US20160209300A1 - Exhaust Sampling System And Method For Water Vapor Management - Google Patents

Exhaust Sampling System And Method For Water Vapor Management Download PDF

Info

Publication number
US20160209300A1
US20160209300A1 US15/080,623 US201615080623A US2016209300A1 US 20160209300 A1 US20160209300 A1 US 20160209300A1 US 201615080623 A US201615080623 A US 201615080623A US 2016209300 A1 US2016209300 A1 US 2016209300A1
Authority
US
United States
Prior art keywords
sample bag
exhaust
test procedure
sample
water concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/080,623
Inventor
William Martin Silvis
James Patrick Williamson
Gerald Marek
Douglas Edward Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL Test Systems Inc
Original Assignee
AVL Test Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL Test Systems Inc filed Critical AVL Test Systems Inc
Priority to US15/080,623 priority Critical patent/US20160209300A1/en
Assigned to AVL TEST SYSTEMS, INC. reassignment AVL TEST SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAREK, GERALD, MILLER, DOUGLAS EDWARD, SILVIS, WILLIAM MARTIN, WILLIAMSON, James Patrick
Publication of US20160209300A1 publication Critical patent/US20160209300A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • G01N2001/2255Sampling from a flowing stream of gas in a vehicle exhaust with dilution of the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • G01N2001/2261Sampling from a flowing stream of gas in a stack or chimney preventing condensation (heating lines)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2264Sampling from a flowing stream of gas with dilution

Definitions

  • CVS constant volume samplers
  • engine exhaust is diluted with a make-up gas, or diluent, and a sample of the diluted exhaust is proportionally extracted and stored in one or more sample bags.
  • the CVS total flow rate which includes both the make-up gas and engine exhaust, is selected to ensure the diluted exhaust sample does not condense water when stored in the bags.
  • some systems fill the sample bags with a gas, such as a pre-fill gas, to avoid bag condensation. Some other systems apply heat to the sample bags such that the temperature of the sample is maintained above the dew point.
  • a gas such as a pre-fill gas
  • an exhaust sampling system including a plurality of exhaust sampling system zones.
  • the zones are, at least, a sampling conduit, a fill circuit, and a read circuit.
  • a controller is programmed to predict a minimum dilution ratio to avoid condensation in one of the exhaust sampling system zones.
  • the controller is further programmed to run a test procedure in which a sample of exhaust is diluted with a make-up gas at a selected minimum dilution ratio that is greater than or equal to the predicted minimum dilution ratio. Further disclosed are methods of predicting whether condensation occurs during a test procedure.
  • FIG. 1 is a schematic view of an example exhaust sampling system.
  • FIG. 2 is a schematic view of another example exhaust sampling system.
  • FIG. 3 is a flow chart illustrating example steps for selecting a minimum dilution ratio for a test procedure.
  • FIG. 4 is a flow chart illustrating example steps for determining whether a test procedure has been compromised.
  • FIG. 5 is an example of the engine performance considered in the flow chart of FIG. 4 .
  • FIG. 6 is another flow chart illustrating example steps for determining whether a test has been compromised.
  • FIG. 7 is an example of the running average considered in the flow chart of FIG. 6 .
  • FIG. 1 A schematic view of an example exhaust sampling system 10 is shown in FIG. 1 .
  • the illustrated system 10 is a CVS.
  • An example CVS is present in U.S. Pat. No. 7,559,262, the entirety of which is herein incorporated by reference. It should be understood, however, that this application extends to other types of exhaust sampling systems, and is not limited to the particularities of the illustrated system 10 .
  • the example system 10 includes a sampling conduit 12 configured to receive a make-up air 14 and exhaust 16 from an engine 18 .
  • the make-up air 14 is directed to the sampling conduit 12 by way of an inlet 20 formed in one end of the sampling conduit.
  • the inlet 20 is provided with a filter 22 in this example.
  • a pump 24 is positioned opposite the inlet 20 to draw a desired amount of make-up air into the sampling conduit 12 .
  • Exhaust 16 is directed into the sampling conduit 12 by way of a tail pipe 26 .
  • exhaust refers to the various fluids emitted from an engine (including gasses and vapors), as well as the particulate matter (PM) suspended therein.
  • PM is commonly emitted from engines and typically includes carbonaceous matter in elemental form (or, soot) and carbonaceous matter in the form of volatile and semi-volatile hydrocarbon compounds (which may be SOF, or soluble organic fraction), and other organic and inorganic compounds (such as sulfates).
  • the make-up air discussed above can be any type of diluent, such as ambient air, whose water concentration is known or readily determinable.
  • the sampling conduit 12 further includes a mixer 28 , a tunnel 30 , a heat exchanger 32 , and a measuring device 34 .
  • a mixer 28 for mixing and converting the sampling fluid into a gas.
  • a tunnel 30 for converting the temperature of the sample into a gas.
  • a heat exchanger 32 for converting heat to a gas.
  • a measuring device 34 for measuring the temperature of the sampling conduit 12 .
  • the sampling conduit includes these components 28 , 30 , 32 , 34 in this example, this application extends to other types of sampling conduits, including conduits without these components.
  • a sampler 36 Downstream of the inlet 20 and the tail pipe 26 is a sampler 36 for extracting a sample of the mixture of the makeup gas 14 and the exhaust 16 .
  • the mixture of the makeup gas 14 and the exhaust 16 is referred to herein as the diluted exhaust.
  • the sample, sampled by sampler 36 is referred to as the diluted exhaust sample.
  • the diluted exhaust sample Downstream of the sampler 36 , the diluted exhaust sample is directed through a fill circuit 38 .
  • the fill circuit includes a valve 40 , pump 42 , and a flow meter 44 .
  • the fill circuit 38 further includes independently adjustable valves 46 leading to a respective sample bag 48 . While the fill circuit 38 is shown including the valve 40 , pump 42 and flow meter 44 , the fill circuit could include any combination of components, as desired.
  • use of the term fill circuit 38 refers to the portion of the sampling system 10 downstream of the sampling conduit 12 and upstream of the sample bags 48 .
  • the term fill circuit can be inclusive of the sampler 36 , in some examples.
  • the fill circuit 38 directs the diluted exhaust sample to two sample bags 48 , however this application extends to disclosures which include any number of bags, including only one sample bag. Depending on the number of sample bags 48 , the number of valves 46 can be adjusted accordingly.
  • a read circuit 50 Downstream of the bags 48 is a read circuit 50 , which includes independently adjustable valves 52 , a pump 54 , a flow meter 55 , and an emissions analyzer 56 , which may be a bench-type analysis unit. Like the fill circuit 38 , the read circuit 50 may include any combination of desired components. As used herein, the term read circuit 50 refers to the portion of the sampling system 10 downstream of the bags 48 .
  • a controller 58 which may be any type of known computer including a computer readable medium with the capability of storing instructions executable by the controller.
  • the controller 58 is further in communication with each of the disclosed system components.
  • the controller is operable to control and monitor the engine 18 , and is further capable of independently operating the various pumps 24 , 42 , 54 and valves 40 , 46 , 52 .
  • the system 10 fills the sample bags 48 with a gas, such as a pre-fill gas from a source 60 , before filling the bags with the diluted exhaust sample to ensure an accurate measurement at the analyzer 56 .
  • a gas such as a pre-fill gas from a source 60
  • This disclosure extends to systems that do not include a pre-filling feature.
  • This disclosure further extends to systems that include a post-filling feature either alone, or in combination with, a pre-filling feature.
  • the system 10 includes a mini-diluter 62 , such as the one illustrated in FIG. 2 .
  • a mini-diluter 62 such as the one illustrated in FIG. 2 .
  • FIGS. 1 and 2 like reference numerals are used to indicate like elements.
  • the exhaust 16 from the engine 18 is directed into the sampling conduit 12 and is sampled by the sampler 36 .
  • the exhaust sample is diluted with a make-up gas from the mini-diluter 62 , at the mixer 64 .
  • An example system including a mini-diluter is U.S. Patent Application Publication No. 2010/0000339, the entirety of which is herein incorporated by reference.
  • an exemplary emissions test procedure is conducted by directing exhaust 16 from the engine 18 into the sampling conduit 12 , and diluting the exhaust 16 with the make-up air 14 at a minimum dilution ratio, DR CVS-MIN , selected in advance of the procedure, as explained below.
  • the controller 58 is programmed to instruct the pump 24 to draw an appropriate amount of make-up air 14 into the sampling conduit.
  • dilution would take place at the mixer 64 , by way of instructions from the controller 58 to the mini-diluter 62 .
  • the diluted exhaust sample is directed from the sampling conduit 12 to the sample bags 48 , by way of the fill circuit 38 .
  • the diluted exhaust sample is collected in the sample bags 48 during the test procedure.
  • the diluted exhaust sample is directed from sample bags 48 downstream to the read circuit 50 , and ultimately to an analyzer 56 .
  • this disclosure considers not only the sample bags 48 , but alternatively, or in addition, considers at least one of the read circuit 38 , the fill circuit 50 , and the sampling conduit 12 , when selecting a minimum dilution ratio DR CVS-MIN for the exhaust 16 .
  • dilution ratio DR CVS is defined in accordance with the following:
  • Q ex-ave is an average expected exhaust 16 flow rate during a test procedure.
  • Q ex-ave could be a running average of exhaust 16 flow rate during the procedure.
  • the controller 58 is operable to provide an appropriate Q CVS .
  • the minimum dilution ratio DR CVS-MIN is selected such that it is as low as possible, while still being high enough to avoid condensation within the various components of the exhaust sampling system 10 .
  • dilution ratios to avoid condensation in the fill circuit 38 , the bags 48 , the read circuit 50 , and the sampling conduit 12 are separately determined, and the minimum dilution ratio of the exhaust 16 is set such that it is greater than or equal to a maximum of the predicted dilution ratios.
  • a minimum dilution ratio to avoid condensation in the fill circuit 38 DR fill-min is predicted at 68 , and is defined as follows:
  • W ex-max is a maximum expected water concentration in the exhaust during the test procedure
  • W fill-sat is an expected saturated water concentration to be associated with the fill circuit 38 during the test procedure
  • W m is an expected water concentration in the make-up gas during the test procedure.
  • W fill-sat is determined from the following equation:
  • P H20-vap is a saturation vapor pressure that is identified using a known method (for example, a look-up table). In another example, P H20-vap is identified using certain federal regulations as a guide.
  • the input temperature T fill is an expected average temperature of the diluted exhaust sample in the fill circuit 38 during a given test procedure.
  • P fill is an expected average pressure of the diluted exhaust sample in the fill circuit 38 during the test procedure.
  • T fill and P fill can be determined by considering ambient conditions, for example, as well as the T fill and P fill present during prior, similar tests. In one example, T fill , is selected such that it is above the dew point of the mixture of the make-up gas 14 and the exhaust 16 at the minimum dilution ratio expected during testing, thus providing a built-in safety factor.
  • the remaining variables in the DR fill-min equation, W ex-max and W m are predicted based on inputs from the engine and the surrounding system. For example, the composition of the fuel combusted by the engine, as well as the properties and composition of the engine intake air will impact the water concentration in the exhaust, W ex-max .
  • the make-up gas 14 is ambient air
  • the water concentration in the make-up gas 14 is determined based on parameters such as the temperature and pressure of the surroundings of the system 10 .
  • Various pressure and temperature sensors can be positioned relative to the system 10 , and these sensors are capable of communicating with the controller 58 .
  • DR read-min a minimum dilution ratio to avoid condensation in the read circuit. Similar to DR fill-min , DR read-min is predicted in accordance with:
  • W m is defined above
  • W ex-ave is an is a average expected water concentration in the exhaust during the test procedure
  • W read-sat is an expected saturated water concentration to be associated with the read circuit 50 during the test procedure.
  • W read-sat is determined in a manner similar to W fill-sat , above, and is based on T read and P read , an expected average temperature and pressure of the diluted exhaust sample in the read circuit 50 during a given test procedure.
  • T read is set above the dew point that corresponds to the water content in the diluted exhaust sample
  • P read is above a pressure to which the diluted exhaust sample is raised when pumping (e.g., with pump 54 ) to the analyzer 56 .
  • DR bag-min is predicted in accordance with:
  • W bag-sat is an expected saturated water concentration to be associated with the at least one sample bag 48 during the test procedure.
  • W bag-sat is determined in a manner similar to W read-sat and W fill-sat , above, and is based on and P bag , an expected average temperature and pressure of the diluted exhaust sample within the bags 48 during a test procedure. T bag will need to be above the dew point of the diluted exhaust sample in some examples.
  • some examples could substitute W ex-ave with a maximum integrated value for the concentration of water in the exhaust gas, to protect for peak exhaust. That is, while the actual W ex-ave could be used some examples would substitute the value for W ex-ave with the average plus a test-dependent margin.
  • DR tun-min is predicted in accordance with:
  • W ex-max and W m are defined above, and W tun-sat is an expected saturated water concentration to be associated with the sampling conduit 12 during the test procedure.
  • W samp-cond-sat is determined in a manner similar to W fill-sat , above, and is based on T samp-cond and P samp-cond , an expected average temperature and pressure of the diluted exhaust sample in the sampling conduit 12 during a given test procedure.
  • T samp-cond is set above the dew point that corresponds to the water content in the diluted exhaust sample
  • P samp-cond is assumed to be equal to atmospheric pressure.
  • the actual temperature of bags is higher by roughly 4-5° C. than the T bag used in the calculations, to give some safety factor.
  • P bag may vary between the calculations and actual test conditions to provide a safety factor.
  • DR fill-min and DR read-min can be provided with built-in safety factors.
  • the controller 58 selects an exhaust minimum dilution ratio, DR CVS-MIN , that is greater than or equal to a maximum of the predicted minimum dilution ratios, DR fill-min , DR bag-min , DR read-min , and DR samp-cond-min ⁇ DR CVS-MIN is selected, at 74 , as follows:
  • exhaust 16 is diluted with the make-up gas 14 at a ratio equal to DR CVS-MIN . It is possible in some examples to dilute the exhaust at a ratio above the maximum of the predicted ratios for an added safety factor. However, as mentioned above, more accurate test results are possible with a lower dilution ratio.
  • DR CVS-MIN is selected such that the make-up gas 14 is mixed with the exhaust 16 at a ratio within a range of 1:1 and 10:1.
  • the ratios DR fill-min , DR bag-min , DR read-min , DR samp-cond-min , and DR CVS-MIN are absolute minimums, such that the minimum dilution ratio should not drop below DR CVS-MIN at any point during the test procedure.
  • the overall average dilution ratio over the course of a test would not drop below DR CVS-MIN .
  • the ratios are running averages, such that a running average of the dilution should not drop below DR CVS-MIN .
  • the controller 58 dilutes the exhaust 18 at a ratio DR CVS-MIN determined based on at least one test parameter, which can include parameters from an engine or vehicle performance model 78 and parameters 80 of the system 10 , as illustrated in FIG. 4 .
  • the engine performance model 78 is a known model associated with the particular type of engine involved in the test procedure.
  • the at least one test parameter can further include coefficients from a dynamometer, such as settings for resistive load, which may relate to peak exhaust expected during a test cycle.
  • average and maximum exhaust flow rate from the engine or vehicle over the course of the test procedure Q ex-ave and Q ex-max , can be estimated by given values, or, for example, can be predicted based on an estimated engine horsepower throughout the test procedure.
  • the minimum Q CVS-min used throughout the test procedure can be provided as follows:
  • the at least one test parameter includes such parameters as resistive load (e.g., dyno coefficients), engine RPM, fuel type, fuel composition, engine or vehicle intake air properties and composition, and combustion efficiency.
  • Certain exhaust sampling system parameters would also be relevant in determining a minimum dilution ratio, as generally mentioned above, and would impact the engine performance model 78 .
  • These parameters 80 include T fill and P fill , T read and P read , T bag and P bag , T samp-cond and P samp-cond and the composition properties of the make-up gas 14 (e.g., portions attributable to N 2 , O 2 , etc).
  • a known engine performance model is determinable, and the controller can select a flow rate Q CVS for a required minimum dilution ratio DR CVS-MIN .
  • the minimum dilution ratio selected for the test of FIG. 4 could be determined based on the method of FIG. 3 .
  • an emissions test procedure begins as illustrated at 76 in FIG. 4 .
  • the test procedure could dilute exhaust either at a minimum ratio selected in step 74 , or at a minimum ratio determined based on at least one of the test parameters.
  • the controller can suggest an optimized flow rate Q CVS .
  • the controller 58 will monitor the actual performance of the test parameters relative to the model to determine whether the difference between the two indicates a possible condensation in the exhaust sampling system 10 , at 84 . If such an indication is present such that the tests may be compromised by potential condensation, the test procedure is ended at 86 .
  • FIG. 5 A graphical representation of a scenario indicating a possible compromise in the test procedure is shown in FIG. 5 .
  • an engine 18 or system 10 parameters exceeds a value predicted by the model for an amount of time, as indicated by the shaded-in area between the actual value of the parameter and the value predicted by the model.
  • the controller 58 monitors RPM of the engine 18 relative to a model relating engine RPM to minimum dilution ratio. If the engine RPM exceeds the value associated with the model such that the minimum dilution ratio DR CVS-MIN is not sufficient to avoid condensation, as represented in the shaded area of FIG. 5 , the controller 58 ends the test. In another example, when ambient air is used as the make-up gas 14 , the controller 58 monitors the relative humidity of the ambient air. An unexpected peak in the relative humidity can indicate a compromised test.
  • W bag-sat-int an integral of the saturated water concentration within the sample bags, W bag-sat-int . That is, W bag-sat is monitored as a function of time during the test procedure, and the integral of W bag-sat from time zero to “t” is used to determine whether there is concentration in bags at time “t.”
  • the integral is calculated at set intervals, for example (e.g., t is 1 second, 2 seconds, 3 seconds, etc).
  • the controller 58 determines, at 92 , whether a possible condensation in the sample bags 48 is indicated, by comparing W bag-sat-int with a model, for example. If a possible compromise in the test is identified, the test is ended, at 94 .
  • FIG. 7 represents an example where a possible compromise occurs during the test procedure.
  • W bag-sat-int exceeds an average W bag-sat expected over the test procedure, as illustrated in the shaded area.
  • the bags may be over-saturated and condensation may be present.
  • This disclosure can be used to avoid condensation in more than just the sample bags of an exhaust system. As noted, there are several reasons to avoid condensation in more than just the sample bags, including more accurate testing, and compliance with new regulations.
  • This disclosure can be used to interrupt a compromised test procedure by monitoring for condensation during the test, rather than determining, after a completed test, that condensation had occurred. Interrupting a compromised test leads to time and cost savings relative to the alternative.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Disclosed is an exhaust sampling system including a plurality of exhaust sampling system zones. The zones are, at least, a sampling conduit, a fill circuit, and a read circuit. A controller is programmed to predict a minimum dilution ratio to avoid condensation in one of the exhaust sampling system zones. The controller is further programmed to run a test procedure in which a sample of exhaust is diluted with a make-up gas at a selected minimum dilution ratio that is greater than or equal to the predicted minimum dilution ratio. Further disclosed are methods of predicting whether condensation occurs during a test procedure.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/478,170 filed on May 23, 2012. The entire disclosure of the application referenced above is incorporated herein by reference.
  • BACKGROUND
  • In typical exhaust sampling systems, such as constant volume samplers (CVS), engine exhaust is diluted with a make-up gas, or diluent, and a sample of the diluted exhaust is proportionally extracted and stored in one or more sample bags. Depending upon the engine size, drive cycle and ambient conditions, the CVS total flow rate, which includes both the make-up gas and engine exhaust, is selected to ensure the diluted exhaust sample does not condense water when stored in the bags.
  • In addition to determining an appropriate CVS total flow rate, some systems fill the sample bags with a gas, such as a pre-fill gas, to avoid bag condensation. Some other systems apply heat to the sample bags such that the temperature of the sample is maintained above the dew point.
  • SUMMARY
  • Disclosed is an exhaust sampling system including a plurality of exhaust sampling system zones. The zones are, at least, a sampling conduit, a fill circuit, and a read circuit. A controller is programmed to predict a minimum dilution ratio to avoid condensation in one of the exhaust sampling system zones. The controller is further programmed to run a test procedure in which a sample of exhaust is diluted with a make-up gas at a selected minimum dilution ratio that is greater than or equal to the predicted minimum dilution ratio. Further disclosed are methods of predicting whether condensation occurs during a test procedure.
  • These and other features of the present disclosure can be best understood from the following drawings and detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings can be briefly described as follows:
  • FIG. 1 is a schematic view of an example exhaust sampling system.
  • FIG. 2 is a schematic view of another example exhaust sampling system.
  • FIG. 3 is a flow chart illustrating example steps for selecting a minimum dilution ratio for a test procedure.
  • FIG. 4 is a flow chart illustrating example steps for determining whether a test procedure has been compromised.
  • FIG. 5 is an example of the engine performance considered in the flow chart of FIG. 4.
  • FIG. 6 is another flow chart illustrating example steps for determining whether a test has been compromised.
  • FIG. 7 is an example of the running average considered in the flow chart of FIG. 6.
  • DETAILED DESCRIPTION
  • A schematic view of an example exhaust sampling system 10 is shown in FIG. 1. In particular, the illustrated system 10 is a CVS. An example CVS is present in U.S. Pat. No. 7,559,262, the entirety of which is herein incorporated by reference. It should be understood, however, that this application extends to other types of exhaust sampling systems, and is not limited to the particularities of the illustrated system 10.
  • The example system 10 includes a sampling conduit 12 configured to receive a make-up air 14 and exhaust 16 from an engine 18. The make-up air 14 is directed to the sampling conduit 12 by way of an inlet 20 formed in one end of the sampling conduit. The inlet 20 is provided with a filter 22 in this example. A pump 24 is positioned opposite the inlet 20 to draw a desired amount of make-up air into the sampling conduit 12. Exhaust 16 is directed into the sampling conduit 12 by way of a tail pipe 26.
  • As used herein, the term exhaust refers to the various fluids emitted from an engine (including gasses and vapors), as well as the particulate matter (PM) suspended therein. PM is commonly emitted from engines and typically includes carbonaceous matter in elemental form (or, soot) and carbonaceous matter in the form of volatile and semi-volatile hydrocarbon compounds (which may be SOF, or soluble organic fraction), and other organic and inorganic compounds (such as sulfates). The make-up air discussed above can be any type of diluent, such as ambient air, whose water concentration is known or readily determinable.
  • As illustrated, the sampling conduit 12 further includes a mixer 28, a tunnel 30, a heat exchanger 32, and a measuring device 34. A detailed discussion of these components is present in U.S. Pat. No. 7,559,262. While the sampling conduit includes these components 28, 30, 32, 34 in this example, this application extends to other types of sampling conduits, including conduits without these components.
  • Downstream of the inlet 20 and the tail pipe 26 is a sampler 36 for extracting a sample of the mixture of the makeup gas 14 and the exhaust 16. The mixture of the makeup gas 14 and the exhaust 16 is referred to herein as the diluted exhaust. The sample, sampled by sampler 36, is referred to as the diluted exhaust sample.
  • Downstream of the sampler 36, the diluted exhaust sample is directed through a fill circuit 38. In this example, the fill circuit includes a valve 40, pump 42, and a flow meter 44. The fill circuit 38 further includes independently adjustable valves 46 leading to a respective sample bag 48. While the fill circuit 38 is shown including the valve 40, pump 42 and flow meter 44, the fill circuit could include any combination of components, as desired. As used herein, use of the term fill circuit 38 refers to the portion of the sampling system 10 downstream of the sampling conduit 12 and upstream of the sample bags 48. The term fill circuit can be inclusive of the sampler 36, in some examples.
  • As illustrated, the fill circuit 38 directs the diluted exhaust sample to two sample bags 48, however this application extends to disclosures which include any number of bags, including only one sample bag. Depending on the number of sample bags 48, the number of valves 46 can be adjusted accordingly.
  • Downstream of the bags 48 is a read circuit 50, which includes independently adjustable valves 52, a pump 54, a flow meter 55, and an emissions analyzer 56, which may be a bench-type analysis unit. Like the fill circuit 38, the read circuit 50 may include any combination of desired components. As used herein, the term read circuit 50 refers to the portion of the sampling system 10 downstream of the bags 48.
  • A controller 58, which may be any type of known computer including a computer readable medium with the capability of storing instructions executable by the controller. The controller 58 is further in communication with each of the disclosed system components. For example, the controller is operable to control and monitor the engine 18, and is further capable of independently operating the various pumps 24, 42, 54 and valves 40, 46, 52.
  • Variations of the system 10 come within the scope of this disclosure. For example, in one variation the system 10 fills the sample bags 48 with a gas, such as a pre-fill gas from a source 60, before filling the bags with the diluted exhaust sample to ensure an accurate measurement at the analyzer 56. Such a system is disclosed in U.S. Pat. No. 7,559,262. This disclosure extends to systems that do not include a pre-filling feature. This disclosure further extends to systems that include a post-filling feature either alone, or in combination with, a pre-filling feature.
  • In another example, the system 10 includes a mini-diluter 62, such as the one illustrated in FIG. 2. Between FIGS. 1 and 2, like reference numerals are used to indicate like elements. In FIG. 2 the exhaust 16 from the engine 18 is directed into the sampling conduit 12 and is sampled by the sampler 36. The exhaust sample is diluted with a make-up gas from the mini-diluter 62, at the mixer 64. An example system including a mini-diluter is U.S. Patent Application Publication No. 2010/0000339, the entirety of which is herein incorporated by reference.
  • With reference back to FIG. 1, an exemplary emissions test procedure is conducted by directing exhaust 16 from the engine 18 into the sampling conduit 12, and diluting the exhaust 16 with the make-up air 14 at a minimum dilution ratio, DRCVS-MIN, selected in advance of the procedure, as explained below. To dilute the exhaust 16 at the selected minimum dilution ratio, the controller 58 is programmed to instruct the pump 24 to draw an appropriate amount of make-up air 14 into the sampling conduit. In the example of FIG. 2, dilution would take place at the mixer 64, by way of instructions from the controller 58 to the mini-diluter 62.
  • The diluted exhaust sample is directed from the sampling conduit 12 to the sample bags 48, by way of the fill circuit 38. The diluted exhaust sample is collected in the sample bags 48 during the test procedure. Following the test procedure, the diluted exhaust sample is directed from sample bags 48 downstream to the read circuit 50, and ultimately to an analyzer 56.
  • During test procedures such as the example procedure described above, the formation of condensation in the diluted exhaust sample not only leads to inaccurate test results, but certain legislation prohibits condensation from being permitted inside the sample bags. New legislation is even more restrictive, and prohibits condensation from forming in more than just the sample bags 48. In other words, if condensation occurs at any point in the sampling system 10 during a test procedure, the new legislation effectively renders that test procedure compromised, and a new test procedure would be required.
  • Accordingly, this disclosure considers not only the sample bags 48, but alternatively, or in addition, considers at least one of the read circuit 38, the fill circuit 50, and the sampling conduit 12, when selecting a minimum dilution ratio DRCVS-MIN for the exhaust 16.
  • In general, the dilution ratio DRCVS is defined in accordance with the following:
  • D R CVS = Q m + Q ex Q ex
  • where QM is the make-up gas 14 flow rate and QEX is an exhaust 16 flow rate. Once DRCVS-MIN is selected (e.g., DRCVS is set to DRCVS-MIN), as discussed below, then the flow rate in the sampling conduit QCVS is provided in accordance with:

  • Q CVS=DRCVS-MIN ·Q ex-ave
  • where Qex-ave is an average expected exhaust 16 flow rate during a test procedure. Alternatively, Qex-ave could be a running average of exhaust 16 flow rate during the procedure. Given DRCVS-MIN, the controller 58 is operable to provide an appropriate QCVS.
  • As generally mentioned above, the problem of condensation could be avoided by excessively diluting the exhaust 16 with the make-up gas 14. However, this would lead to an exhaust sample that would be extremely difficult to analyze, due to the high content of make-up gas 14 in the diluted exhaust sample. Accordingly, in one example of this disclosure the minimum dilution ratio DRCVS-MIN is selected such that it is as low as possible, while still being high enough to avoid condensation within the various components of the exhaust sampling system 10. To find this optimum DRCVS-MIN, dilution ratios to avoid condensation in the fill circuit 38, the bags 48, the read circuit 50, and the sampling conduit 12 are separately determined, and the minimum dilution ratio of the exhaust 16 is set such that it is greater than or equal to a maximum of the predicted dilution ratios.
  • In particular, and with reference to FIG. 3, a minimum dilution ratio to avoid condensation in the fill circuit 38 DRfill-min is predicted at 68, and is defined as follows:
  • D R fill - min W ex - max W fill - sat - W m
  • where Wex-max is a maximum expected water concentration in the exhaust during the test procedure, Wfill-sat is an expected saturated water concentration to be associated with the fill circuit 38 during the test procedure, and Wm is an expected water concentration in the make-up gas during the test procedure. In one example, Wfill-sat is determined from the following equation:
  • W fill - sat = P H 20 - vap ( T fill ) P fill
  • where PH20-vap is a saturation vapor pressure that is identified using a known method (for example, a look-up table). In another example, PH20-vap is identified using certain federal regulations as a guide. In this example, the input temperature Tfill is an expected average temperature of the diluted exhaust sample in the fill circuit 38 during a given test procedure. Pfill is an expected average pressure of the diluted exhaust sample in the fill circuit 38 during the test procedure. Tfill and Pfill can be determined by considering ambient conditions, for example, as well as the Tfill and Pfill present during prior, similar tests. In one example, Tfill, is selected such that it is above the dew point of the mixture of the make-up gas 14 and the exhaust 16 at the minimum dilution ratio expected during testing, thus providing a built-in safety factor.
  • The remaining variables in the DRfill-min equation, Wex-max and Wm, are predicted based on inputs from the engine and the surrounding system. For example, the composition of the fuel combusted by the engine, as well as the properties and composition of the engine intake air will impact the water concentration in the exhaust, Wex-max. In the example where the make-up gas 14 is ambient air, the water concentration in the make-up gas 14 is determined based on parameters such as the temperature and pressure of the surroundings of the system 10. Various pressure and temperature sensors can be positioned relative to the system 10, and these sensors are capable of communicating with the controller 58.
  • At 70, a minimum dilution ratio to avoid condensation in the read circuit, DRread-min, is predicted. Similar to DRfill-min, DRread-min is predicted in accordance with:
  • D R read - min W ex - ave - W m W read - sat - W m
  • where Wm is defined above, Wex-ave is an is a average expected water concentration in the exhaust during the test procedure, and Wread-sat is an expected saturated water concentration to be associated with the read circuit 50 during the test procedure. Wread-sat is determined in a manner similar to Wfill-sat, above, and is based on Tread and Pread, an expected average temperature and pressure of the diluted exhaust sample in the read circuit 50 during a given test procedure. In particular, in the example, Tread is set above the dew point that corresponds to the water content in the diluted exhaust sample, and Pread is above a pressure to which the diluted exhaust sample is raised when pumping (e.g., with pump 54) to the analyzer 56.
  • Likewise, a predicted minimum dilution ratio is determined for the bags at 72. DRbag-min is predicted in accordance with:
  • D R bag - min W ex - ave - W m W bag - sat - W m
  • where Wbag-sat is an expected saturated water concentration to be associated with the at least one sample bag 48 during the test procedure. Wbag-sat is determined in a manner similar to Wread-sat and Wfill-sat, above, and is based on and Pbag, an expected average temperature and pressure of the diluted exhaust sample within the bags 48 during a test procedure. Tbag will need to be above the dew point of the diluted exhaust sample in some examples. When computing DRbag-min, some examples could substitute Wex-ave with a maximum integrated value for the concentration of water in the exhaust gas, to protect for peak exhaust. That is, while the actual Wex-ave could be used some examples would substitute the value for Wex-ave with the average plus a test-dependent margin.
  • Further, a predicted minimum dilution ratio is determined for the sampling conduit 12, at 73. DRtun-min is predicted in accordance with:
  • D R samp - cond - min W ex - max - W m W tun - sat - W m
  • where Wex-max and Wm are defined above, and Wtun-sat is an expected saturated water concentration to be associated with the sampling conduit 12 during the test procedure. Wsamp-cond-sat is determined in a manner similar to Wfill-sat, above, and is based on Tsamp-cond and Psamp-cond, an expected average temperature and pressure of the diluted exhaust sample in the sampling conduit 12 during a given test procedure. In particular, in the example, Tsamp-cond is set above the dew point that corresponds to the water content in the diluted exhaust sample, and Psamp-cond is assumed to be equal to atmospheric pressure.
  • In one example, during the test, the actual temperature of bags is higher by roughly 4-5° C. than the Tbag used in the calculations, to give some safety factor. Pbag may vary between the calculations and actual test conditions to provide a safety factor. Likewise, DRfill-min and DRread-min can be provided with built-in safety factors.
  • Once these minimum dilution ratios are predicted at steps 68, 70 and 72, the controller 58 selects an exhaust minimum dilution ratio, DRCVS-MIN, that is greater than or equal to a maximum of the predicted minimum dilution ratios, DRfill-min, DRbag-min, DRread-min, and DRsamp-cond-min·DRCVS-MIN is selected, at 74, as follows:

  • DRCVS-MIN≧max(DRfill-min, DRread-min, DRbag-min, DRsamp-cond-min)
  • In one example test procedure, exhaust 16 is diluted with the make-up gas 14 at a ratio equal to DRCVS-MIN. It is possible in some examples to dilute the exhaust at a ratio above the maximum of the predicted ratios for an added safety factor. However, as mentioned above, more accurate test results are possible with a lower dilution ratio. In one example, DRCVS-MIN is selected such that the make-up gas 14 is mixed with the exhaust 16 at a ratio within a range of 1:1 and 10:1.
  • The ratios DRfill-min, DRbag-min, DRread-min, DRsamp-cond-min, and DRCVS-MIN are absolute minimums, such that the minimum dilution ratio should not drop below DRCVS-MIN at any point during the test procedure. In another example, the overall average dilution ratio over the course of a test would not drop below DRCVS-MIN. In yet another example, the ratios are running averages, such that a running average of the dilution should not drop below DRCVS-MIN.
  • In another example, the controller 58 dilutes the exhaust 18 at a ratio DRCVS-MIN determined based on at least one test parameter, which can include parameters from an engine or vehicle performance model 78 and parameters 80 of the system 10, as illustrated in FIG. 4. In this example, the engine performance model 78 is a known model associated with the particular type of engine involved in the test procedure. The at least one test parameter can further include coefficients from a dynamometer, such as settings for resistive load, which may relate to peak exhaust expected during a test cycle.
  • Regardless of how DRCVS-MIN is selected, average and maximum exhaust flow rate from the engine or vehicle over the course of the test procedure Qex-ave and Qex-max, can be estimated by given values, or, for example, can be predicted based on an estimated engine horsepower throughout the test procedure. Then the minimum QCVS-min used throughout the test procedure can be provided as follows:

  • Q CVS-min≧max(Q ex-max·DRfill-min , Q ex-ave·DRread-min , Q ex-max·DRbag-min , Q ex-max·DRsamp-cond-min)
  • In one example, the at least one test parameter includes such parameters as resistive load (e.g., dyno coefficients), engine RPM, fuel type, fuel composition, engine or vehicle intake air properties and composition, and combustion efficiency. Certain exhaust sampling system parameters would also be relevant in determining a minimum dilution ratio, as generally mentioned above, and would impact the engine performance model 78. These parameters 80 include Tfill and Pfill, Tread and Pread, Tbag and Pbag, Tsamp-cond and Psamp-cond and the composition properties of the make-up gas 14 (e.g., portions attributable to N2, O2, etc). For these parameters, a known engine performance model is determinable, and the controller can select a flow rate QCVS for a required minimum dilution ratio DRCVS-MIN.
  • Alternatively, the minimum dilution ratio selected for the test of FIG. 4 could be determined based on the method of FIG. 3. Regardless of how DRCVS is selected, an emissions test procedure begins as illustrated at 76 in FIG. 4. As mentioned, the test procedure could dilute exhaust either at a minimum ratio selected in step 74, or at a minimum ratio determined based on at least one of the test parameters. In either case, once DRCVS-MIN is selected, the controller can suggest an optimized flow rate QCVS.
  • During the test, at 82, the controller 58 will monitor the actual performance of the test parameters relative to the model to determine whether the difference between the two indicates a possible condensation in the exhaust sampling system 10, at 84. If such an indication is present such that the tests may be compromised by potential condensation, the test procedure is ended at 86.
  • A graphical representation of a scenario indicating a possible compromise in the test procedure is shown in FIG. 5. In the illustrated example, an engine 18 or system 10 parameters exceeds a value predicted by the model for an amount of time, as indicated by the shaded-in area between the actual value of the parameter and the value predicted by the model.
  • In one example, during the test procedure, the controller 58 monitors RPM of the engine 18 relative to a model relating engine RPM to minimum dilution ratio. If the engine RPM exceeds the value associated with the model such that the minimum dilution ratio DRCVS-MIN is not sufficient to avoid condensation, as represented in the shaded area of FIG. 5, the controller 58 ends the test. In another example, when ambient air is used as the make-up gas 14, the controller 58 monitors the relative humidity of the ambient air. An unexpected peak in the relative humidity can indicate a compromised test.
  • Another feature of this disclosure is represented in the flowchart of FIG. 6. During a test procedure, which begins at 88, an integral of the saturated water concentration within the sample bags, Wbag-sat-int, is calculated at 90. That is, Wbag-sat is monitored as a function of time during the test procedure, and the integral of Wbag-sat from time zero to “t” is used to determine whether there is concentration in bags at time “t.” The integral is calculated at set intervals, for example (e.g., t is 1 second, 2 seconds, 3 seconds, etc). From this integral, Wbag-sat-int, the controller 58 determines, at 92, whether a possible condensation in the sample bags 48 is indicated, by comparing Wbag-sat-int with a model, for example. If a possible compromise in the test is identified, the test is ended, at 94.
  • FIG. 7 represents an example where a possible compromise occurs during the test procedure. In this example, Wbag-sat-int exceeds an average Wbag-sat expected over the test procedure, as illustrated in the shaded area. Thus, the bags may be over-saturated and condensation may be present.
  • This disclosure can be used to avoid condensation in more than just the sample bags of an exhaust system. As noted, there are several reasons to avoid condensation in more than just the sample bags, including more accurate testing, and compliance with new regulations.
  • This disclosure can be used to interrupt a compromised test procedure by monitoring for condensation during the test, rather than determining, after a completed test, that condensation had occurred. Interrupting a compromised test leads to time and cost savings relative to the alternative.
  • Although the different examples have the specific components shown in the illustrations, embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
  • One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.

Claims (20)

What is claimed is:
1. A method of predicting whether condensation occurs during a test procedure comprising:
providing an exhaust sampling system including at least one sample bag;
diluting exhaust from an engine with a make-up gas;
filling the at least one sample bag with a sample of the diluted exhaust; and
determining, during a test procedure, whether condensation occurs in the at least one sample bag based on an integral of water concentration in the at least one sample bag.
2. The method of claim 1, wherein the integral of the water concentration in the at least one sample bag is continually calculated, by a controller, during the test procedure.
3. The method of claim 1, further comprising continuously calculating the integral of the water concentration in the at least one sample bag during the test procedure.
4. The method of claim 1, further comprising monitoring the water concentration as a function of time during the test procedure.
5. The method of claim 4, further comprising determining the integral of the water concentration in the at least one sample bag from a first time at the start of the test procedure to a second time during the test procedure.
6. The method of claim 5, further comprising determining whether there is condensation in the at least one sample bag at the second time based on the integral of the water concentration in the at least one sample bag from the first time to the second time.
7. The method of claim 1, further comprising calculating the integral of the water concentration in the at least one sample bag at set intervals during the test procedure.
8. The method of claim 1, further comprising determining whether condensation is present in the at least one sample bag based on a comparison of the integral of water concentration in the at least one sample bag and a model.
9. The method of claim 1, further comprising determining that condensation in the at least one sample bag is possible when the integral of water concentration in the at least one sample bag is greater than an average water concentration expected during the test procedure.
10. The method of claim 1, further comprising diluting exhaust from the engine with the make-up gas in at least one of a sampling conduit and a mixer disposed downstream from the sampling conduit and upstream from the at least one sample bag.
11. A method comprising:
filling at least one sample bag with a sample of exhaust from an engine during a test procedure;
monitoring a water concentration in the at least one sample bag over a period of the test procedure; and
determining a likelihood that condensation is present in the at least one sample bag based on the water concentration in the at least one sample bag over the period.
12. The method of claim 11, wherein the period is at least one second.
13. The method of claim 11, wherein the period is from a first time at a start of the test procedure to a second time during the test procedure.
14. The method of claim 11, further comprising:
determining an integral of the water concentration in the at least one sample bag over the period; and
determining the likelihood that condensation is present in the at least one sample bag based on the integral of the water concentration in the at least one sample bag over the period.
15. The method of claim 11, further comprising:
diluting exhaust from the engine with a make-up gas; and
filling the at least one sample bag with a sample of the diluted exhaust during the test procedure.
16. An exhaust sampling system, comprising:
at least one sample bag;
a sampling conduit configured to receive exhaust gas from an engine;
a fill circuit configured to direct a sample of exhaust gas from the sampling conduit to the at least one sample bag during a test procedure; and
a controller that:
monitors a water concentration in the at least one sample bag over a period of the test procedure; and
determines a likelihood that condensation is present in the at least one sample bag based on the water concentration in the at least one sample bag over the period.
17. The exhaust sampling system of claim 16, wherein the period is at least one second.
18. The exhaust sampling system of claim 16, wherein the period is from a first time at a start of the test procedure to a second time during the test procedure.
19. The exhaust sampling system of claim 16, wherein the controller:
determines an integral of the water concentration in the at least one sample bag over the period; and
determines the likelihood that condensation is present in the at least one sample bag based on the integral of the water concentration in the at least one sample bag over the period.
20. The exhaust sampling system of claim 16, further comprising at least one of:
a pump disposed at an outlet of the sampling conduit; and
a mini-diluter in fluid communication with the fill circuit at a location downstream from the sampling conduit and upstream from the at least one sample bag, wherein the controller:
controls at least one of the pump and the mini-diluter to dilute exhaust from the engine with a make-up gas; and
controls the fill circuit to fill the at least one sample bag with a sample of the diluted exhaust during the test procedure.
US15/080,623 2012-05-23 2016-03-25 Exhaust Sampling System And Method For Water Vapor Management Abandoned US20160209300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/080,623 US20160209300A1 (en) 2012-05-23 2016-03-25 Exhaust Sampling System And Method For Water Vapor Management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/478,170 US9297726B2 (en) 2012-05-23 2012-05-23 Exhaust sampling system and method for water vapor management
US15/080,623 US20160209300A1 (en) 2012-05-23 2016-03-25 Exhaust Sampling System And Method For Water Vapor Management

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/478,170 Continuation US9297726B2 (en) 2012-05-23 2012-05-23 Exhaust sampling system and method for water vapor management

Publications (1)

Publication Number Publication Date
US20160209300A1 true US20160209300A1 (en) 2016-07-21

Family

ID=48444259

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/478,170 Expired - Fee Related US9297726B2 (en) 2012-05-23 2012-05-23 Exhaust sampling system and method for water vapor management
US15/080,623 Abandoned US20160209300A1 (en) 2012-05-23 2016-03-25 Exhaust Sampling System And Method For Water Vapor Management

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/478,170 Expired - Fee Related US9297726B2 (en) 2012-05-23 2012-05-23 Exhaust sampling system and method for water vapor management

Country Status (5)

Country Link
US (2) US9297726B2 (en)
EP (1) EP2667175B1 (en)
JP (1) JP6288947B2 (en)
KR (1) KR20130131241A (en)
CN (1) CN103424286B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683563A1 (en) * 2019-01-18 2020-07-22 Shanghai Volvo Car Research and Development Co., Ltd. Dilution tunnel internal aqueous condensation monitoring system and method for vehicle emission tests

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380077B (en) 2012-05-29 2018-03-27 Avl测试系统公司 Intelligent bag for exhaust gas sampling system is filled
JP6093607B2 (en) * 2013-03-11 2017-03-08 株式会社堀場製作所 Exhaust gas analyzer
DE102015100567B3 (en) * 2015-01-15 2015-12-10 Avl Emission Test Systems Gmbh Exhaust gas sampling system and method of operating such an exhaust sampling system
CN105865858A (en) * 2016-04-20 2016-08-17 天津大学 Sampling system for ash of exhausted gas of engine and application method of sampling system
CN106338401A (en) * 2016-09-09 2017-01-18 西安航天动力试验技术研究所 Airspace-engine test-bed long-range exhaust system
JP6918927B2 (en) * 2016-09-14 2021-08-11 ジェイソン・ポール・ジョンソン Passive aerosol diluter mechanism
CN106596200B (en) * 2016-12-29 2020-07-07 中国环境科学研究院 Airborne sampling head capable of preventing water from flowing backwards and application thereof
CN106525518B (en) * 2016-12-29 2020-07-07 中国环境科学研究院 Airborne sampling system capable of automatically changing pressure of sampling system and application thereof
CN106769251B (en) * 2016-12-29 2020-07-31 中国环境科学研究院 Automatic sampling system and application thereof
CN106596201B (en) * 2016-12-29 2020-07-07 中国环境科学研究院 Airborne sampling head capable of preventing water vapor from condensing and application thereof
CN109283292A (en) * 2018-09-17 2019-01-29 河南工程学院 A kind of laneway type goaf gas observation device and observation method
CN109738607B (en) * 2019-03-01 2021-05-28 应急管理部天津消防研究所 Experimental method of container pipeline gas explosion experimental device with concentration gradient
CN109738608B (en) * 2019-03-01 2021-05-28 应急管理部天津消防研究所 Container pipeline gas explosion experimental device with concentration gradient and using method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632210A (en) * 1969-06-19 1972-01-04 Environment One Corp Variable rate continuous flow condensation nuclei meter having adjustable expansion period and improved gain
US20070089870A1 (en) * 2005-10-26 2007-04-26 Dobos James G Two part condenser for varying the rate of condensing and related method

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499717A (en) * 1968-11-26 1970-03-10 Inst Gas Technology Method and apparatus for avoiding exhaust plumes
AT287357B (en) 1969-03-20 1971-01-25 H C Hans Dipl Ing Dr Dr List Device for taking exhaust gas samples
US3603155A (en) 1970-02-02 1971-09-07 Chromalloy American Corp Method and apparatus for mass emission sampling of motor vehicle exhaust gases
US3699814A (en) 1972-03-09 1972-10-24 Philco Ford Corp Gas sampler
US3793887A (en) 1972-12-05 1974-02-26 Ford Motor Co Isokinetic sampling probe
SE418332B (en) 1974-03-05 1981-05-18 Collin Consult Ab Lars PROCEDURE AND DEVICE FOR ANALYSIS OF THE EMISSION CONTENT IN THE EXHAUST ENGINE EXHAUST
FR2485195A1 (en) 1980-06-19 1981-12-24 Utac APPARATUS FOR COLLECTING GAS MIXTURE AND SAMPLE SAMPLING FOR THE ANALYSIS OF MIXTURE COMPONENTS
JPH03202609A (en) 1989-12-28 1991-09-04 Nissan Motor Co Ltd Engine exhaust emission control device
DE4017473A1 (en) 1990-05-14 1991-11-21 Siemens Ag Gas-borne particle measuring system - esp. for vehicle exhaust gas emission tests
US5058440A (en) 1990-09-04 1991-10-22 Caterpillar Inc. Gas sampling device and dilution tunnel used therewith
US5184501A (en) 1991-05-03 1993-02-09 Horiba Instruments Incorporated Exhaust sampler and control means
JPH0735660A (en) 1993-07-16 1995-02-07 G L Sci Kk Apparatus for collecting exhaust gas of automobile or the like
DE4404947A1 (en) 1994-02-17 1995-08-24 Pierburg Gmbh Measuring system for internal combustion engine exhaust particles (soot)
US5456124A (en) 1994-03-28 1995-10-10 Ford Motor Company Probe for exhaust gas sampling
JP3201506B2 (en) 1995-02-21 2001-08-20 株式会社堀場製作所 Gas sampling equipment
US5650565A (en) 1995-07-05 1997-07-22 Enviromental Sciences Research And Development Partnership Mini-dilution apparatus and method for exhaust emission testing
DE19631922C2 (en) 1995-08-07 2003-12-04 Mitsubishi Motors Corp exhaust gas measuring
JP3285313B2 (en) 1996-09-27 2002-05-27 日野自動車株式会社 Exhaust gas measurement device
US5846831A (en) * 1997-04-01 1998-12-08 Horiba Instuments, Inc. Methods and systems for controlling flow of a diluted sample and determining pollutants based on water content in engine exhaust emissions
JPH10318810A (en) 1997-05-16 1998-12-04 Toyota Motor Corp Instrument for measuring flow rate of exhaust gas
JP3502532B2 (en) 1997-10-04 2004-03-02 株式会社堀場製作所 Constant volume sampling device and gas analysis method using the same
US6016711A (en) 1997-11-21 2000-01-25 Southwest Research Institute Mobile vehicle emissions sampling system
US6470732B1 (en) 1998-01-05 2002-10-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus
JP3374077B2 (en) 1998-05-12 2003-02-04 株式会社堀場製作所 Exhaust gas sampling device
US6293161B1 (en) 1998-05-12 2001-09-25 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas sampling apparatus
JPH11344425A (en) 1998-06-02 1999-12-14 Horiba Ltd Device for analyzing exhaust gas of internal combustion engine using gas trace method
FR2780507B1 (en) 1998-06-26 2000-09-01 Inst Francais Du Petrole SYSTEM FOR SAMPLING SPECIFIC POLLUTANTS CONTAINED IN DILUTED EXHAUST GASES FROM THERMAL MACHINES
JP2000221123A (en) * 1999-02-01 2000-08-11 Honda Motor Co Ltd Exhaust gas sampling method
DE69937620T2 (en) * 1998-07-09 2008-10-23 Honda Giken Kogyo K.K. Method for taking an exhaust gas sample using a variable venturi flowmeter
ATE268917T1 (en) 1998-07-17 2004-06-15 Horiba Ltd DEVICE FOR CONTROLLING THE FLOW OF A GAS
US7059205B1 (en) 1998-09-09 2006-06-13 Engine, Fuel, And Emissions Engineering, Incorporated System for extracting samples from a stream
US6062092A (en) 1998-09-09 2000-05-16 Engine, Fuel, And Emissions Engineering, Incorporated System for extracting samples from a stream
JP2998756B1 (en) 1998-12-14 2000-01-11 トヨタ自動車株式会社 Exhaust gas sampling device
DE19857955A1 (en) 1998-12-16 2000-06-21 Pierburg Ag Internal combustion engine exhaust gas constant volume sampling system uses a balanced pressure collection system and flexible walled sample containers, and is especially suitable for very low concentration emissions
JP2000292321A (en) 1999-04-02 2000-10-20 Ono Sokki Co Ltd Extracting and diluting device and sample collecting device
JP4246867B2 (en) 1999-12-06 2009-04-02 株式会社堀場製作所 Exhaust gas analysis system
US6497156B2 (en) 1999-12-28 2002-12-24 Horiba Instruments, Inc. Method for collecting exhaust gases
JP2001004504A (en) 2000-01-01 2001-01-12 Horiba Ltd Gas sampling device
US7071002B1 (en) * 2000-05-09 2006-07-04 Gordon-Darby Systems, Inc. Method and system for vehicle emission testing
AU2001267167A1 (en) 2000-05-25 2001-12-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of The Environment Emission sampling apparatus and method
US6279408B1 (en) 2000-09-28 2001-08-28 Horiba Instruments, Inc. Sample bag
JP4031986B2 (en) * 2000-11-22 2008-01-09 アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for supplying conditioned combustion gas to an internal combustion engine, apparatus for carrying out the method, method for measuring the amount of harmful substances in the exhaust gas of an internal combustion engine, and apparatus for carrying out the method
US7220289B2 (en) 2001-03-22 2007-05-22 Oryxe Energy International, Inc. Method and composition for using organic, plant-derived, oil-extracted materials in diesel fuel additives for reduced emissions
US20040200265A1 (en) * 2001-10-22 2004-10-14 Gideon Eden Vehicle particulate analysis method and apparatus
US6823268B2 (en) 2002-02-04 2004-11-23 Avl North America Inc. Engine exhaust emissions measurement correction
US6962090B2 (en) 2002-02-28 2005-11-08 Avl North America Inc. Heated stainless steel emissions canister
US6796165B2 (en) 2002-11-18 2004-09-28 Southwest Research Institute Apparatus and method for real-time measurement of mass, size and number of solid particles of particulate matter in engine exhaust
EP1477801B1 (en) * 2003-05-14 2005-09-14 Pierburg Instruments GmbH Method and device for exhaust gas measurement of internal combustion engines
JP4436089B2 (en) 2003-08-06 2010-03-24 株式会社堀場製作所 Gas sampling bag
FR2862386B1 (en) 2003-11-14 2006-03-03 Inst Francais Du Petrole METHOD AND DEVICE FOR REMOVING GASEOUS COMPOUNDS FROM A GAS CURRENT, IN PARTICULAR IN EXHAUST GASES DILUTED FROM AN INTERNAL COMBUSTION ENGINE
US7328629B2 (en) * 2004-04-22 2008-02-12 Gas Technology Institute Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling
JP4311329B2 (en) 2004-10-05 2009-08-12 トヨタ自動車株式会社 Evaporative fuel measuring device
US7281440B2 (en) 2005-04-29 2007-10-16 Caterpillar Inc. Particulate sampling system having flow check device
US7559262B2 (en) 2006-09-15 2009-07-14 Avl North America Inc. CVS system sample water vapor management
US8181543B2 (en) * 2006-09-15 2012-05-22 Avl North America Inc. CVS system sample water vapor management
CN201548535U (en) * 2009-11-10 2010-08-11 武汉钢铁(集团)公司 Smoke analyzing system applying built-out dilution extracting method
US8511141B2 (en) * 2009-12-23 2013-08-20 Brand-Gaus, Llc Stack gas measurement device and method therefor
US8272248B2 (en) 2010-04-09 2012-09-25 Guenther Mark T Emissions test system and method
CN201795990U (en) * 2010-09-13 2011-04-13 武汉市天虹仪表有限责任公司 Air channel system for measuring smoke intensity of tail gas of diesel vehicle
JP2012137374A (en) 2010-12-27 2012-07-19 Horiba Ltd Exhaust gas analysis system and exhaust gas analysis method
CN104380077B (en) 2012-05-29 2018-03-27 Avl测试系统公司 Intelligent bag for exhaust gas sampling system is filled

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632210A (en) * 1969-06-19 1972-01-04 Environment One Corp Variable rate continuous flow condensation nuclei meter having adjustable expansion period and improved gain
US20070089870A1 (en) * 2005-10-26 2007-04-26 Dobos James G Two part condenser for varying the rate of condensing and related method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The MAC Humidity/Moisture Handbook;" 2011; Machine Applications Corporation; pages 1-20. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683563A1 (en) * 2019-01-18 2020-07-22 Shanghai Volvo Car Research and Development Co., Ltd. Dilution tunnel internal aqueous condensation monitoring system and method for vehicle emission tests

Also Published As

Publication number Publication date
EP2667175A2 (en) 2013-11-27
KR20130131241A (en) 2013-12-03
US20130317757A1 (en) 2013-11-28
JP6288947B2 (en) 2018-03-07
EP2667175A3 (en) 2016-08-24
EP2667175B1 (en) 2022-04-20
CN103424286B (en) 2017-09-22
US9297726B2 (en) 2016-03-29
CN103424286A (en) 2013-12-04
JP2013246169A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
US9297726B2 (en) Exhaust sampling system and method for water vapor management
US8181543B2 (en) CVS system sample water vapor management
JP5269794B2 (en) Particulate matter measuring device
US7559262B2 (en) CVS system sample water vapor management
KR101767271B1 (en) Exhaust gas analyzing system
US8272248B2 (en) Emissions test system and method
CN108226387B (en) Vehicle-mounted exhaust gas analysis system, inspection method thereof, storage medium, and inspection system
JP2004340970A (en) Method and device for measuring exhaust emission of internal combustion engine
JP6646520B2 (en) Exhaust gas analysis system, exhaust gas analysis system program, and exhaust gas analysis method
US9194274B2 (en) Particulate measurement system
JP2010276473A (en) Exhaust gas measurement system
JP6093607B2 (en) Exhaust gas analyzer
US9863850B2 (en) Method and system for measuring the mass flow by means of dilution of an exhaust gas from internal combustion
JP2013032959A (en) Gas analyzer
JP4956178B2 (en) Particulate matter measuring method and apparatus
US8887554B2 (en) Raw proportional toxic sampler for sampling exhaust
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
EP3683563B1 (en) Dilution tunnel internal aqueous condensation monitoring system and method for vehicle emission tests
JP2005127735A (en) Partially diluting tunnel device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVL TEST SYSTEMS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SILVIS, WILLIAM MARTIN;WILLIAMSON, JAMES PATRICK;MAREK, GERALD;AND OTHERS;REEL/FRAME:038098/0314

Effective date: 20160322

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION