-05-03 | 1957-11-19 | Dzus William | Rotatable fastener having circular toothed tool receiving groove |
US3013244A (en) | 1957-05-01 | 1961-12-12 | Verdugo Products Company | Clamp connection and spacer for electrical transmission lines |
US2927332A (en) | 1957-11-12 | 1960-03-08 | Moore Harrington | Method of making a setscrew |
US2969250A (en) | 1959-01-05 | 1961-01-24 | Standard Pressed Steel Co | Socket drive |
US3143029A (en) | 1960-03-28 | 1964-08-04 | Set Screw & Mfg Company | Set screw with center of gravity located to permit orientation |
NL291630A (en) | 1962-09-22 | |||
US3236275A (en) | 1962-10-24 | 1966-02-22 | Robert D Smith | Screw driver with an h-shaped drawing bit |
US3370341A (en) | 1965-12-20 | 1968-02-27 | G K N Serews & Fasteners Ltd | Method of and apparatus for use in tightening a nut and bolt assembly |
US3584667A (en) | 1966-09-19 | 1971-06-15 | Textron Inc | Coupling arrangement and tools for same |
US3444775A (en) | 1968-02-16 | 1969-05-20 | Lockheed Aircraft Corp | Nut formed with multiple torque-off collars |
US3498174A (en) | 1968-11-19 | 1970-03-03 | Hi Shear Corp | Inherently torque-limited bolt having removal means |
US3604487A (en) | 1969-03-10 | 1971-09-14 | Richard S Gilbert | Orthopedic screw driving means |
US3812757A (en) | 1969-11-04 | 1974-05-28 | Textron Inc | Threaded fastener with torque control head |
US3640416A (en) | 1970-10-16 | 1972-02-08 | John J Temple | Reverse angle thread system for containers |
SU371359A1 (en) | 1971-06-15 | 1973-02-22 | В. И. Соколовский, В. П. Банков , В. С. Паршин Уральский политехнический институт С. М. Кирова | SCREW PAIR |
JPS4867159A (en) | 1971-12-20 | 1973-09-13 | ||
JPS50106061A (en) | 1974-01-29 | 1975-08-21 | ||
US4033139A (en) | 1974-02-08 | 1977-07-05 | Frederick Leonard L | Pile driving hammer, apparatus and method |
GB1519139A (en) | 1974-06-18 | 1978-07-26 | Crock H V And Pericic L | L securing elongate members to structurs more especially in surgical procedures |
IL46030A0 (en) | 1974-11-11 | 1975-02-10 | Rosenberg L | Orthopaedic screw |
US3963322A (en) | 1975-01-23 | 1976-06-15 | Ite Imperial Corporation | Torque controlling set screw for use with the cable of solderless connectors, or the like |
US4103422A (en) | 1975-03-07 | 1978-08-01 | Oratronics, Inc. | Threaded self-tapping endodontic stabilizer |
US3989284A (en) | 1975-04-23 | 1976-11-02 | Hydril Company | Tubular connection |
GB1551706A (en) | 1975-04-28 | 1979-08-30 | Downs Surgical Ltd | Surgical implant |
US4373754A (en) | 1978-08-09 | 1983-02-15 | Hydril Company | Threaded connector |
US4190091A (en) * | 1978-09-26 | 1980-02-26 | Sebastian Zuppichin | Screw, screwdriver and screw-holding attachment therefor |
JPS5597513A (en) | 1979-01-17 | 1980-07-24 | Topura Kk | Selffdrilling screw |
US4269246A (en) | 1979-05-10 | 1981-05-26 | Textron Inc. | Fastener and driver assembly |
US4269178A (en) | 1979-06-04 | 1981-05-26 | Keene James S | Hook assembly for engaging a spinal column |
FR2467312A1 (en) | 1979-10-08 | 1981-04-17 | Boulay Ste Indle | Lock nut for screw - has double, internal, hexagonal key drive hole to facilitate complete dismantling |
US4409968A (en) | 1980-02-04 | 1983-10-18 | Drummond Denis S | Method and apparatus for engaging a hook assembly to a spinal column |
CH648197A5 (en) | 1980-05-28 | 1985-03-15 | Synthes Ag | IMPLANT AND SCREW FASTENING ON ITS BONE. |
US4369769A (en) | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
GB2082709A (en) | 1980-08-23 | 1982-03-10 | Robinson Derek Hugh | Disc nut and disc-headed bolt |
US4347845A (en) | 1981-03-23 | 1982-09-07 | Mayfield Jack K | Hook inserter device |
US4577448A (en) | 1981-06-17 | 1986-03-25 | The British Picker Company, Ltd. | Floors |
US4448191A (en) | 1981-07-07 | 1984-05-15 | Rodnyansky Lazar I | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature |
US4506917A (en) | 1982-07-22 | 1985-03-26 | Interfit, Inc. | Pipe connection fitting |
US4492500A (en) | 1983-02-10 | 1985-01-08 | Ewing Peter D | Torque limiting set screw |
FR2545350B1 (en) | 1983-05-04 | 1985-08-23 | Cotrel Yves | DEVICE FOR SHRINKAGE OF THE RACHIS |
GB2140523A (en) | 1983-05-17 | 1984-11-28 | Hepworth Electrical Developmen | Shear head screws or bolts, or shear head adapter |
US4600225A (en) | 1983-12-23 | 1986-07-15 | Interlock Technologies Corporation | Tubular connection having a parallel chevron thread |
US4600224A (en) | 1983-12-23 | 1986-07-15 | Interlock Technologies Corporation | Tubular connection having a chevron wedge thread |
GB2173104B (en) | 1984-02-28 | 1987-11-25 | Peter John Webb | Spinal fixation apparatus |
US4653486A (en) | 1984-04-12 | 1987-03-31 | Coker Tom P | Fastener, particularly suited for orthopedic use |
DE8418588U1 (en) | 1984-06-15 | 1984-10-04 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | screw |
US4877020A (en) | 1984-11-30 | 1989-10-31 | Vich Jose M O | Apparatus for bone graft |
JPH0712339B2 (en) | 1985-03-22 | 1995-02-15 | コドマン・アンド・シヤートレフ・インコーポレイテツド | Skull screw |
US4743260A (en) | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
US4653481A (en) | 1985-07-24 | 1987-03-31 | Howland Robert S | Advanced spine fixation system and method |
US4703954A (en) | 1985-11-08 | 1987-11-03 | Hydril Company | Threaded pipe connection having wedge threads |
DE3614101C1 (en) | 1986-04-25 | 1987-10-22 | Juergen Prof Dr Med Harms | Pedicle screw |
US4707001A (en) | 1986-06-20 | 1987-11-17 | Seal-Tech, Inc. | Liner connection |
US5427418A (en) | 1986-07-18 | 1995-06-27 | Watts; John D. | High strength, low torque threaded tubular connection |
DE3630863A1 (en) | 1986-09-08 | 1988-03-17 | Mecron Med Prod Gmbh | Bone screw |
US4805602A (en) | 1986-11-03 | 1989-02-21 | Danninger Medical Technology | Transpedicular screw and rod system |
US4748260A (en) | 1986-12-22 | 1988-05-31 | Ethyl Corporation | Preparation of amine alanes |
DE3701765C1 (en) | 1987-01-22 | 1988-06-09 | Ethicon Gmbh | Bone screw |
US4764068A (en) | 1987-03-06 | 1988-08-16 | Sps Technologies, Inc. | Knurled cup-point set screw |
US4759672A (en) | 1987-05-08 | 1988-07-26 | Illinois Tool Works Inc. | Fastener head with stabilizing ring |
DE3800052A1 (en) | 1987-07-08 | 1989-07-13 | Harms Juergen | POSITIONING SCREW |
US4790297A (en) | 1987-07-24 | 1988-12-13 | Biotechnology, Inc. | Spinal fixation method and system |
US4838264A (en) | 1987-08-18 | 1989-06-13 | Bremer Orthopedics, Inc. | Torque limiting device for use with bone penetrating pins |
US4836196A (en) | 1988-01-11 | 1989-06-06 | Acromed Corporation | Surgically implantable spinal correction system |
US5468241A (en) | 1988-02-18 | 1995-11-21 | Howmedica Gmbh | Support device for the human vertebral column |
US4887596A (en) | 1988-03-02 | 1989-12-19 | Synthes (U.S.A.) | Open backed pedicle screw |
DE3811345C1 (en) | 1988-04-02 | 1989-09-07 | Aesculap Ag, 7200 Tuttlingen, De | |
US4850775A (en) | 1988-04-26 | 1989-07-25 | Lee Jae B | Screw-type fastening device |
US4917606A (en) | 1988-05-09 | 1990-04-17 | Ipco Corporation | Threaded dental anchor |
US4950269A (en) | 1988-06-13 | 1990-08-21 | Acromed Corporation | Spinal column fixation device |
US5015247A (en) | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US5484437A (en) * | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
US6770074B2 (en) | 1988-06-13 | 2004-08-03 | Gary Karlin Michelson | Apparatus for use in inserting spinal implants |
US5772661A (en) | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
FR2633177B1 (en) | 1988-06-24 | 1991-03-08 | Fabrication Materiel Orthopedi | IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY |
US4961740B1 (en) | 1988-10-17 | 1997-01-14 | Surgical Dynamics Inc | V-thread fusion cage and method of fusing a bone joint |
US5201734A (en) | 1988-12-21 | 1993-04-13 | Zimmer, Inc. | Spinal locking sleeve assembly |
USRE36221E (en) | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
FR2642645B1 (en) | 1989-02-03 | 1992-08-14 | Breard Francis | FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS |
NO900391L (en) | 1989-02-06 | 1990-08-07 | Weidmann H Ag | PROCEDURE, ANCHORING ELEMENT AND TENSION FOR TENSIONING OF A BAR. |
FR2642643B1 (en) | 1989-02-09 | 1991-05-10 | Vignaud Jean Louis | SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW |
FR2645732B1 (en) | 1989-04-13 | 1997-01-03 | Cotrel Yves | VERTEBRAL IMPLANT FOR OSTEOSYNTHESIS DEVICE |
CH678803A5 (en) * | 1989-07-12 | 1991-11-15 | Sulzer Ag | |
DE3923996A1 (en) | 1989-07-20 | 1991-01-31 | Lutz Biedermann | RECORDING PART FOR JOINTLY CONNECTING TO A SCREW FOR MAKING A PEDICLE SCREW |
GB2235265A (en) | 1989-08-11 | 1991-02-27 | Ford Motor Co | A fuel tank closure component with push-fit pipe couplings |
DE3942326A1 (en) | 1989-12-21 | 1991-06-27 | Haerle Anton | SCREW AS AN OSTEOSYNTHESIS TOOL |
CA2035348C (en) | 1990-02-08 | 2000-05-16 | Jean-Louis Vignaud | Adjustable fastening device with spinal osteosynthesis rods |
US5019080A (en) | 1990-02-13 | 1991-05-28 | Trextron Inc. | Drive system for prosthetic fasteners |
FR2658413B1 (en) | 1990-02-19 | 1997-01-03 | Sofamor | OSTEOSYNTHESIS DEVICE FOR THE CORRECTION OF SPINAL DEVIATIONS. |
FR2658414B1 (en) | 1990-02-19 | 1992-07-31 | Sofamor | IMPLANT FOR OSTEOSYNTHESIS DEVICE IN PARTICULAR OF THE RACHIS. |
FR2659225B1 (en) | 1990-03-08 | 1995-09-08 | Sofamor | TRANSVERSE FIXING DEVICE FOR PROVIDING A RIGID CROSS-LINK BETWEEN TWO RODS OF A SPINAL OSTEOSYNTHESIS SYSTEM. |
GB9007519D0 (en) | 1990-04-03 | 1990-05-30 | Trisport Ltd | Studded footwear |
US5360431A (en) | 1990-04-26 | 1994-11-01 | Cross Medical Products | Transpedicular screw system and method of use |
US5092635A (en) | 1990-04-27 | 1992-03-03 | Baker Hughes Incorporated | Buttress thread form |
DE9006646U1 (en) | 1990-06-13 | 1990-08-23 | Howmedica GmbH, 2314 Schönkirchen | Device for bracing vertebrae of the human spine |
US5102412A (en) | 1990-06-19 | 1992-04-07 | Chaim Rogozinski | System for instrumentation of the spine in the treatment of spinal deformities |
JP2942389B2 (en) | 1990-06-23 | 1999-08-30 | 住友電気工業株式会社 | Fluororesin coating |
GB9014817D0 (en) | 1990-07-04 | 1990-08-22 | Mehdian Seyed M H | Improvements in or relating to apparatus for use in the treatment of spinal disorders |
US5129900B1 (en) | 1990-07-24 | 1998-12-29 | Acromed Corp | Spinal column retaining method and apparatus |
US5073074A (en) | 1990-07-26 | 1991-12-17 | Sps Technologies, Inc. | Set screw |
US5034011A (en) * | 1990-08-09 | 1991-07-23 | Advanced Spine Fixation Systems Incorporated | Segmental instrumentation of the posterior spine |
CH681853A5 (en) | 1990-08-21 | 1993-06-15 | Synthes Ag | |
US5067428A (en) | 1990-09-21 | 1991-11-26 | Dickerson Mack F | Portable boat dock |
FR2666981B1 (en) | 1990-09-21 | 1993-06-25 | Commarmond Jacques | SYNTHETIC LIGAMENT VERTEBRAL. |
US5020519A (en) | 1990-12-07 | 1991-06-04 | Zimmer, Inc. | Sagittal approximator |
US5176483A (en) | 1991-01-21 | 1993-01-05 | Inq. Walter Hengst Gmbh & Co. | Detachment lock for a bolt connection |
US5176678A (en) | 1991-03-14 | 1993-01-05 | Tsou Paul M | Orthopaedic device with angularly adjustable anchor attachments to the vertebrae |
US5129899A (en) | 1991-03-27 | 1992-07-14 | Smith & Nephew Richards Inc. | Bone fixation apparatus |
FR2676354B1 (en) | 1991-05-17 | 1997-11-07 | Vignaud Jean Louis | LOCKABLE CONNECTION DEVICE OF SPINAL OSTEOSYNTHESIS ANCHORING ELEMENTS. |
FR2676911B1 (en) | 1991-05-30 | 1998-03-06 | Psi Ste Civile Particuliere | INTERVERTEBRAL STABILIZATION DEVICE WITH SHOCK ABSORBERS. |
MX9204122A (en) | 1991-07-15 | 1993-04-01 | Danek Group Inc | SPINAL FIXATION SYSTEM. |
FR2680461B1 (en) | 1991-08-19 | 1993-11-26 | Fabrication Mat Orthopedique | IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS, AND CORRESPONDING DEVICE FOR ITS PLACEMENT. |
US5275601A (en) | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
US5257993A (en) | 1991-10-04 | 1993-11-02 | Acromed Corporation | Top-entry rod retainer |
US5176679A (en) | 1991-09-23 | 1993-01-05 | Lin Chih I | Vertebral locking and retrieving system |
DE4132994C2 (en) * | 1991-10-04 | 1995-04-06 | Bodenseewerk Geraetetech | Device structure for an electrical or electronic device |
US5282862A (en) * | 1991-12-03 | 1994-02-01 | Artifex Ltd. | Spinal implant system and a method for installing the implant onto a vertebral column |
US5263953A (en) | 1991-12-31 | 1993-11-23 | Spine-Tech, Inc. | Apparatus and system for fusing bone joints |
US5409488A (en) | 1992-01-16 | 1995-04-25 | Ulrich; Heinrich | Spondylodesis implant |
CA2130083A1 (en) | 1992-02-14 | 1993-08-19 | Acufex Microsurgical, Inc. | Polymeric screws and coatings for surgical uses |
DE9202745U1 (en) | 1992-03-02 | 1992-04-30 | Howmedica Gmbh, 2314 Schoenkirchen | Device for bracing vertebrae of the human spine |
US5358289A (en) | 1992-03-13 | 1994-10-25 | Nkk Corporation | Buttress-threaded tubular connection |
WO1993021848A1 (en) | 1992-04-28 | 1993-11-11 | Huene Donald R | Absorbable bone screw and tool for its insertion |
ATE180160T1 (en) | 1992-06-08 | 1999-06-15 | Robert M Campbell Jr | INSTRUMENTATION FOR SEGMENTARY RIB SUPPORT |
ES2100348T3 (en) | 1992-06-25 | 1997-06-16 | Synthes Ag | OSTEOSYNTHETIC FIXING DEVICE. |
FR2692952B1 (en) | 1992-06-25 | 1996-04-05 | Psi | IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT. |
US5281222A (en) | 1992-06-30 | 1994-01-25 | Zimmer, Inc. | Spinal implant system |
USD346217S (en) | 1992-07-13 | 1994-04-19 | Acromed Corporation | Combined hook holder and rod mover for spinal surgery |
US5382248A (en) | 1992-09-10 | 1995-01-17 | H. D. Medical, Inc. | System and method for stabilizing bone segments |
US5545165A (en) | 1992-10-09 | 1996-08-13 | Biedermann Motech Gmbh | Anchoring member |
US5334203A (en) | 1992-09-30 | 1994-08-02 | Amei Technologies Inc. | Spinal fixation system and methods |
US5484440A (en) * | 1992-11-03 | 1996-01-16 | Zimmer, Inc. | Bone screw and screwdriver |
FR2697743B1 (en) | 1992-11-09 | 1995-01-27 | Fabrication Mat Orthopedique S | Spinal osteosynthesis device applicable in particular to degenerative vertebrae. |
FR2697744B1 (en) | 1992-11-10 | 1995-03-03 | Fabrication Mat Orthopedique S | Spinal osteosynthesis instrumentation by the anterior route. |
FR2697992B1 (en) | 1992-11-18 | 1994-12-30 | Eurosurgical | Device for attaching to a rod of an organ, in particular for spinal orthopedic instrumentation. |
DE4239716C1 (en) | 1992-11-26 | 1994-08-04 | Kernforschungsz Karlsruhe | Elastic implant for stabilising degenerated spinal column segments |
US5354299A (en) | 1992-12-07 | 1994-10-11 | Linvatec Corporation | Method of revising a screw in a tunnel |
US5306275A (en) | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
US5409489A (en) | 1993-01-12 | 1995-04-25 | Sioufi; Georges | Surgical instrument for cone-shaped sub-trochanteric rotational osteotomy |
US5387212A (en) | 1993-01-26 | 1995-02-07 | Yuan; Hansen A. | Vertebral locking and retrieving system with central locking rod |
DE4303770C1 (en) | 1993-02-09 | 1994-05-26 | Plus Endoprothetik Ag Rotkreuz | Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces. |
AU683243B2 (en) | 1993-02-10 | 1997-11-06 | Zimmer Spine, Inc. | Spinal stabilization surgical tool set |
FR2701650B1 (en) | 1993-02-17 | 1995-05-24 | Psi | Double shock absorber for intervertebral stabilization. |
US5549607A (en) | 1993-02-19 | 1996-08-27 | Alphatec Manufacturing, Inc, | Apparatus for spinal fixation system |
US5282707A (en) | 1993-02-22 | 1994-02-01 | Detroit Tool Industries Corporation | Fastening system for locking nut with torque indicating marks |
DE9302700U1 (en) | 1993-02-25 | 1993-04-08 | Howmedica GmbH, 2314 Schönkirchen | Device for setting up a spine |
US5354292A (en) | 1993-03-02 | 1994-10-11 | Braeuer Harry L | Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia |
DE4307576C1 (en) | 1993-03-10 | 1994-04-21 | Biedermann Motech Gmbh | Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod |
US5387211B1 (en) | 1993-03-10 | 1996-12-31 | Trimedyne Inc | Multi-head laser assembly |
US5415661A (en) | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
FR2704133B1 (en) | 1993-04-19 | 1995-07-13 | Stryker Corp | Implant for osteosynthesis device in particular of the spine. |
EP0650344B1 (en) | 1993-05-11 | 1998-02-18 | Synthes AG, Chur | Osteo-synthetic securing component and manipulation aid therefor |
FR2705226B1 (en) | 1993-05-17 | 1995-07-07 | Tornier Sa | Spine fixator to maintain a spine. |
DE4316542C1 (en) | 1993-05-18 | 1994-07-21 | Schaefer Micomed Gmbh | Osteosynthesis device |
US5713898A (en) | 1993-05-18 | 1998-02-03 | Schafer Micomed Gmbh | Orthopedic surgical holding device |
US6077262A (en) | 1993-06-04 | 2000-06-20 | Synthes (U.S.A.) | Posterior spinal implant |
US5379505A (en) | 1993-06-16 | 1995-01-10 | Lock-N-Stitch International | Method for repairing cracks |
ES2324927T3 (en) | 1993-07-02 | 2009-08-19 | Synthes Gmbh | REAR VERTEBRAL IMPLANT. |
WO1995002373A1 (en) | 1993-07-16 | 1995-01-26 | Artifex Ltd. | Implant device and method of installing |
US5423816A (en) | 1993-07-29 | 1995-06-13 | Lin; Chih I. | Intervertebral locking device |
FR2709246B1 (en) * | 1993-08-27 | 1995-09-29 | Martin Jean Raymond | Dynamic implanted spinal orthosis. |
US5466238A (en) | 1993-08-27 | 1995-11-14 | Lin; Chih-I | Vertebral locking and retrieving system having a fixation crossbar |
FR2709412B1 (en) | 1993-09-01 | 1995-11-24 | Tornier Sa | Screw for lumbo-sacral fixator. |
WO1995010238A1 (en) | 1993-10-08 | 1995-04-20 | Chaim Rogozinski | Spinal treatment apparatus and method including multi-directional attachment member |
US5466237A (en) | 1993-11-19 | 1995-11-14 | Cross Medical Products, Inc. | Variable locking stabilizer anchor seat and screw |
DE69433671D1 (en) | 1993-11-19 | 2004-05-06 | Cross Med Prod Inc | FASTENING ROD SEAT WITH SLIDING LOCK |
DE4339804A1 (en) | 1993-11-23 | 1995-06-01 | Haerle Anton | Power transmission link for osteosynthesis work |
US5628740A (en) | 1993-12-23 | 1997-05-13 | Mullane; Thomas S. | Articulating toggle bolt bone screw |
FR2715825A1 (en) | 1994-02-09 | 1995-08-11 | Soprane Sa | Self-aligning rod for spinal osteosynthesis apparatus |
NL9400210A (en) | 1994-02-10 | 1995-09-01 | Acromed Bv | Implantation device for limiting movements between two vertebrae. |
US5611800A (en) | 1994-02-15 | 1997-03-18 | Alphatec Manufacturing, Inc. | Spinal fixation system |
US5507745A (en) | 1994-02-18 | 1996-04-16 | Sofamor, S.N.C. | Occipito-cervical osteosynthesis instrumentation |
DE9402839U1 (en) | 1994-02-22 | 1994-04-14 | Howmedica GmbH, 24232 Schönkirchen | Device for setting up a spine with damaged vertebrae |
EP0669109B1 (en) | 1994-02-28 | 1999-05-26 | Sulzer Orthopädie AG | Stabilizer for adjacent vertebrae |
US5507747A (en) | 1994-03-09 | 1996-04-16 | Yuan; Hansen A. | Vertebral fixation device |
DE59507758D1 (en) | 1994-03-10 | 2000-03-16 | Schaefer Micomed Gmbh | Osteosynthesis device |
FR2717370A1 (en) | 1994-03-18 | 1995-09-22 | Moreau Patrice | Intervertebral stabilising prosthesis for spinal reinforcement inserted during spinal surgery |
EP0677277A3 (en) | 1994-03-18 | 1996-02-28 | Patrice Moreau | Spinal prosthetic assembly. |
FR2718944B1 (en) | 1994-04-20 | 1996-08-30 | Pierre Roussouly | Orthopedic anchoring stabilization device. |
FR2718946B1 (en) | 1994-04-25 | 1996-09-27 | Soprane Sa | Flexible rod for lumbosacral osteosynthesis fixator. |
US5662652A (en) | 1994-04-28 | 1997-09-02 | Schafer Micomed Gmbh | Bone surgery holding apparatus |
DE4425392C2 (en) | 1994-04-28 | 1996-04-25 | Schaefer Micomed Gmbh | Bone surgery holding device |
CA2191089C (en) | 1994-05-23 | 2003-05-06 | Douglas W. Kohrs | Intervertebral fusion implant |
US5490750A (en) | 1994-06-09 | 1996-02-13 | Gundy; William P. | Anchoring device for a threaded member |
US5641256A (en) | 1994-06-09 | 1997-06-24 | Npc, Inc. | Anchoring device for a threaded member |
SE9402130D0 (en) | 1994-06-17 | 1994-06-17 | Sven Olerud | Device and method for plate fixation of legs |
FR2721819B1 (en) | 1994-07-04 | 1996-10-04 | Amp Dev | SELF-DRILLING AND SELF-TAPPING ANKLE DEVICE WITH A SHRINKABLE END CAP, FOR LOCKING AN OSTEOSYNTHESIS PLATE OR COAPTING TWO BONE FRAGMENTS |
DE4425357C2 (en) | 1994-07-18 | 1996-07-04 | Harms Juergen | Anchoring element |
US5961517A (en) | 1994-07-18 | 1999-10-05 | Biedermann; Lutz | Anchoring member and adjustment tool therefor |
DE9413471U1 (en) | 1994-08-20 | 1995-12-21 | Schäfer micomed GmbH, 73614 Schorndorf | Ventral intervertebral implant |
EP0725601B1 (en) | 1994-08-29 | 2002-07-31 | Societe De Fabrication De Materiel Orthopedique Sofamor | Osteosynthesis instrument |
US5601553A (en) | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5474551A (en) | 1994-11-18 | 1995-12-12 | Smith & Nephew Richards, Inc. | Universal coupler for spinal fixation |
US6652765B1 (en) | 1994-11-30 | 2003-11-25 | Implant Innovations, Inc. | Implant surface preparation |
FR2729291B1 (en) | 1995-01-12 | 1997-09-19 | Euros Sa | RACHIDIAN IMPLANT |
US5620443A (en) | 1995-01-25 | 1997-04-15 | Danek Medical, Inc. | Anterior screw-rod connector |
FR2730158B1 (en) | 1995-02-06 | 1999-11-26 | Jbs Sa | DEVICE FOR MAINTAINING A NORMAL SPACING BETWEEN VERTEBRES AND FOR THE REPLACEMENT OF MISSING VERTEBRES |
US5643260A (en) | 1995-02-14 | 1997-07-01 | Smith & Nephew, Inc. | Orthopedic fixation system |
EP0809467A4 (en) | 1995-02-15 | 1998-06-03 | Kevin R Stone | Improved suture anchor assembly |
DE19507141B4 (en) | 1995-03-01 | 2004-12-23 | Harms, Jürgen, Prof. Dr.med. | Locking |
FR2731344B1 (en) | 1995-03-06 | 1997-08-22 | Dimso Sa | SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD |
US5605458A (en) | 1995-03-06 | 1997-02-25 | Crystal Medical Technology, A Division Of Folsom Metal Products, Inc. | Negative load flank implant connector |
AU2101495A (en) | 1995-03-13 | 1996-10-02 | Steven D. Gelbard | Spinal stabilization implant system |
DE19509141C2 (en) | 1995-03-14 | 1997-09-04 | Juergen Machate | Method and arrangement for exchanging data |
DE19509332C1 (en) | 1995-03-15 | 1996-08-14 | Harms Juergen | Anchoring element |
DE19509331C2 (en) | 1995-03-15 | 1998-01-15 | Juergen Harms | Element for stabilizing the cervical vertebrae |
US5591235A (en) | 1995-03-15 | 1997-01-07 | Kuslich; Stephen D. | Spinal fixation device |
US5569247A (en) | 1995-03-27 | 1996-10-29 | Smith & Nephew Richards, Inc. | Enhanced variable angle bone bolt |
US6206922B1 (en) | 1995-03-27 | 2001-03-27 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
US5782919A (en) | 1995-03-27 | 1998-07-21 | Sdgi Holdings, Inc. | Interbody fusion device and method for restoration of normal spinal anatomy |
US5591166A (en) | 1995-03-27 | 1997-01-07 | Smith & Nephew Richards, Inc. | Multi angle bone bolt |
US5520690A (en) | 1995-04-13 | 1996-05-28 | Errico; Joseph P. | Anterior spinal polyaxial locking screw plate assembly |
US5669911A (en) | 1995-04-13 | 1997-09-23 | Fastenetix, L.L.C. | Polyaxial pedicle screw |
US6780186B2 (en) | 1995-04-13 | 2004-08-24 | Third Millennium Engineering Llc | Anterior cervical plate having polyaxial locking screws and sliding coupling elements |
US5882350A (en) | 1995-04-13 | 1999-03-16 | Fastenetix, Llc | Polyaxial pedicle screw having a threaded and tapered compression locking mechanism |
US5607304A (en) | 1995-04-17 | 1997-03-04 | Crystal Medical Technology, A Division Of Folsom Metal Products, Inc. | Implant connector |
US5607428A (en) | 1995-05-01 | 1997-03-04 | Lin; Kwan C. | Orthopedic fixation device having a double-threaded screw |
ATE251423T1 (en) | 1995-06-06 | 2003-10-15 | Sdgi Holdings Inc | DEVICE FOR CONNECTING ADJACENT SPINAL SUPPORT RODS |
US5562663A (en) | 1995-06-07 | 1996-10-08 | Danek Medical, Inc. | Implant interconnection mechanism |
US5683391A (en) | 1995-06-07 | 1997-11-04 | Danek Medical, Inc. | Anterior spinal instrumentation and method for implantation and revision |
FR2735351B1 (en) | 1995-06-13 | 1997-09-12 | Sofamor | IMPLANT FOR THE SURGICAL TREATMENT OF A VERTEBRAL ISTHMIC FRACTURE |
US5676665A (en) | 1995-06-23 | 1997-10-14 | Bryan; Donald W. | Spinal fixation apparatus and method |
US5609594A (en) | 1995-07-13 | 1997-03-11 | Fastenetix Llc | Extending hook and polyaxial coupling element device for use with side loading road fixation devices |
US5584834A (en) | 1995-07-13 | 1996-12-17 | Fastenetix, L.L.C. | Polyaxial locking screw and coupling element assembly for use with side loading rod fixation apparatus |
US5586984A (en) | 1995-07-13 | 1996-12-24 | Fastenetix, L.L.C. | Polyaxial locking screw and coupling element assembly for use with rod fixation apparatus |
US5609593A (en) | 1995-07-13 | 1997-03-11 | Fastenetix, Llc | Advanced polyaxial locking hook and coupling element device for use with top loading rod fixation devices |
US5549608A (en) | 1995-07-13 | 1996-08-27 | Fastenetix, L.L.C. | Advanced polyaxial locking screw and coupling element device for use with rod fixation apparatus |
US5554157A (en) | 1995-07-13 | 1996-09-10 | Fastenetix, L.L.C. | Rod securing polyaxial locking screw and coupling element assembly |
US5578033A (en) | 1995-07-13 | 1996-11-26 | Fastenetix, L.L.C. | Advanced polyaxial locking hook and coupling element device for use with side loading rod fixation devices |
US6193719B1 (en) | 1995-08-24 | 2001-02-27 | Sofamor S.N.C. | Threaded clamping plug for interconnecting two implants of a spinal osteosynthesis instrumentation or other implants |
US5782830A (en) | 1995-10-16 | 1998-07-21 | Sdgi Holdings, Inc. | Implant insertion device |
US5683392A (en) | 1995-10-17 | 1997-11-04 | Wright Medical Technology, Inc. | Multi-planar locking mechanism for bone fixation |
US5697929A (en) | 1995-10-18 | 1997-12-16 | Cross Medical Products, Inc. | Self-limiting set screw for use with spinal implant systems |
FR2742040B1 (en) | 1995-12-07 | 1998-01-23 | Groupe Lepine | ASSEMBLY DEVICE FOR EXTENDED PARTS OF OSTEOSYNTHESIS MATERIAL, ESPECIALLY SPINAL |
DE19603410C2 (en) | 1996-01-31 | 1999-02-18 | Kirsch Axel | Screw for insertion into a bone and unscrewing tool therefor |
US5702397A (en) | 1996-02-20 | 1997-12-30 | Medicinelodge, Inc. | Ligament bone anchor and method for its use |
US5662653A (en) | 1996-02-22 | 1997-09-02 | Pioneer Laboratories, Inc. | Surgical rod-to-bone attachment |
DE19607517C1 (en) | 1996-02-28 | 1997-04-10 | Lutz Biedermann | Bone screw for osteosynthesis |
US5713705A (en) | 1996-03-01 | 1998-02-03 | Gruenbichler; Carl | Fastener bolt with limited torque head |
US5711709A (en) | 1996-03-07 | 1998-01-27 | Douville-Johnston Corporation | Self-aligning rod end coupler |
US5792044A (en) | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US6679833B2 (en) | 1996-03-22 | 2004-01-20 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
WO1997037605A1 (en) | 1996-04-03 | 1997-10-16 | Aesculap - Jbs | Cap for locking a member into a groove |
DE29606468U1 (en) | 1996-04-09 | 1997-08-07 | Waldemar Link GmbH & Co, 22339 Hamburg | Spinal fixator |
EP0959791B1 (en) | 1996-04-18 | 2003-08-27 | Tresona Instrument Ab | Device for correcting and stabilising a deviating curvature of a spinal column |
DE19617362C2 (en) | 1996-04-30 | 1999-06-10 | Harms Juergen | Anchoring element |
US5667508A (en) | 1996-05-01 | 1997-09-16 | Fastenetix, Llc | Unitary locking cap for use with a pedicle screw |
FR2748387B1 (en) | 1996-05-13 | 1998-10-30 | Stryker France Sa | BONE FIXATION DEVICE, IN PARTICULAR TO THE SACRUM, IN OSTEOSYNTHESIS OF THE SPINE |
US6019759A (en) | 1996-07-29 | 2000-02-01 | Rogozinski; Chaim | Multi-Directional fasteners or attachment devices for spinal implant elements |
US6149533A (en) | 1996-09-13 | 2000-11-21 | Finn; Charles A. | Golf club |
FR2753368B1 (en) | 1996-09-13 | 1999-01-08 | Chauvin Jean Luc | EXPANSIONAL OSTEOSYNTHESIS CAGE |
US6053078A (en) | 1996-09-18 | 2000-04-25 | Pst Products, Inc. | Wrench for soft golf spikes |
US5879350A (en) | 1996-09-24 | 1999-03-09 | Sdgi Holdings, Inc. | Multi-axial bone screw assembly |
US5885286A (en) | 1996-09-24 | 1999-03-23 | Sdgi Holdings, Inc. | Multi-axial bone screw assembly |
US5797911A (en) | 1996-09-24 | 1998-08-25 | Sdgi Holdings, Inc. | Multi-axial bone screw assembly |
US6261039B1 (en) | 1996-10-02 | 2001-07-17 | Gary Jack Reed | Thread repair insert |
ATE346556T1 (en) | 1996-10-09 | 2006-12-15 | K2 Medical L L C | MODULAR, MULTI-AXIS PEDICLE SCREW WITH LOCKING |
US5800435A (en) | 1996-10-09 | 1998-09-01 | Techsys, Llc | Modular spinal plate for use with modular polyaxial locking pedicle screws |
US5725528A (en) | 1997-02-12 | 1998-03-10 | Third Millennium Engineering, Llc | Modular polyaxial locking pedicle screw |
US5964760A (en) | 1996-10-18 | 1999-10-12 | Spinal Innovations | Spinal implant fixation assembly |
US5863293A (en) | 1996-10-18 | 1999-01-26 | Spinal Innovations | Spinal implant fixation assembly |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
EP0934026B1 (en) | 1996-10-24 | 2009-07-15 | Zimmer Spine Austin, Inc | Apparatus for spinal fixation |
US6416515B1 (en) | 1996-10-24 | 2002-07-09 | Spinal Concepts, Inc. | Spinal fixation system |
US5728098A (en) | 1996-11-07 | 1998-03-17 | Sdgi Holdings, Inc. | Multi-angle bone screw assembly using shape-memory technology |
FR2755844B1 (en) | 1996-11-15 | 1999-01-29 | Stryker France Sa | OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE |
US5720751A (en) * | 1996-11-27 | 1998-02-24 | Jackson; Roger P. | Tools for use in seating spinal rods in open ended implants |
ATE234046T1 (en) | 1996-12-12 | 2003-03-15 | Synthes Ag | DEVICE FOR CONNECTING A LONG SUPPORT TO A PEDICLE SCREW |
US5782833A (en) | 1996-12-20 | 1998-07-21 | Haider; Thomas T. | Pedicle screw system for osteosynthesis |
US6224596B1 (en) | 1997-01-06 | 2001-05-01 | Roger P. Jackson | Set screw for use with osteosynthesis apparatus |
US6004349A (en) | 1997-01-06 | 1999-12-21 | Jackson; Roger P. | Set screw for use with osteosynthesis apparatus |
US6001098A (en) | 1997-01-17 | 1999-12-14 | Howmedica Gmbh | Connecting element for spinal stabilizing system |
EP0954247B1 (en) | 1997-01-22 | 2005-11-23 | Synthes Ag Chur | Device for connecting a longitudinal bar to a pedicle screw |
DE29701099U1 (en) | 1997-01-23 | 1997-03-06 | Aesculap Ag, 78532 Tuttlingen | Pin-shaped holding element for an orthopedic holding system |
DE69842242D1 (en) | 1997-02-11 | 2011-06-09 | Zimmer Spine Inc | Plate for the anterior cervical spine with fixation system for screws |
WO1998034556A1 (en) | 1997-02-11 | 1998-08-13 | Michelson Gary K | Skeletal plating system |
US5910141A (en) | 1997-02-12 | 1999-06-08 | Sdgi Holdings, Inc. | Rod introduction apparatus |
US5752957A (en) | 1997-02-12 | 1998-05-19 | Third Millennium Engineering, Llc | Polyaxial mechanism for use with orthopaedic implant devices |
US5733286A (en) | 1997-02-12 | 1998-03-31 | Third Millennium Engineering, Llc | Rod securing polyaxial locking screw and coupling element assembly |
FR2759893B1 (en) * | 1997-02-26 | 1999-10-22 | Stryker France Sa | RING FOR A ANGULATED OSTEOSYNTHESIS DEVICE, AND AN OSTEOSYNTHESIS DEVICE INCORPORATING THE SAME |
US5865847A (en) | 1997-03-06 | 1999-02-02 | Sulzer Spine-Tech Inc. | Lordotic spinal implant |
DE19712783C2 (en) | 1997-03-26 | 2000-11-09 | Sfs Ind Holding Ag Heerbrugg | Screwdriver element |
JP2992878B2 (en) | 1997-04-09 | 1999-12-20 | 茂夫 佐野 | Artificial facet joint |
FR2762986B1 (en) | 1997-05-07 | 1999-09-24 | Aesculap Jbs | OSTEOSYNTHESIS SYSTEM FOR VERTEBRAL ARTHRODESIS |
US6413257B1 (en) | 1997-05-15 | 2002-07-02 | Surgical Dynamics, Inc. | Clamping connector for spinal fixation systems |
USD407302S (en) | 1997-05-15 | 1999-03-30 | R & B, Inc. | Supplemental restraint system (SRS) anti-theft fastener |
US5810819A (en) | 1997-05-15 | 1998-09-22 | Spinal Concepts, Inc. | Polyaxial pedicle screw having a compression locking rod gripping mechanism |
US6248105B1 (en) | 1997-05-17 | 2001-06-19 | Synthes (U.S.A.) | Device for connecting a longitudinal support with a pedicle screw |
FR2763831B1 (en) | 1997-05-29 | 1999-08-06 | Materiel Orthopedique En Abreg | VERTEBRAL ROD OF CONSTANT SECTION FOR RACHIDIAN OSTEOSYNTHESIS INSTRUMENTATIONS |
IES77331B2 (en) | 1997-06-03 | 1997-12-03 | Tecos Holdings Inc | Pluridirectional and modulable vertebral osteosynthesis device of small overall size |
DE29710484U1 (en) | 1997-06-16 | 1998-10-15 | Howmedica GmbH, 24232 Schönkirchen | Receiving part for a holding component of a spinal implant |
US5951553A (en) | 1997-07-14 | 1999-09-14 | Sdgi Holdings, Inc. | Methods and apparatus for fusionless treatment of spinal deformities |
US6287308B1 (en) | 1997-07-14 | 2001-09-11 | Sdgi Holdings, Inc. | Methods and apparatus for fusionless treatment of spinal deformities |
US5891145A (en) | 1997-07-14 | 1999-04-06 | Sdgi Holdings, Inc. | Multi-axial screw |
EP0999795A1 (en) | 1997-07-31 | 2000-05-17 | Plus Endoprothetik Ag | Device for stiffening and/or correcting a vertebral column or such like |
US5944465A (en) | 1997-08-04 | 1999-08-31 | Janitzki; Bernhard M. | Low tolerance threaded fastener |
US5964767A (en) | 1997-09-12 | 1999-10-12 | Tapia; Eduardo Armando | Hollow sealable device for temporary or permanent surgical placement through a bone to provide a passageway into a cavity or internal anatomic site in a mammal |
US6226548B1 (en) | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US6399334B1 (en) | 1997-09-24 | 2002-06-04 | Invitrogen Corporation | Normalized nucleic acid libraries and methods of production thereof |
US6235034B1 (en) | 1997-10-24 | 2001-05-22 | Robert S. Bray | Bone plate and bone screw guide mechanism |
DE29720022U1 (en) | 1997-11-12 | 1998-01-15 | SCHÄFER micomed GmbH, 73035 Göppingen | Intervertebral implant |
FR2771280B1 (en) | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
GB9727053D0 (en) | 1997-12-22 | 1998-02-18 | Edko Trading Representation | Pharmaceutical compositions |
US5941880A (en) | 1998-01-02 | 1999-08-24 | The J7 Summit Medical Group, Lll | Coupling member for cross-linking intervertebral cage devices |
EP0933065A1 (en) | 1998-02-02 | 1999-08-04 | Sulzer Orthopädie AG | Pivotable attachment system for a bone screw |
US6224631B1 (en) | 1998-03-20 | 2001-05-01 | Sulzer Spine-Tech Inc. | Intervertebral implant with reduced contact area and method |
FR2776500B1 (en) | 1998-03-31 | 2000-09-29 | Bianchi | CONNECTION DEVICE FOR OSTEOSYNTHESIS |
US6010503A (en) | 1998-04-03 | 2000-01-04 | Spinal Innovations, Llc | Locking mechanism |
FR2776915B1 (en) | 1998-04-03 | 2000-06-30 | Eurosurgical | SPINAL OSTEOSYNTHESIS DEVICE ADAPTABLE TO DIFFERENCES IN ALIGNMENT, ANGULATION AND DRIVING OF PEDICULAR SCREWS |
DE19818765A1 (en) | 1998-04-07 | 1999-10-14 | Schaefer Micomed Gmbh | Synthetic bone device for fixing bone fractures |
DE29806563U1 (en) | 1998-04-09 | 1998-06-18 | Howmedica GmbH, 24232 Schönkirchen | Pedicle screw and assembly aid for it |
US6533786B1 (en) | 1999-10-13 | 2003-03-18 | Sdgi Holdings, Inc. | Anterior cervical plating system |
WO1999059492A1 (en) | 1998-05-19 | 1999-11-25 | Synthes Ag Chur | Osteosynthetic implant with an embedded hinge joint |
US6258089B1 (en) | 1998-05-19 | 2001-07-10 | Alphatec Manufacturing, Inc. | Anterior cervical plate and fixation system |
US6113601A (en) | 1998-06-12 | 2000-09-05 | Bones Consulting, Llc | Polyaxial pedicle screw having a loosely coupled locking cap |
DE29810798U1 (en) | 1998-06-17 | 1999-10-28 | SCHÄFER micomed GmbH, 73035 Göppingen | Osteosynthesis device |
US6565565B1 (en) | 1998-06-17 | 2003-05-20 | Howmedica Osteonics Corp. | Device for securing spinal rods |
US6090111A (en) | 1998-06-17 | 2000-07-18 | Surgical Dynamics, Inc. | Device for securing spinal rods |
US6186718B1 (en) | 1998-06-18 | 2001-02-13 | Northrop Grumman Corporation | Threaded fastener having a head with a triangle centerpost within a triangle recess |
US6056753A (en) | 1998-07-13 | 2000-05-02 | Jackson; Roger P. | Set screw for use with osteosynthesis apparatus |
DE19832303C2 (en) | 1998-07-17 | 2000-05-18 | Storz Karl Gmbh & Co Kg | screwdriver |
US6110172A (en) | 1998-07-31 | 2000-08-29 | Jackson; Roger P. | Closure system for open ended osteosynthesis apparatus |
DE19835816C2 (en) | 1998-08-08 | 2002-02-07 | Schaefer Micomed Gmbh | osteosynthesis |
US6241731B1 (en) | 1998-08-11 | 2001-06-05 | Daniel Fiz | Plate and screw assembly for fixing bones |
US7641670B2 (en) | 1998-08-20 | 2010-01-05 | Zimmer Spine, Inc. | Cannula for receiving surgical instruments |
JP2002523129A (en) | 1998-08-21 | 2002-07-30 | ジンテーズ アクチエンゲゼルシャフト クール | Bone fixation element with snap-fit spherical head |
ATE320223T1 (en) | 1998-09-11 | 2006-04-15 | Synthes Ag | ANGLE ADJUSTABLE FIXATION SYSTEM FOR THE SPINE |
DE19841801C1 (en) | 1998-09-12 | 2000-05-04 | Hewing Gmbh | Fitting for a pipe |
NZ509937A (en) | 1998-09-29 | 2002-12-20 | Synthes Ag | Device for joining a longitudinal support and bone fixation means |
US5910142A (en) * | 1998-10-19 | 1999-06-08 | Bones Consulting, Llc | Polyaxial pedicle screw having a rod clamping split ferrule coupling element |
US6059786A (en) | 1998-10-22 | 2000-05-09 | Jackson; Roger P. | Set screw for medical implants |
DE19851370C2 (en) | 1998-11-07 | 2000-09-21 | Aesculap Ag & Co Kg | Endoscopic insertion instruments |
US6296642B1 (en) | 1998-11-09 | 2001-10-02 | Sdgi Holdings, Inc. | Reverse angle thread for preventing splaying in medical devices |
FR2785787B1 (en) | 1998-11-12 | 2001-04-13 | Materiel Orthopedique En Abreg | OSTEOSYNTHESIS DEVICE OF AN ANTERIORALLY SPACHED SEGMENT |
US6214012B1 (en) | 1998-11-13 | 2001-04-10 | Harrington Arthritis Research Center | Method and apparatus for delivering material to a desired location |
JP4488625B2 (en) | 1998-11-26 | 2010-06-23 | ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング | screw |
US6193720B1 (en) | 1998-11-30 | 2001-02-27 | Depuy Orthopaedics, Inc. | Cervical spine stabilization method and system |
FR2787016B1 (en) | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISK PROSTHESIS |
FR2787014B1 (en) | 1998-12-11 | 2001-03-02 | Dimso Sa | INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION |
DE19903762C1 (en) | 1999-01-30 | 2000-11-16 | Aesculap Ag & Co Kg | Surgical instrument for inserting intervertebral implants |
US6136002A (en) | 1999-02-05 | 2000-10-24 | Industrial Technology Research Institute | Anterior spinal fixation system |
US6402757B1 (en) | 1999-03-12 | 2002-06-11 | Biomet, Inc. | Cannulated fastener system for repair of bone fracture |
US6302888B1 (en) | 1999-03-19 | 2001-10-16 | Interpore Cross International | Locking dovetail and self-limiting set screw assembly for a spinal stabilization member |
US6162223A (en) | 1999-04-09 | 2000-12-19 | Smith & Nephew, Inc. | Dynamic wrist fixation apparatus for early joint motion in distal radius fractures |
US6280445B1 (en) | 1999-04-16 | 2001-08-28 | Sdgi Holdings, Inc. | Multi-axial bone anchor system |
US6315779B1 (en) | 1999-04-16 | 2001-11-13 | Sdgi Holdings, Inc. | Multi-axial bone anchor system |
US6471703B1 (en) | 1999-04-21 | 2002-10-29 | Sdgi Holdings, Inc. | Variable angle connection assembly for a spinal implant system |
US6254146B1 (en) | 1999-04-23 | 2001-07-03 | John Gandy Corporation | Thread form with multifacited flanks |
US6296643B1 (en) | 1999-04-23 | 2001-10-02 | Sdgi Holdings, Inc. | Device for the correction of spinal deformities through vertebral body tethering without fusion |
US6299613B1 (en) | 1999-04-23 | 2001-10-09 | Sdgi Holdings, Inc. | Method for the correction of spinal deformities through vertebral body tethering without fusion |
US6349794B2 (en) | 1999-04-30 | 2002-02-26 | R. Wilson Spencer | Protection plug |
AU4988700A (en) | 1999-05-05 | 2000-11-17 | Gary K. Michelson | Spinal fusion implants with opposed locking screws |
CA2373719A1 (en) | 1999-05-14 | 2000-11-23 | Synthes (U.S.A.) | Bone fixation device with a rotation joint |
JP3025265B1 (en) | 1999-05-17 | 2000-03-27 | 株式会社ロバート・リード商会 | Wire rod fixing device |
US6273888B1 (en) | 1999-05-28 | 2001-08-14 | Sdgi Holdings, Inc. | Device and method for selectively preventing the locking of a shape-memory alloy coupling system |
US6254602B1 (en) | 1999-05-28 | 2001-07-03 | Sdgi Holdings, Inc. | Advanced coupling device using shape-memory technology |
FR2794637B1 (en) | 1999-06-14 | 2001-12-28 | Scient X | IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS |
DE19928449C1 (en) | 1999-06-23 | 2001-03-08 | Geot Ges Fuer Elektro Oseto Th | Bone screw with device for electrical stimulation |
FR2795623B1 (en) | 1999-07-01 | 2001-11-30 | Gerard Vanacker | SYSTEM FOR OSTEOSYNTHESIS ON THE SPINE, PARTICULARLY FOR THE STABILIZATION OF VERTEBRAES, FIXING AND ANCILLARY ELEMENT FOR SUCH A SYSTEM |
AU761056B2 (en) | 1999-07-07 | 2003-05-29 | Synthes Gmbh | Bone screw with axially two-part screw head |
FR2796545B1 (en) * | 1999-07-22 | 2002-03-15 | Dimso Sa | POLY-AXIAL LINK FOR OSTEOSYNTHESIS SYSTEM, ESPECIALLY FOR THE RACHIS |
FR2796546B1 (en) | 1999-07-23 | 2001-11-30 | Eurosurgical | POLYAXIAL CONNECTOR FOR SPINAL IMPLANT |
DE19936286C2 (en) | 1999-08-02 | 2002-01-17 | Lutz Biedermann | bone screw |
ES2153331B1 (en) | 1999-08-05 | 2001-09-01 | Traiber S A | INTERVERTEBRAL FIXING SYSTEM FOR COLUMN TREATMENTS. |
EP1204382B2 (en) | 1999-08-14 | 2006-09-27 | Aesculap AG & Co. KG | Bone screw |
US6280442B1 (en) | 1999-09-01 | 2001-08-28 | Sdgi Holdings, Inc. | Multi-axial bone screw assembly |
CA2423973A1 (en) | 1999-09-27 | 2001-04-05 | Blackstone Medical, Inc. | A surgical screw system and related methods |
US6554834B1 (en) | 1999-10-07 | 2003-04-29 | Stryker Spine | Slotted head pedicle screw assembly |
US6277122B1 (en) | 1999-10-15 | 2001-08-21 | Sdgi Holdings, Inc. | Distraction instrument with fins for maintaining insertion location |
DE19950252C2 (en) | 1999-10-18 | 2002-01-17 | Schaefer Micomed Gmbh | bone plate |
US6530929B1 (en) | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
FR2799949B1 (en) | 1999-10-22 | 2002-06-28 | Abder Benazza | SPINAL OSTETHOSYNTHESIS DEVICE |
ATE467400T1 (en) | 1999-10-22 | 2010-05-15 | Fsi Acquisition Sub Llc | FACET ARTHROPLASTY DEVICES |
DE19951145C2 (en) | 1999-10-23 | 2003-11-13 | Schaefer Micomed Gmbh | osteosynthesis |
JP2001146916A (en) | 1999-11-22 | 2001-05-29 | Minebea Co Ltd | Universal spherical ball bearing |
ATE275877T1 (en) | 1999-11-25 | 2004-10-15 | Ct Pulse Orthopedics Ltd | SURGICAL INSTRUMENT FOR TENSIONING A CABLE-LIKE TENSIONING ELEMENT |
DE19957332B4 (en) | 1999-11-29 | 2004-11-11 | Bernd Schäfer | cross-connector |
WO2001039678A1 (en) | 1999-12-01 | 2001-06-07 | Henry Graf | Intervertebral stabilising device |
MXPA02004117A (en) | 1999-12-20 | 2002-10-17 | Synthes Ag | Device for the stabilisation of two adjacent verterbral bodies of the spine. |
US6331179B1 (en) | 2000-01-06 | 2001-12-18 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US6440135B2 (en) | 2000-02-01 | 2002-08-27 | Hand Innovations, Inc. | Volar fixation system with articulating stabilization pegs |
US6767351B2 (en) | 2000-02-01 | 2004-07-27 | Hand Innovations, Inc. | Fixation system with multidirectional stabilization pegs |
US6716247B2 (en) | 2000-02-04 | 2004-04-06 | Gary K. Michelson | Expandable push-in interbody spinal fusion implant |
DE10005385A1 (en) | 2000-02-07 | 2001-08-09 | Ulrich Gmbh & Co Kg | Pedicle screw |
US6443953B1 (en) | 2000-02-08 | 2002-09-03 | Cross Medical Products, Inc. | Self-aligning cap nut for use with a spinal rod anchor |
US6235028B1 (en) | 2000-02-14 | 2001-05-22 | Sdgi Holdings, Inc. | Surgical guide rod |
US7601171B2 (en) | 2003-10-23 | 2009-10-13 | Trans1 Inc. | Spinal motion preservation assemblies |
US6224598B1 (en) | 2000-02-16 | 2001-05-01 | Roger P. Jackson | Bone screw threaded plug closure with central set screw |
US6293949B1 (en) | 2000-03-01 | 2001-09-25 | Sdgi Holdings, Inc. | Superelastic spinal stabilization system and method |
US6375657B1 (en) | 2000-03-14 | 2002-04-23 | Hammill Manufacturing Co. | Bonescrew |
US6572618B1 (en) | 2000-03-15 | 2003-06-03 | Sdgi Holdings, Inc. | Spinal implant connection assembly |
US6562038B1 (en) | 2000-03-15 | 2003-05-13 | Sdgi Holdings, Inc. | Spinal implant connection assembly |
US6309391B1 (en) | 2000-03-15 | 2001-10-30 | Sdgi Holding, Inc. | Multidirectional pivoting bone screw and fixation system |
US7322979B2 (en) | 2000-03-15 | 2008-01-29 | Warsaw Orthopedic, Inc. | Multidirectional pivoting bone screw and fixation system |
US6248107B1 (en) | 2000-03-15 | 2001-06-19 | Sdgi Holdings, Inc. | System for reducing the displacement of a vertebra |
KR200200582Y1 (en) | 2000-03-15 | 2000-10-16 | 최길운 | Prosthesis for connecting bone |
AR019513A1 (en) | 2000-03-21 | 2002-02-27 | Levisman Ricardo | IMPLANT OF FIXATION. |
JP3936118B2 (en) | 2000-03-28 | 2007-06-27 | 昭和医科工業株式会社 | Rod gripper |
EP1138267B1 (en) | 2000-03-28 | 2007-03-21 | Showa IKA Kohgyo Co., Ltd. | Spinal implant |
US6402750B1 (en) | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US6440137B1 (en) | 2000-04-18 | 2002-08-27 | Andres A. Horvath | Medical fastener cap system |
US6251112B1 (en) | 2000-04-18 | 2001-06-26 | Roger P. Jackson | Thin profile closure cap for open ended medical implant |
ES2273674T3 (en) | 2000-04-19 | 2007-05-16 | Synthes Gmbh | DEVICE FOR THE ARTICULATED UNION OF BODIES. |
US6379356B1 (en) | 2000-04-26 | 2002-04-30 | Roger P. Jackson | Closure for open ended medical implant |
JP2001309923A (en) | 2000-04-28 | 2001-11-06 | Robert Reed Shokai Co Ltd | System supporting spinal rod and connection parts to be used therefor |
US6645207B2 (en) | 2000-05-08 | 2003-11-11 | Robert A. Dixon | Method and apparatus for dynamized spinal stabilization |
JP2002000611A (en) | 2000-05-12 | 2002-01-08 | Sulzer Orthopedics Ltd | Bone screw to be joined with the bone plate |
US20050267477A1 (en) | 2000-06-06 | 2005-12-01 | Jackson Roger P | Removable medical implant closure |
AU2001225881A1 (en) | 2000-06-23 | 2002-01-08 | University Of Southern California | Percutaneous vertebral fusion system |
US6964667B2 (en) | 2000-06-23 | 2005-11-15 | Sdgi Holdings, Inc. | Formed in place fixation system with thermal acceleration |
US6749614B2 (en) | 2000-06-23 | 2004-06-15 | Vertelink Corporation | Formable orthopedic fixation system with cross linking |
FR2810532B1 (en) | 2000-06-26 | 2003-05-30 | Stryker Spine Sa | BONE IMPLANT WITH ANNULAR LOCKING MEANS |
EP1294297B1 (en) | 2000-06-30 | 2010-08-11 | Warsaw Orthopedic, Inc. | Intervertebral linking device |
JP2004516040A (en) | 2000-06-30 | 2004-06-03 | リトラン、スティーブン | Multi-shaft coupling device and method |
US6641582B1 (en) | 2000-07-06 | 2003-11-04 | Sulzer Spine-Tech Inc. | Bone preparation instruments and methods |
AU2001273356A1 (en) | 2000-07-10 | 2002-01-21 | Gary K. Michelson | Flanged interbody spinal fusion implants |
EP1174092A3 (en) | 2000-07-22 | 2003-03-26 | Corin Spinal Systems Limited | A pedicle attachment assembly |
GB2365345B (en) | 2000-07-22 | 2002-07-31 | Corin Spinal Systems Ltd | A pedicle attachment assembly |
FR2812185B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
FR2812186B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
WO2002010591A2 (en) * | 2000-07-27 | 2002-02-07 | Luk Fahrzeug-Hydraulik Gmbh & Co. Kg | Pump |
ATE438347T1 (en) | 2000-07-28 | 2009-08-15 | Synthes Gmbh | SPINAL FASTENING SYSTEM |
US6533787B1 (en) | 2000-07-31 | 2003-03-18 | Sdgi Holdings, Inc. | Contourable spinal staple with centralized and unilateral prongs |
US7056321B2 (en) | 2000-08-01 | 2006-06-06 | Endius, Incorporated | Method of securing vertebrae |
JP2002052030A (en) | 2000-08-07 | 2002-02-19 | Peter Muller | Stem screw |
US6524315B1 (en) | 2000-08-08 | 2003-02-25 | Depuy Acromed, Inc. | Orthopaedic rod/plate locking mechanism |
US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
US20060025771A1 (en) | 2000-08-23 | 2006-02-02 | Jackson Roger P | Helical reverse angle guide and advancement structure with break-off extensions |
EP1311198B1 (en) | 2000-08-24 | 2007-07-25 | Synthes GmbH | Device for connecting a bone fixation element to a longitudinal rod |
US6554831B1 (en) | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
US6485491B1 (en) | 2000-09-15 | 2002-11-26 | Sdgi Holdings, Inc. | Posterior fixation system |
US8512380B2 (en) | 2002-08-28 | 2013-08-20 | Warsaw Orthopedic, Inc. | Posterior fixation system |
ATE296580T1 (en) | 2000-09-18 | 2005-06-15 | Zimmer Gmbh | PEDICLE SCREW FOR INTERVERTEBRAL SUPPORT ELEMENTS |
US6620164B2 (en) | 2000-09-22 | 2003-09-16 | Showa Ika Kohgyo Co., Ltd. | Rod for cervical vertebra and connecting system thereof |
US6443956B1 (en) | 2000-09-22 | 2002-09-03 | Mekanika, Inc. | Vertebral drill bit and inserter |
US6755829B1 (en) | 2000-09-22 | 2004-06-29 | Depuy Acromed, Inc. | Lock cap anchor assembly for orthopaedic fixation |
US6743231B1 (en) | 2000-10-02 | 2004-06-01 | Sulzer Spine-Tech Inc. | Temporary spinal fixation apparatuses and methods |
US6953462B2 (en) | 2000-10-05 | 2005-10-11 | The Cleveland Clinic Foundation | Apparatus for implantation into bone |
US6872208B1 (en) | 2000-10-06 | 2005-03-29 | Spinal Concepts, Inc. | Adjustable transverse connector |
FR2814936B1 (en) | 2000-10-11 | 2003-02-07 | Frederic Fortin | MULTIDIRECTIONALLY OPERATING FLEXIBLE VERTEBRAL CONNECTION DEVICE |
US6520962B1 (en) | 2000-10-23 | 2003-02-18 | Sdgi Holdings, Inc. | Taper-locked adjustable connector |
US6626906B1 (en) | 2000-10-23 | 2003-09-30 | Sdgi Holdings, Inc. | Multi-planar adjustable connector |
FR2815535B1 (en) | 2000-10-23 | 2003-01-24 | Patrice Moreau | PEDICULAR IMPLANT |
US6551320B2 (en) | 2000-11-08 | 2003-04-22 | The Cleveland Clinic Foundation | Method and apparatus for correcting spinal deformity |
DE10055888C1 (en) | 2000-11-10 | 2002-04-25 | Biedermann Motech Gmbh | Bone screw, has connector rod receiving part with unsymmetrically arranged end bores |
US6656181B2 (en) | 2000-11-22 | 2003-12-02 | Robert A Dixon | Method and device utilizing tapered screw shanks for spinal stabilization |
US6368321B1 (en) | 2000-12-04 | 2002-04-09 | Roger P. Jackson | Lockable swivel head bone screw |
FR2817929B1 (en) * | 2000-12-07 | 2003-03-21 | Spine Next Sa | DEVICE FOR FIXING A ROD AND A SPHERICAL SYMMETRY SCREW HEAD |
US6726687B2 (en) | 2000-12-08 | 2004-04-27 | Jackson Roger P | Closure plug for open-headed medical implant |
US6454772B1 (en) | 2000-12-08 | 2002-09-24 | Roger P. Jackson | Set screw for medical implant with gripping side slots |
US6997927B2 (en) | 2000-12-08 | 2006-02-14 | Jackson Roger P | closure for rod receiving orthopedic implant having a pair of spaced apertures for removal |
US6726689B2 (en) | 2002-09-06 | 2004-04-27 | Roger P. Jackson | Helical interlocking mating guide and advancement structure |
US8377100B2 (en) | 2000-12-08 | 2013-02-19 | Roger P. Jackson | Closure for open-headed medical implant |
NZ525999A (en) | 2000-12-15 | 2006-05-26 | Spineology Inc | Annulus-reinforcing band |
DE10064571C2 (en) | 2000-12-22 | 2003-07-10 | Juergen Harms | fixing |
DE50100793D1 (en) | 2000-12-27 | 2003-11-20 | Biedermann Motech Gmbh | Screw for connecting to a rod |
WO2002054935A2 (en) | 2000-12-29 | 2002-07-18 | Thomas James C Jr | Vertebral alignment system |
US6635059B2 (en) | 2001-01-03 | 2003-10-21 | Bernard L. Randall | Cannulated locking screw system especially for transiliac implant |
US6488681B2 (en) | 2001-01-05 | 2002-12-03 | Stryker Spine S.A. | Pedicle screw assembly |
DE10101478C2 (en) | 2001-01-12 | 2003-03-27 | Biedermann Motech Gmbh | connecting element |
CA2434455A1 (en) | 2001-01-12 | 2002-07-18 | Depuy Acromed, Inc. | Polyaxial screw with improved locking |
US6557832B2 (en) | 2001-01-22 | 2003-05-06 | Construction Specialties, Inc. | Handrail and end member assembly |
FR2819711B1 (en) | 2001-01-23 | 2003-08-01 | Stryker Spine Sa | POSITION ADJUSTMENT SYSTEM FOR A SPINAL SURGERY INSTRUMENT |
WO2002058600A2 (en) | 2001-01-26 | 2002-08-01 | Osteotech, Inc. | Implant insertion tool |
US6558387B2 (en) | 2001-01-30 | 2003-05-06 | Fastemetix, Llc | Porous interbody fusion device having integrated polyaxial locking interference screws |
US6451021B1 (en) | 2001-02-15 | 2002-09-17 | Third Millennium Engineering, Llc | Polyaxial pedicle screw having a rotating locking element |
US6666867B2 (en) | 2001-02-15 | 2003-12-23 | Fast Enetix, Llc | Longitudinal plate assembly having an adjustable length |
US8858564B2 (en) | 2001-02-15 | 2014-10-14 | Spinecore, Inc. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
DE10108965B4 (en) | 2001-02-17 | 2006-02-23 | DePuy Spine Sàrl | bone screw |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US7229441B2 (en) | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
CA2434688A1 (en) | 2001-03-01 | 2002-09-12 | Gary Karlin Michelson | Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine and method for use thereof |
FR2822052B1 (en) | 2001-03-15 | 2003-09-19 | Stryker Spine Sa | ANCHOR WITH LOCK FOR RACHIDIAN OSTEOSYNTHESIS SYSTEM |
FR2822053B1 (en) | 2001-03-15 | 2003-06-20 | Stryker Spine Sa | ANCHORING MEMBER WITH SAFETY RING FOR SPINAL OSTEOSYNTHESIS SYSTEM |
US6802844B2 (en) | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
DE10115014A1 (en) * | 2001-03-27 | 2002-10-24 | Biedermann Motech Gmbh | anchoring element |
US6641583B2 (en) | 2001-03-29 | 2003-11-04 | Endius Incorporated | Apparatus for retaining bone portions in a desired spatial relationship |
US6554832B2 (en) | 2001-04-02 | 2003-04-29 | Endius Incorporated | Polyaxial transverse connector |
US6599290B2 (en) | 2001-04-17 | 2003-07-29 | Ebi, L.P. | Anterior cervical plating system and associated method |
US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
US20090009852A1 (en) * | 2001-05-15 | 2009-01-08 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US6478797B1 (en) * | 2001-05-16 | 2002-11-12 | Kamaljit S. Paul | Spinal fixation device |
US20060064092A1 (en) | 2001-05-17 | 2006-03-23 | Howland Robert S | Selective axis serrated rod low profile spinal fixation system |
US6770075B2 (en) | 2001-05-17 | 2004-08-03 | Robert S. Howland | Spinal fixation apparatus with enhanced axial support and methods for use |
US7314467B2 (en) | 2002-04-24 | 2008-01-01 | Medical Device Advisory Development Group, Llc. | Multi selective axis spinal fixation system |
US6478798B1 (en) | 2001-05-17 | 2002-11-12 | Robert S. Howland | Spinal fixation apparatus and methods for use |
TW517574U (en) | 2001-05-30 | 2003-01-11 | Ind Tech Res Inst | New device for fastening the inside of rear spine |
AU2002318174B2 (en) | 2001-06-04 | 2008-04-10 | Warsaw Orthopedic, Inc. | Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof |
GB0114783D0 (en) | 2001-06-16 | 2001-08-08 | Sengupta Dilip K | A assembly for the stabilisation of vertebral bodies of the spine |
US6511484B2 (en) * | 2001-06-29 | 2003-01-28 | Depuy Acromed, Inc. | Tool and system for aligning and applying fastener to implanted anchor |
US6440133B1 (en) | 2001-07-03 | 2002-08-27 | Sdgi Holdings, Inc. | Rod reducer instruments and methods |
US6478801B1 (en) | 2001-07-16 | 2002-11-12 | Third Millennium Engineering, Llc | Insertion tool for use with tapered trial intervertebral distraction spacers |
FR2827498B1 (en) | 2001-07-18 | 2004-05-14 | Frederic Fortin | FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS |
CH695478A5 (en) | 2001-07-20 | 2006-06-15 | Werner Hermann | Threaded bolt, and Pedrikelschraube Pedrikelschraube with threaded bolt |
US6616659B1 (en) | 2001-07-27 | 2003-09-09 | Starion Instruments Corporation | Polypectomy device and method |
DE10136129A1 (en) | 2001-07-27 | 2003-02-20 | Biedermann Motech Gmbh | Bone screw and fastening tool for this |
JP4755781B2 (en) | 2001-08-01 | 2011-08-24 | 昭和医科工業株式会社 | Jointing member for osteosynthesis |
US6673074B2 (en) | 2001-08-02 | 2004-01-06 | Endius Incorporated | Apparatus for retaining bone portions in a desired spatial relationship |
GB0119154D0 (en) | 2001-08-06 | 2001-09-26 | Southampton Photonics Ltd | An optical demultiplexer |
US6520963B1 (en) | 2001-08-13 | 2003-02-18 | Mckinley Lawrence M. | Vertebral alignment and fixation assembly |
US6746449B2 (en) | 2001-09-12 | 2004-06-08 | Spinal Concepts, Inc. | Spinal rod translation instrument |
US6974460B2 (en) | 2001-09-14 | 2005-12-13 | Stryker Spine | Biased angulation bone fixation assembly |
AU2002327801B2 (en) | 2001-09-28 | 2008-03-06 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
US20090177283A9 (en) | 2001-10-01 | 2009-07-09 | Ralph James D | Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting |
US6899714B2 (en) | 2001-10-03 | 2005-05-31 | Vaughan Medical Technologies, Inc. | Vertebral stabilization assembly and method |
FR2830433B1 (en) | 2001-10-04 | 2005-07-01 | Stryker Spine | ASSEMBLY FOR OSTEOSYNTHESIS OF THE SPINACH COMPRISING AN ANCHORING MEMBER HEAD AND A TOOL FOR HEAD FIXING |
US6652526B1 (en) | 2001-10-05 | 2003-11-25 | Ruben P. Arafiles | Spinal stabilization rod fastener |
GB2382304A (en) | 2001-10-10 | 2003-05-28 | Dilip Kumar Sengupta | An assembly for soft stabilisation of vertebral bodies of the spine |
US6692500B2 (en) | 2001-10-15 | 2004-02-17 | Gary Jack Reed | Orthopedic stabilization device and method |
US6623485B2 (en) | 2001-10-17 | 2003-09-23 | Hammill Manufacturing Company | Split ring bone screw for a spinal fixation system |
WO2003034930A1 (en) | 2001-10-23 | 2003-05-01 | Biedermann Motech Gmbh | Bone fixation device and screw therefor |
US6783527B2 (en) | 2001-10-30 | 2004-08-31 | Sdgi Holdings, Inc. | Flexible spinal stabilization system and method |
US7766947B2 (en) | 2001-10-31 | 2010-08-03 | Ortho Development Corporation | Cervical plate for stabilizing the human spine |
US7094242B2 (en) | 2001-10-31 | 2006-08-22 | K2M, Inc. | Polyaxial drill guide |
KR100379194B1 (en) | 2001-10-31 | 2003-04-08 | U & I Co Ltd | Apparatus for fixing bone |
DE10157814B4 (en) | 2001-11-27 | 2004-12-02 | Biedermann Motech Gmbh | Closure device for securing a rod-shaped element in a holding element connected to a shaft |
DE10157969C1 (en) | 2001-11-27 | 2003-02-06 | Biedermann Motech Gmbh | Element used in spinal and accident surgery comprises a shaft joined to a holding element having a U-shaped recess with two free arms having an internal thread with flanks lying at right angles to the central axis of the holding element |
WO2003047441A1 (en) | 2001-12-07 | 2003-06-12 | Mathys Medizinaltechnik Ag | Damping element |
FR2833151B1 (en) | 2001-12-12 | 2004-09-17 | Ldr Medical | BONE ANCHORING IMPLANT WITH POLYAXIAL HEAD |
US20030125749A1 (en) | 2001-12-27 | 2003-07-03 | Ethicon, Inc. | Cannulated screw and associated driver system |
DE10164323C1 (en) | 2001-12-28 | 2003-06-18 | Biedermann Motech Gmbh | Bone screw has holder element joined to shaft and possessing two free arms , with inner screw, slot, external nut, cavity and shoulder cooperating with attachment |
CA2479233C (en) | 2001-12-31 | 2009-11-03 | Synthes (U.S.A.) | Device for a ball-and-socket type connection of two parts |
US6932820B2 (en) | 2002-01-08 | 2005-08-23 | Said G. Osman | Uni-directional dynamic spinal fixation device |
US6740089B2 (en) | 2002-01-10 | 2004-05-25 | Thomas T. Haider | Orthopedic hook system |
US6761723B2 (en) | 2002-01-14 | 2004-07-13 | Dynamic Spine, Inc. | Apparatus and method for performing spinal surgery |
US6682530B2 (en) | 2002-01-14 | 2004-01-27 | Robert A Dixon | Dynamized vertebral stabilizer using an outrigger implant |
CN1432343A (en) | 2002-01-17 | 2003-07-30 | 英属维京群岛商冠亚生技控股集团股份有限公司 | Rotary controlled vertebra fixture |
US6648887B2 (en) | 2002-01-23 | 2003-11-18 | Richard B. Ashman | Variable angle spinal implant connection assembly |
CN1221217C (en) * | 2002-01-24 | 2005-10-05 | 英属维京群岛商冠亚生技控股集团股份有限公司 | Rotary button fixator for vertebration fixing |
US6932817B2 (en) | 2002-02-01 | 2005-08-23 | Innovative Spinal Design | Polyaxial modular skeletal hook |
US6641586B2 (en) | 2002-02-01 | 2003-11-04 | Depuy Acromed, Inc. | Closure system for spinal fixation instrumentation |
US7335201B2 (en) | 2003-09-26 | 2008-02-26 | Zimmer Spine, Inc. | Polyaxial bone screw with torqueless fastening |
US7004943B2 (en) | 2002-02-04 | 2006-02-28 | Smith & Nephew, Inc. | Devices, systems, and methods for placing and positioning fixation elements in external fixation systems |
US7678136B2 (en) | 2002-02-04 | 2010-03-16 | Spinal, Llc | Spinal fixation assembly |
US6626347B2 (en) | 2002-02-11 | 2003-09-30 | Kim Kwee Ng | Fastener retaining device for fastener driver |
US6837889B2 (en) | 2002-03-01 | 2005-01-04 | Endius Incorporated | Apparatus for connecting a longitudinal member to a bone portion |
US7879075B2 (en) | 2002-02-13 | 2011-02-01 | Zimmer Spine, Inc. | Methods for connecting a longitudinal member to a bone portion |
US7163538B2 (en) | 2002-02-13 | 2007-01-16 | Cross Medical Products, Inc. | Posterior rod system |
US7066937B2 (en) | 2002-02-13 | 2006-06-27 | Endius Incorporated | Apparatus for connecting a longitudinal member to a bone portion |
WO2003068088A1 (en) | 2002-02-13 | 2003-08-21 | Cross Medical Products, Inc. | Posterior polyaxial system for the spine |
US20040006342A1 (en) | 2002-02-13 | 2004-01-08 | Moti Altarac | Posterior polyaxial plate system for the spine |
JP2002221218A (en) | 2002-02-21 | 2002-08-09 | Maruzen Seisakusho:Kk | Resin-made ball joint |
FR2836368B1 (en) | 2002-02-25 | 2005-01-14 | Spine Next Sa | SEQUENTIAL LINK DEVICE |
US7294127B2 (en) | 2002-03-05 | 2007-11-13 | Baylis Medical Company Inc. | Electrosurgical tissue treatment method |
US9044279B2 (en) | 2002-03-19 | 2015-06-02 | Innovative Surgical Designs, Inc. | Device and method for expanding the spinal canal with spinal column stabilization and spinal deformity correction |
US7530992B2 (en) | 2002-03-27 | 2009-05-12 | Biedermann Motech Gmbh | Bone anchoring device for stabilising bone segments and seat part of a bone anchoring device |
FR2838041B1 (en) | 2002-04-04 | 2004-07-02 | Kiscomedica | SPINAL OSTEOSYNTHESIS SYSTEM |
US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
WO2003086204A2 (en) | 2002-04-09 | 2003-10-23 | Neville Alleyne | Bone fixation apparatus |
US6660006B2 (en) | 2002-04-17 | 2003-12-09 | Stryker Spine | Rod persuader |
US6740086B2 (en) * | 2002-04-18 | 2004-05-25 | Spinal Innovations, Llc | Screw and rod fixation assembly and device |
US7842073B2 (en) | 2002-04-18 | 2010-11-30 | Aesculap Ii, Inc. | Screw and rod fixation assembly and device |
US7572276B2 (en) | 2002-05-06 | 2009-08-11 | Warsaw Orthopedic, Inc. | Minimally invasive instruments and methods for inserting implants |
CA2484923C (en) * | 2002-05-08 | 2011-02-22 | Stephen Ritland | Dynamic fixation device and method of use |
US6699248B2 (en) | 2002-05-09 | 2004-03-02 | Roger P. Jackson | Multiple diameter tangential set screw |
US6733502B2 (en) | 2002-05-15 | 2004-05-11 | Cross Medical Products, Inc. | Variable locking spinal screw having a knurled collar |
US7118576B2 (en) | 2002-05-15 | 2006-10-10 | Nevmet Corporation | Multiportal device with linked cannulae and method for percutaneous surgery |
DE20207851U1 (en) | 2002-05-21 | 2002-10-10 | Metz-Stavenhagen, Peter, Dr.med., 34537 Bad Wildungen | Anchoring element for fastening a rod of a device for setting up a human or animal spine to a vertebral bone |
WO2003099148A2 (en) | 2002-05-21 | 2003-12-04 | Sdgi Holdings, Inc. | Vertebrae bone anchor and cable for coupling it to a rod |
DE50300788D1 (en) | 2002-05-21 | 2005-08-25 | Spinelab Gmbh Wabern | Elastic stabilization system for spinal columns |
DE20207850U1 (en) | 2002-05-21 | 2002-10-10 | Metz-Stavenhagen, Peter, Dr.med., 34537 Bad Wildungen | Anchoring element for fastening a rod of a device for setting up a human or animal spine to a vertebral bone |
US20030220643A1 (en) | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US7278995B2 (en) | 2002-06-04 | 2007-10-09 | Howmedica Osteonics Corp. | Apparatus for securing a spinal rod system |
US6682529B2 (en) | 2002-06-11 | 2004-01-27 | Stahurski Consulting, Inc. | Connector assembly with multidimensional accommodation and associated method |
US7175623B2 (en) | 2002-06-24 | 2007-02-13 | Lanx, Llc | Cervical plate with backout protection |
US7004947B2 (en) | 2002-06-24 | 2006-02-28 | Endius Incorporated | Surgical instrument for moving vertebrae |
US7001389B1 (en) | 2002-07-05 | 2006-02-21 | Navarro Richard R | Fixed and variable locking fixation assembly |
DE10236691B4 (en) | 2002-08-09 | 2005-12-01 | Biedermann Motech Gmbh | Dynamic stabilization device for bones, in particular for vertebrae |
US7052497B2 (en) | 2002-08-14 | 2006-05-30 | Sdgi Holdings, Inc. | Techniques for spinal surgery and attaching constructs to vertebral elements |
US7306603B2 (en) * | 2002-08-21 | 2007-12-11 | Innovative Spinal Technologies | Device and method for percutaneous placement of lumbar pedicle screws and connecting rods |
US6730089B2 (en) | 2002-08-26 | 2004-05-04 | Roger P. Jackson | Nested closure plug and set screw with break-off heads |
AU2002368221A1 (en) | 2002-09-04 | 2004-03-29 | Aesculap Ag And Co. Kg | Orthopedic fixation device |
WO2004021901A1 (en) | 2002-09-04 | 2004-03-18 | Aesculap Ag & Co. Kg | Orthopedic fixation device |
US8282673B2 (en) | 2002-09-06 | 2012-10-09 | Jackson Roger P | Anti-splay medical implant closure with multi-surface removal aperture |
US6648888B1 (en) | 2002-09-06 | 2003-11-18 | Endius Incorporated | Surgical instrument for moving a vertebra |
US20040167525A1 (en) | 2002-09-06 | 2004-08-26 | Jackson Roger P. | Anti-splay medical implant closure with multi-stepped removal counterbore |
US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
FR2844180B1 (en) | 2002-09-11 | 2005-08-05 | Spinevision | CONNECTING ELEMENT FOR THE DYNAMIC STABILIZATION OF A SPINAL FIXING SYSTEM AND SPINAL FASTENING SYSTEM COMPRISING SUCH A MEMBER |
JP4047112B2 (en) | 2002-09-12 | 2008-02-13 | 昭和医科工業株式会社 | Rod part fixing structure of vertebra connecting member |
US6982108B2 (en) * | 2002-10-02 | 2006-01-03 | 3M Innovative Properties Company | Color-matching article |
DE10246177A1 (en) * | 2002-10-02 | 2004-04-22 | Biedermann Motech Gmbh | Anchor element consists of screw with head, bone-thread section on shank and holder joining rod-shaped part to screw. with cavities in wall, and thread-free end of shank |
FR2845269B1 (en) | 2002-10-07 | 2005-06-24 | Spine Next Sa | PLATE FASTENING SYSTEM |
US7563275B2 (en) | 2002-10-10 | 2009-07-21 | U.S. Spinal Technologies, Llc | Bone fixation implant system and method |
US7476228B2 (en) | 2002-10-11 | 2009-01-13 | Abdou M Samy | Distraction screw for skeletal surgery and method of use |
FR2845587B1 (en) | 2002-10-14 | 2005-01-21 | Scient X | DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT |
US6955677B2 (en) | 2002-10-15 | 2005-10-18 | The University Of North Carolina At Chapel Hill | Multi-angular fastening apparatus and method for surgical bone screw/plate systems |
FR2846223B1 (en) | 2002-10-24 | 2006-04-14 | Frederic Fortin | FLEXIBLE AND MODULAR INTERVERTEBRAL CONNECTION DEVICE HAVING MULTIDIRECTIONAL WORKING ELEMENT |
US20080221692A1 (en) | 2002-10-29 | 2008-09-11 | Zucherman James F | Interspinous process implants and methods of use |
US20060095035A1 (en) | 2004-11-03 | 2006-05-04 | Jones Robert J | Instruments and methods for reduction of vertebral bodies |
US9539012B2 (en) | 2002-10-30 | 2017-01-10 | Zimmer Spine, Inc. | Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures |
US20040147928A1 (en) | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
WO2004041100A1 (en) | 2002-10-30 | 2004-05-21 | Spinal Concepts, Inc. | Spinal stabilization system insertion and methods |
US20040087952A1 (en) | 2002-10-31 | 2004-05-06 | Amie Borgstrom | Universal polyaxial washer assemblies |
US7306602B2 (en) | 2002-10-31 | 2007-12-11 | Depuy Actomed, Inc. | Snap-in washers and assemblies thereof |
US8162989B2 (en) | 2002-11-04 | 2012-04-24 | Altus Partners, Llc | Orthopedic rod system |
FR2846869B1 (en) | 2002-11-08 | 2005-02-18 | Scient X | TIGHTENING NUT FOR OSTEOSYNTHESIS DEVICE |
FR2847152B1 (en) | 2002-11-19 | 2005-02-18 | Eurosurgical | VERTEBRAL ANCHORING DEVICE AND ITS LOCKING DEVICE ON A POLY AXIAL SCREW |
US20080234756A1 (en) | 2002-11-19 | 2008-09-25 | John Sutcliffe | Pedicle Screw |
US7175625B2 (en) | 2002-11-25 | 2007-02-13 | Triage Medical | Soft tissue anchor and method of using same |
KR100495876B1 (en) | 2002-11-25 | 2005-06-16 | 유앤아이 주식회사 | bone fixation appratus and assembling method and tool |
DE10256095B4 (en) | 2002-12-02 | 2004-11-18 | Biedermann Motech Gmbh | Element with a shaft and an associated holding element for connecting to a rod |
JP4307388B2 (en) | 2002-12-06 | 2009-08-05 | ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング | Bone stabilization device |
DE10260222B4 (en) | 2002-12-20 | 2008-01-03 | Biedermann Motech Gmbh | Tubular element for an implant and implant to be used in spine or bone surgery with such an element |
US6755836B1 (en) | 2002-12-20 | 2004-06-29 | High Plains Technology Group, Llc | Bone screw fastener and apparatus for inserting and removing same |
US7048739B2 (en) | 2002-12-31 | 2006-05-23 | Depuy Spine, Inc. | Bone plate and resilient screw system allowing bi-directional assembly |
US6843791B2 (en) | 2003-01-10 | 2005-01-18 | Depuy Acromed, Inc. | Locking cap assembly for spinal fixation instrumentation |
US7887539B2 (en) | 2003-01-24 | 2011-02-15 | Depuy Spine, Inc. | Spinal rod approximators |
US7582107B2 (en) | 2003-02-03 | 2009-09-01 | Integra Lifesciences Corporation | Compression screw apparatuses, systems and methods |
US8172876B2 (en) * | 2003-02-05 | 2012-05-08 | Pioneer Surgical Technology, Inc. | Spinal fixation systems |
US7141051B2 (en) | 2003-02-05 | 2006-11-28 | Pioneer Laboratories, Inc. | Low profile spinal fixation system |
US20040158247A1 (en) | 2003-02-07 | 2004-08-12 | Arthit Sitiso | Polyaxial pedicle screw system |
US7282064B2 (en) | 2003-02-11 | 2007-10-16 | Spinefrontier Lls | Apparatus and method for connecting spinal vertebrae |
US7090680B2 (en) | 2003-02-12 | 2006-08-15 | Bonati Alfred O | Method for removing orthopaedic hardware |
US20040158254A1 (en) | 2003-02-12 | 2004-08-12 | Sdgi Holdings, Inc. | Instrument and method for milling a path into bone |
US20040162560A1 (en) | 2003-02-19 | 2004-08-19 | Raynor Donald E. | Implant device including threaded locking mechanism |
EP1596738A4 (en) | 2003-02-25 | 2010-01-20 | Stephen Ritland | Adjustable rod and connector device and method of use |
US7044953B2 (en) | 2003-02-27 | 2006-05-16 | Stryker Leibinger Gmbh & Co. Kg | Compression bone screw |
US6908484B2 (en) | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
US7588589B2 (en) | 2003-03-20 | 2009-09-15 | Medical Designs Llc | Posterior spinal reconstruction system |
US20040186473A1 (en) | 2003-03-21 | 2004-09-23 | Cournoyer John R. | Spinal fixation devices of improved strength and rigidity |
US20060200128A1 (en) | 2003-04-04 | 2006-09-07 | Richard Mueller | Bone anchor |
US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
US6716214B1 (en) | 2003-06-18 | 2004-04-06 | Roger P. Jackson | Polyaxial bone screw with spline capture connection |
US20070016200A1 (en) | 2003-04-09 | 2007-01-18 | Jackson Roger P | Dynamic stabilization medical implant assemblies and methods |
US8052724B2 (en) | 2003-06-18 | 2011-11-08 | Jackson Roger P | Upload shank swivel head bone screw spinal implant |
JP2006513796A (en) | 2003-04-15 | 2006-04-27 | マシーズ メディツィナルテヒニク アクチエンゲゼルシャフト | Bone fixation device |
US20040210216A1 (en) | 2003-04-17 | 2004-10-21 | Farris Robert A | Spinal fixation system and method |
US7473267B2 (en) * | 2003-04-25 | 2009-01-06 | Warsaw Orthopedic, Inc. | System and method for minimally invasive posterior fixation |
WO2004096066A2 (en) | 2003-04-25 | 2004-11-11 | Kitchen Michael S | Spinal curvature correction device |
US7029475B2 (en) | 2003-05-02 | 2006-04-18 | Yale University | Spinal stabilization method |
US7615068B2 (en) | 2003-05-02 | 2009-11-10 | Applied Spine Technologies, Inc. | Mounting mechanisms for pedicle screws and related assemblies |
US20050171543A1 (en) | 2003-05-02 | 2005-08-04 | Timm Jens P. | Spine stabilization systems and associated devices, assemblies and methods |
US7713287B2 (en) | 2003-05-02 | 2010-05-11 | Applied Spine Technologies, Inc. | Dynamic spine stabilizer |
US20050182401A1 (en) | 2003-05-02 | 2005-08-18 | Timm Jens P. | Systems and methods for spine stabilization including a dynamic junction |
DE10320417A1 (en) | 2003-05-07 | 2004-12-02 | Biedermann Motech Gmbh | Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device |
US7645232B2 (en) | 2003-05-16 | 2010-01-12 | Zimmer Spine, Inc. | Access device for minimally invasive surgery |
US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
WO2004105577A2 (en) | 2003-05-23 | 2004-12-09 | Globus Medical, Inc. | Spine stabilization system |
US6986771B2 (en) | 2003-05-23 | 2006-01-17 | Globus Medical, Inc. | Spine stabilization system |
FR2855392B1 (en) | 2003-05-28 | 2005-08-05 | Spinevision | CONNECTION DEVICE FOR SPINAL OSTESYNTHESIS |
US7270665B2 (en) | 2003-06-11 | 2007-09-18 | Sdgi Holdings, Inc. | Variable offset spinal fixation system |
DE10326517A1 (en) | 2003-06-12 | 2005-01-05 | Stratec Medical | Device for the dynamic stabilization of bones or bone fragments, in particular vertebrae |
DE10327358A1 (en) * | 2003-06-16 | 2005-01-05 | Ulrich Gmbh & Co. Kg | Implant for correction and stabilization of the spine |
US8366753B2 (en) | 2003-06-18 | 2013-02-05 | Jackson Roger P | Polyaxial bone screw assembly with fixed retaining structure |
US8257398B2 (en) | 2003-06-18 | 2012-09-04 | Jackson Roger P | Polyaxial bone screw with cam capture |
US8377102B2 (en) | 2003-06-18 | 2013-02-19 | Roger P. Jackson | Polyaxial bone anchor with spline capture connection and lower pressure insert |
US7204838B2 (en) | 2004-12-20 | 2007-04-17 | Jackson Roger P | Medical implant fastener with nested set screw and method |
US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
US20100211114A1 (en) | 2003-06-18 | 2010-08-19 | Jackson Roger P | Polyaxial bone anchor with shelf capture connection |
US20110040338A1 (en) | 2003-08-28 | 2011-02-17 | Jackson Roger P | Polyaxial bone anchor having an open retainer with conical, cylindrical or curvate capture |
US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
US8137386B2 (en) | 2003-08-28 | 2012-03-20 | Jackson Roger P | Polyaxial bone screw apparatus |
US7322981B2 (en) | 2003-08-28 | 2008-01-29 | Jackson Roger P | Polyaxial bone screw with split retainer ring |
US7766915B2 (en) * | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
US20040260283A1 (en) | 2003-06-19 | 2004-12-23 | Shing-Cheng Wu | Multi-axis spinal fixation device |
US20050131413A1 (en) | 2003-06-20 | 2005-06-16 | O'driscoll Shawn W. | Bone plate with interference fit screw |
FR2856579B1 (en) | 2003-06-27 | 2006-03-17 | Medicrea | VERTEBRAL OSTEOSYNTHESIS EQUIPMENT AND METHOD FOR MANUFACTURING BONE ANCHORING MEMBER INCLUDING THESE MATERIALS |
FR2856578B1 (en) | 2003-06-27 | 2006-03-17 | Medicrea | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
EP1653873B1 (en) | 2003-06-27 | 2011-06-08 | Médicréa Technologies | Vertebral osteosynthesis equipment |
FR2857850B1 (en) | 2003-06-27 | 2005-08-19 | Medicrea International | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
FR2856580B1 (en) | 2003-06-27 | 2006-03-17 | Medicrea | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
FR2865377B1 (en) | 2004-01-27 | 2006-10-20 | Medicrea | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
US7087057B2 (en) | 2003-06-27 | 2006-08-08 | Depuy Acromed, Inc. | Polyaxial bone screw |
AU2004257643A1 (en) | 2003-07-03 | 2005-01-27 | Synthes Gmbh | Top loading spinal fixation device and instruments for loading and handling the same |
US6945975B2 (en) | 2003-07-07 | 2005-09-20 | Aesculap, Inc. | Bone fixation assembly and method of securement |
KR100579153B1 (en) * | 2003-07-11 | 2006-05-12 | 김종오 | Radioactive magnetic fluids for treatment or diagnosis of cancer, process for preparaing them and use thereof |
US7743391B2 (en) * | 2003-07-15 | 2010-06-22 | Lsi Corporation | Flexible architecture component (FAC) for efficient data integration and information interchange using web services |
US20050021036A1 (en) | 2003-07-21 | 2005-01-27 | Whitmore Robin C. | Self-drilling, self-tapping bone screw |
WO2005016161A1 (en) | 2003-07-25 | 2005-02-24 | Traiber, S.A. | Vertebral fixation device for the treatment of spondylolisthesis |
US7204853B2 (en) | 2003-08-05 | 2007-04-17 | Flexuspine, Inc. | Artificial functional spinal unit assemblies |
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US7799082B2 (en) | 2003-08-05 | 2010-09-21 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7794476B2 (en) | 2003-08-08 | 2010-09-14 | Warsaw Orthopedic, Inc. | Implants formed of shape memory polymeric material for spinal fixation |
US6981973B2 (en) | 2003-08-11 | 2006-01-03 | Mckinley Laurence M | Low profile vertebral alignment and fixation assembly |
CA2536336C (en) | 2003-08-20 | 2012-04-10 | Sdgi Holdings, Inc. | Multi-axial orthopedic device and system, e.g. for spinal surgery |
ATE416678T1 (en) | 2003-08-26 | 2008-12-15 | Zimmer Spine Inc | ACCESS SYSTEMS FOR MINIMALLY INVASIVE SURGERY |
FR2859095B1 (en) | 2003-09-01 | 2006-05-12 | Ldr Medical | BONE ANCHORING IMPLANT WITH A POLYAXIAL HEAD AND METHOD OF PLACING THE IMPLANT |
FR2859376B1 (en) | 2003-09-04 | 2006-05-19 | Spine Next Sa | SPINAL IMPLANT |
US7938858B2 (en) | 2003-09-15 | 2011-05-10 | Warsaw Orthopedic, Inc. | Spinal implant system |
US7763052B2 (en) | 2003-12-05 | 2010-07-27 | N Spine, Inc. | Method and apparatus for flexible fixation of a spine |
US7815665B2 (en) | 2003-09-24 | 2010-10-19 | N Spine, Inc. | Adjustable spinal stabilization system |
US20050203513A1 (en) | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
US20050065516A1 (en) | 2003-09-24 | 2005-03-24 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
US7875060B2 (en) | 2003-09-24 | 2011-01-25 | Spinefrontier, LLS | Multi-axial screw with a spherical landing |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
FR2860138A1 (en) | 2003-09-26 | 2005-04-01 | Stryker Spine | ASSEMBLY AND METHOD OF FIXING BONES |
CA2540594A1 (en) | 2003-09-29 | 2005-04-07 | Synthes Gmbh | Dynamic damping element for two bones |
ATE434983T1 (en) | 2003-09-29 | 2009-07-15 | Synthes Gmbh | DEVICE FOR THE ELASTIC STABILIZATION OF VERTEBRATE BODY |
EP1667592A1 (en) | 2003-09-29 | 2006-06-14 | Synthes GmbH | Damping element |
US6857343B1 (en) | 2003-09-30 | 2005-02-22 | Codman & Shurtleff, Inc. | Spring-loaded threaded fastener holder |
US20050080415A1 (en) | 2003-10-14 | 2005-04-14 | Keyer Thomas R. | Polyaxial bone anchor and method of spinal fixation |
WO2005037150A1 (en) | 2003-10-16 | 2005-04-28 | Osteotech, Inc. | System and method for flexible correction of bony motion segment |
DE102004021861A1 (en) | 2004-05-04 | 2005-11-24 | Biedermann Motech Gmbh | Implant for temporary or permanent replacement of vertebra or intervertebral disk, comprising solid central element and outer elements with openings |
DE10348329B3 (en) * | 2003-10-17 | 2005-02-17 | Biedermann Motech Gmbh | Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece |
US7699879B2 (en) | 2003-10-21 | 2010-04-20 | Warsaw Orthopedic, Inc. | Apparatus and method for providing dynamizable translations to orthopedic implants |
US7967826B2 (en) | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
US7588588B2 (en) | 2003-10-21 | 2009-09-15 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
US7905907B2 (en) | 2003-10-21 | 2011-03-15 | Theken Spine, Llc | Internal structure stabilization system for spanning three or more structures |
US7744633B2 (en) | 2003-10-22 | 2010-06-29 | Pioneer Surgical Technology, Inc. | Crosslink for securing spinal rods |
WO2005042985A2 (en) | 2003-10-24 | 2005-05-12 | Flesher Robert W | Tamper-resistant fastener and method and tool for use with same |
US20050096652A1 (en) | 2003-10-31 | 2005-05-05 | Burton Charles V. | Integral flexible spine stabilization device and method |
US7090674B2 (en) | 2003-11-03 | 2006-08-15 | Spinal, Llc | Bone fixation system with low profile fastener |
TWI243047B (en) | 2003-11-03 | 2005-11-11 | A Spine Holding Group Corp | Spigot vertebra fixing and reposition device |
JP2007509735A (en) | 2003-11-04 | 2007-04-19 | パックス サイエンティフィック インコーポレイテッド | Fluid circulation system |
US8632570B2 (en) | 2003-11-07 | 2014-01-21 | Biedermann Technologies Gmbh & Co. Kg | Stabilization device for bones comprising a spring element and manufacturing method for said spring element |
CN1897884B (en) | 2003-11-07 | 2010-05-05 | 比德曼莫泰赫有限公司 | Bone fixing element and stabilising device comprising one such bone fixing element |
CA2449883A1 (en) | 2003-11-18 | 2005-05-18 | Terray Corporation | Taper-lock bone screw fixation system |
US7862586B2 (en) | 2003-11-25 | 2011-01-04 | Life Spine, Inc. | Spinal stabilization systems |
US7553320B2 (en) | 2003-12-10 | 2009-06-30 | Warsaw Orthopedic, Inc. | Method and apparatus for replacing the function of facet joints |
TW200518711A (en) | 2003-12-11 | 2005-06-16 | A Spine Holding Group Corp | Rotation buckling ball-head spine restoring equipment |
US7846190B2 (en) | 2003-12-12 | 2010-12-07 | Integra Lifesciences Corporation | Apparatuses, systems and methods for bone fixation |
US20050131406A1 (en) | 2003-12-15 | 2005-06-16 | Archus Orthopedics, Inc. | Polyaxial adjustment of facet joint prostheses |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US20050131407A1 (en) | 2003-12-16 | 2005-06-16 | Sicvol Christopher W. | Flexible spinal fixation elements |
US7648506B2 (en) | 2003-12-16 | 2010-01-19 | Depuy Acromed, Inc. | Pivoting implant holder |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
ATE441376T1 (en) | 2003-12-17 | 2009-09-15 | Depuy Spine Inc | INSTRUMENTS AND PROCEDURES FOR BONE ANCHOR PROCEDURES AND SPINAL BAR REDUCTION |
US7842044B2 (en) | 2003-12-17 | 2010-11-30 | Depuy Spine, Inc. | Instruments and methods for bone anchor engagement and spinal rod reduction |
US20050137713A1 (en) | 2003-12-17 | 2005-06-23 | Bertram Morton Iii | Anti-backout arthroscopic uni-compartmental prosthesis |
US7670360B2 (en) | 2003-12-19 | 2010-03-02 | Orthopaedic International, Inc. | Low profile anterior thoracic and thoracolumbar plate |
US8182518B2 (en) | 2003-12-22 | 2012-05-22 | Life Spine, Inc. | Static and dynamic cervical plates and cervical plate constructs |
US20050144389A1 (en) | 2003-12-29 | 2005-06-30 | Trika Sanjeev N. | Method, system, and apparatus for explicit control over a disk cache memory |
EP1699371A4 (en) | 2003-12-30 | 2008-09-24 | Depuy Spine Sarl | Bone anchor assemblies |
US20050159750A1 (en) | 2003-12-30 | 2005-07-21 | Thomas Doherty | Bone anchor assemblies and methods of manufacturing bone anchor assemblies |
US20050143737A1 (en) | 2003-12-31 | 2005-06-30 | John Pafford | Dynamic spinal stabilization system |
US7806914B2 (en) | 2003-12-31 | 2010-10-05 | Spine Wave, Inc. | Dynamic spinal stabilization system |
US7833251B1 (en) | 2004-01-06 | 2010-11-16 | Nuvasive, Inc. | System and method for performing spinal fixation |
US7678137B2 (en) | 2004-01-13 | 2010-03-16 | Life Spine, Inc. | Pedicle screw constructs for spine fixation systems |
US7637928B2 (en) | 2004-01-26 | 2009-12-29 | Synthes Usa, Llc | Variable angle locked bone fixation system |
FR2865373B1 (en) | 2004-01-27 | 2006-03-03 | Medicrea International | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
FR2865375B1 (en) | 2004-01-27 | 2006-12-15 | Medicrea International | MATERIAL OF VERTEBRAL OSTEOSYNTHESIS |
US8029548B2 (en) | 2008-05-05 | 2011-10-04 | Warsaw Orthopedic, Inc. | Flexible spinal stabilization element and system |
US7815664B2 (en) | 2005-01-04 | 2010-10-19 | Warsaw Orthopedic, Inc. | Systems and methods for spinal stabilization with flexible elements |
US7597694B2 (en) | 2004-01-30 | 2009-10-06 | Warsaw Orthopedic, Inc. | Instruments and methods for minimally invasive spinal stabilization |
CA2555141C (en) | 2004-02-06 | 2013-01-08 | Depuy Spine, Inc. | Devices and methods for inserting a spinal fixation element |
US7815666B2 (en) | 2004-02-10 | 2010-10-19 | Atlas Spine, Inc. | Dynamic cervical plate |
US7993373B2 (en) | 2005-02-22 | 2011-08-09 | Hoy Robert W | Polyaxial orthopedic fastening apparatus |
US8562649B2 (en) * | 2004-02-17 | 2013-10-22 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
DE102004009429A1 (en) | 2004-02-24 | 2005-09-22 | Biedermann Motech Gmbh | Bone anchoring element |
US7311712B2 (en) | 2004-02-26 | 2007-12-25 | Aesculap Implant Systems, Inc. | Polyaxial locking screw plate assembly |
US7789896B2 (en) | 2005-02-22 | 2010-09-07 | Jackson Roger P | Polyaxial bone screw assembly |
US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
US7862594B2 (en) | 2004-02-27 | 2011-01-04 | Custom Spine, Inc. | Polyaxial pedicle screw assembly |
US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
CA2555868C (en) | 2004-02-27 | 2011-09-06 | Roger P. Jackson | Orthopedic implant rod reduction tool set and method |
US7819902B2 (en) | 2004-02-27 | 2010-10-26 | Custom Spine, Inc. | Medialised rod pedicle screw assembly |
US7470279B2 (en) | 2004-02-27 | 2008-12-30 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US7163539B2 (en) | 2004-02-27 | 2007-01-16 | Custom Spine, Inc. | Biased angle polyaxial pedicle screw assembly |
FR2867057B1 (en) | 2004-03-02 | 2007-06-01 | Spinevision | DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER |
US20050203511A1 (en) | 2004-03-02 | 2005-09-15 | Wilson-Macdonald James | Orthopaedics device and system |
DE102004010382B4 (en) | 2004-03-03 | 2006-04-20 | Biedermann Motech Gmbh | Bone anchoring element for anchoring in a bone or in a vertebra and its use in a stabilizing device |
DE102004010380A1 (en) | 2004-03-03 | 2005-09-22 | Biedermann Motech Gmbh | Anchoring element and stabilizing device for the dynamic stabilization of vertebrae or bones with such an anchoring element |
DE102004010844A1 (en) | 2004-03-05 | 2005-10-06 | Biedermann Motech Gmbh | Stabilizing device for the dynamic stabilization of vertebrae or bones and rod-shaped element for such a stabilization device |
DE102004011685A1 (en) * | 2004-03-09 | 2005-09-29 | Biedermann Motech Gmbh | Spine supporting element, comprising spiraled grooves at outer surface and three plain areas |
US7547318B2 (en) | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
US7214227B2 (en) | 2004-03-22 | 2007-05-08 | Innovative Spinal Technologies | Closure member for a medical implant device |
US7491221B2 (en) | 2004-03-23 | 2009-02-17 | Stryker Spine | Modular polyaxial bone screw and plate |
US7645294B2 (en) | 2004-03-31 | 2010-01-12 | Depuy Spine, Inc. | Head-to-head connector spinal fixation system |
US7226453B2 (en) | 2004-03-31 | 2007-06-05 | Depuy Spine, Inc. | Instrument for inserting, adjusting and removing pedicle screws and other orthopedic implants |
US7717939B2 (en) | 2004-03-31 | 2010-05-18 | Depuy Spine, Inc. | Rod attachment for head to head cross connector |
US7686833B1 (en) | 2004-04-02 | 2010-03-30 | Muhanna Nabil L | Ball jointed pedicle screw and rod system |
US7503924B2 (en) | 2004-04-08 | 2009-03-17 | Globus Medical, Inc. | Polyaxial screw |
US8475495B2 (en) | 2004-04-08 | 2013-07-02 | Globus Medical | Polyaxial screw |
US7377922B2 (en) | 2004-04-15 | 2008-05-27 | Warsaw Orthopedic, Inc. | Transfer ring for offset tapered 3D connector |
US7524323B2 (en) | 2004-04-16 | 2009-04-28 | Kyphon Sarl | Subcutaneous support |
US7618418B2 (en) | 2004-04-16 | 2009-11-17 | Kyphon Sarl | Plate system for minimally invasive support of the spine |
US7648520B2 (en) | 2004-04-16 | 2010-01-19 | Kyphon Sarl | Pedicle screw assembly |
US7833256B2 (en) | 2004-04-16 | 2010-11-16 | Biedermann Motech Gmbh | Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element |
US7678139B2 (en) | 2004-04-20 | 2010-03-16 | Allez Spine, Llc | Pedicle screw assembly |
US7051451B2 (en) | 2004-04-22 | 2006-05-30 | Archus Orthopedics, Inc. | Facet joint prosthesis measurement and implant tools |
US20050240181A1 (en) | 2004-04-23 | 2005-10-27 | Boomer Mark C | Spinal implant connectors |
EP1740111B1 (en) | 2004-04-28 | 2009-08-05 | Synthes GmbH | Device for dynamic bone stabilization |
US20070093833A1 (en) | 2004-05-03 | 2007-04-26 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
US7494489B2 (en) | 2004-05-07 | 2009-02-24 | Jeffrey S. Roh | Systems and methods that facilitate minimally invasive spine surgery |
US20050267470A1 (en) | 2004-05-13 | 2005-12-01 | Mcbride Duncan Q | Spinal stabilization system to flexibly connect vertebrae |
US7766941B2 (en) | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
US20050260058A1 (en) | 2004-05-18 | 2005-11-24 | Cassagne Alphonse G Iii | Hex fastener |
US7942912B2 (en) | 2004-05-25 | 2011-05-17 | University Of Utah Research Foundation | Occipitocervical plate |
US7901435B2 (en) | 2004-05-28 | 2011-03-08 | Depuy Spine, Inc. | Anchoring systems and methods for correcting spinal deformities |
DE102004027881B4 (en) | 2004-05-28 | 2006-06-01 | Aesculap Ag & Co. Kg | Bone screw and osteosynthesis device |
US8021398B2 (en) | 2004-06-09 | 2011-09-20 | Life Spine, Inc. | Spinal fixation system |
US7559943B2 (en) | 2004-06-09 | 2009-07-14 | Zimmer Spine, Inc. | Spinal fixation device with internal drive structure |
US7938848B2 (en) | 2004-06-09 | 2011-05-10 | Life Spine, Inc. | Spinal fixation system |
US8858599B2 (en) | 2004-06-09 | 2014-10-14 | Warsaw Orthopedic, Inc. | Systems and methods for flexible spinal stabilization |
US7935135B2 (en) | 2004-06-09 | 2011-05-03 | Zimmer Spine, Inc. | Spinal fixation device |
US7744635B2 (en) | 2004-06-09 | 2010-06-29 | Spinal Generations, Llc | Spinal fixation system |
US20050277934A1 (en) | 2004-06-10 | 2005-12-15 | Vardiman Arnold B | Rod delivery device and method |
US20050278023A1 (en) | 2004-06-10 | 2005-12-15 | Zwirkoski Paul A | Method and apparatus for filling a cavity |
EP1758511A4 (en) | 2004-06-14 | 2008-12-03 | M S Abdou | Occipital fixation system and method of use |
US7731736B2 (en) | 2004-06-14 | 2010-06-08 | Zimmer Spine, Inc. | Fastening system for spinal stabilization system |
US7857834B2 (en) | 2004-06-14 | 2010-12-28 | Zimmer Spine, Inc. | Spinal implant fixation assembly |
US7727266B2 (en) | 2004-06-17 | 2010-06-01 | Warsaw Orthopedic, Inc. | Method and apparatus for retaining screws in a plate |
US7264621B2 (en) | 2004-06-17 | 2007-09-04 | Sdgi Holdings, Inc. | Multi-axial bone attachment assembly |
ZA200700451B (en) | 2004-06-23 | 2008-10-29 | Applied Spine Technologies Inc | Systems and methods for spine stabilization |
US7955357B2 (en) | 2004-07-02 | 2011-06-07 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
EP1841374A2 (en) | 2004-07-06 | 2007-10-10 | Synthes GmbH | Spinal rod insertion instrument |
EP1768585B1 (en) | 2004-07-12 | 2012-01-04 | Synthes GmbH | Device for the dynamic fixation of bones |
US7485133B2 (en) | 2004-07-14 | 2009-02-03 | Warsaw Orthopedic, Inc. | Force diffusion spinal hook |
US7651496B2 (en) | 2004-07-23 | 2010-01-26 | Zimmer Spine, Inc. | Methods and apparatuses for percutaneous implant delivery |
WO2006017641A2 (en) | 2004-08-03 | 2006-02-16 | Vertech Innovations, L.L.C. | Spinous process reinforcement device and method |
US20060036259A1 (en) | 2004-08-03 | 2006-02-16 | Carl Allen L | Spine treatment devices and methods |
US20060036323A1 (en) | 2004-08-03 | 2006-02-16 | Carl Alan L | Facet device and method |
US20060036324A1 (en) | 2004-08-03 | 2006-02-16 | Dan Sachs | Adjustable spinal implant device and method |
US7572281B2 (en) | 2004-08-06 | 2009-08-11 | Depuy Spine, Inc. | Instrument for guiding a rod into an implant in a spinal fixation system |
WO2006020530A2 (en) | 2004-08-09 | 2006-02-23 | Innovative Spinal Technologies | System and method for dynamic skeletal stabilization |
US7854752B2 (en) | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
US7766945B2 (en) | 2004-08-10 | 2010-08-03 | Lanx, Inc. | Screw and rod fixation system |
US7462182B2 (en) | 2004-08-10 | 2008-12-09 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7186255B2 (en) | 2004-08-12 | 2007-03-06 | Atlas Spine, Inc. | Polyaxial screw |
US7846184B2 (en) | 2004-08-13 | 2010-12-07 | Sasso Ricardo C | Replacement facet joint and method |
US20060052784A1 (en) | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
US20060052783A1 (en) | 2004-08-17 | 2006-03-09 | Dant Jack A | Polyaxial device for spine stabilization during osteosynthesis |
US20060052786A1 (en) | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
US8951290B2 (en) | 2004-08-27 | 2015-02-10 | Blackstone Medical, Inc. | Multi-axial connection system |
US20060058788A1 (en) | 2004-08-27 | 2006-03-16 | Hammer Michael A | Multi-axial connection system |
WO2006033503A1 (en) | 2004-09-22 | 2006-03-30 | Kyung-Woo Park | Bio-flexible spinal fixation apparatus with shape memory alloy |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US7396360B2 (en) | 2004-09-29 | 2008-07-08 | The Cleveland Clinic Foundation | Minimally invasive method and apparatus for fusing adjacent vertebrae |
US20060084976A1 (en) | 2004-09-30 | 2006-04-20 | Depuy Spine, Inc. | Posterior stabilization systems and methods |
US7896906B2 (en) | 2004-12-30 | 2011-03-01 | Depuy Spine, Inc. | Artificial facet joint |
US20060079895A1 (en) | 2004-09-30 | 2006-04-13 | Mcleer Thomas J | Methods and devices for improved bonding of devices to bone |
US8092496B2 (en) | 2004-09-30 | 2012-01-10 | Depuy Spine, Inc. | Methods and devices for posterior stabilization |
US7572280B2 (en) | 2004-10-05 | 2009-08-11 | Warsaw Orthopedic, Inc. | Multi-axial anchor assemblies for spinal implants and methods |
US7722654B2 (en) | 2004-10-05 | 2010-05-25 | Warsaw Orthopedic, Inc. | Spinal implants with multi-axial anchor assembly and methods |
US7794477B2 (en) | 2004-10-05 | 2010-09-14 | Warsaw Orthopedic, Inc. | Spinal implants and methods with extended multi-axial anchor assemblies |
DE102004048938B4 (en) | 2004-10-07 | 2015-04-02 | Synthes Gmbh | Device for the dynamic stabilization of vertebral bodies |
US20080262554A1 (en) | 2004-10-20 | 2008-10-23 | Stanley Kyle Hayes | Dyanamic rod |
US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
US8425559B2 (en) | 2004-10-20 | 2013-04-23 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US20090228045A1 (en) | 2004-10-20 | 2009-09-10 | Stanley Kyle Hayes | Dynamic rod |
US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8366747B2 (en) | 2004-10-20 | 2013-02-05 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
US8123807B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8409282B2 (en) | 2004-10-20 | 2013-04-02 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8152837B2 (en) | 2004-10-20 | 2012-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8167944B2 (en) | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US20090030465A1 (en) * | 2004-10-20 | 2009-01-29 | Moti Altarac | Dynamic rod |
US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
US8012207B2 (en) | 2004-10-20 | 2011-09-06 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8317864B2 (en) | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7662172B2 (en) | 2004-10-25 | 2010-02-16 | X-Spine Systems, Inc. | Pedicle screw systems and methods of assembling/installing the same |
US20060161152A1 (en) | 2004-10-25 | 2006-07-20 | Alphaspine, Inc. | Bone fixation systems and methods of assembling and/or installing the same |
US7604655B2 (en) | 2004-10-25 | 2009-10-20 | X-Spine Systems, Inc. | Bone fixation system and method for using the same |
WO2006047742A2 (en) | 2004-10-26 | 2006-05-04 | Concept Matrix, Llc | An internal fixation system for spine surgery |
US7691129B2 (en) | 2004-10-27 | 2010-04-06 | Felix Brent A | Spinal stabilizing system |
US20060095037A1 (en) | 2004-10-29 | 2006-05-04 | Jones Bryan S | Connector assemblies for connecting a bone anchor to a fixation element |
WO2006048922A1 (en) | 2004-11-02 | 2006-05-11 | Kazuo Kagami | Chiropractic machine |
US7513905B2 (en) | 2004-11-03 | 2009-04-07 | Jackson Roger P | Polyaxial bone screw |
US8075591B2 (en) | 2004-11-09 | 2011-12-13 | Depuy Spine, Inc. | Minimally invasive spinal fixation guide systems and methods |
US7572279B2 (en) | 2004-11-10 | 2009-08-11 | Jackson Roger P | Polyaxial bone screw with discontinuous helically wound capture connection |
US7569061B2 (en) | 2004-11-16 | 2009-08-04 | Innovative Spinal Technologies, Inc. | Off-axis anchor guidance system |
US20110190822A1 (en) | 2004-11-16 | 2011-08-04 | James Spitler | Internal Structure Stabilization System for Spanning Three or More Structures |
DE102004055454A1 (en) | 2004-11-17 | 2006-05-24 | Biedermann Motech Gmbh | Flexible element for setting of bones e.g. spinal cord has loop-shaped staff which runs along the connecting axle from one end to another end on two opposite sides of axle |
US20060106381A1 (en) | 2004-11-18 | 2006-05-18 | Ferree Bret A | Methods and apparatus for treating spinal stenosis |
GB0425546D0 (en) | 2004-11-20 | 2004-12-22 | Wang Dajue | Spinal prostheses |
US7875065B2 (en) | 2004-11-23 | 2011-01-25 | Jackson Roger P | Polyaxial bone screw with multi-part shank retainer and pressure insert |
US8308782B2 (en) | 2004-11-23 | 2012-11-13 | Jackson Roger P | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation |
US7625396B2 (en) | 2004-11-23 | 2009-12-01 | Jackson Roger P | Polyaxial bone screw with multi-part shank retainer |
US20120029568A1 (en) | 2006-01-09 | 2012-02-02 | Jackson Roger P | Spinal connecting members with radiused rigid sleeves and tensioned cords |
US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
US7691133B2 (en) | 2004-11-30 | 2010-04-06 | Integra Lifesciences Corporation | Systems and methods for bone fixation |
US7674277B2 (en) | 2004-12-01 | 2010-03-09 | Warsaw Orthopedic, Inc. | Side-loading bone anchor |
US7811288B2 (en) | 2004-12-02 | 2010-10-12 | Zimmer Spine, Inc. | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
US7655044B2 (en) | 2004-12-13 | 2010-02-02 | Depuy Spine, Inc. | Artificial facet joint device having a compression spring |
US8172877B2 (en) | 2004-12-13 | 2012-05-08 | Kyphon Sarl | Inter-cervical facet implant with surface enhancements |
US7306606B2 (en) | 2004-12-15 | 2007-12-11 | Orthopaedic Innovations, Inc. | Multi-axial bone screw mechanism |
WO2006066053A1 (en) | 2004-12-15 | 2006-06-22 | Stryker Spine | Spinal rods having segments of different elastic properties and methods of using them |
EP1719468A1 (en) | 2004-12-17 | 2006-11-08 | Zimmer GmbH | Intervertebral stabilization system |
US7207493B2 (en) | 2004-12-20 | 2007-04-24 | Ncr Corporation | Document stacker apparatus and method of stacking documents |
US7527640B2 (en) | 2004-12-22 | 2009-05-05 | Ebi, Llc | Bone fixation system |
EP2449989A1 (en) | 2004-12-27 | 2012-05-09 | N Spine, Inc. | Adjustable spinal stabilization system |
US20060229613A1 (en) | 2004-12-31 | 2006-10-12 | Timm Jens P | Sheath assembly for spinal stabilization device |
WO2006079531A1 (en) | 2005-01-26 | 2006-08-03 | Aesculap Ag & Co. Kg | Self-contouring spinal rod |
US7625376B2 (en) | 2005-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7445627B2 (en) * | 2005-01-31 | 2008-11-04 | Alpinespine, Llc | Polyaxial pedicle screw assembly |
US20070088359A1 (en) | 2005-02-07 | 2007-04-19 | Woods Richard W | Universal dynamic spine stabilization device and method of use |
DE102005005647A1 (en) | 2005-02-08 | 2006-08-17 | Henning Kloss | Pedicle screw for spinal column stabilizing device, has screw head with two opposed oblong hole shaped recesses, and ball unit including recess for accommodating connecting unit and movably mounted in head |
US20060189985A1 (en) | 2005-02-09 | 2006-08-24 | Lewis David W | Device for providing a combination of flexibility and variable force to the spinal column for the treatment of scoliosis |
US7799031B2 (en) | 2005-02-09 | 2010-09-21 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US20060195090A1 (en) | 2005-02-10 | 2006-08-31 | Loubert Suddaby | Apparatus for and method of aligning a spine |
US8097018B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7862588B2 (en) | 2005-02-18 | 2011-01-04 | Samy Abdou | Devices and methods for dynamic fixation of skeletal structure |
US7294129B2 (en) | 2005-02-18 | 2007-11-13 | Ebi, L.P. | Spinal fixation device and associated method |
US7361196B2 (en) | 2005-02-22 | 2008-04-22 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US8403962B2 (en) | 2005-02-22 | 2013-03-26 | Roger P. Jackson | Polyaxial bone screw assembly |
US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
DE102005009282A1 (en) | 2005-02-22 | 2006-08-24 | Aesculap Ag & Co. Kg | Fixing element for a bone implant system comprises a fixing part with a fixing section on the distal side and a receiving part connected to the fixing part |
US8055487B2 (en) | 2005-02-22 | 2011-11-08 | Smith & Nephew, Inc. | Interactive orthopaedic biomechanics system |
US10076361B2 (en) | 2005-02-22 | 2018-09-18 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
US8167913B2 (en) | 2005-03-03 | 2012-05-01 | Altus Partners, Llc | Spinal stabilization using bone anchor and anchor seat with tangential locking feature |
US7556639B2 (en) | 2005-03-03 | 2009-07-07 | Accelerated Innovation, Llc | Methods and apparatus for vertebral stabilization using sleeved springs |
US20060212033A1 (en) | 2005-03-03 | 2006-09-21 | Accin Corporation | Vertebral stabilization using flexible rods |
US20060200023A1 (en) | 2005-03-04 | 2006-09-07 | Sdgi Holdings, Inc. | Instruments and methods for nerve monitoring in spinal surgical procedures |
US7951172B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine Sarl | Constrained motion bone screw assembly |
US7951175B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine, Inc. | Instruments and methods for manipulating a vertebra |
US7914536B2 (en) | 2005-03-11 | 2011-03-29 | Aesculap Ag | Bone repair device and method |
US8491936B2 (en) * | 2005-03-16 | 2013-07-23 | North Carolina State University | Functionally graded biocompatible coating and coated implant |
US20060229608A1 (en) | 2005-03-17 | 2006-10-12 | Foster Thomas A | Apparatus and methods for spinal implant with dynamic stabilization system |
US20060229609A1 (en) | 2005-03-18 | 2006-10-12 | Chao-Jan Wang | Microadjustment spinal joint fixture |
US7338491B2 (en) | 2005-03-22 | 2008-03-04 | Spinefrontier Inc | Spinal fixation locking mechanism |
WO2006102605A2 (en) | 2005-03-23 | 2006-09-28 | Alphaspine, Inc. | Percutaneous pedicle screw assembly |
WO2006102268A2 (en) | 2005-03-24 | 2006-09-28 | Accelerated Innovation, Llc | Method and apparatus for bone stabilization |
US7909826B2 (en) | 2005-03-24 | 2011-03-22 | Depuy Spine, Inc. | Low profile spinal tethering methods |
EP1871302A4 (en) | 2005-03-25 | 2012-05-02 | Blackstone Medical Inc | Multi-axial connection system |
US7708762B2 (en) | 2005-04-08 | 2010-05-04 | Warsaw Orthopedic, Inc. | Systems, devices and methods for stabilization of the spinal column |
MX2007012493A (en) | 2005-04-08 | 2008-03-14 | Paradigm Spine Llc | Interspinous vertebral and lumbosacral stabilization devices and methods of use. |
US20060241593A1 (en) | 2005-04-08 | 2006-10-26 | Sdgi Holdings, Inc. | Multi-piece vertebral attachment device |
WO2006116119A2 (en) | 2005-04-21 | 2006-11-02 | Spine Wave, Inc. | Dynamic stabilization system for the spine |
US7794481B2 (en) | 2005-04-22 | 2010-09-14 | Warsaw Orthopedic, Inc. | Force limiting coupling assemblies for spinal implants |
WO2006116437A2 (en) | 2005-04-25 | 2006-11-02 | Synthes (U.S.A.) | Bone anchor with locking cap and method of spinal fixation |
US20060247631A1 (en) | 2005-04-27 | 2006-11-02 | Ahn Sae Y | Spinal pedicle screw assembly |
WO2006116606A2 (en) | 2005-04-27 | 2006-11-02 | James Marino | Mono-planar pedilcle screw method, system, and kit |
US7758617B2 (en) | 2005-04-27 | 2010-07-20 | Globus Medical, Inc. | Percutaneous vertebral stabilization system |
US7491208B2 (en) | 2005-04-28 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrument and method for guiding surgical implants and instruments during surgery |
US7850715B2 (en) | 2005-04-29 | 2010-12-14 | Warsaw Orthopedic Inc. | Orthopedic implant apparatus |
US7811310B2 (en) | 2005-05-04 | 2010-10-12 | Spinefrontier, Inc | Multistage spinal fixation locking mechanism |
US20060264935A1 (en) | 2005-05-04 | 2006-11-23 | White Patrick M | Orthopedic stabilization device |
US20060264937A1 (en) | 2005-05-04 | 2006-11-23 | White Patrick M | Mobile spine stabilization device |
US8048124B2 (en) | 2005-05-04 | 2011-11-01 | Spinefrontier Inc | Spinal screw assembly and screw insertion tool |
US7828830B2 (en) | 2005-05-12 | 2010-11-09 | Lanx, Inc. | Dynamic spinal stabilization |
US8177817B2 (en) | 2005-05-18 | 2012-05-15 | Stryker Spine | System and method for orthopedic implant configuration |
WO2008137933A1 (en) | 2005-05-25 | 2008-11-13 | Alpinespine Llc | Low rider pedicle screw system |
US8100947B2 (en) | 2005-05-25 | 2012-01-24 | K2M, Inc. | Low profile pedicle screw and rod assembly |
US20060276787A1 (en) | 2005-05-26 | 2006-12-07 | Accin Corporation | Pedicle screw, cervical screw and rod |
DE602005014545D1 (en) | 2005-05-27 | 2009-07-02 | Biedermann Motech Gmbh | A receiving part for connecting a shaft of a bone anchoring element with a rod and bone anchoring device with such a receiving part |
US7749233B2 (en) | 2005-06-08 | 2010-07-06 | Innovative Spine, Llc | Sleeve assembly for spinal stabilization system and methods of use |
US20060282080A1 (en) | 2005-06-08 | 2006-12-14 | Accin Corporation | Vertebral facet stabilizer |
US7763051B2 (en) | 2005-06-10 | 2010-07-27 | Depuy Spine, Inc. | Posterior dynamic stabilization systems and methods |
US20070043364A1 (en) | 2005-06-17 | 2007-02-22 | Cawley Trace R | Spinal correction system with multi-stage locking mechanism |
US7828825B2 (en) * | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
US7799060B2 (en) * | 2005-06-20 | 2010-09-21 | Warsaw Orthopedic, Inc. | Multi-directional spinal stabilization systems and methods |
WO2007002409A2 (en) | 2005-06-22 | 2007-01-04 | Stephen Ritland | Dynamic fixation device and method of use |
US7563283B2 (en) * | 2005-06-30 | 2009-07-21 | Depuy Spine, Inc. | Non-linear artificial ligament system |
DE602005016791D1 (en) | 2005-07-08 | 2009-11-05 | Biedermann Motech Gmbh | Bone anchoring device |
DE602005009703D1 (en) | 2005-07-12 | 2008-10-23 | Biedermann Motech Gmbh | Bone anchoring device |
US20070016190A1 (en) * | 2005-07-14 | 2007-01-18 | Medical Device Concepts Llc | Dynamic spinal stabilization system |
EP1903959A4 (en) | 2005-07-18 | 2011-01-19 | Dong Myung Jeon | Bi-polar bone screw assembly |
WO2009049206A2 (en) | 2005-07-22 | 2009-04-16 | Vertiflex, Inc. | Offset connector for a spinal stabilization rod |
US7811309B2 (en) | 2005-07-26 | 2010-10-12 | Applied Spine Technologies, Inc. | Dynamic spine stabilization device with travel-limiting functionality |
US7766946B2 (en) | 2005-07-27 | 2010-08-03 | Frank Emile Bailly | Device for securing spinal rods |
US7717943B2 (en) | 2005-07-29 | 2010-05-18 | X-Spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
US7713288B2 (en) | 2005-08-03 | 2010-05-11 | Applied Spine Technologies, Inc. | Spring junction and assembly methods for spinal device |
US7699875B2 (en) | 2006-04-17 | 2010-04-20 | Applied Spine Technologies, Inc. | Spinal stabilization device with weld cap |
JP5084195B2 (en) | 2005-08-03 | 2012-11-28 | ビーダーマン・モテーク・ゲゼルシャフト・ミット・ベシュレンクタ・ハフツング | Bone anchoring device |
US7625394B2 (en) * | 2005-08-05 | 2009-12-01 | Warsaw Orthopedic, Inc. | Coupling assemblies for spinal implants |
US7766943B1 (en) | 2005-08-11 | 2010-08-03 | Medicine Lodge Inc. | Modular percutaneous spinal fusion system and method |
US7909830B2 (en) | 2005-08-25 | 2011-03-22 | Synthes Usa, Llc | Methods of spinal fixation and instrumentation |
US7695475B2 (en) | 2005-08-26 | 2010-04-13 | Warsaw Orthopedic, Inc. | Instruments for minimally invasive stabilization of bony structures |
WO2007025236A2 (en) | 2005-08-26 | 2007-03-01 | Innovative Spinal Technologies | Alignment instrument for dynamic spinal stabilization systems |
KR100741293B1 (en) | 2005-08-30 | 2007-07-23 | 주식회사 솔고 바이오메디칼 | Spinal Pedicle Screw |
US7799057B2 (en) | 2005-09-02 | 2010-09-21 | Zimmer Spine, Inc. | Translaminar facet augmentation and flexible spinal stabilization |
US7695497B2 (en) | 2005-09-12 | 2010-04-13 | Seaspine, Inc. | Implant system for osteosynthesis |
US20070073290A1 (en) | 2005-09-13 | 2007-03-29 | Boehm Frank H Jr | Insertion of artificial/prosthetic facet joints with ballotable/compressible joint space component |
US8500812B2 (en) | 2005-09-13 | 2013-08-06 | Corporate Venture Services Inc. | Device and method for implantation that restores physiologic range of motion by establishing an adjustable constrained motion of the spine without intrusion of associated facet joints |
US7955358B2 (en) | 2005-09-19 | 2011-06-07 | Albert Todd J | Bone screw apparatus, system and method |
EP1767161A1 (en) | 2005-09-22 | 2007-03-28 | Zimmer Spine, Inc. | Spinal fixation rod contouring system |
US8197519B2 (en) | 2005-09-23 | 2012-06-12 | Synthes Usa, Llc | Bone support apparatus |
WO2007040553A1 (en) | 2005-09-26 | 2007-04-12 | Dong Jeon | Hybrid jointed bone screw system |
US8343165B2 (en) | 2005-09-26 | 2013-01-01 | Pioneer Surgical Technology, Inc. | Apparatus and method for implantation of surgical devices |
WO2007038429A1 (en) | 2005-09-27 | 2007-04-05 | Endius, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
US7879074B2 (en) | 2005-09-27 | 2011-02-01 | Depuy Spine, Inc. | Posterior dynamic stabilization systems and methods |
US7993376B2 (en) | 2005-09-29 | 2011-08-09 | Depuy Spine, Inc. | Methods of implanting a motion segment repair system |
US7988694B2 (en) | 2005-09-29 | 2011-08-02 | K2M, Inc. | Spinal fixation system having locking and unlocking devices for use with a multi-planar, taper lock screw |
US7771430B2 (en) | 2005-09-29 | 2010-08-10 | K2M, Inc. | Single action anti-torque rod reducer |
CA2624114A1 (en) | 2005-09-30 | 2007-04-12 | Paradigm Spine, Llc | Hinged polyaxial screw and methods of use |
US7646524B2 (en) * | 2005-09-30 | 2010-01-12 | The United States Of America As Represented By The Secretary Of The Navy | Photoconductive metamaterials with tunable index of refraction and frequency |
US20080140076A1 (en) | 2005-09-30 | 2008-06-12 | Jackson Roger P | Dynamic stabilization connecting member with slitted segment and surrounding external elastomer |
US20070093826A1 (en) | 2005-10-04 | 2007-04-26 | Hawkes David T | Modular pedicle screw systems and methods of intra-operatively assembling the same |
US7686835B2 (en) | 2005-10-04 | 2010-03-30 | X-Spine Systems, Inc. | Pedicle screw system with provisional locking aspects |
US7927359B2 (en) | 2005-10-06 | 2011-04-19 | Paradigm Spine, Llc | Polyaxial screw |
US8870920B2 (en) | 2005-10-07 | 2014-10-28 | M. Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US20070093813A1 (en) | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilizer |
US20070093814A1 (en) | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilization systems |
US20070093815A1 (en) | 2005-10-11 | 2007-04-26 | Callahan Ronald Ii | Dynamic spinal stabilizer |
EP1774919B1 (en) | 2005-10-12 | 2008-08-20 | BIEDERMANN MOTECH GmbH | Poly-axial screw pivotable in a single plane |
US8075599B2 (en) | 2005-10-18 | 2011-12-13 | Warsaw Orthopedic, Inc. | Adjustable bone anchor assembly |
US8002806B2 (en) | 2005-10-20 | 2011-08-23 | Warsaw Orthopedic, Inc. | Bottom loading multi-axial screw assembly |
US20070118117A1 (en) | 2005-10-20 | 2007-05-24 | Ebi, L.P. | Bone fixation assembly |
US7722651B2 (en) | 2005-10-21 | 2010-05-25 | Depuy Spine, Inc. | Adjustable bone screw assembly |
US8109973B2 (en) | 2005-10-31 | 2012-02-07 | Stryker Spine | Method for dynamic vertebral stabilization |
KR20080080089A (en) | 2005-11-17 | 2008-09-02 | 킹스레이 리차드 친 | System and method for implanting spinal stabilization devices |
ES2313189T3 (en) | 2005-11-17 | 2009-03-01 | Biedermann Motech Gmbh | POLIAXIAL SCREW FOR FLEXIBLE BAR. |
WO2007061960A2 (en) | 2005-11-18 | 2007-05-31 | Life Spine, Inc. | Dynamic spinal stabilization devices and systems |
US20070118119A1 (en) | 2005-11-18 | 2007-05-24 | Zimmer Spine, Inc. | Methods and device for dynamic stabilization |
US8100946B2 (en) | 2005-11-21 | 2012-01-24 | Synthes Usa, Llc | Polyaxial bone anchors with increased angulation |
ES2729413T3 (en) | 2005-11-24 | 2019-11-04 | Giuseppe Calvosa | Modular vertebra stabilizer |
US20070124249A1 (en) | 2005-11-30 | 2007-05-31 | Naveen Aerrabotu | Methods and devices for image and digital rights management |
US8034078B2 (en) | 2008-05-30 | 2011-10-11 | Globus Medical, Inc. | System and method for replacement of spinal motion segment |
US7575581B2 (en) | 2005-12-07 | 2009-08-18 | Blackstone Medical, Inc. | Device for holding and inserting one or more components of a pedicle screw assembly |
US20070161986A1 (en) | 2005-12-13 | 2007-07-12 | Levy Mark M | Polyaxial fastener assembly |
US7704271B2 (en) | 2005-12-19 | 2010-04-27 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
US20090204155A1 (en) * | 2005-12-19 | 2009-08-13 | Felix Aschmann | Polyaxial bone anchor with headless pedicle screw |
ES2309646T3 (en) | 2005-12-23 | 2008-12-16 | Biedermann Motech Gmbh | FLEXIBLE STABILIZING DEVICE FOR THE DYNAMIC STABILIZATION OF BONES OR VERTEBRAS. |
EP2055251B1 (en) | 2005-12-23 | 2011-08-17 | BIEDERMANN MOTECH GmbH | Bone anchoring element |
US7695514B2 (en) | 2005-12-29 | 2010-04-13 | Depuy Spine, Inc. | Facet joint and spinal ligament replacement |
US7575587B2 (en) | 2005-12-30 | 2009-08-18 | Warsaw Orthopedic, Inc. | Top-tightening side-locking spinal connector assembly |
US7922745B2 (en) | 2006-01-09 | 2011-04-12 | Zimmer Spine, Inc. | Posterior dynamic stabilization of the spine |
EP1808141A1 (en) | 2006-01-11 | 2007-07-18 | BIEDERMANN MOTECH GmbH | Bone anchoring assembly |
US20070173819A1 (en) | 2006-01-11 | 2007-07-26 | Robin Sandlin | Spinal implant fixation assembly |
US20070173822A1 (en) | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Use of a posterior dynamic stabilization system with an intradiscal device |
US20070173820A1 (en) | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Materials, devices, and methods for treating multiple spinal regions including the anterior region |
US20070173828A1 (en) | 2006-01-20 | 2007-07-26 | Depuy Spine, Inc. | Spondylolistheses correction system and method of correcting spondylolistheses |
US7927360B2 (en) | 2006-01-26 | 2011-04-19 | Warsaw Orthopedic, Inc. | Spinal anchor assemblies having extended receivers |
US20070191841A1 (en) | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Spinal rods having different flexural rigidities about different axes and methods of use |
US20070191839A1 (en) | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Non-locking multi-axial joints in a vertebral implant and methods of use |
US7722652B2 (en) | 2006-01-27 | 2010-05-25 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US7833252B2 (en) | 2006-01-27 | 2010-11-16 | Warsaw Orthopedic, Inc. | Pivoting joints for spinal implants including designed resistance to motion and methods of use |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US8057519B2 (en) | 2006-01-27 | 2011-11-15 | Warsaw Orthopedic, Inc. | Multi-axial screw assembly |
US7776075B2 (en) | 2006-01-31 | 2010-08-17 | Warsaw Orthopedic, Inc. | Expandable spinal rods and methods of use |
US7655026B2 (en) | 2006-01-31 | 2010-02-02 | Warsaw Orthopedic, Inc. | Expandable spinal rods and methods of use |
EP1815812B1 (en) | 2006-02-03 | 2009-07-29 | Spinelab AG | Spinal implant |
US8894655B2 (en) | 2006-02-06 | 2014-11-25 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
US7520879B2 (en) | 2006-02-07 | 2009-04-21 | Warsaw Orthopedic, Inc. | Surgical instruments and techniques for percutaneous placement of spinal stabilization elements |
US8029545B2 (en) | 2006-02-07 | 2011-10-04 | Warsaw Orthopedic Inc. | Articulating connecting member and anchor systems for spinal stabilization |
US20070233064A1 (en) | 2006-02-17 | 2007-10-04 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US20080269804A1 (en) | 2006-02-17 | 2008-10-30 | Holt Development L.L.C. | Apparatus and method for flexible spinal fixation |
US20070233089A1 (en) | 2006-02-17 | 2007-10-04 | Endius, Inc. | Systems and methods for reducing adjacent level disc disease |
US8088148B2 (en) | 2006-02-24 | 2012-01-03 | Medical Design, LLC | Dynamic/static facet fixation device and method |
US7641674B2 (en) | 2006-03-01 | 2010-01-05 | Warsaw Orthopedic, Inc. | Devices for securing elongated spinal connecting elements in bone anchors |
US20070233073A1 (en) | 2006-03-02 | 2007-10-04 | Sdgi Holdings, Inc. | Spinal rod characterized by a time-varying stiffness |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US7842072B2 (en) | 2006-03-16 | 2010-11-30 | Zimmer Spine, Inc. | Spinal fixation device with variable stiffness |
US7867257B2 (en) | 2006-03-20 | 2011-01-11 | Synthes Usa, Llc | Poly-axial bone screw mating seat |
CA2647026A1 (en) | 2006-03-22 | 2008-08-28 | Pioneer Surgical Technology, Inc. | Low top bone fixation system and method for using the same |
US20070225707A1 (en) | 2006-03-22 | 2007-09-27 | Sdgi Holdings, Inc. | Orthopedic spinal devices fabricated from two or more materials |
US8025681B2 (en) | 2006-03-29 | 2011-09-27 | Theken Spine, Llc | Dynamic motion spinal stabilization system |
DE602006009131D1 (en) * | 2006-03-31 | 2009-10-22 | Biedermann Motech Gmbh | Locking arrangement for bone anchoring device |
WO2007114834A1 (en) | 2006-04-05 | 2007-10-11 | Dong Myung Jeon | Multi-axial, double locking bone screw assembly |
US20070270806A1 (en) | 2006-04-07 | 2007-11-22 | Foley Kevin T | Devices and methods for receiving elongated connecting elements in spinal surgical procedures |
US20070270807A1 (en) | 2006-04-10 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-piece circumferential retaining ring |
AU2007238129A1 (en) | 2006-04-11 | 2007-10-25 | Synthes Gmbh | Minimally invasive fixation system |
US7789897B2 (en) | 2006-04-11 | 2010-09-07 | Warsaw Orthopedic, Inc. | Pedicle screw spinal rod connector arrangement |
US20070270813A1 (en) | 2006-04-12 | 2007-11-22 | Laszlo Garamszegi | Pedicle screw assembly |
WO2007123920A2 (en) | 2006-04-18 | 2007-11-01 | Joseph Nicholas Logan | Spinal rod system |
US7588593B2 (en) | 2006-04-18 | 2009-09-15 | International Spinal Innovations, Llc | Pedicle screw with vertical adjustment |
US20070270815A1 (en) | 2006-04-20 | 2007-11-22 | Chris Johnson | Bone anchors with end-loading receivers for elongated connecting elements in spinal surgical procedures |
US7942905B2 (en) | 2006-04-20 | 2011-05-17 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US20070288012A1 (en) | 2006-04-21 | 2007-12-13 | Dennis Colleran | Dynamic motion spinal stabilization system and device |
WO2007122494A2 (en) | 2006-04-21 | 2007-11-01 | Precimed, S.A. | Dynamic intervertebral stabilization system |
US8435267B2 (en) | 2006-04-24 | 2013-05-07 | Spinefrontier Inc | Spine fixation method and apparatus |
US7563274B2 (en) | 2006-04-25 | 2009-07-21 | Warsaw Orthopedic, Inc. | Surgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements |
US7722617B2 (en) | 2006-04-25 | 2010-05-25 | Warsaw Orthopedic, Inc. | Surgical instrumentation for rod reduction |
US8979903B2 (en) | 2006-04-26 | 2015-03-17 | Warsaw Orthopedic, Inc. | Revision fixation plate and method of use |
US20070270821A1 (en) | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Vertebral stabilizer |
US8133262B2 (en) * | 2006-04-28 | 2012-03-13 | Depuy Spine, Inc. | Large diameter bone anchor assembly |
US20080015597A1 (en) | 2006-04-28 | 2008-01-17 | Whipple Dale E | Large diameter bone anchor assembly |
US8361129B2 (en) * | 2006-04-28 | 2013-01-29 | Depuy Spine, Inc. | Large diameter bone anchor assembly |
US7731735B2 (en) | 2006-04-28 | 2010-06-08 | Warsaw Orthopedic, Inc. | Open axle surgical implant |
US20070270832A1 (en) | 2006-05-01 | 2007-11-22 | Sdgi Holdings, Inc. | Locking device and method, for use in a bone stabilization system, employing a set screw member and deformable saddle member |
US20070270831A1 (en) | 2006-05-01 | 2007-11-22 | Sdgi Holdings, Inc. | Bone anchor system utilizing a molded coupling member for coupling a bone anchor to a stabilization member and method therefor |
US20070270835A1 (en) | 2006-05-05 | 2007-11-22 | Sdgi Holdings, Inc. | Bone attachment devices with a threaded interconnection including a solid lubricious material |
US7785350B2 (en) | 2006-05-08 | 2010-08-31 | Warsaw Orthopedic, Inc. | Load bearing flexible spinal connecting element |
US20070270838A1 (en) | 2006-05-08 | 2007-11-22 | Sdgi Holdings, Inc. | Dynamic spinal stabilization device with dampener |
US8012179B2 (en) | 2006-05-08 | 2011-09-06 | Warsaw Orthopedic, Inc. | Dynamic spinal stabilization members and methods |
EP2308402A3 (en) | 2006-05-15 | 2011-04-27 | Biomet Spain Orthopaedics S.L. | Surgical screw system |
EP1857065B1 (en) | 2006-05-16 | 2010-08-25 | BIEDERMANN MOTECH GmbH | Longitudinal member for use in spinal or trauma surgery |
CN2910138Y (en) | 2006-05-18 | 2007-06-13 | 雷伟 | Universal expanding screw for pedicle of vertebral arch |
GB0610630D0 (en) | 2006-05-26 | 2006-07-05 | Ness Malcolm G | A bone fixation device |
CN101500500B (en) | 2006-06-05 | 2011-05-11 | 特雷伯有限公司 | Device for vertebral attachment |
ATE505145T1 (en) | 2006-06-07 | 2011-04-15 | Disc Motion Technologies Inc | PEDICLE SCREW |
US20070288009A1 (en) | 2006-06-08 | 2007-12-13 | Steven Brown | Dynamic spinal stabilization device |
US7922748B2 (en) * | 2006-06-16 | 2011-04-12 | Zimmer Spine, Inc. | Removable polyaxial housing for a pedicle screw |
EP2032055A2 (en) | 2006-06-28 | 2009-03-11 | Synthes GmbH | Dynamic fixation system |
US7927356B2 (en) * | 2006-07-07 | 2011-04-19 | Warsaw Orthopedic, Inc. | Dynamic constructs for spinal stabilization |
US7799055B2 (en) | 2006-07-07 | 2010-09-21 | Warsaw Orthopedic, Inc. | Minimal spacing spinal stabilization device and method |
US20080015578A1 (en) * | 2006-07-12 | 2008-01-17 | Dave Erickson | Orthopedic implants comprising bioabsorbable metal |
WO2008008511A2 (en) | 2006-07-14 | 2008-01-17 | Laszlo Garamszegi | Pedicle screw assembly with inclined surface seat |
US20080021464A1 (en) * | 2006-07-19 | 2008-01-24 | Joshua Morin | System and method for a spinal implant locking assembly |
US20080021465A1 (en) * | 2006-07-20 | 2008-01-24 | Shadduck John H | Spine treatment devices and methods |
US20080021466A1 (en) * | 2006-07-20 | 2008-01-24 | Shadduck John H | Spine treatment devices and methods |
US20080021455A1 (en) * | 2006-07-21 | 2008-01-24 | Depuy Spine, Inc. | Articulating Sacral or Iliac Connector |
US20080021454A1 (en) * | 2006-07-21 | 2008-01-24 | Depuy Spine, Inc. | Sacral or iliac connector |
US20100228292A1 (en) | 2006-07-24 | 2010-09-09 | Nuvasive, Inc. | Systems and methods for dynamic spinal stabilization |
US20080021462A1 (en) * | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic Inc. | Spinal stabilization implants |
US8162991B2 (en) * | 2006-07-27 | 2012-04-24 | K2M, Inc. | Multi-planar, taper lock screw |
US20080051780A1 (en) | 2006-08-04 | 2008-02-28 | Zimmer Spine, Inc. | Spinal rod connector |
US7976546B2 (en) | 2006-08-04 | 2011-07-12 | Magrod, Llc | Magnetic targeting system for facilitating navigation |
WO2008021319A2 (en) | 2006-08-11 | 2008-02-21 | Abdou M Samy | Spinal motion preservation devices and methods of use |
US7806913B2 (en) | 2006-08-16 | 2010-10-05 | Depuy Spine, Inc. | Modular multi-level spine stabilization system and method |
US8062340B2 (en) | 2006-08-16 | 2011-11-22 | Pioneer Surgical Technology, Inc. | Spinal rod anchor device and method |
US9526525B2 (en) | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US8663292B2 (en) | 2006-08-22 | 2014-03-04 | DePuy Synthes Products, LLC | Reduction sleeve |
ES2453196T3 (en) | 2006-08-24 | 2014-04-04 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device |
US7766942B2 (en) | 2006-08-31 | 2010-08-03 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
KR100817788B1 (en) | 2006-09-07 | 2008-03-31 | 박경우 | A flexible rod manufacturing apparatus and method for a spinal fixation and the flexible rod manufactured through the same |
US20080065073A1 (en) | 2006-09-08 | 2008-03-13 | Michael Perriello | Offset dynamic motion spinal stabilization system |
US8425601B2 (en) | 2006-09-11 | 2013-04-23 | Warsaw Orthopedic, Inc. | Spinal stabilization devices and methods of use |
US8267978B2 (en) | 2006-09-14 | 2012-09-18 | Warsaw Orthopedic, Inc. | Hybrid bone fixation apparatus |
US20080071274A1 (en) | 2006-09-15 | 2008-03-20 | Ensign Michael D | Percutaneous Screw Assembly and Placement Method |
US20080071273A1 (en) | 2006-09-15 | 2008-03-20 | Hawkes David T | Dynamic Pedicle Screw System |
US7988711B2 (en) | 2006-09-21 | 2011-08-02 | Warsaw Orthopedic, Inc. | Low profile vertebral stabilization systems and methods |
US20080097431A1 (en) | 2006-09-22 | 2008-04-24 | Paul Peter Vessa | Flexible spinal stabilization |
US8308770B2 (en) | 2006-09-22 | 2012-11-13 | Depuy Spine, Inc. | Dynamic stabilization system |
US7686809B2 (en) | 2006-09-25 | 2010-03-30 | Stryker Spine | Rod inserter and rod with reduced diameter end |
US20080077143A1 (en) | 2006-09-25 | 2008-03-27 | Zimmer Spine, Inc. | Apparatus for connecting a longitudinal member to a bone portion |
KR101360009B1 (en) | 2006-09-26 | 2014-02-06 | 신세스 게엠바하 | transconnector |
US8162952B2 (en) | 2006-09-26 | 2012-04-24 | Ebi, Llc | Percutaneous instrument assembly |
US8016862B2 (en) | 2006-09-27 | 2011-09-13 | Innovasis, Inc. | Spinal stabilizing system |
WO2008037256A2 (en) | 2006-09-28 | 2008-04-03 | 3L-Ludvigsen A/S | Rotary ultrasonic sealer |
AU2007303180A1 (en) | 2006-10-05 | 2008-04-10 | Frank Cammisa | Anchor assembly for spinal implant system |
US8361130B2 (en) | 2006-10-06 | 2013-01-29 | Depuy Spine, Inc. | Bone screw fixation |
US7947045B2 (en) | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
US20080147122A1 (en) | 2006-10-12 | 2008-06-19 | Jackson Roger P | Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer |
US8167910B2 (en) | 2006-10-16 | 2012-05-01 | Innovative Delta Technology Llc | Bone screw and associated assembly and methods of use thereof |
US20080177327A1 (en) | 2006-10-17 | 2008-07-24 | Hugues Malandain | Central rod connector and T-rod |
US7867258B2 (en) | 2006-10-17 | 2011-01-11 | Warsaw Orthopedic, Inc. | Multi-axial bone attachment member |
US7976567B2 (en) | 2006-10-18 | 2011-07-12 | Warsaw Orthopedic, Inc. | Orthopedic revision connector |
US8414628B2 (en) | 2006-10-26 | 2013-04-09 | Warsaw Orthopedic, Inc. | Bone screw |
US20090198291A1 (en) | 2006-10-26 | 2009-08-06 | Warsaw Orthopedic, Inc. | Bone screw |
US7699876B2 (en) | 2006-11-08 | 2010-04-20 | Ebi, Llc | Multi-axial bone fixation apparatus |
US8052720B2 (en) | 2006-11-09 | 2011-11-08 | Zimmer Spine, Inc. | Minimally invasive pedicle screw access system and associated method |
US8211110B1 (en) | 2006-11-10 | 2012-07-03 | Lanx, Inc. | Minimally invasive tool to facilitate implanting a pedicle screw and housing |
US8066744B2 (en) | 2006-11-10 | 2011-11-29 | Warsaw Orthopedic, Inc. | Keyed crown orientation for multi-axial screws |
US8162990B2 (en) | 2006-11-16 | 2012-04-24 | Spine Wave, Inc. | Multi-axial spinal fixation system |
ES2334811T3 (en) | 2006-11-17 | 2010-03-16 | Biedermann Motech Gmbh | OSEO ANCHORAGE DEVICE. |
US8262662B2 (en) | 2006-11-20 | 2012-09-11 | Depuy Spine, Inc. | Break-off screw extensions |
ES2359848T3 (en) | 2006-11-22 | 2011-05-27 | Biedermann Motech Gmbh | BONE ANCHORAGE DEVICE. |
US20080125777A1 (en) | 2006-11-27 | 2008-05-29 | Warsaw Orthopedic, Inc. | Vertebral Stabilizer Having Adjustable Rigidity |
US20080125787A1 (en) | 2006-11-27 | 2008-05-29 | Doubler Robert L | Dynamic rod |
US20080177316A1 (en) | 2006-11-30 | 2008-07-24 | Bergeron Brian J | Apparatus and methods for spinal implant |
WO2008070716A2 (en) | 2006-12-05 | 2008-06-12 | Spine Wave, Inc. | Dynamic stabilization devices and methods |
KR100829338B1 (en) | 2006-12-07 | 2008-05-13 | 김수경 | Spinal stabilization apparatus |
WO2008070840A1 (en) | 2006-12-07 | 2008-06-12 | Alpinespine Llc | Press-on pedicle screw assembly |
CA2670988C (en) | 2006-12-08 | 2014-03-25 | Roger P. Jackson | Tool system for dynamic spinal implants |
US7824430B2 (en) | 2006-12-08 | 2010-11-02 | Warsaw Orthopedic, Inc. | Methods and devices for treating a multi-level spinal deformity |
US20080177319A1 (en) | 2006-12-09 | 2008-07-24 | Helmut Schwab | Expansion Rod, Self-Adjusting |
DE102007055745A1 (en) | 2006-12-10 | 2008-07-31 | Paradigm Spine, Llc | Spinal stabilization unit for treating spinal pathologies in patient, has anchoring system with anchors to cooperate with arms of coupler to attach coupler to bone, where one arm is connected to body of coupler at connection |
US7828824B2 (en) | 2006-12-15 | 2010-11-09 | Depuy Spine, Inc. | Facet joint prosthesis |
FR2910267B1 (en) | 2006-12-21 | 2009-01-23 | Ldr Medical Soc Par Actions Si | VERTEBRAL SUPPORT DEVICE |
US20080154308A1 (en) | 2006-12-21 | 2008-06-26 | Warsaw Orthopedic, Inc. | Spinal fixation system |
ES2498097T3 (en) * | 2006-12-22 | 2014-09-24 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device |
US7998144B2 (en) | 2006-12-22 | 2011-08-16 | Aesculap Ag | Surgical instrument and osteosynthesis device |
US20080161853A1 (en) | 2006-12-28 | 2008-07-03 | Depuy Spine, Inc. | Spine stabilization system with dynamic screw |
US7896904B2 (en) | 2006-12-28 | 2011-03-01 | Mi4Spine, Llc | Vertebral disc tensioning device |
US8636783B2 (en) | 2006-12-29 | 2014-01-28 | Zimmer Spine, Inc. | Spinal stabilization systems and methods |
EP2117451A1 (en) | 2006-12-29 | 2009-11-18 | Zimmer Spine Austin, Inc. | Spinal stabilization systems and methods |
US8029544B2 (en) * | 2007-01-02 | 2011-10-04 | Zimmer Spine, Inc. | Spine stiffening device |
US20080167687A1 (en) | 2007-01-03 | 2008-07-10 | Dennis Colleran | Dynamic linking member for spine stabilization system |
US20080172091A1 (en) | 2007-01-12 | 2008-07-17 | Warsaw Orthopedic, Inc. | Spinal Stabilization System |
US8075596B2 (en) | 2007-01-12 | 2011-12-13 | Warsaw Orthopedic, Inc. | Spinal prosthesis systems |
US8747445B2 (en) | 2007-01-15 | 2014-06-10 | Ebi, Llc | Spinal fixation device |
US7875059B2 (en) | 2007-01-18 | 2011-01-25 | Warsaw Orthopedic, Inc. | Variable stiffness support members |
US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
US10792074B2 (en) | 2007-01-22 | 2020-10-06 | Roger P. Jackson | Pivotal bone anchor assemly with twist-in-place friction fit insert |
US8109975B2 (en) | 2007-01-30 | 2012-02-07 | Warsaw Orthopedic, Inc. | Collar bore configuration for dynamic spinal stabilization assembly |
US8029547B2 (en) | 2007-01-30 | 2011-10-04 | Warsaw Orthopedic, Inc. | Dynamic spinal stabilization assembly with sliding collars |
US8372121B2 (en) | 2007-02-08 | 2013-02-12 | Warsaw Orthopedic, Inc. | Adjustable coupling systems for spinal stabilization members |
US20080195153A1 (en) | 2007-02-08 | 2008-08-14 | Matthew Thompson | Dynamic spinal deformity correction |
US20080195155A1 (en) | 2007-02-12 | 2008-08-14 | Jeffrey Hoffman | Locking instrument for implantable fixation device |
US20080200918A1 (en) | 2007-02-12 | 2008-08-21 | James Spitler | Pedicle screw driver |
US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
EP2162079B1 (en) | 2007-02-14 | 2016-07-06 | Flex Technology Inc. | Flexible spine components |
US20080200956A1 (en) | 2007-02-19 | 2008-08-21 | Tutela Medicus, Llc | Low Profile Orthopedic Fastener Assembly Having Enhanced Flexibility |
US20080234691A1 (en) | 2007-02-21 | 2008-09-25 | Helmut Schwab | Flex-Rod, Curvature-Adaptable |
ES2392351T3 (en) | 2007-02-23 | 2012-12-07 | Biedermann Technologies Gmbh & Co. Kg | Device to stabilize vertebrae |
US8926669B2 (en) | 2007-02-27 | 2015-01-06 | The Center For Orthopedic Research And Education, Inc. | Modular polyaxial pedicle screw system |
US8740944B2 (en) | 2007-02-28 | 2014-06-03 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US8007519B2 (en) | 2007-03-13 | 2011-08-30 | Zimmer Spine, Inc. | Dynamic spinal stabilization system and method of using the same |
US7648521B2 (en) | 2007-03-15 | 2010-01-19 | Zimmer Spine, Inc. | System and method for minimally invasive spinal surgery |
US8292929B2 (en) | 2007-03-16 | 2012-10-23 | Zimmer Spine, Inc. | Dynamic spinal stabilization system and method of using the same |
US8057516B2 (en) | 2007-03-21 | 2011-11-15 | Zimmer Spine, Inc. | Spinal stabilization system with rigid and flexible elements |
US8052727B2 (en) | 2007-03-23 | 2011-11-08 | Zimmer Gmbh | System and method for insertion of flexible spinal stabilization element |
EP1972289B1 (en) | 2007-03-23 | 2018-10-17 | coLigne AG | Elongated stabilization member and bone anchor useful in bone and especially spinal repair processes |
US7993344B2 (en) | 2007-03-26 | 2011-08-09 | Warsaw Orthopedic, Inc. | Guide and method for inserting an elongated member into a patient |
WO2008118295A2 (en) | 2007-03-26 | 2008-10-02 | Laszlo Garamszegi | Bottom-loading pedicle screw assembly |
WO2008119006A1 (en) | 2007-03-27 | 2008-10-02 | Alpinespine Llc | Pedicle screw system configured to receive a straight or a curved rod |
EP2142120A4 (en) | 2007-03-30 | 2012-07-25 | Exactech Inc | Multi-level minimally invasive spinal stabilization system |
US7967849B2 (en) | 2007-04-06 | 2011-06-28 | Warsaw Orthopedic, Inc. | Adjustable multi-axial spinal coupling assemblies |
CN101652106A (en) | 2007-04-09 | 2010-02-17 | 新特斯有限责任公司 | Bone fixation element |
US7922725B2 (en) | 2007-04-19 | 2011-04-12 | Zimmer Spine, Inc. | Method and associated instrumentation for installation of spinal dynamic stabilization system |
US8202302B2 (en) | 2007-04-19 | 2012-06-19 | Mi4Spine, Llc | Pedicle screw and rod system |
US20080269805A1 (en) | 2007-04-25 | 2008-10-30 | Warsaw Orthopedic, Inc. | Methods for correcting spinal deformities |
US20080269742A1 (en) | 2007-04-25 | 2008-10-30 | Levy Mark M | Connector assembly for bone anchoring element |
EP2142121B1 (en) | 2007-04-30 | 2014-04-16 | Globus Medical, Inc. | Flexible spine stabilization system |
US20080275504A1 (en) | 2007-05-02 | 2008-11-06 | Bonin Henry K | Constructs for dynamic spinal stabilization |
US8016832B2 (en) | 2007-05-02 | 2011-09-13 | Zimmer Spine, Inc. | Installation systems for spinal stabilization system and related methods |
US8426676B2 (en) | 2007-05-04 | 2013-04-23 | Basf Plant Science Gmbh | Seed enhancement by combinations of pyruvate kinases |
US8197517B1 (en) | 2007-05-08 | 2012-06-12 | Theken Spine, Llc | Frictional polyaxial screw assembly |
WO2008140756A2 (en) | 2007-05-09 | 2008-11-20 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US7951173B2 (en) | 2007-05-16 | 2011-05-31 | Ortho Innovations, Llc | Pedicle screw implant system |
US7947065B2 (en) | 2008-11-14 | 2011-05-24 | Ortho Innovations, Llc | Locking polyaxial ball and socket fastener |
US7942911B2 (en) | 2007-05-16 | 2011-05-17 | Ortho Innovations, Llc | Polyaxial bone screw |
US8197518B2 (en) | 2007-05-16 | 2012-06-12 | Ortho Innovations, Llc | Thread-thru polyaxial pedicle screw system |
US8221471B2 (en) | 2007-05-24 | 2012-07-17 | Aesculap Implant Systems, Llc | Pedicle screw fixation system |
NL1033910C1 (en) | 2007-05-31 | 2008-12-02 | Baat Holding B V | Medical device for positioning bone parts, in particular spine, relative to each other, as well as a tool for fitting such a medical device component by component. |
FR2916623B1 (en) | 2007-05-31 | 2009-07-17 | Phusis Soc Par Actions Simplif | DEVICE AND ASSEMBLY FOR DYNAMIC GUIDANCE AFTER THE RACHIS AND TREATMENT SYSTEM FOR THE RACHIS COMPRISING SUCH A DIPOSITIVE |
EP2160158A4 (en) | 2007-05-31 | 2013-06-26 | Roger P Jackson | Dynamic stabilization connecting member with pre-tensioned solid core |
US20090118772A1 (en) | 2007-06-01 | 2009-05-07 | Jennifer Diederich | Polyaxial bone anchor with increased angulation |
US8048121B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a defelction rod system anchored to a bone anchor and method |
US8070775B2 (en) | 2007-06-05 | 2011-12-06 | Spartek Medical, Inc. | Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method |
US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
US7635380B2 (en) | 2007-06-05 | 2009-12-22 | Spartek Medical, Inc. | Bone anchor with a compressor element for receiving a rod for a dynamic stabilization and motion preservation spinal implantation system and method |
US8002803B2 (en) | 2007-06-05 | 2011-08-23 | Spartek Medical, Inc. | Deflection rod system for a spine implant including an inner rod and an outer shell and method |
US8043333B2 (en) | 2007-06-08 | 2011-10-25 | Synthes Usa, Llc | Dynamic stabilization system |
US20080312704A1 (en) | 2007-06-12 | 2008-12-18 | Zimmer Spine, Inc. | Instrumentation and associated techniques for minimally invasive spinal construct installation |
US8460300B2 (en) | 2007-06-12 | 2013-06-11 | Zimmer Spine, Inc. | Instrumentation and associated techniques for minimally invasive vertebral rod installation |
US20080312655A1 (en) | 2007-06-14 | 2008-12-18 | X-Spine Systems, Inc. | Polyaxial screw system and method having a hinged receiver |
US20080312694A1 (en) | 2007-06-15 | 2008-12-18 | Peterman Marc M | Dynamic stabilization rod for spinal implants and methods for manufacturing the same |
US8313515B2 (en) | 2007-06-15 | 2012-11-20 | Rachiotek, Llc | Multi-level spinal stabilization system |
US20080312701A1 (en) | 2007-06-15 | 2008-12-18 | Robert Reid, Inc. | System and Method for Polyaxially Adjustable Bone Anchorage |
US8292925B2 (en) | 2007-06-19 | 2012-10-23 | Zimmer Spine, Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
FR2917596B1 (en) | 2007-06-21 | 2010-06-18 | Newdeal | FASTENING KIT FOR MEDICAL OR SURGICAL USE |
US20100036424A1 (en) | 2007-06-22 | 2010-02-11 | Simpirica Spine, Inc. | Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment |
US8460341B2 (en) | 2007-06-27 | 2013-06-11 | Spinefrontier Inc | Dynamic facet replacement system |
US8043343B2 (en) * | 2007-06-28 | 2011-10-25 | Zimmer Spine, Inc. | Stabilization system and method |
CA2691430C (en) | 2007-06-28 | 2013-01-08 | Spinal Elements, Inc. | Spinal stabilization device |
US20090005813A1 (en) * | 2007-06-28 | 2009-01-01 | Angela Crall | Apparatus and methods for spinal implants |
US20090005787A1 (en) * | 2007-06-28 | 2009-01-01 | Angela Crall | Device and system for implanting polyaxial bone fasteners |
US8317843B2 (en) | 2007-07-11 | 2012-11-27 | Perumala Corporation | Multi-axis connection and methods for internal spinal stabilizers |
US20090018583A1 (en) * | 2007-07-12 | 2009-01-15 | Vermillion Technologies, Llc | Dynamic spinal stabilization system incorporating a wire rope |
EP2803327A1 (en) | 2007-07-13 | 2014-11-19 | George Frey | Systems for spinal stabilization |
US8177810B2 (en) * | 2007-07-17 | 2012-05-15 | Anova Corporation | Methods of annulus and ligament reconstruction using flexible devices |
DE602007007466D1 (en) | 2007-07-20 | 2010-08-12 | Biedermann Motech Gmbh | Bone anchoring device |
WO2009015100A2 (en) | 2007-07-20 | 2009-01-29 | Synthes (U.S.A.) | Polyaxial bone fixation element |
US20100152787A1 (en) | 2007-07-26 | 2010-06-17 | Biotechni America Spine Group, Inc. | Spinal fixation assembly |
US8100950B2 (en) | 2007-07-27 | 2012-01-24 | The Cleveland Clinic Foundation | Oblique lumbar interbody fusion |
DE602007007758D1 (en) | 2007-07-31 | 2010-08-26 | Biedermann Motech Gmbh | Bone anchoring device |
US8048129B2 (en) | 2007-08-15 | 2011-11-01 | Zimmer Spine, Inc. | MIS crosslink apparatus and methods for spinal implant |
US8080038B2 (en) | 2007-08-17 | 2011-12-20 | Jmea Corporation | Dynamic stabilization device for spine |
WO2009026519A1 (en) | 2007-08-23 | 2009-02-26 | Life Spine Inc. | Resilient spinal rod system with controllable angulation |
US20090062914A1 (en) | 2007-08-29 | 2009-03-05 | Marino James F | Devices and methods for intervertebral therapy |
DE102007042959B4 (en) | 2007-08-30 | 2011-03-31 | Aesculap Ag | Surgical retaining screw |
DE102007042958B4 (en) | 2007-08-30 | 2015-03-19 | Aesculap Ag | Surgical holding system |
DE102007042953B4 (en) | 2007-08-30 | 2015-01-22 | Aesculap Ag | Orthopedic retention system |
WO2009029928A1 (en) | 2007-08-31 | 2009-03-05 | University Of South Florida | Translational manipulation polyaxial screw head |
US8888819B2 (en) | 2007-08-31 | 2014-11-18 | DePuy Synthes Products, LLC | Connector for securing an offset spinal fixation element |
US20090069852A1 (en) | 2007-09-06 | 2009-03-12 | Warsaw Orthopedic, Inc. | Multi-Axial Bone Anchor Assembly |
US20090069849A1 (en) | 2007-09-10 | 2009-03-12 | Oh Younghoon | Dynamic screw system |
FR2920959B1 (en) | 2007-09-17 | 2010-09-10 | Clariance | VERTEBRAL ANCHORING DEVICE. |
US20090076550A1 (en) | 2007-09-18 | 2009-03-19 | Ortho Development Corporation | Spinal fixation system connectors |
US20090082815A1 (en) | 2007-09-20 | 2009-03-26 | Zimmer Gmbh | Spinal stabilization system with transition member |
US20090082812A1 (en) | 2007-09-21 | 2009-03-26 | Lewis Trevor K | Provisional locking pedicle screw system and method |
US8388666B2 (en) | 2007-09-27 | 2013-03-05 | Biomet C.V. | Locking screw system with relatively hard spiked polyaxial bushing |
US20090088769A1 (en) | 2007-09-28 | 2009-04-02 | Poletti Steven C | Spinal Fixation Alignment Apparatus |
US20090088803A1 (en) | 2007-10-01 | 2009-04-02 | Warsaw Orthopedic, Inc. | Flexible members for correcting spinal deformities |
US20090088799A1 (en) | 2007-10-01 | 2009-04-02 | Chung-Chun Yeh | Spinal fixation device having a flexible cable and jointed components received thereon |
US8414588B2 (en) | 2007-10-04 | 2013-04-09 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal connection element delivery |
US20090093846A1 (en) | 2007-10-04 | 2009-04-09 | Zimmer Spine Inc. | Pre-Curved Flexible Member For Providing Dynamic Stability To A Spine |
US20090093843A1 (en) | 2007-10-05 | 2009-04-09 | Lemoine Jeremy J | Dynamic spine stabilization system |
US20090093820A1 (en) | 2007-10-09 | 2009-04-09 | Warsaw Orthopedic, Inc. | Adjustable spinal stabilization systems |
ES2417013T3 (en) | 2007-10-11 | 2013-08-05 | Biedermann Technologies Gmbh & Co. Kg | Rod assembly and modular rod system for spine stabilization |
EP2335624B1 (en) | 2007-10-11 | 2012-08-29 | Biedermann Technologies GmbH & Co. KG | Bone anchoring device |
US20090099608A1 (en) | 2007-10-12 | 2009-04-16 | Aesculap Implant Systems, Inc. | Rod assembly for dynamic posterior stabilization |
US20090099606A1 (en) | 2007-10-16 | 2009-04-16 | Zimmer Spine Inc. | Flexible member with variable flexibility for providing dynamic stability to a spine |
US8038701B2 (en) | 2007-10-22 | 2011-10-18 | K2M, Inc. | Uni-planar, taper lock bone screw |
US20090125071A1 (en) | 2007-10-23 | 2009-05-14 | Skinlo David M | Shape-changing anatomical anchor |
JP5579611B2 (en) | 2007-10-23 | 2014-08-27 | ケー2エム, インコーポレイテッド | Multi-screw assembly |
US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
US8398683B2 (en) | 2007-10-23 | 2013-03-19 | Pioneer Surgical Technology, Inc. | Rod coupling assembly and methods for bone fixation |
AU2008316956B2 (en) | 2007-10-23 | 2014-01-09 | K2M, Inc. | Posterior pedicle screw having a taper lock |
US8043339B2 (en) | 2007-10-24 | 2011-10-25 | Zimmer Spine, Inc. | Flexible member for use in a spinal column and method for making |
GB0720762D0 (en) | 2007-10-24 | 2007-12-05 | Depuy Spine Sorl | Assembly for orthopaedic surgery |
EP2224885A1 (en) | 2007-10-24 | 2010-09-08 | The Cleveland Clinic Foundation | Apparatus and method for affixing body structures |
KR20100087334A (en) | 2007-10-24 | 2010-08-04 | 너바시브 인코퍼레이티드 | Surgical fixation system and related methods |
US20090112266A1 (en) | 2007-10-25 | 2009-04-30 | Industrial Technology Research Institute | Spinal dynamic stabilization device |
US7947064B2 (en) | 2007-11-28 | 2011-05-24 | Zimmer Spine, Inc. | Stabilization system and method |
US20090171392A1 (en) | 2007-12-04 | 2009-07-02 | Javier Garcia-Bengochea | Guide wire mounting collar for spinal fixation using minimally invasive surgical techniques |
US7789900B2 (en) | 2007-12-04 | 2010-09-07 | Expanding Orthopedics, Inc. | Double collet connector assembly for bone anchoring element |
US8491590B2 (en) | 2007-12-05 | 2013-07-23 | Depuy Spine, Inc. | System and method of manipulating spinal constructs |
US8202300B2 (en) | 2007-12-10 | 2012-06-19 | Custom Spine, Inc. | Spinal flexion and extension motion damper |
WO2009076107A1 (en) | 2007-12-13 | 2009-06-18 | Trinity Orthopedics, Llc | Spinal transverse connector |
EP2070485B1 (en) | 2007-12-13 | 2011-09-14 | Biedermann Motech GmbH | Anchoring device for anchoring a rod in bones or vertebrae |
US9232968B2 (en) | 2007-12-19 | 2016-01-12 | DePuy Synthes Products, Inc. | Polymeric pedicle rods and methods of manufacturing |
US8029539B2 (en) | 2007-12-19 | 2011-10-04 | X-Spine Systems, Inc. | Offset multiaxial or polyaxial screw, system and assembly |
US8249696B2 (en) | 2007-12-19 | 2012-08-21 | Depuy Spine, Inc. | Smart pedicle tool |
US8252028B2 (en) | 2007-12-19 | 2012-08-28 | Depuy Spine, Inc. | Posterior dynamic stabilization device |
FR2925288B1 (en) | 2007-12-21 | 2010-01-15 | Michel Timoteo | SWIVEL CONNECTING DEVICE FOR SPINAL OSTEOSYNTHESIS SCREW |
US20090171395A1 (en) | 2007-12-28 | 2009-07-02 | Jeon Dong M | Dynamic spinal rod system |
US8425564B2 (en) | 2008-01-03 | 2013-04-23 | P. Douglas Kiester | Spine reconstruction rod extender |
US20090177237A1 (en) | 2008-01-04 | 2009-07-09 | Spartek Medical, Inc. | Cervical spine implant system and method |
US8092499B1 (en) | 2008-01-11 | 2012-01-10 | Roth Herbert J | Skeletal flexible/rigid rod for treating skeletal curvature |
US8414651B2 (en) | 2008-01-16 | 2013-04-09 | Aesculap Implant Systems, Llc | Dynamic interbody |
US7967848B2 (en) | 2008-01-16 | 2011-06-28 | Custom Spine, Inc. | Spring-loaded dynamic pedicle screw assembly |
EP2242437B1 (en) | 2008-01-24 | 2014-03-26 | Globus Medical, Inc. | Facet fixation prosthesis |
DE202008001405U1 (en) | 2008-01-24 | 2008-04-03 | Bort Gmbh | Orthopedic ankle brace |
US20090192548A1 (en) | 2008-01-25 | 2009-07-30 | Jeon Dong M | Pedicle-laminar dynamic spinal stabilization device |
US20090198289A1 (en) | 2008-02-02 | 2009-08-06 | Manderson Easton L | Fortified cannulated screw |
US8007522B2 (en) | 2008-02-04 | 2011-08-30 | Depuy Spine, Inc. | Methods for correction of spinal deformities |
US9277940B2 (en) | 2008-02-05 | 2016-03-08 | Zimmer Spine, Inc. | System and method for insertion of flexible spinal stabilization element |
US8439922B1 (en) | 2008-02-06 | 2013-05-14 | NiVasive, Inc. | Systems and methods for holding and implanting bone anchors |
US20090216278A1 (en) | 2008-02-25 | 2009-08-27 | Dr. John K. Song | Method and device for stabilization |
US8057517B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine |
US8048125B2 (en) | 2008-02-26 | 2011-11-01 | Spartek Medical, Inc. | Versatile offset polyaxial connector and method for dynamic stabilization of the spine |
US8007518B2 (en) | 2008-02-26 | 2011-08-30 | Spartek Medical, Inc. | Load-sharing component having a deflectable post and method for dynamic stabilization of the spine |
US8932210B2 (en) | 2008-02-28 | 2015-01-13 | K2M, Inc. | Minimally invasive retraction device having detachable blades |
US8764754B2 (en) | 2008-03-21 | 2014-07-01 | Life Spine, Inc. | Systems and methods for spinal rod insertion and reduction |
WO2009117724A2 (en) | 2008-03-21 | 2009-09-24 | Life Spine, Inc. | Spinal rod guide for a vertebral screw spinal rod connector assembly |
US20090248083A1 (en) | 2008-03-26 | 2009-10-01 | Warsaw Orthopedic, Inc. | Elongated connecting element with varying modulus of elasticity |
US7909857B2 (en) | 2008-03-26 | 2011-03-22 | Warsaw Orthopedic, Inc. | Devices and methods for correcting spinal deformities |
WO2009120985A2 (en) | 2008-03-27 | 2009-10-01 | Life Spine, Inc. | Self-contained assembly for installation of orthopedic implant components onto an orthopedic implant |
EP2105101B2 (en) | 2008-03-28 | 2013-09-11 | BIEDERMANN MOTECH GmbH | Bone anchoring device |
US20090248081A1 (en) | 2008-03-31 | 2009-10-01 | Warsaw Orthopedic, Inc. | Spinal Stabilization Devices and Methods |
US20090248077A1 (en) | 2008-03-31 | 2009-10-01 | Derrick William Johns | Hybrid dynamic stabilization |
US20090254125A1 (en) | 2008-04-03 | 2009-10-08 | Daniel Predick | Top Loading Polyaxial Spine Screw Assembly With One Step Lockup |
US20090326582A1 (en) | 2008-04-10 | 2009-12-31 | Marcus Songer | Dynamic Rod |
US20090259257A1 (en) | 2008-04-15 | 2009-10-15 | Warsaw Orthopedic, Inc. | Pedicule-Based Motion- Preserving Device |
US20090259254A1 (en) | 2008-04-15 | 2009-10-15 | Madhavan Pisharodi | Apparatus ans method for aligning and/or stabilizing the spine |
US8226656B2 (en) | 2008-04-16 | 2012-07-24 | Warsaw Orthopedic, Inc. | Minimally invasive systems and methods for insertion of a connecting member adjacent the spinal column |
US20090264933A1 (en) | 2008-04-22 | 2009-10-22 | Warsaw Orthopedic, Inc. | Anchors for securing a rod to a vertebral member |
ES2368016T3 (en) | 2008-04-22 | 2011-11-11 | Biedermann Motech Gmbh | INSTRUMENT FOR MOUNTING A BONE ANCHORAGE DEVICE. |
US20090264895A1 (en) | 2008-04-22 | 2009-10-22 | Warsaw Orthopedic, Inc. | Systems and methods for implanting a bone fastener and delivering a bone filling material |
ATE515239T1 (en) | 2008-04-24 | 2011-07-15 | Zimmer Spine | SYSTEM FOR STABILIZING AT LEAST ONE SECTION OF THE SPINE |
EP2441403B1 (en) | 2008-04-28 | 2013-07-31 | Biedermann Technologies GmbH & Co. KG | Rod-shaped implant, in particular for spinal stabilization, method and tool for producing the same |
US9504494B2 (en) | 2008-04-28 | 2016-11-29 | DePuy Synthes Products, Inc. | Implants for securing spinal fixation elements |
US8034083B2 (en) | 2008-05-01 | 2011-10-11 | Custom Spine, Inc. | Artificial ligament assembly |
US20100063547A1 (en) | 2008-05-02 | 2010-03-11 | Joshua Morin | Dynamic motion spinal stabilization system and device |
US8430912B2 (en) | 2008-05-05 | 2013-04-30 | Warsaw Orthopedic, Inc. | Dynamic stabilization rod |
ES2358718T3 (en) | 2008-05-06 | 2011-05-13 | Biedermann Motech Gmbh | IMPLANT IN THE FORM OF VARILLA, IN CONCRETE FOR THE DYNAMIC STABILIZATION OF THE VERTEBRAL COLUMN. |
US8123785B2 (en) | 2008-05-08 | 2012-02-28 | Aesculap Implant Systems, Llc | Minimally invasive spinal stabilization system |
US8211149B2 (en) | 2008-05-12 | 2012-07-03 | Warsaw Orthopedic | Elongated members with expansion chambers for treating bony members |
AU2009246848B2 (en) | 2008-05-13 | 2014-10-02 | Stryker European Holdings I, Llc | Composite spinal rod |
US8617215B2 (en) | 2008-05-14 | 2013-12-31 | Warsaw Orthopedic, Inc. | Connecting element and system for flexible spinal stabilization |
US8092503B2 (en) | 2008-05-15 | 2012-01-10 | Innovasis, Inc. | Polyaxial screw system |
BRPI0801980A2 (en) | 2008-05-29 | 2009-05-12 | M D T Ltda | minimally invasive percutaneous pedicular screw |
US20090306719A1 (en) | 2008-06-06 | 2009-12-10 | Syberspine Limited | Structure and method for driving a pedicle screw with an attached support rod for spinal osteosynthesis |
US8043340B1 (en) | 2008-06-09 | 2011-10-25 | Melvin Law | Dynamic spinal stabilization system |
EP2296568B1 (en) | 2008-06-11 | 2018-04-04 | K2M, Inc. | Rod reduction device |
US10973556B2 (en) | 2008-06-17 | 2021-04-13 | DePuy Synthes Products, Inc. | Adjustable implant assembly |
EP2303164A4 (en) | 2008-06-20 | 2013-04-03 | Neil Duggal | Systems and methods for posterior dynamic stabilization |
US20090326583A1 (en) | 2008-06-25 | 2009-12-31 | Missoum Moumene | Posterior Dynamic Stabilization System With Flexible Ligament |
US8105362B2 (en) | 2008-06-30 | 2012-01-31 | Duarte Luis E | Percutaneous spinal rod insertion system and related methods |
EP2140824B1 (en) * | 2008-07-01 | 2016-06-08 | Biedermann Technologies GmbH & Co. KG | Cannulated bone anchor with plug member and tool for inserting the plug member into the bone anchor |
US20100004694A1 (en) | 2008-07-01 | 2010-01-07 | Alphatec Spine, Inc. | Screw assembly |
EP2306914B1 (en) | 2008-07-03 | 2016-11-23 | William R. Krause | Flexible spine components having a concentric slot |
US8444649B2 (en) | 2008-07-07 | 2013-05-21 | Depuy Spine, Inc. | System and method for manipulating a spinal construct |
US20100010540A1 (en) * | 2008-07-09 | 2010-01-14 | Gi-Hoon Park | Device for vertebral stabilization |
US8167914B1 (en) | 2008-07-16 | 2012-05-01 | Zimmer Spine, Inc. | Locking insert for spine stabilization and method of use |
US8157846B2 (en) | 2008-07-24 | 2012-04-17 | Ingenium S.A. | Locking mechanism with two-piece washer |
US20100168796A1 (en) | 2008-07-29 | 2010-07-01 | Kenneth Arden Eliasen | Bone anchoring member with clamp mechanism |
US8287546B2 (en) | 2008-07-31 | 2012-10-16 | Zimmer Spine, Inc. | Surgical instrument with integrated compression and distraction mechanisms |
EP2442739A1 (en) | 2008-08-01 | 2012-04-25 | Jackson, Roger P. | Longitudinal connecting member with sleeved tensioned cords |
US20100036432A1 (en) | 2008-08-05 | 2010-02-11 | Abbott Spine Inc. | Twist off reduction screw |
US8491639B2 (en) | 2008-08-06 | 2013-07-23 | Spine Wave, Inc. | Multi-axial spinal fixation system |
US20100036425A1 (en) | 2008-08-06 | 2010-02-11 | K2M, Inc. | Anti-torsion spine fixation device |
US8287571B2 (en) | 2008-08-12 | 2012-10-16 | Blackstone Medical, Inc. | Apparatus for stabilizing vertebral bodies |
ES2376135T3 (en) | 2008-08-12 | 2012-03-09 | Biedermann Motech Gmbh | MODULAR SYSTEM FOR THE STABILIZATION OF THE VERTEBRAL COLUMN. |
EP2346423B1 (en) | 2008-08-14 | 2012-12-19 | Synthes GmbH | Posterior dynamic stabilization system |
EP2320815A2 (en) | 2008-08-14 | 2011-05-18 | Exactech Inc. | Dynamic rod |
FR2934950B1 (en) | 2008-08-14 | 2010-09-03 | Henry Graf | DYNAMIC PROSTHESIS FOR EXTRADISCAL STABILIZATION OF INTERVERTEBRAL JOINT |
FR2935600B1 (en) | 2008-08-14 | 2011-12-09 | Henry Graf | EXTRA-DISCAL INTERVERTEBRAL STABILIZATION ASSEMBLY FOR ARTHRODESIS |
EP2326271A4 (en) | 2008-08-15 | 2013-11-20 | Kinetic Spine Technologies Inc | Dynamic pedicle screw |
US20100042149A1 (en) | 2008-08-18 | 2010-02-18 | Chao Nam T | Pelvic obliquity correction instrument |
US8167908B2 (en) | 2008-08-29 | 2012-05-01 | Zimmer Spine, Inc. | Polyaxial transverse connector |
US8252025B2 (en) | 2008-09-03 | 2012-08-28 | Zimmer Spine, Inc. | Vertebral fixation system |
EP2160988B1 (en) | 2008-09-04 | 2012-12-26 | Biedermann Technologies GmbH & Co. KG | Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant |
US8870924B2 (en) | 2008-09-04 | 2014-10-28 | Zimmer Spine, Inc. | Dynamic vertebral fastener |
EP2355725B1 (en) | 2008-09-05 | 2017-03-08 | Synthes GmbH | Bone fixation assembly |
EP2484300B1 (en) | 2008-09-05 | 2015-05-20 | Biedermann Technologies GmbH & Co. KG | Stabilization device for bones, in particular for the spinal column |
US9603629B2 (en) | 2008-09-09 | 2017-03-28 | Intelligent Implant Systems Llc | Polyaxial screw assembly |
US8147523B2 (en) | 2008-09-09 | 2012-04-03 | Warsaw Orthopedic, Inc. | Offset vertebral rod connector |
WO2010030772A1 (en) | 2008-09-10 | 2010-03-18 | Life Spine, Inc. | Spinal rod |
US9408649B2 (en) | 2008-09-11 | 2016-08-09 | Innovasis, Inc. | Radiolucent screw with radiopaque marker |
BRPI0916992A2 (en) | 2008-09-12 | 2015-11-24 | Synthes Gmbh | reduction tool |
US8585743B2 (en) | 2008-09-15 | 2013-11-19 | Biomet C.V. | Low profile screw and washer system for bone plating |
US8348954B2 (en) | 2008-09-16 | 2013-01-08 | Warsaw Orthopedic, Inc. | Electronic guidance of spinal instrumentation |
US20100087858A1 (en) | 2008-09-18 | 2010-04-08 | Abdou M Samy | Dynamic connector for spinal stabilization and method of use |
US20100082066A1 (en) | 2008-09-30 | 2010-04-01 | Ashok Biyani | Posterior fixation device for percutaneous stabilization of thoracic and lumbar burst fractures |
US20100087864A1 (en) | 2008-10-03 | 2010-04-08 | Assaf Klein | Fastener assembly that fastens to polyaxial pedicle screw |
ES2394670T3 (en) | 2008-10-08 | 2013-02-04 | Biedermann Technologies Gmbh & Co. Kg | Elongated implant device and vertebral stabilization device |
ES2392362T3 (en) | 2008-10-08 | 2012-12-10 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device and stabilization device for bone parts or vertebrae |
KR100890034B1 (en) | 2008-10-09 | 2009-03-25 | (주)코리아 본 뱅크 | A pedicle screw |
US20100094352A1 (en) | 2008-10-10 | 2010-04-15 | Andrew Iott | Bone screw |
US8012186B2 (en) | 2008-10-10 | 2011-09-06 | Globus Medical, Inc. | Uniplanar screw |
WO2010045383A2 (en) | 2008-10-14 | 2010-04-22 | Trinity Orthopedics, Llc | Insertion and reduction tool for pedicle screw assembly |
US8388659B1 (en) | 2008-10-17 | 2013-03-05 | Theken Spine, Llc | Spondylolisthesis screw and instrument for implantation |
US8292934B2 (en) | 2008-10-17 | 2012-10-23 | Warsaw Orthopedic, Inc. | Dynamic anchor assembly for connecting elements in spinal surgical procedures |
US8382809B2 (en) | 2008-10-17 | 2013-02-26 | Omni Surgical | Poly-axial pedicle screw implements and lock screw therefor |
EP2737866B1 (en) | 2008-10-23 | 2021-05-19 | Alphatec Spine, Inc. | Systems for spinal fixation |
US20100106192A1 (en) | 2008-10-27 | 2010-04-29 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation condition in patients requiring the accomodation of spinal column growth or elongation |
US8080040B2 (en) | 2008-10-29 | 2011-12-20 | Warsaw Orthopedic, Inc. | Anchor with two member securing mechanism for attaching an elongated member to a bone |
US8496661B2 (en) | 2008-11-03 | 2013-07-30 | Omni Surgical LLC | System and method for micro-invasive transfacet lumbar interbody fusion |
US20100114165A1 (en) | 2008-11-04 | 2010-05-06 | Abbott Spine, Inc. | Posterior dynamic stabilization system with pivoting collars |
US8377101B2 (en) | 2008-11-05 | 2013-02-19 | K2M, Inc. | Multi-planar taper lock screw with increased rod friction |
FR2937855B1 (en) | 2008-11-05 | 2010-12-24 | Warsaw Orthopedic Inc | PROGRESSIVE INTRODUCTION INSTRUMENT FOR A VERTEBRAL ROD. |
US20100114171A1 (en) | 2008-11-05 | 2010-05-06 | K2M, Inc. | Multi-planar spinal fixation assembly with locking element |
US8696717B2 (en) | 2008-11-05 | 2014-04-15 | K2M, Inc. | Multi-planar, taper lock screw with additional lock |
US8075565B2 (en) | 2008-11-05 | 2011-12-13 | Warsaw Orthopedic, Inc. | Surgical instruments for delivering forces to bony structures |
US8075603B2 (en) | 2008-11-14 | 2011-12-13 | Ortho Innovations, Llc | Locking polyaxial ball and socket fastener |
US20100137908A1 (en) | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
WO2010065648A1 (en) | 2008-12-02 | 2010-06-10 | Eminent Spine Llc | Pedicle screw fixation system and method for use of same |
US9055979B2 (en) | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
US9247967B2 (en) | 2008-12-03 | 2016-02-02 | Warsaw Orthopedic, Inc. | Rod and anchor system and method for using |
US8603145B2 (en) | 2008-12-16 | 2013-12-10 | Zimmer Spine, Inc. | Coaxially lockable poly-axial bone fastener assemblies |
BRPI0919600A2 (en) | 2008-12-17 | 2015-12-08 | Synthes Gmbh | posterior and dynamic spinal stabilizer |
EP2198792A1 (en) | 2008-12-19 | 2010-06-23 | Sepitec Foundation | Implant system for stabilising bones |
US20100160968A1 (en) | 2008-12-19 | 2010-06-24 | Abbott Spine Inc. | Systems and methods for pedicle screw-based spine stabilization using flexible bands |
EP2198796A1 (en) | 2008-12-19 | 2010-06-23 | Sepitec Foundation | Bone screw |
US8147525B2 (en) | 2008-12-22 | 2012-04-03 | Zimmer Spine, Inc. | Bone anchor assembly and methods of use |
US8845690B2 (en) | 2008-12-22 | 2014-09-30 | DePuy Synthes Products, LLC | Variable tension spine fixation rod |
US20100160974A1 (en) | 2008-12-22 | 2010-06-24 | Zimmer Spine, Inc. | Method of Bone Anchor Assembly |
ES2375879T3 (en) | 2008-12-23 | 2012-03-07 | Biedermann Motech Gmbh | RECEPTION AREA OF A ROD FOR COUPLING THE ROD IN AN BONE ANCHORAGE ELEMENT AND BONE ANCHORAGE DEVICE WITH SUCH RECEPTION AREA. |
ES2423676T3 (en) | 2008-12-29 | 2013-09-23 | Biedermann Technologies Gmbh & Co. Kg | Housing piece to accommodate a rod in order to couple the rod to a bone anchoring element, and bone anchoring device with such a housing piece |
US8137356B2 (en) | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
ES2378588T3 (en) | 2008-12-30 | 2012-04-16 | Biedermann Motech Gmbh | Receiving part for receiving a rod for coupling the rod in a bone anchoring element and bone anchoring device with such receiving part |
US20100174322A1 (en) | 2009-01-03 | 2010-07-08 | Custom Spine, Inc. | Biased Bumper Mechanism and Method |
US9005260B2 (en) | 2009-01-15 | 2015-04-14 | Aesculap Implant Systems, Llc | Receiver body for spinal fixation system |
US8636778B2 (en) | 2009-02-11 | 2014-01-28 | Pioneer Surgical Technology, Inc. | Wide angulation coupling members for bone fixation system |
US8641734B2 (en) | 2009-02-13 | 2014-02-04 | DePuy Synthes Products, LLC | Dual spring posterior dynamic stabilization device with elongation limiting elastomers |
US20100211105A1 (en) | 2009-02-13 | 2010-08-19 | Missoum Moumene | Telescopic Rod For Posterior Dynamic Stabilization |
ES2548580T3 (en) | 2009-02-20 | 2015-10-19 | Biedermann Technologies Gmbh & Co. Kg | Receiving part for housing a rod for coupling to a bone anchoring element and bone anchoring device that includes such receiving part |
US9788869B2 (en) | 2009-02-27 | 2017-10-17 | DePuy Synthes Products, Inc. | Spinal fixation element rotation instrument |
WO2010111413A1 (en) | 2009-03-24 | 2010-09-30 | Life Spine, Inc. | Supplementary spinal fixation/stabilization apparatus with dynamic inter-vertebral connection |
US20100249846A1 (en) | 2009-03-25 | 2010-09-30 | Simonson Peter M | Variable height, multi-axial bone screw assembly |
US8357183B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Semi-constrained anchoring system |
US8900238B2 (en) | 2009-03-27 | 2014-12-02 | Globus Medical, Inc. | Devices and methods for inserting a vertebral fixation member |
US20100262190A1 (en) | 2009-04-09 | 2010-10-14 | Warsaw Orthopedic, Inc. | Spinal rod translation device |
US20100262185A1 (en) | 2009-04-10 | 2010-10-14 | Suspension Orthopaedic Solutions, Llc | Method and apparatus for aperture fixation by securing flexible material with a knotless fixation device |
US8425562B2 (en) | 2009-04-13 | 2013-04-23 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
US8206419B2 (en) | 2009-04-13 | 2012-06-26 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
US8372116B2 (en) | 2009-04-13 | 2013-02-12 | Warsaw Orthopedic, Inc. | Systems and devices for dynamic stabilization of the spine |
CA2758590A1 (en) | 2009-04-15 | 2010-10-21 | Synthes Usa, Llc | Revision connector for spinal constructs |
US20100274285A1 (en) | 2009-04-24 | 2010-10-28 | Medtronic, Inc. | Elastomeric spinal implant with limit element |
US8202301B2 (en) | 2009-04-24 | 2012-06-19 | Warsaw Orthopedic, Inc. | Dynamic spinal rod and implantation method |
US8292927B2 (en) | 2009-04-24 | 2012-10-23 | Warsaw Orthopedic, Inc. | Flexible articulating spinal rod |
US8382805B2 (en) | 2009-06-02 | 2013-02-26 | Alphatec Spine, Inc. | Bone screw assembly for limited angulation |
US8236035B1 (en) | 2009-06-16 | 2012-08-07 | Bedor Bernard M | Spinal fixation system and method |
US8529609B2 (en) | 2009-12-01 | 2013-09-10 | Osteomed Llc | Polyaxial facet fixation screw system |
US8267968B2 (en) | 2009-06-24 | 2012-09-18 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
ES2535248T3 (en) | 2009-07-01 | 2015-05-07 | Biedermann Technologies Gmbh & Co. Kg | Instruments for use with bone anchors with a closure element |
US20110009906A1 (en) | 2009-07-13 | 2011-01-13 | Zimmer Spine, Inc. | Vertebral stabilization transition connector |
EP2279705A1 (en) | 2009-07-28 | 2011-02-02 | Spinelab AG | Spinal implant |
WO2011017712A2 (en) | 2009-08-07 | 2011-02-10 | Exatech, Inc. | Systems and methods for stabilization of bone structures, including thorocolumbar stabilization systems and methods |
EP2727546A3 (en) | 2009-08-20 | 2014-07-30 | Biedermann Technologies GmbH & Co. KG | Bone anchoring device, tool and method for assembling the same and tool for use with the same |
WO2011043805A1 (en) | 2009-10-05 | 2011-04-14 | Roger Jackson P | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
US8361123B2 (en) | 2009-10-16 | 2013-01-29 | Depuy Spine, Inc. | Bone anchor assemblies and methods of manufacturing and use thereof |
US8236032B2 (en) | 2009-10-20 | 2012-08-07 | Depuy Spine, Inc. | Spinal implant with a flexible extension element |
US8298275B2 (en) | 2009-10-30 | 2012-10-30 | Warsaw Orthopedic, Inc. | Direct control spinal implant |
US8430917B2 (en) | 2009-10-30 | 2013-04-30 | Warsaw Orthopedic, Inc. | Bone engaging implant with adjustment saddle |
US20110202094A1 (en) | 2009-11-11 | 2011-08-18 | Pereira Mario L | Trans-polyaxial screw |
US10172647B2 (en) | 2009-11-16 | 2019-01-08 | Nexxt Spine, LLC | Poly-axial implant fixation system |
US8328849B2 (en) | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
US8425566B2 (en) | 2009-12-19 | 2013-04-23 | James H. Aldridge | Apparatus and system for vertebrae stabilization and curvature correction, and methods of making and using same |
ES2525046T3 (en) | 2009-12-21 | 2014-12-16 | Biedermann Technologies Gmbh & Co. Kg | Bone anchoring device |
AU2012203959B2 (en) | 2009-12-28 | 2015-02-19 | Safe Orthopaedics | Device and method for spinal surgery |
US8419778B2 (en) | 2010-01-15 | 2013-04-16 | Ebi, Llc | Uniplanar bone anchor system |
US20110184469A1 (en) | 2010-01-28 | 2011-07-28 | Warsaw Orthopedic, Inc. | Set screw alignment tool |
US8523914B2 (en) | 2010-01-28 | 2013-09-03 | Warsaw Orthopedic, Inc. | Bone anchor with predetermined break point and removal features |
US20110196430A1 (en) | 2010-02-10 | 2011-08-11 | Walsh David A | Spinal fixation assembly with intermediate element |
US8828006B2 (en) | 2010-02-17 | 2014-09-09 | Blackstone Medical, Inc. | Anti-splay apparatus |
US9445844B2 (en) | 2010-03-24 | 2016-09-20 | DePuy Synthes Products, Inc. | Composite material posterior dynamic stabilization spring rod |
US8740945B2 (en) | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
US20110257685A1 (en) | 2010-04-15 | 2011-10-20 | Hay J Scott | Pre-stressed spinal stabilization system |
US20110257687A1 (en) | 2010-04-19 | 2011-10-20 | Warsaw Orthopedic, Inc. | Load sharing bone fastener and methods of use |
US20110257690A1 (en) | 2010-04-20 | 2011-10-20 | Warsaw Orthopedic, Inc. | Transverse and Sagittal Adjusting Screw |
US8535318B2 (en) | 2010-04-23 | 2013-09-17 | DePuy Synthes Products, LLC | Minimally invasive instrument set, devices and related methods |
US8512383B2 (en) | 2010-06-18 | 2013-08-20 | Spine Wave, Inc. | Method of percutaneously fixing a connecting rod to a spine |
US8845640B2 (en) | 2010-06-18 | 2014-09-30 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
US8394108B2 (en) | 2010-06-18 | 2013-03-12 | Spine Wave, Inc. | Screw driver for a multiaxial bone screw |
AU2011291476B2 (en) | 2010-08-20 | 2014-02-13 | K2M, Inc. | Spinal fixation system |
WO2012030712A1 (en) | 2010-08-30 | 2012-03-08 | Zimmer Spine, Inc. | Polyaxial pedicle screw |
US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
EP2613719A1 (en) | 2010-09-08 | 2013-07-17 | Roger P. Jackson | Dynamic stabilization members with elastic and inelastic sections |
US8491641B2 (en) | 2010-09-28 | 2013-07-23 | Spinofix, Inc. | Pedicle screws and dynamic adaptors |
EP3047812B1 (en) * | 2010-11-22 | 2020-01-01 | Biedermann Technologies GmbH & Co. KG | Polyaxial bone anchoring device |
CN102525635B (en) | 2010-12-10 | 2014-12-31 | 上海微创骨科医疗科技有限公司 | Universal pedicle screw |
EP2468198B1 (en) | 2010-12-23 | 2014-02-19 | Biedermann Technologies GmbH & Co. KG | Bone anchoring device |
CN102133132B (en) | 2010-12-31 | 2013-01-02 | 上海微创骨科医疗科技有限公司 | Dynamic screw implant for pedicle of vertebral arch |
US8579949B2 (en) | 2011-01-28 | 2013-11-12 | Warsaw Orthopedic, Inc. | Provisional fixation for a multi-axial screw assembly |
US8337530B2 (en) | 2011-03-09 | 2012-12-25 | Zimmer Spine, Inc. | Polyaxial pedicle screw with increased angulation |
US20120310284A1 (en) | 2011-06-03 | 2012-12-06 | Royal Oak Industries | Polyaxial pedicle screw |
US8523922B2 (en) | 2011-10-24 | 2013-09-03 | Warsaw Orthopedic | Dynamic multi-axial fastener |
EP2620112B1 (en) | 2012-01-30 | 2014-11-12 | Biedermann Technologies GmbH & Co. KG | Bone anchoring device |
US8470009B1 (en) | 2012-03-08 | 2013-06-25 | Warsaw Orthopedic, Inc. | Bone fastener and method of use |
US8439924B1 (en) | 2012-04-02 | 2013-05-14 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
CA2968861C (en) * | 2017-05-30 | 2022-10-11 | University Of Saskatchewan | Topical nifedipine formulations and uses thereof |
-
2006
- 2006-09-14 US US11/522,503 patent/US7766915B2/en not_active Expired - Fee Related
- 2006-09-29 EP EP06816027A patent/EP1933770A4/en not_active Withdrawn
- 2006-09-29 WO PCT/US2006/038446 patent/WO2007047079A2/en active Application Filing
- 2006-09-29 CA CA002621997A patent/CA2621997A1/en not_active Abandoned
- 2006-09-29 AU AU2006303888A patent/AU2006303888B2/en not_active Ceased
- 2006-09-29 CA CA2815595A patent/CA2815595C/en active Active
- 2006-09-29 JP JP2008535560A patent/JP5161096B2/en not_active Expired - Fee Related
-
2010
- 2010-07-23 US US12/804,580 patent/US8394133B2/en not_active Expired - Lifetime
-
2011
- 2011-02-22 AU AU2011200755A patent/AU2011200755B2/en not_active Ceased
- 2011-12-16 JP JP2011275848A patent/JP2012096047A/en active Pending
-
2012
- 2012-10-26 JP JP2012236925A patent/JP2013046790A/en active Pending
-
2013
- 2013-01-28 US US13/815,054 patent/US8900272B2/en not_active Expired - Lifetime
-
2014
- 2014-12-02 US US14/557,945 patent/US9662143B2/en not_active Expired - Lifetime
-
2017
- 2017-01-30 US US15/419,740 patent/US10039571B2/en active Active
-
2018
- 2018-07-12 US US16/033,742 patent/US10299835B2/en active Active
-
2019
- 2019-04-25 US US16/394,748 patent/US10543020B2/en not_active Expired - Fee Related
- 2019-11-01 US US16/671,527 patent/US11045229B2/en active Active
- 2019-11-21 US US16/690,909 patent/US10874437B2/en active Active
-
2020
- 2020-12-29 US US17/136,779 patent/US11134993B2/en active Active
-
2021
- 2021-10-04 US US17/493,190 patent/US11849977B2/en active Active
-
2023
- 2023-06-21 US US18/339,130 patent/US11957386B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11134993B2 (en) | Pivotal bone anchor assembly with snap-in-place insert | |
US10561444B2 (en) | Pivotal bone anchor assembly with twist-in-place insert having radially offset receiver engaging structures | |
US10617447B2 (en) | Dynamic stabilization member with molded connection | |
US20240252213A1 (en) | Method of assembling a pivotal bone anchor assembly with snap-in-place insert |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
RF | Reissue application filed |
Effective date: 20190530 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |