US20160177378A1 - Method for simultaneous detection of bacteria and fungi in a biological preparation by pcr, primers as well as bacteria and fungi detection kit - Google Patents

Method for simultaneous detection of bacteria and fungi in a biological preparation by pcr, primers as well as bacteria and fungi detection kit Download PDF

Info

Publication number
US20160177378A1
US20160177378A1 US14/892,458 US201414892458A US2016177378A1 US 20160177378 A1 US20160177378 A1 US 20160177378A1 US 201414892458 A US201414892458 A US 201414892458A US 2016177378 A1 US2016177378 A1 US 2016177378A1
Authority
US
United States
Prior art keywords
fungi
bacteria
detection
oligonucleotide sequence
primers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/892,458
Other versions
US10415096B2 (en
Inventor
Tomasz Gosiewski
Monika Brzychczy-Wloch
Agata Pietrzyk
Malgorzta Bulanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniwersytet Jagiellonski
Original Assignee
Uniwersytet Jagiellonski
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uniwersytet Jagiellonski filed Critical Uniwersytet Jagiellonski
Assigned to UNIWERSYTET JAGIELLONSKI reassignment UNIWERSYTET JAGIELLONSKI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRZYCHCZY-WLOCH, MONIKA, BULANDA, Malgorzta, GOSIEWSKI, Tomasz, PIETRZYK, Agata
Publication of US20160177378A1 publication Critical patent/US20160177378A1/en
Application granted granted Critical
Publication of US10415096B2 publication Critical patent/US10415096B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the exemplary techniques disclosed herein related to a method for simultaneous detection of bacteria and fungi in a sample of biological material by PCR, primers for detection of bacteria and fungi, and a kit for detecting these microorganisms in a sample of biological material.
  • An exemplary embodiment provides a way to accomplish simultaneous DNA detection of Gram-negative bacteria, Gram-positive bacteria, yeast fungi and mold fungi in a sample of biological material, such as patient's saliva or blood.
  • sepsis The growing mortality due to sepsis is the result of increasing resistance to antibiotics, the use of invasive treatment methods, and an aging population. Sepsis is the biggest threat to immunocompromised people, especially when they are hospitalized over long periods of time, primarily in intensive care units. Particularly, sepsis affects patients with neoplastic diseases, immunocompromised patients, patients with burns, the elderly, and children.
  • Identification of the etiological agent allows the employment of effective targeted antibiotherapy.
  • the material subjected to diagnostic testing is blood taken from a patient manifesting clinical symptoms of sepsis. Symptoms may include tachycardia, bradycardia, increased or decreased body temperature, drop in blood pressure, etc.
  • the current diagnostic standard are blood cultures performed on special media, ideally in automated culture systems (e.g., BACTEC—BectonDickinson).
  • BACTEC BectonDickinson
  • the advantages of such methods are their simplicity and relatively low costs of testing. Their weakness is that they are time-consuming, taking up to 5 days (to receive results), and have low sensitivity, which causes only 15-20% of the culture to obtain microbial growth. Consequently, in a great majority of cases, the doctor may only apply empirical antibiotherapy due to the lack of achieving growth of microorganisms responsible for the infection. The situation is further exacerbated by the fact of subjecting patients to antibiotherapy before any blood samples are drawn for culture—patients are often treated with antibiotics prior to manifestation of symptoms of sepsis.
  • microbial nucleic acids which are etiological agents of infection.
  • DNA, as well as RNA, of each organism contains sequences unique to it, constituting a specific “fingerprint”.
  • molecular biological methods such as PCR or hybridization, for determining the presence of microorganisms in the blood. Sensitivity of molecular methods considerably exceeds the sensitivity of the culture method. Additionally, the prior use of antibiotic therapy does not influence the test result due to the fact that there is no need for growth of bacteria or fungi in culturing medium, but only detection of their DNA or RNA sequences.
  • An exemplary embodiment is a method for the detection of bacteria and fungi in a sample of biological material, wherein the DNA contained in the sample of biological material is subjected to amplification in multiplex real-time PCR.
  • the amplification reaction is carried out in two stages with the use of primers specific for bacteria and primers specific for fungi in the first stage, and then the product of the first amplification is used as template in the second stage, i.e., amplification using primers and probes differentiating fungi into a group of mold fungi and yeast-like fungi and bacteria into Gram-positive and Gram-negative bacteria.
  • Primers specific for the 16S rRNA sequence of bacteria are used as primers specific for bacteria, preferably oligonucleotides with the following sequences:
  • Primers specific for the 18S rRNA sequence of fungi are used as primers specific for fungi, preferably oligonucleotides with the following sequences:
  • An exemplary embodiment refers to during the second stage of amplification, detection and identification of bacteria are performed with the use of primers with sequences:
  • Oligonucleotide Sequence 5′-3′ Candid_probe FAM- Asperg_probe TexasRed-
  • An exemplary embodiment provides for detection of bacteria and fungi carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
  • Oligonucleotide Sequence 5′-3′ NEST_FUN_F AATTGACGGAAGGGCACC NEST_FUN_R TTCCTCGTTGAAGAGCAA for use as primers in a PCR reaction to detect fungi.
  • primers specific for 16S rRNA of bacteria are:
  • Oligonucleotide Sequence 5′-3′ Candid_probe FAM- Asperg_probe TexasRed-
  • An exemplary embodiment is based on the multiplex real-time PCR reaction, with a possible simultaneous amplification of at least two DNA sequences. Moreover, the exemplary method realizes the nested-multiplex PCR method, i.e., a two-stage amplification reaction, which significantly increases the sensitivity of detection.
  • An exemplary embodiment provides reliable detection of all species of fungi and bacteria (with differentiation into Gram-positive bacteria, Gram-negative bacteria, yeast fungi and mold fungi) in DNA samples isolated from the blood of patients manifesting symptoms of sepsis. It is possible to employ this exemplary method for detecting only bacteria or only fungi but, at the same time, its advantage is the possibility to use it for simultaneous detection of both fungi and bacteria, resulting in lower costs of testing.
  • detection of PCR products of the first amplification is not required, as the final result of the diagnostic test is visible in the second amplification. If the first amplification, or amplification I, fails to obtain multiplication of DNA by using the designed primers, then during the second stage of amplification, amplification II, another negative result will also be obtained (no microorganisms in the sample of biological material). This does not preclude carrying out product detection upon finishing amplification I with the use of DNA gel electrophoresis, optionally employing spectrophotometric methods.
  • detection and identification of PCR products of the second stage of amplification take place already during the process of multiplication of DNA.
  • the used probes, GP_probe, GN_probe, Candid_probe, Asperg_probe specifically bind to the resulting products of amplification of DNA sequences typical of Gram-positive and Gram-negative bacteria, yeast fungi, and mold fungi and emit fluorescent light that is recorded by the detector during the amplification.
  • Each of the four probes is equipped with a fluorescent marker of a strictly defined, typical for a given probe, light emission wavelength, which allows differentiation of the four particular groups of microorganisms.
  • An exemplary embodiment encompasses new specific universal primers for bacteria and new universal primers for fungi, the application of which for amplification of genetic material from samples by PCR allows incorporating the entire panel of bacterial and fungal microorganisms (with differentiation into Gram-negative bacteria, Gram-positive bacteria, yeast fungi, and mold fungi), but without typing of specific species. Such information is very useful for the physician in selecting the appropriate treatment before obtaining the result of identification specifying the species of bacteria or fungi from the microbiology lab.
  • An exemplary embodiment provides for the method utilizing multiplex real-time PCR techniques allows simultaneous detection of bacteria and fungi in real time without the need to wait for the results of DNA electrophoresis, as is the case with standard PCR. Additionally, the use of the nested system allows the increase of sensitivity of the detection method by two orders of magnitude in comparison to one-stage PCR. The application of sequencing of the PCR product is also not necessary in order to identify a particular species of microorganism.
  • An exemplary embodiment of the method allows rapid detection of all species of fungi (differentiating between yeast fungi and mold fungi) and all species of bacteria (differentiating between Gram-negative and Gram-positive bacteria), without identifying specific species.
  • the detection method enables one to quickly confirm the presence of infection with high sensitivity, overcoming the drawbacks of commercially available methods that require more time and a full spectrum of experiments aimed at a limited number of most common species.
  • typing a specific microbial species is also possible upon sequencing of the PCR product obtained in amplification I or II, however, it is not required for initial diagnosis.
  • FIG. 1 presents sequences of fungal 18S rRNA with marking of the developed primers, NEST_FUN_F, NEST_FUN_R (gray box), and primers known from the literature, FUN_F, FUN_R (transparent box); the sequences are on one DNA strand, hence the final sequence marked in the gray box is reversed and complementary to the synthesized R equivalent;
  • FIG. 2 presents sequences of bacterial 16S rRNA with marking of the developed primers, NEST_BAC_F, NEST_BAC_R R (gray box), and primers known from the literature, GN/GP_F, GN/GP_R (transparent box); the sequences are on one DNA strand, hence the final sequence marked in the gray box is reversed and complementary to the synthesized R equivalent;
  • FIG. 3 shows a comparison of the proportion of positive results obtained from the method of the invention, of 102 blood samples originating from patients with clinical symptoms of sepsis: systemically and broken down into four groups of microorganisms; while
  • FIG. 4 presents a comparison of the proportion of positive results in the study of 102 blood samples originating from patients with clinical symptoms of sepsis using the culture method in the BACTEC system and in accordance with the method of the invention.
  • the methodology of microbial DNA amplification was carried out on a DNA template isolated from human blood.
  • Nested amplification was carried out in two separate amplification stages marked with Roman numerals—I and II.
  • stage I newly developed primers were used specific for Procaryota (bacteria) and Eucaryota (fungi), specific for sequences of 16S rRNA (bacteria) and 18S rRNA (fungi) units.
  • stage II the product of the first (I) PCR amplification was utilized as a template in the second (II) amplification, where primers and probes known from the literature found their application in differentiating fungi into a group of mold fungi and yeast-like fungi and bacteria into Gram-positive and Gram-negative bacteria.
  • Application of nested PCR allows to increase the sensitivity of the method.
  • TaqMan primers and probes known in the literature were applied, and at the same time, multiplex system was developed in the project, which enabled them to be combined in a single reaction.
  • Primers for amplification I were designed and tested in silico with the use of BLAST/NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) base, as shown in FIG. 1 .
  • isolation of DNA from blood samples was carried out (originating from healthy volunteers), which were artificially infected with model microorganisms: Gram-negative bacteria— Escherichia coli ATCC 25922 (American Type Culture Collection); Gram-positive bacteria— Staphylococcus aureus ATCC 33497; yeast-like fungi— Candida albicans ATCC 10231, mold fungi— Aspergillus fumigatus ATCC 14110, so as to create a gradient of their number in blood.
  • Table 1 also comprises comparative data for amplification excluding the nested system, which uses the designed primers, however, the sensitivity of the method is then decreased.
  • Target oligonucleotide Sequence 5′-3′ sequences NEST_BAC_F* GGCGGACGGGTGAGTAA 16S rRNA NEST_BAC_R* CGCATTTCACCGCTA 16S rRNA NEST_FUN_F* AATTGACGGAAGGGCACC 18S rRNA NEST_FUN_R* TTCCTCGTTGAAGAGCAA 18S rRNA FUN_F TTGGTGGAGTGATTTGTCTGCT 18S rRNA FUN_R TCTAAGGGCATCACAGACCTG 18S rRNA Candid_probe FAM-TTAACCTACTAAATAGTGCTGCTAGC- 18S rRNA BHQ1 Asperg_probe TexasRed-TCGGCCCTTAAATAGCCCGGTC 18S rRNA CGC-Eclipse GN/GP_F GACTCCTACGGGAGGC 16S rRNA GN/GP_R GCGGCTGCTGGCAC 16S
  • the first amplification of the collected DNA was performed in the final volume of 25 ⁇ l in the presence of the newly designed primers: NEST_BAC_F, NEST_BAC_R, NEST_FUN_F, NEST_FUN_R with sequences listed in Table 1, using Perpetual Taq Polymerase, carrying out 30 cycles with temperature and time parameters presented in Table 4.
  • 3 ⁇ l of the mixture from the first stage of amplification containing amplified DNA of the detected microorganism was subjected to the second amplification in the final volume of 10 ⁇ l of the mixture described in Table 4, performing 40 thermal cycles.
  • Detection and identification of the PCR products of the second amplification was carried out in the course of the process of DNA multiplication.
  • the obtained results were compared with the available results from cultures of the same 102 blood samples acquired from the traditional method of diagnosis for sepsis, based on a culture using BACTEC (BectonDickinson) automated system. In all samples, the results generated by culture were confirmed, and additionally, positive results were obtained for the presence of bacteria and fungi in a portion of negative samples in the culture. This validates high sensitivity of the new method. Detailed results are presented in FIGS. 3 and 4 .
  • the detection was performed analogously to the method employed in Example 1 using NEST_BAC_F and NEST_BAC_R primers for amplification of bacterial DNA, in the conditions described in Table 5.
  • the detection was performed analogously to the method employed in Example 1 using NEST_FUN_F and NEST_FUN_R primers in amplification I for the detection of fungi, in the conditions described in Table 6, followed by amplification II in the mixture described in the table, carrying out thermal cycles as defined there.

Abstract

An exemplary embodiment describes a method for detection of bacteria and fungi in a sample of biological material, wherein the DNA contained in the sample of biological material is subjected to amplification in multiplex real-time PCR, with the use of primers specific for bacteria in the first stage and primers specific for fungi, and in the second stage, the resulting DNA is amplified using primers and probes differentiating fungi into a group of mold fungi and yeast fungi and bacteria into Gram-positive and Gram-negative bacteria. Another exemplary embodiment refers to oligonucleotide primers for the detection of bacteria and fungi by PCR and a kit for simultaneous detection of bacteria and fungi.

Description

    TECHNICAL FIELD
  • The exemplary techniques disclosed herein related to a method for simultaneous detection of bacteria and fungi in a sample of biological material by PCR, primers for detection of bacteria and fungi, and a kit for detecting these microorganisms in a sample of biological material. An exemplary embodiment provides a way to accomplish simultaneous DNA detection of Gram-negative bacteria, Gram-positive bacteria, yeast fungi and mold fungi in a sample of biological material, such as patient's saliva or blood.
  • BACKGROUND
  • Infections caused by bacteria and fungi have always been a major medical problem. The most dangerous of these are systemic infections, i.e., sepsis. Despite progress in their treatment achieved primarily through the use of antibiotherapy and the introduction into medical practice of technologies for prolonged life support of patients in critical condition, we are still failing to keep many patients alive. With the development of medical knowledge and the introduction of newer and newer therapeutic procedures into treatment, the incidence of sepsis is increasing. Lever et al. report that, each year in the U.S., 750,000 people come down with sepsis and it is the cause of more than 215,000 deaths. In the European Union, 146 thousand patients die annually due to severe sepsis. In the UK alone mortality from it ranges from 30 to 50/100,000 a year, which puts sepsis in the forefront of the ten leading causes of death. In developed countries, sepsis develops in 2-4/1,000 live born neonates and it is the main cause of their death. In Poland, there is a lack of accurate epidemiological data, but Zielinski et al. provide information that 967 deaths occurred in 2005 due to sepsis, including 43 deaths of children.
  • The growing mortality due to sepsis is the result of increasing resistance to antibiotics, the use of invasive treatment methods, and an aging population. Sepsis is the biggest threat to immunocompromised people, especially when they are hospitalized over long periods of time, primarily in intensive care units. Particularly, sepsis affects patients with neoplastic diseases, immunocompromised patients, patients with burns, the elderly, and children.
  • The most important and most difficult problem in the treatment of bloodstream infections, determining the effectiveness of treatment and, consequently, the costs and duration of hospitalization, is efficacious diagnosis of factors causing the systemic inflammatory response in the course of sepsis. Identification of the etiological agent (microorganism: fungus or bacterium) allows the employment of effective targeted antibiotherapy. The material subjected to diagnostic testing is blood taken from a patient manifesting clinical symptoms of sepsis. Symptoms may include tachycardia, bradycardia, increased or decreased body temperature, drop in blood pressure, etc.
  • Blood poses the biggest challenges among all biological materials as regards a material for microbiological testing because the microorganisms responsible for infection can be found in blood in very small quantities, or there is only their periodic release into blood.
  • Nevertheless, the current diagnostic standard are blood cultures performed on special media, ideally in automated culture systems (e.g., BACTEC—BectonDickinson). The advantages of such methods are their simplicity and relatively low costs of testing. Their weakness is that they are time-consuming, taking up to 5 days (to receive results), and have low sensitivity, which causes only 15-20% of the culture to obtain microbial growth. Consequently, in a great majority of cases, the doctor may only apply empirical antibiotherapy due to the lack of achieving growth of microorganisms responsible for the infection. The situation is further exacerbated by the fact of subjecting patients to antibiotherapy before any blood samples are drawn for culture—patients are often treated with antibiotics prior to manifestation of symptoms of sepsis. Blood cultures are very problematic in such a case, due to the fact that the blood now contains antibiotics inhibiting the growth of microorganisms. In order to increase the chance of detecting microbiological agents in blood, attempts are being made to base their detection on serological methods such as the detection of lipopolysaccharide (LPS) of Gram-negative bacteria or fungal galactomannan.
  • Another molecular target that allows efficient, accurate and quick diagnosis of bloodstream infections are microbial nucleic acids which are etiological agents of infection. Both DNA, as well as RNA, of each organism contains sequences unique to it, constituting a specific “fingerprint”. With the knowledge of these sequences, it is possible to apply molecular biological methods, such as PCR or hybridization, for determining the presence of microorganisms in the blood. Sensitivity of molecular methods considerably exceeds the sensitivity of the culture method. Additionally, the prior use of antibiotic therapy does not influence the test result due to the fact that there is no need for growth of bacteria or fungi in culturing medium, but only detection of their DNA or RNA sequences.
  • SUMMARY
  • An exemplary embodiment is a method for the detection of bacteria and fungi in a sample of biological material, wherein the DNA contained in the sample of biological material is subjected to amplification in multiplex real-time PCR. The amplification reaction is carried out in two stages with the use of primers specific for bacteria and primers specific for fungi in the first stage, and then the product of the first amplification is used as template in the second stage, i.e., amplification using primers and probes differentiating fungi into a group of mold fungi and yeast-like fungi and bacteria into Gram-positive and Gram-negative bacteria.
  • DETAILED DESCRIPTION
  • Primers specific for the 16S rRNA sequence of bacteria are used as primers specific for bacteria, preferably oligonucleotides with the following sequences:
  • oligonucleotide Sequence 5′-3′
    NEST_BAC_F GGCGGACGGGTGAGTAA
    NEST_BAC_R CGCATTTCACCGCTA
  • Primers specific for the 18S rRNA sequence of fungi are used as primers specific for fungi, preferably oligonucleotides with the following sequences:
  • oligonucleotide Sequence 5′-3′
    NEST_FUN_F AATTGACGGAAGGGCACC
    NEST_FUN_R TTCCTCGTTGAAGAGCAA
  • An exemplary embodiment refers to during the second stage of amplification, detection and identification of bacteria are performed with the use of primers with sequences:
  • Oligonucleotide Sequence 5′-3′
    GN/GP_F GACTCCTACGGGAGGC
    GN/GP_R GCGGCTGCTGGCAC

    and probes with sequences:
  • Oligonucleotide Sequence 5′-3′
    GP_Probe Hex-CTGAyssAGCAACGCCGCG-TAMRA
    GN_Probe Cy5-CCTGAysCAGCmATGCCGCG-BHQ-2

    while for amplification to detect and identify fungi, primers are used with sequences:
  • Oligonucleotide Sequence 5′-3′
    FUN_F TTGGTGGAGTGATTTGTCTGCT
    FUN_R TCTAAGGGCATCACAGACCTG

    and probes with sequences:
  • Oligonucleotide Sequence 5′-3′
    Candid_probe FAM-
    Asperg_probe TexasRed-
  • An exemplary embodiment provides for detection of bacteria and fungi carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
  • An exemplary embodiment also includes oligonucleotides with sequences:
  • Oligonucleotide Sequence 5′-3′
    NEST_BAC_F GGCGGACGGGTGAGTAA
    NEST_BAC_R CGCATTTCACCGCTA

    for use as primers in a PCR reaction to detect bacteria.
  • An exemplary embodiment additionally includes oligonucleotides with sequences:
  • Oligonucleotide Sequence 5′-3′
    NEST_FUN_F AATTGACGGAAGGGCACC
    NEST_FUN_R TTCCTCGTTGAAGAGCAA

    for use as primers in a PCR reaction to detect fungi.
  • An exemplary embodiment also provides a kit for detection of bacteria and fungi in a sample of biological material by nested-multiplex real-time PCR containing the following oligonucleotides:
  • for the detection of bacteria, primers specific for 16S rRNA of bacteria:
  • Oligonucleotide Sequence 5′-3′
    NEST_BAC_F GGCGGACGGGTGAGTAA
    NEST_BAC_R CGCATTTCACCGCTA

    and
  • Oligonucleotide Sequence 5′-3′
    GN/GP_F GACTCCTACGGGAGGC
    GN/GP_R GCGGCTGCTGGCAC

    and probes specific for 16S rRNA of bacteria with sequences:
  • Oligonucleotide Sequence 5′-3′
    GP_Probe Hex-CTGAyssAGCAACGCCGCG-TAMRA
    GN_Probe Cy5-CCTGAysCAGCmATGCCGCG-BHQ-2

    as well as for the detection of fungi, primers specific for 18S rRNA of fungi:
  • Oligonucleotide Sequence 5′-3′
    NEST_FUN_F AATTGACGGAAGGGCACC
    NEST_FUN_R TTCCTCGTTGAAGAGCAA

    and:
  • Oligonucleotide Sequence 5′-3′
    FUN_F TTGGTGGAGTGATTTGTCTGCT
    FUN_R TCTAAGGGCATCACAGACCTG

    and probes specific for 18S rRNA of fungi with sequences:
  • Oligonucleotide Sequence 5′-3′
    Candid_probe FAM-
    Asperg_probe TexasRed-
  • An exemplary embodiment is based on the multiplex real-time PCR reaction, with a possible simultaneous amplification of at least two DNA sequences. Moreover, the exemplary method realizes the nested-multiplex PCR method, i.e., a two-stage amplification reaction, which significantly increases the sensitivity of detection.
  • An exemplary embodiment provides reliable detection of all species of fungi and bacteria (with differentiation into Gram-positive bacteria, Gram-negative bacteria, yeast fungi and mold fungi) in DNA samples isolated from the blood of patients manifesting symptoms of sepsis. It is possible to employ this exemplary method for detecting only bacteria or only fungi but, at the same time, its advantage is the possibility to use it for simultaneous detection of both fungi and bacteria, resulting in lower costs of testing.
  • In an exemplary method, detection of PCR products of the first amplification is not required, as the final result of the diagnostic test is visible in the second amplification. If the first amplification, or amplification I, fails to obtain multiplication of DNA by using the designed primers, then during the second stage of amplification, amplification II, another negative result will also be obtained (no microorganisms in the sample of biological material). This does not preclude carrying out product detection upon finishing amplification I with the use of DNA gel electrophoresis, optionally employing spectrophotometric methods.
  • In the exemplary embodiment, detection and identification of PCR products of the second stage of amplification take place already during the process of multiplication of DNA. The used probes, GP_probe, GN_probe, Candid_probe, Asperg_probe, specifically bind to the resulting products of amplification of DNA sequences typical of Gram-positive and Gram-negative bacteria, yeast fungi, and mold fungi and emit fluorescent light that is recorded by the detector during the amplification. Each of the four probes is equipped with a fluorescent marker of a strictly defined, typical for a given probe, light emission wavelength, which allows differentiation of the four particular groups of microorganisms.
  • An exemplary embodiment encompasses new specific universal primers for bacteria and new universal primers for fungi, the application of which for amplification of genetic material from samples by PCR allows incorporating the entire panel of bacterial and fungal microorganisms (with differentiation into Gram-negative bacteria, Gram-positive bacteria, yeast fungi, and mold fungi), but without typing of specific species. Such information is very useful for the physician in selecting the appropriate treatment before obtaining the result of identification specifying the species of bacteria or fungi from the microbiology lab.
  • An exemplary embodiment provides for the method utilizing multiplex real-time PCR techniques allows simultaneous detection of bacteria and fungi in real time without the need to wait for the results of DNA electrophoresis, as is the case with standard PCR. Additionally, the use of the nested system allows the increase of sensitivity of the detection method by two orders of magnitude in comparison to one-stage PCR. The application of sequencing of the PCR product is also not necessary in order to identify a particular species of microorganism.
  • An exemplary embodiment of the method allows rapid detection of all species of fungi (differentiating between yeast fungi and mold fungi) and all species of bacteria (differentiating between Gram-negative and Gram-positive bacteria), without identifying specific species. The detection method enables one to quickly confirm the presence of infection with high sensitivity, overcoming the drawbacks of commercially available methods that require more time and a full spectrum of experiments aimed at a limited number of most common species.
  • In an exemplary embodiment of the method, typing a specific microbial species is also possible upon sequencing of the PCR product obtained in amplification I or II, however, it is not required for initial diagnosis.
  • DETAILED DISCUSSION OF THE DRAWINGS
  • FIG. 1 presents sequences of fungal 18S rRNA with marking of the developed primers, NEST_FUN_F, NEST_FUN_R (gray box), and primers known from the literature, FUN_F, FUN_R (transparent box); the sequences are on one DNA strand, hence the final sequence marked in the gray box is reversed and complementary to the synthesized R equivalent;
  • FIG. 2 presents sequences of bacterial 16S rRNA with marking of the developed primers, NEST_BAC_F, NEST_BAC_R R (gray box), and primers known from the literature, GN/GP_F, GN/GP_R (transparent box); the sequences are on one DNA strand, hence the final sequence marked in the gray box is reversed and complementary to the synthesized R equivalent;
  • FIG. 3 shows a comparison of the proportion of positive results obtained from the method of the invention, of 102 blood samples originating from patients with clinical symptoms of sepsis: systemically and broken down into four groups of microorganisms; while
  • FIG. 4 presents a comparison of the proportion of positive results in the study of 102 blood samples originating from patients with clinical symptoms of sepsis using the culture method in the BACTEC system and in accordance with the method of the invention.
  • EXAMPLES Materials and Methods
  • The methodology of microbial DNA amplification was carried out on a DNA template isolated from human blood.
  • Nested amplification was carried out in two separate amplification stages marked with Roman numerals—I and II. In stage I, newly developed primers were used specific for Procaryota (bacteria) and Eucaryota (fungi), specific for sequences of 16S rRNA (bacteria) and 18S rRNA (fungi) units. Thereafter, the product of the first (I) PCR amplification was utilized as a template in the second (II) amplification, where primers and probes known from the literature found their application in differentiating fungi into a group of mold fungi and yeast-like fungi and bacteria into Gram-positive and Gram-negative bacteria. Application of nested PCR allows to increase the sensitivity of the method.
  • In an exemplary method, TaqMan primers and probes known in the literature were applied, and at the same time, multiplex system was developed in the project, which enabled them to be combined in a single reaction.
  • Primers for amplification I were designed and tested in silico with the use of BLAST/NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) base, as shown in FIG. 1. In order to determine the sensitivity of the method, isolation of DNA from blood samples was carried out (originating from healthy volunteers), which were artificially infected with model microorganisms: Gram-negative bacteria—Escherichia coli ATCC 25922 (American Type Culture Collection); Gram-positive bacteria—Staphylococcus aureus ATCC 33497; yeast-like fungi—Candida albicans ATCC 10231, mold fungi—Aspergillus fumigatus ATCC 14110, so as to create a gradient of their number in blood. The isolated DNA was used to perform the designed nested-multiplex PCR amplification. The results of the method sensitivity assay are given in Table 1. Table 1 also comprises comparative data for amplification excluding the nested system, which uses the designed primers, however, the sensitivity of the method is then decreased.
  • Results
  • TABLE 1
    The sensitivity of detection of bacteria and fungi in blood using
    the real-time PCR method in two variations: nested-multiplex
    PCR and multiplex PCR with the designed primers.
    Multiplex real-time PCR
    Groups of microorganisms/ [CFU/ml] method sensitivity
    species NESTED multiplex PCR Multiplex PCR
    Mold fungi (A. fumigatus) 4.0 × 101 3.25 × 103
    Yeast fungi (C. albicans) 2.0 × 101 9.5 × 102
    Gram (−) bacteria (E. coli) 6.5 × 101 5.2 × 103
    Gram (+) bacteria (S. aureus) 6.0 × 101 5.1 × 103
    Sequences of the applied oligonucleotides (probes and primers) are compiled in Table 2.
  • TABLE 2
    Sequences of primers and probes used in the study.
    Target
    oligonucleotide Sequence 5′-3′ sequences
    NEST_BAC_F* GGCGGACGGGTGAGTAA 16S rRNA
    NEST_BAC_R* CGCATTTCACCGCTA 16S rRNA
    NEST_FUN_F* AATTGACGGAAGGGCACC 18S rRNA
    NEST_FUN_R* TTCCTCGTTGAAGAGCAA 18S rRNA
    FUN_F TTGGTGGAGTGATTTGTCTGCT
    18S rRNA
    FUN_R TCTAAGGGCATCACAGACCTG
    18S rRNA
    Candid_probe FAM-TTAACCTACTAAATAGTGCTGCTAGC- 18S rRNA
    BHQ1
    Asperg_probe TexasRed-TCGGCCCTTAAATAGCCCGGTC 18S rRNA
    CGC-Eclipse
    GN/GP_F GACTCCTACGGGAGGC 16S rRNA
    GN/GP_R GCGGCTGCTGGCAC 16S rRNA
    GP_Probe Hex-CTGAyssAGCAACGCCGCG-TAMRA(Q) 16S rRNA
    GN_Probe Cy5-CCTGAysCAGCmATGCCGCG-BHQ-2 16S rRNA
    *New sequences of primers, designed for the purposes of an exemplary embodiment Composition of multiplex PCR reaction mixtures and nested-multiplex PCR are given in Table 3, where additionally the reagents used and amplification thermal profiles are provided.
  • TABLE 3
    Composition of reaction mixtures, the reagents involved and PCR thermal profiles.
    NESTED multiplex PCR
    amplification I amplification II Multiplex PCR
    [final volume 25 μl] [final volume 10 μl] [final volume 40 μl]
    1. Water 6.7 μl 1. Water 2.08 μl 1. Water 0.4 μl
    2. B buffer 2.5 μl 2. B buffer 1.0 μl 2. B buffer 5.0 μl
    3. NEST_BAC_F 0.125 μl 3. GN/GP_F 0.2 μl 3. GN/GP_F 1.0 μl
    4. NEST_BAC_R 0.125 μl 4. GN/GP_R 0.2 μl 4. GN/GP_R 1.0 μl
    5. NEST_FUN_F 0.125 μl 5. GP_probe 0.05 μl 5. GP_probe 0.25 μl
    6. NEST_FUN_R 0.125 μl 6. GN_probe 0.05 μl 6. GN_probe 0.25 μl
    7. dNTP's 2.5 μl 7. FUN_F 0.2 μl 7. FUN_F 1.0 μl
    8. MgCl2 2.5 μl 8. FUN_R 0.2 μl 8. FUN_R 1.0 μl
    9. Perpetual Taq 0.3 μl 9. Asperg_prob 0.05 μl 9. Asperg_prob 0.25 μl
    Polymerase 10. Candid_probe 0.05 μl 10. Candid_probe 0.25 μl
    10. DNA 10 μl 11. dNTP's 1.0 μl 11. dNTP's 5.0 μl
    12. MgCl2 1.8 μl 12. MgCl2 9.0 μl
    13. Perpetual Taq 0.12 μl 13. Perpetual Taq 0.6 μl
    Figure US20160177378A1-20160623-P00001
    Polymerase Polymerase
    14. DNA 3.0 μl 14. DNA 25.0 μl
    (product of
    amplification I)
    B 10x buffer (EURx)
    dNTP's 2 mM (EURx)
    MgCl2 mM (DNAGdansk)
    Perpetual Taq 2.5 U/μl polymerase (EURx)
    *NEST_BAC_F 10 μM (Genomed) - Nested primer for detection of bacteria
    *NEST_BAC_R 10 μM (Genomed) - Nested primer for detection of bacteria
    *NEST_FUN_F 10 μM (Genomed) - Nested primer for detection of fungi
    *NEST_FUN_R 10 μM (Genomed) - Nested primer for detection of fungi
    GN/GP_F 20 μM (Genomed) - Nested primer for detection of bacteria
    GN/GP_R 20 μM (Genomed) - Nested primer for detection of bacteria
    GP_probe 20 μM (Genomed) - probe for detection of Gram-negative bacteria
    GN_probe 20 μM (Genomed) - probe for detection of Gram-positive bacteria
    FUN_F 20 μM (Genomed) - primer for detection of fungi
    FUN_R 20 μM (Genomed) - primer for detection of fungi
    Asperg_prob 20 μM (Genomed) - probe for detection of mold fungi
    Candid_probe 20 μM (Genomed) - probe for detection of yeast fungi
    95° C. - 5 min 95° C. - 5 min 95° C. - 5 min
    95° C. - 20 sec {close oversize brace} 40 x {close oversize brace} 40 x
    {close oversize brace} 30 x 95° C. - 15 sec 95° C. - 15 sec
    46° C. - 20 sec 65° C. - 1 min 65° C. - 1 min
    72° C. - 30 sec
    *Sequences of the designed primers
  • Example 1 Nested-Multiplex Real-Time PCR for Simultaneous Detection of Bacteria and Fungi
  • A study was conducted using the developed nested-multiplex real-time PCR method on 102 DNA samples isolated from the blood of patients manifesting clinical symptoms of sepsis in order to detect Gram-positive bacteria, Gram-negative bacteria, yeast fungi, and mold fungi. The first amplification of the collected DNA was performed in the final volume of 25 μl in the presence of the newly designed primers: NEST_BAC_F, NEST_BAC_R, NEST_FUN_F, NEST_FUN_R with sequences listed in Table 1, using Perpetual Taq Polymerase, carrying out 30 cycles with temperature and time parameters presented in Table 4. Afterwards, 3 μl of the mixture from the first stage of amplification containing amplified DNA of the detected microorganism was subjected to the second amplification in the final volume of 10 μl of the mixture described in Table 4, performing 40 thermal cycles.
  • TABLE 4
    Composition of reaction mixtures, the reagents involved
    and PCR reaction thermal profiles
    NESTED multiplex PCR
    amplification I amplification II
    [final volume 25 μl] [final volume 10 μl]
    1. Water  6.7 μl 1. Water 2.08 μl  
    2. B buffer  2.5 μl 2. B buffer 1.0 μl
    3. NEST_BAC_F 0.125 μl 3. GN/GP_F 0.2 μl
    4. NEST_BAC_R 0.125 μl 4. GN/GP_R 0.2 μl
    5. NEST_FUN_F 0.125 μl 5. GP_probe 0.05 μl 
    6. NEST_FUN_R 0.125 μl 6. GN_probe 0.05 μl 
    7. dNTP's  2.5 μl 7. FUN_F 0.2 μl
    8. MgCl2  2.5 μl 8. FUN_R 0.2 μl
    9. Perpetual Taq  0.3 μl 9. Asperg_prob 0.05 μl 
    Polymerase 10. Candid_probe 0.05 μl 
    10. DNA   10 μl 11. dNTP's 1.0 μl
    12. MgCl2 1.8 μl
    13. Perpetual Taq 0.12 μl 
    Figure US20160177378A1-20160623-P00001
    Polymerase
    14. DNA (product of 3.0 μl
    amplification I)
    95° C. - 5 min 95° C. - 5 min
    95° C. - 20 sec 95° C. - 15 sec {close oversize brace} 40 x
    {close oversize brace} 30 x 65° C. - 1 min
    46° C. - 20 sec
    72° C. - 30 sec
  • Detection and identification of the PCR products of the second amplification was carried out in the course of the process of DNA multiplication. The probes used: GP_probe, GN_probe, Candid_probe, Asperg_probe, upon attaching specifically to the resulting products of amplification of DNA sequences typical of Gram-positive bacteria, Gram-negative bacteria, yeast fungi and mold fungi emitted fluorescent light recorded by the detector in the course of amplification, allowing identification of the amplified product.
  • The obtained results were compared with the available results from cultures of the same 102 blood samples acquired from the traditional method of diagnosis for sepsis, based on a culture using BACTEC (BectonDickinson) automated system. In all samples, the results generated by culture were confirmed, and additionally, positive results were obtained for the presence of bacteria and fungi in a portion of negative samples in the culture. This validates high sensitivity of the new method. Detailed results are presented in FIGS. 3 and 4.
  • Example 2 Nested-Multiplex Real-Time PCR for the Detection of Gram-Positive and Gram-Negative Bacteria
  • The detection was performed analogously to the method employed in Example 1 using NEST_BAC_F and NEST_BAC_R primers for amplification of bacterial DNA, in the conditions described in Table 5.
  • TABLE 5
    The composition of reaction mixtures, the reagents involved
    and PCR thermal profiles for the detection of
    Gram-positive and Gram-negative bacteria.
    NESTED multiplex PCR
    amplification I amplification II
    [final volume 25 μl] [final volume 10 μl]
    1) Water 6.95 μl  1) Water 2.58 μl
    2) B buffer 2.5 μl 2) B buffer 1.0 ul
    3) NEST_BAC_F 0.125 μl  3) GN/GP_F 0.2 μl
    4) NEST_BAC_R 0.125 μl  4) GN/GP_R 0.2 μl
    5) dNTP's 2.5 μl 5) GP_probe 0.05 μl
    6) MgCl2 2.5 μl 6) GN_probe 0.05 μl
    7) Polymerase 0.3 μl 7) dNTP's 1.0 μl
    8) Perpetual Taq 8) MgCl2 1.8 μl
    9) DNA  10 μl 9) Polymerase 0.12 μl
    10) Perpetual Taq
    11) DNA 3.0 μl
    Figure US20160177378A1-20160623-P00002
    (product of
    amplification I)
    95° C. - 5 min 95° C. - 5 min
    95° C. - 20 sec 95° C. - 15 sec {close oversize brace} 40 x
    {close oversize brace} 30 x 65° C. - 1 min
    46° C. - 20 sec
    72° C. - 30 sec
  • Example 3 Nested-Multiplex Real-Time PCR for the Detection of Yeast Fungi and Mold Fungi
  • The detection was performed analogously to the method employed in Example 1 using NEST_FUN_F and NEST_FUN_R primers in amplification I for the detection of fungi, in the conditions described in Table 6, followed by amplification II in the mixture described in the table, carrying out thermal cycles as defined there.
  • TABLE 6
    The composition of reaction mixtures, the reagents involved and
    PCR thermal profiles for the detection of yeast fungi and mold fungi
    NESTED multiplex PCR
    amplification I amplification II
    [final volume 25 μl] [final volume 10 μl]
    1) Water 6.95 μl  1) Water 2.58 μl 
    2) B buffer 2.5 μl 2) B buffer 1.0 μl
    3) NEST_FUN_F 0.125 μl  3) FUN_F 0.2 μl
    4) NEST_FUN_R 0.125 μl  4) FUN_R 0.2 μl
    5) dNTP's 2.5 μl 5) Asperg_prob 0.05 μl 
    6) MgCl2 2.5 μl 6) Candid_probe 0.05 μl 
    7) Polymerase 0.3 μl 7) dNTP's 1.0 μl
    8) Perpetual Taq 8) MgCl2 1.8 μl
    9) DNA  10 μl 9) Polymerase 0.12 μl 
    10) Perpetual Taq
    DNA 3.0 μl
    Figure US20160177378A1-20160623-P00003
    (product of
    amplification I)
    95° C. - 5 min 95° C. - 5 min
    95° C. - 20 sec 95° C. - 15 sec {close oversize brace} 40 x
    {close oversize brace} 30 x 65° C. - 1 min
    46° C. - 20 sec
    72° C. - 30 sec
  • Of course these methods are exemplary and alterations thereto are possible by those having skill in the relevant technology.
  • Thus the example embodiments and arrangements achieve improved capabilities, eliminate difficulties encountered in the use of prior methods and systems, and attain the desirable results described herein.
  • In the foregoing description, certain terms have been used for brevity, clarity and understanding. However, no unnecessary limitations are to be implied therefrom because such terms are used for descriptive purposes and are intended to be broadly construed.
  • Moreover the descriptions and illustrations herein are by way of examples and the inventive scope is not limited to the features shown and described.
  • Further, it should be understood that features and/or relationships associated with one embodiment can be combined with features and/or relationships from other embodiments. That is, various features and/or relationships from various embodiments can be combined in further embodiments. The inventive scope of the disclosure is not limited to only the embodiments shown or described herein.
  • Having described the features, discoveries and principles of the exemplary embodiments, the manner in which they are utilized and carried out, and the advantages and useful results attained, the new and useful arrangements, combinations, methodologies, structures, devices, elements, combinations, operations, processes and relationships are set forth in the appended claims.

Claims (20)

1. A method comprising:
detecting bacteria and fungi in a sample of biological material,
wherein the biological material contains DNA,
wherein the DNA in the biological material is subjected to amplification in multiplex real-time PCR,
amplifying the DNA in the biological material in a multiplex real-time PCR by carrying out a reaction in two stages,
wherein the first stage comprises using primers specific for bacteria and primers specific for fungi in the first stage,
wherein the second stage comprises, using the first stage product as a template to use primers and probes to differentiate fungi into a group of mold fungi and yeast fungi and bacteria into Gram-positive and Gram-negative bacteria.
2. The method of claim 1, wherein the primers specific for bacteria used are primers specific for the sequence of bacterial 16S rRNA.
3. The method according to claim 2, wherein the primers specific for the sequence of bacterial 16S rRNA are used with the following sequences:
oligonucleotide Sequence 5′-3′ NEST_BAC_F GGCGGACGGGTGAGTAA NEST_BAC_R CGCATTTCACCGCTA
4. The method of claim 1, wherein the primers specific for fungi used are for the sequence of fungal 18S rRNA.
5. The method of claim 3, wherein the specific for the sequence of fungal 18S rRNA are used with the following sequences:
oligonucleotide Sequence 5′-3′ NEST_FUN_F AATTGACGGAAGGGCACC NEST_FUN_R TTCCTCGTTGAAGAGCAA
6. The method of claim 4, wherein the specific for the sequence of fungal 18S rRNA are used with the following sequences:
oligonucleotide Sequence 5′-3′ NEST_FUN_F AATTGACGGAAGGGCACC NEST_FUN_R TTCCTCGTTGAAGAGCAA
7. The method according to claim 1, wherein the second stage further comprises using primers with the following sequences are used for detection and identification of bacteria:
oligonucleotide Sequence 5′-3′ GN/GP_F GACTCCTACGGGAGGC GN/GP_R GCGGCTGCTGGCAC
and probes with sequences:
oligonucleotide Sequence 5′-3′ GP_Probe Hex-CTGAyssAGCAACGCCGCG-TAMRA GN_Probe Cy5-CCTGAysCAGCmATGCCGCG-BHQ-2
8. The method according to claim 2, wherein the second stage further comprises using primers with the following sequences are used for detection and identification of bacteria:
oligonucleotide Sequence 5′-3′ GN/GP_F GACTCCTACGGGAGGC GN/GP_R GCGGCTGCTGGCAC
and probes with sequences:
oligonucleotide Sequence 5′-3′ GP_Probe Hex-CTGAyssAGCAACGCCGCG-TAMRA GN_Probe Cy5-CCTGAysCAGCmATGCCGCG-BHQ-2
9. The method according to claim 4, wherein the second stage further comprises using primers with the following sequences are used for detection and identification of bacteria:
oligonucleotide Sequence 5′-3′ GN/GP_F GACTCCTACGGGAGGC GN/GP_R GCGGCTGCTGGCAC
and probes with sequences:
oligonucleotide Sequence 5′ - 3′ GP_Probe Hex- CTGAyssAGCAACGCCGCG -TAMRA GN_Probe Cy5-CCTGAysCAGCmATGCCGCG- BHQ-2
10. The method according to claim 5, wherein the second stage further comprises using primers with the following sequences are used for detection and identification of bacteria:
oligonucleotide Sequence 5′ - 3′ GN/GP_F GACTCCTACGGGAGGC GN/GP_R GCGGCTGCTGGCAC
and probes with sequences:
oligonucleotide Sequence 5′ - 3′ GP_Probe Hex- CTGAyssAGCAACGCCGCG -TAMRA GN_Probe Cy5-CCTGAysCAGCmATGCCGCG- BHQ-2
11. The method according to claim 1, wherein in the second stage further comprises using primers with the following sequences for detection and identification of fungi:
oligonucleotide Sequence 5′ - 3′ FUN_F TTGGTGGAGTGATTTGTCTGCT FUN_R TCTAAGGGCATCACAGACCTG
and using probes with sequences:
oligonucleotide Sequence 5′ - 3′ Candid_probe FAM-TTAACCTACTAAATAGTGCTGCTAGC-BHQ1 Asperg_probe TexasRed-TCGGCCCTTAAATAGCCCGGTCCGC- Eclipse
12. The method according to claim 10, wherein in the second stage further comprises using primers with the following sequences for detection and identification of fungi:
oligonucleotide Sequence 5′ - 3′ FUN_F TTGGTGGAGTGATTTGTCTGCT FUN_R TCTAAGGGCATCACAGACCTG
and using probes with sequences:
oligonucleotide Sequence 5′ - 3′ Candid_probe FAM-TTAACCTACTAAATAGTGCTGCTAGC-BHQ1 Asperg_probe TexasRed-TCGGCCCTTAAATAGCCCGGTCCGC- Eclipse
13. The method according to claim 1, wherein the detection of bacteria and fungi is carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
14. The method according to claim 3, wherein the detection of bacteria and fungi is carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
15. The method according to claim 5, wherein the detection of bacteria and fungi is carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
16. The method according to claim 11, wherein the detection of bacteria and fungi is carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
17. The method according to claim 12, wherein the detection of bacteria and fungi is carried out in a sample of biological material isolated from a patient, preferably from the blood of a patient with symptoms of sepsis.
18. Oligonucleotides with the sequence:
oligonucleotide Sequence 5′ - 3′ NEST_BAC_F GGCGGACGGGTGAGTAA NEST_BAC_R CGCATTTCACCGCTA
for use as PCR primers for the detection of bacteria.
19. Oligonucleotides with the sequence:
oligonucleotide Sequence 5′ - 3′ NEST_FUN_F AATTGACGGAAGGGCACC NEST_FUN_R TTCCTCGTTGAAGAGCAA
for use as PCR primers for the detection of fungi.
20. A kit for detection of bacteria and/or fungi in a sample of biological material comprising the following oligonucleotides:
for detection of bacteria, primers specific for bacterial 16S rRNA:
oligonucleotide Sequence 5′ - 3′ NEST_BAC_F GGCGGACGGGTGAGTAA NEST_BAC_R CGCATTTCACCGCTA
and
oligonucleotide Sequence 5′ - 3′ GN/GP_F GACTCCTACGGGAGGC GN/GP_R GCGGCTGCTGGCAC
and probes specific for bacterial 16S rRNA with sequences:
oligonucleotide Sequence 5′ - 3′ GP_Probe Hex- CTGAyssAGCAACGCCGCG -TAMRA GN_Probe Cy5-CCTGAysCAGCmATGCCGCG- BHQ-2
and/or
for the detection of fungi primers specific for fungal 18S rRNA:
oligonucleotide Sequence 5′ - 3′ NEST_FUN_F AATTGACGGAAGGGCACC NEST_FUN_R TTCCTCGTTGAAGAGCAA
and:
oligonucleotide Sequence 5′ - 3′ FUN_F TTGGTGGAGTGATTTGTCTGCT FUN_R TCTAAGGGCATCACAGACCTG
and probes specific for fungal 18S rRNA with sequences:
oligonucleotide Sequence 5′ - 3′ Candid_probe FAM-TTAACCTACTAAATAGTGCTGCTAGC-BHQ1 Asperg_probe TexasRed-TCGGCCCTTAAATAGCCCGGTCCGC- Eclipse
US14/892,458 2013-05-21 2014-05-21 Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR, primers as well as bacteria and fungi detection kit Active 2036-02-03 US10415096B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PLP.403996 2013-05-21
PL403996A PL228161B1 (en) 2013-05-21 2013-05-21 Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR primers and a set for the detection of bacteria and fungi
PL403996 2013-05-21
PCT/PL2014/050029 WO2014189398A1 (en) 2013-05-21 2014-05-21 Method for simultaneous detection of bacteria and fungi in a biological preparation by pcr, primers as well as bacteria and fungi detection kit

Publications (2)

Publication Number Publication Date
US20160177378A1 true US20160177378A1 (en) 2016-06-23
US10415096B2 US10415096B2 (en) 2019-09-17

Family

ID=51134194

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/892,458 Active 2036-02-03 US10415096B2 (en) 2013-05-21 2014-05-21 Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR, primers as well as bacteria and fungi detection kit

Country Status (5)

Country Link
US (1) US10415096B2 (en)
EP (1) EP2999798B1 (en)
ES (1) ES2618834T3 (en)
PL (2) PL228161B1 (en)
WO (1) WO2014189398A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL235777B1 (en) 2015-07-10 2020-10-19 Univ Jagiellonski Starters, method for microbiological analysis of biomaterial, application of the NGS sequencing method in microbiological diagnostics and the diagnostic set
US20190062809A1 (en) 2017-08-24 2019-02-28 Clinical Micro Sensors, Inc. (dba GenMark Diagnostics, Inc.) Electrochemical detection of bacterial and/or fungal infections
WO2019040769A1 (en) * 2017-08-24 2019-02-28 Clinical Micro Sensors, Inc. (dba GenMark Diagnostics, Inc.) Electrochemical detection of bacterial and/or fungal infections

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US750000A (en) 1904-01-19 Eugene p
US7718354B2 (en) * 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
GB0601302D0 (en) 2006-01-23 2006-03-01 Semikhodskii Andrei Diagnostic methods and apparatus
GB0621864D0 (en) * 2006-11-02 2006-12-13 Univ Manchester Assay for fungal infection
FR2909099B1 (en) 2006-11-24 2012-10-19 Univ Aix Marseille Ii METHOD FOR DIAGNOSING AND MONITORING BACTERIAL VAGINOSIS BY MOLECULAR QUANTIFICATION
EP1978111B1 (en) 2007-04-02 2013-03-27 Gen-Probe Incorporated Compositions, kits and related methods for the detection and/or monitoring of Pseudomonas aeruginosa
CZ301112B6 (en) 2007-04-23 2009-11-11 Výzkumný ústav veterinárního lékarství, v.v.i. Detection and quantification method of Mycobacterium Avium subspecies Paratuberculosis (MAP) by employing polymerase chain reaction in real time
MX340406B (en) * 2009-01-15 2016-07-07 Nat Univ Corp Univ Of Toyama Enzymatic preparation containing thermostable dna polymerase, process for producing same, and method for detecting analyte organism.
US10100368B2 (en) 2010-03-19 2018-10-16 The Translational Genomics Research Institute Methods, kits, and compositions for detection of MRSA

Also Published As

Publication number Publication date
EP2999798B1 (en) 2016-12-28
PL403996A1 (en) 2014-11-24
ES2618834T3 (en) 2017-06-22
WO2014189398A1 (en) 2014-11-27
PL228161B1 (en) 2018-02-28
EP2999798A1 (en) 2016-03-30
US10415096B2 (en) 2019-09-17
PL2999798T3 (en) 2017-07-31

Similar Documents

Publication Publication Date Title
Jamal et al. Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods
CN102482712B (en) Method and kit for detecting antibiotic-resistant bacteria
US20100255474A1 (en) Method for Detecting Bacteria and Fungi
Gosiewski et al. Comparison of methods for isolation of bacterial and fungal DNA from human blood
Wang et al. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strips for detecting Candida albicans
CN111440886A (en) Primer group, kit and detection method for rapidly detecting carbapenemase gene
Redkar et al. DNA fingerprinting of Candida rugosa via repetitive sequence-based PCR
US20180230520A1 (en) Primers for the detection and typing of carbapenemase-producing bacterial strains and detection method and kit
US10415096B2 (en) Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR, primers as well as bacteria and fungi detection kit
WO2012117431A1 (en) Method and reagent kit for the identification of biological fluids in a sample
Shivachandra et al. Identification of avian strains of Pasteurella multocida in India by conventional and PCR assays
CN109735645B (en) Real-time fluorescent PCR (polymerase chain reaction) primer, probe and kit for detecting Sporothrix globosum
WO2016203740A1 (en) Method for examining microorganism, kit for examining microorganism, microarray for examining microorganism, carrier for detecting mold, method for detecting mold and kit for detecting mold
CN114134218B (en) Fluorescent detection method based on CRISPR-Cas12a
CN108070638B (en) Recombinase polymerase isothermal amplification method for detecting orientia tsutsutsugamushi, special primer and probe thereof and application
RU2684314C2 (en) Method of identification of mycobacteria of tuberculosis of the beijing genotype b0 cluster in real time format
Ting et al. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology
KR102274011B1 (en) Primer set for high sensitive multiplex loop-mediated isothermal amplification reaction for detection and identification of Mycobacterium tuberculosis and Nontuberculous mycobacteria
CN114807416A (en) RPA-LFS detection primer probe combination of candida tropicalis and application thereof
Wang et al. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2
CN113755616B (en) Multiplex fluorescence RPA detection method and kit for drug-resistant staphylococcus aureus MecA and ErmA genes
CN111712583A (en) Method for diagnosing tsutsutsugamushi disease using multi-copy gene
RU2738358C1 (en) Set of oligonucleotide primers and fluorescent-labelled probes and method for detecting dna of agents of glanders and melioidosis by pcr method with product detection in real time
Fadhil et al. Multiple–loci number analyses of variable-number tandem repeat of molecular detection of Staphylococcus aureus isolates
Sleptsov et al. Genotype catalogization of brucella strains

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIWERSYTET JAGIELLONSKI, POLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOSIEWSKI, TOMASZ;BRZYCHCZY-WLOCH, MONIKA;PIETRZYK, AGATA;AND OTHERS;REEL/FRAME:037091/0864

Effective date: 20151112

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4