US20160172422A1 - Thin film transistor array substrate and method fabricating the same - Google Patents

Thin film transistor array substrate and method fabricating the same Download PDF

Info

Publication number
US20160172422A1
US20160172422A1 US14/875,023 US201514875023A US2016172422A1 US 20160172422 A1 US20160172422 A1 US 20160172422A1 US 201514875023 A US201514875023 A US 201514875023A US 2016172422 A1 US2016172422 A1 US 2016172422A1
Authority
US
United States
Prior art keywords
emission
sub
region
emission region
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/875,023
Other versions
US9748319B2 (en
Inventor
Kang Hyun KIM
Ki Soub Yang
Seung Ryul CHOI
Kyoung Jin PARK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Assigned to LG DISPLAY CO., LTD reassignment LG DISPLAY CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, SEUNG RYUL, KIM, KANG HYUN, PARK, KYOUNG JIN, YANG, KISOUB
Publication of US20160172422A1 publication Critical patent/US20160172422A1/en
Priority to US15/632,881 priority Critical patent/US9923036B2/en
Application granted granted Critical
Publication of US9748319B2 publication Critical patent/US9748319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H01L27/3246
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H01L27/3211
    • H01L27/322
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L51/0003
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • H01L2227/323
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to a display device and a method of manufacturing the same. More specifically, the present invention relates to a thin film transistor array substrate and a method of manufacturing the same.
  • LCD liquid crystal display
  • PDP plasma display panels
  • OLED organic light emitting diode
  • OLED display devices are being widely used these days, because they have features such as lightweight, slimness, low power consumption, and so on.
  • OLED display devices are classified into a RGB-mode and a white mode.
  • the RGB mode OLED display device includes red, green and blue organic emission layers which are disposed red, green and blue sub-pixels and emit red, green and blue lights, respectively.
  • the white mode (W-mode) OLED display device includes an organic emission layer and red, green and blue color filters.
  • the organic emission layer is disposed in red, green and blue sub-pixels and emits white light.
  • the red, green and blue color filters are formed in the red, green and blue sub-pixels.
  • OLED display devices As the definition of OLED display devices becomes higher, not only does the size of the pixels become smaller, but also the line width of a bank pattern becomes narrower. As such, when the organic emission layer of an OLED display device is formed from a liquefied organic emission material, organic emission materials formed in different, neighboring sub-pixels can be mixed with one another due to the narrowed line width of the bank pattern used as a barrier.
  • a color blending between the red, green and blue sub-pixels of an OLED display may occur within a viewing angle, where a viewer perceives different colors depending on the angles at which the viewer views the OLED display. Due to this color blending, the picture quality may deteriorate.
  • the present invention is directed to provide a display device and method of manufacturing the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An advantage of the present invention is directed to provide an organic light emitting diode (OLED) display device with improved color representation.
  • a display device may, for example, include a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region; a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.
  • a method of manufacturing an organic light emitting diode (OLED) display device having a thin film transistor array substrate may, for example, include forming a first sub-pixel including a first emission region and a first non-emission region on a substrate; forming a second sub-pixel adjacent to the first sub-pixel, the second sub-pixel including a second emission region and a second non-emission region; forming a first bank pattern with a hydrophilic inorganic insulation material in the first and second non-emission regions; forming a second bank pattern with a hydrophobic organic insulation material on an upper surface of the first bank pattern; and forming an organic emission layer on the first and second emission regions.
  • FIG. 1 is a planar view illustrating an OLED display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line I-I′ in FIG. 1 ;
  • FIGS. 3A and 3B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present invention
  • FIG. 4 is a planar view illustrating an OLED display device according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line II-II′ in FIG. 4 ;
  • FIGS. 6A and 6B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention
  • FIG. 7 is a cross-sectional view illustrating a first sub-pixel of an OLED display device according to the third embodiment of the present invention.
  • FIGS. 8A and 8B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention.
  • FIG. 1 is a planar view illustrating an OLED display device according to the first embodiment of the present invention.
  • an OLED display device includes a plurality of sub-pixels which are arranged on a substrate 100 .
  • the OLED display device includes a plurality of first sub-pixels 10 and a plurality of second sub-pixels 20 that are arranged in a horizontal direction of the substrate 100 .
  • the first sub-pixels 10 and the second sub-pixels 20 are arranged alternately with each other in the horizontal direction of the substrate 100 . Also, each of the first and second sub-pixels 10 and 20 can become one of red, green and blue sub-pixels. For example, one second sub-pixel 20 emitting a green light is disposed by one side edge of the first sub-pixel 10 emitting a red light, and another first sub-pixel 10 emitting a blue light is disposed by one side edge of the second sub-pixel 20 , which emits a green light, opposite to the first sub-pixel emitting the red light. In this manner, the OLED display device including the plurality of sub-pixels can be implemented.
  • the first sub-pixel 10 includes an emission region (hereinafter, “first emission region”) 201 and a non-emission region (hereinafter, “first non-emission region”) 200 .
  • the second sub-pixel 20 includes an emission region (hereinafter, “second emission region”) 211 and a non-emission region (hereinafter, “second non-emission region”) 210 .
  • the first emission region 201 and the second emission region 211 are disposed between the first non-emission region 200 and the second non-emission region 210 .
  • the first emission region 201 is disposed by one side edge of the second emission region 211
  • another first emission region 201 is disposed by the other side edge of the second emission region 211
  • one first non-emission region 200 is interposed between two different first non-emission regions 200
  • one second non-emission region 210 is interposed between two different second non-emission regions 210 .
  • the first non-emission region 200 and the second non-emission region 210 can be defined to have wider areas than those of the first emission region 201 and the second emission region 211 .
  • the widths of the first non-emission region 200 and the second non-emission region 210 can become larger than those of the first emission region 201 and the second emission region 211 .
  • the first non-emission region 200 can have the same width as the second non-emission region 210 . Also, the first emission region 201 can have the same width as the second emission region 200 . The first non-emission region 200 and the second non-emission region 210 can be defined to have greater widths than those of the first emission region 201 and the second emission region 211 .
  • a first bank pattern formed of a hydrophilic inorganic material can be disposed on the first non-emission region 200 and the second non-emission region 210 .
  • a second bank pattern can be disposed on a part of the surface of the first bank pattern.
  • An organic emission layer formed from a liquefied organic emission material is disposed on a domain surrounded with the second bank pattern.
  • the domain surrounded with the second bank pattern can include the first emission region 201 and the second emission region 211 .
  • the second bank pattern can be used as a barrier that reduces or prevents organic emission layers disposed on the sub-pixels from being mixed with one another.
  • the size of its sub-pixel regions becomes smaller and components disposed on each sub-pixel region are also small-sized.
  • the line width of the second bank pattern becomes narrower.
  • the narrow line width of the second bank pattern may cause different organic emission materials to be mixed with one another when an organic emission layer of the high definition OLED display device is formed using liquefied organic emission materials.
  • the OLED display device allows organic emission materials to be coated or formed on the first non-emission region 200 of the first sub-pixel 10 and the second non-emission region 210 of the second sub-pixel 20 .
  • the organic emission materials coated or formed on the first non-emission region 200 and the second non-emission region 210 are diffused into the first emission region 201 and the second emission 211 , through which organic emission layers can be formed on the first emission region 201 and the second emission region 211 .
  • a liquefied organic emission material is coated on the first non-emission region 200 , which has a greater width than that of the first emission region 201 , and is then diffused into the first emission region 201 .
  • an organic emission layer can be disposed on the first emission region 201 .
  • another liquefied organic material is coated on the second non-emission region 210 , which has a greater width than that of the second emission region 211 , and is then diffused into the second emission region 211 .
  • FIG. 2 is a cross-sectional view taken along line I-I′ in FIG. 1 .
  • FIG. 2 is a cross-sectional view illustrating the first sub-pixel of the OLED display device taken along line I-I′ in FIG. 1 .
  • the thin film transistor Tr includes a semiconductor layer 101 , a gate electrode 103 , a source electrode 105 and a drain electrode 106 .
  • the organic light emitting element includes a first electrode 109 , an organic emission layer 112 and a second electrode 113 .
  • the semiconductor layer 101 of the thin film transistor Tr is disposed on the substrate 100 , which includes a source region 101 a, a channel region 101 b and a drain region 101 c.
  • a gate insulation film 102 is disposed on an entire surface of the substrate 100 provided with the semiconductor layer 101 .
  • the gate electrode 103 of the thin film transistor Tr is disposed on the gate insulation film 102 . Also, the gate electrode 103 is disposed in such a manner as to overlap with the channel region 101 b.
  • An interlayer insulation film 104 is disposed on an entire surface of the substrate 100 provided with the gate electrode 103 .
  • the source electrode 105 and the drain electrode 106 of the thin film transistor Tr are disposed on the interlayer insulation film 104 .
  • the source electrode 105 and the drain electrode 106 are connected to the source region 101 a and the drain region 101 c of the semiconductor layer 101 via contact holes, each penetrating through the interlayer insulation film 104 and the gate insulation film 102 . In this manner, the thin film transistor Tr is disposed (or formed) on the substrate 100 .
  • a passivation film 107 is disposed on an entire surface of the substrate 100 provided with the thin film transistor Tr. Also, a planarization film 108 is disposed on the passivation film 107 .
  • the first electrode 109 of the organic light emitting element is disposed on a part of the surface of the planarization film 108 in such a manner as to be connected to the drain electrode 106 of the thin film transistor Tr.
  • the first electrode 109 is used as an anode electrode of the organic light emitting element, but it is not limited to this example. In other words, the first electrode 109 can be used as a cathode electrode of the organic light emitting element.
  • a first bank pattern 110 is disposed on the planarization film 108 provided with the first electrode 109 .
  • the first bank pattern 110 can be disposed in such a manner as to overlap with edges of the first electrode 109 . As such, a part of the surface of the first electrode 109 can be exposed through the first bank pattern 110 .
  • the first bank pattern 110 can be formed of a hydrophilic inorganic insulation material.
  • the first bank pattern 110 can define a first emission region 201 and a first non-emission region 200 of the first sub-pixel.
  • the first emission region 201 can be a region not occupied by the first bank pattern 110 .
  • the first non-emission region 200 can be a remaining region that is occupied by not only the first bank pattern 110 but also the thin film transistor Tr.
  • a second bank pattern 111 overlapping with the first bank pattern 110 is disposed.
  • the second bank pattern 111 can have a greater thickness and a narrower width compared to the first bank pattern 110 .
  • the second bank pattern 111 can be formed of a hydrophobic organic insulation material.
  • the organic emission layer 112 is disposed on a region that is surrounded (or defined) by the second bank pattern 111 .
  • the organic emission layer 112 can be formed from a liquefied organic emission material. When the organic emission layer 112 is formed from a liquefied organic emission material, not only can a large-sized display device be effectively fabricated, but also the manufacturing process can be simplified.
  • the liquefied organic emission material can be coated on the first non-emission region 200 .
  • the liquefied organic emission material can be coated on the first bank pattern 110 within the first non-emission region 200 .
  • the liquefied organic emission material coated on the first bank pattern 110 within the first non-emission region 200 can be diffused from the first bank pattern 110 , which is formed of a hydrophilic inorganic insulation material, into the first electrode 109 due to its hydrophilicity.
  • the organic emission layer 200 can be disposed (or formed) on the first emission region 201 of the first sub-pixel and the exposed surface of the first bank pattern 110 , which is disposed in the first non-emission region 200 of the first sub-pixel.
  • the first non-emission region 200 of the first sub-pixel can be defined to have a greater width than that of the first emission region 201 . As such, any color blending between different sub-pixels can be reduced or prevented, even when the definition of the OLED display device becomes higher.
  • the organic emission layer 112 is formed on the first emission region 201 by coating a liquefied organic emission material on the first non-emission region 200 with a greater width than the first emission region 201 and diffusing the liquefied organic emission material on the first non-emission region 200 into the first emission region 201 .
  • the liquefied organic emission materials can be disposed on different sub-pixels substantially without being mixed with one another, even when the resolution of the OLED display device becomes higher.
  • the structure of the first-sub pixel illustrated in FIG. 2 can be applied to the second sub-pixel in the same manner.
  • a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present invention will now be described with reference to FIGS. 3A and 3B .
  • FIGS. 3A and 3B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present disclosure.
  • a first sub-pixel of the OLED display device includes a first emission region 201 and a first non-emission region 200 .
  • the first emission region 201 corresponds to a region which is occupied by an exposed upper surface of a first electrode 109 of an organic light emitting element through a first bank pattern 110 .
  • the first non-emission region 200 corresponds to a remaining region which is occupied by the first bank pattern 110 disposed on a planarization film 108 .
  • the first non-emission region 200 includes a second bank pattern 111 which is disposed on the first bank pattern 110 and exposes a part of the upper surface of the first bank pattern 110 .
  • a liquefied organic emission material 401 is discharged on the first non-emission region 200 through a nozzle 400 .
  • the nozzle 400 discharges the liquefied organic emission material 401 onto the upper surface of the first bank pattern 110 which is disposed in the first non-emission region 200 and exposed by the second bank pattern 111 .
  • the liquefied organic emission material 401 a discharged on the first bank pattern 110 diffuses into the first electrode 109 of the organic light emitting element which is disposed in the first emission region 201 .
  • the liquefied organic emission material 401 a is disposed on not only the first bank pattern 110 disposed in the first non-emission region 200 but also the first electrode 109 disposed in the first emission region 201 .
  • Such a diffusion of the liquefied organic emission material 401 results from the fact that the first bank pattern 110 and the first electrode 109 each are formed of hydrophilic materials with a high surface energy.
  • the liquefied organic emission material 401 a can be discharged on the second bank pattern 111 .
  • the discharged liquefied organic emission material 401 a moves from the second bank pattern 111 into the first bank pattern 110 , because the second bank pattern 111 is formed of a hydrophobic material with a low surface energy.
  • the liquefied organic emission material 401 a can be disposed substantially on the first bank pattern 110 and the first electrode 109 .
  • an organic emission layer can be disposed on the first emission region 201 without directly discharging the liquefied organic emission material 401 a on the first emission region 201 .
  • the liquefied organic emission material 401 a disposed on the first bank pattern 110 and the first electrode 109 is dried (or cured) and forms an organic emission layer.
  • the organic emission layer can be formed on the first bank pattern 110 in the first non-emission region 200 and the first electrode 109 in the first emission region 201 .
  • the OLED display device can be manufactured by allowing the liquefied organic emission material to be formed on the first bank pattern within the non-emission region of the sub-pixel region and then diffused onto the first electrode within the emission region due to the surface energies.
  • the OLED display device can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.
  • FIG. 4 is a planar view illustrating an OLED display device according to the second embodiment of the present invention.
  • the OLED display device of the second embodiment can include the same configuration as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted. Components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • the OLED display device includes a plurality of sub-pixels arranged on a substrate 100 .
  • the OLED display device includes a plurality of first sub-pixels 30 and a plurality of second sub-pixels 40 which are arranged in a horizontal direction of the substrate 100 .
  • the first sub-pixels 30 and the second sub-pixels 40 are arranged alternately with each other in the horizontal direction of the substrate 100 . Also, each of the first and second sub-pixels 30 and 40 can become one of red, green and blue sub-pixels.
  • the first sub-pixel 30 includes an emission region (hereinafter, “first emission region”) 303 and a non-emission region (hereinafter, “first non-emission region”) 300 .
  • the first emission region 303 includes a first sub-emission region 301 and a second sub-emission region 302 .
  • the first sub-emission region 301 and the second sub-emission region 302 can be sequentially arranged in a vertical direction.
  • the second sub-pixel 40 includes an emission region (hereinafter, “second emission region”) 313 and a non-emission region (hereinafter, “second non-emission region”) 310 .
  • the second emission region 313 includes a third sub-emission region 311 and a fourth sub-emission region 312 .
  • the third sub-emission region 311 and the fourth sub-emission region 312 can be sequentially arranged on the vertical direction.
  • the first emission region 303 and the second emission region 313 are disposed between the first non-emission region 300 and the second non-emission region 310 .
  • the first non-emission region 300 can have the same width as the second non-emission region 310 .
  • the first emission region 303 can have the same width as the second emission region 313 .
  • the first sub-emission region 301 , the second sub-emission region 302 , the third non-emission region 311 and the fourth non-emission region 312 can have the same width as one another.
  • the first non-emission region 300 and the second non-emission region 310 can be formed to have greater widths than those of the first emission region 303 and the second emission region 313 .
  • a liquefied organic emission material can be discharged on the first non-emission region 300 and the second non-emission region 310 .
  • the liquefied organic emission material discharged on the first non-emission region 300 and the second non-emission region 310 is diffused into the first emission region 303 and the second emission region 313 .
  • the liquefied organic emission material can be diffused from the first non-emission region 300 into the first sub-emission region 301 and the second sub-emission region 302 because the first sub-emission region 301 and the second sub-emission region 302 of the first sub-pixel 40 are sequentially arranged in the vertical direction. Also, the liquefied organic emission material can be diffused from the second non-emission region 310 into the third sub-emission region 311 and the fourth sub-emission region 312 , because the third sub-emission region 311 and the fourth sub-emission region 312 of the second sub-pixel 40 are sequentially arranged in the vertical direction.
  • the OLED display device includes the first non-emission region 300 and the second non-emission region 310 which have greater widths than those of the first emission region 303 and the second emission region 313 .
  • the liquefied organic emission materials are disposed on the first emission region 303 and the second emission region 313 substantially without being mixed with one another.
  • the organic emission material discharged on the first non-emission region 300 and the second non-emission region 310 is diffused into the first emission region 303 and the second emission region 313 .
  • the organic emission layer can be formed (or disposed) on the first emission region 303 and the second emission region 313 without directly discharging the organic emission material on the first emission region 303 and the second emission region 313 .
  • the OLED display device according to the second embodiment of the present invention will now be described in detail with reference to FIG. 5 .
  • FIG. 5 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line II-II′ in FIG. 4 .
  • the OLED display device according to the second embodiment of the present disclosure can include the same components as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted. The components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • a first sub-pixel of the OLED display device includes a first non-emission region 300 , a first sub-emission region 301 and a second sub-emission region 302 .
  • the first sub-pixel includes a first thin film transistor Tr 1 , a second thin film transistor Tr 2 , a first organic light emitting element and a second organic light emitting element which are disposed on a substrate 100 .
  • the first thin film transistor Tr 1 includes a first semiconductor layer 171 , a first gate electrode 173 , a first source electrode 175 and a first drain electrode 176 .
  • the first semiconductor layer 171 includes a first source region 171 a, a first channel region 171 b and a first drain region 171 c.
  • the second thin film transistor Tr 2 includes a second semiconductor layer 151 , a second gate electrode 153 , a second source electrode 155 and a second drain electrode 156 .
  • the second semiconductor layer 151 includes a second source region 151 a, a second channel region 151 b and a second drain region 151 c.
  • the first organic light emitting element includes a first electrode 130 for the first organic light emitting element, an organic emission layer 136 and a second electrode.
  • the second organic light emitting element includes another first electrode 131 for the second organic light emitting element, the organic emission layer 136 and the second electrode 134 .
  • the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element are arranged on a planarization film 108 disposed over the first thin film transistor Tr 1 and the second thin film transistor Tr 2 . Also, the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element are disposed on the planarization film 108 in such a manner as to be separate from each other.
  • a first bank pattern 132 and a third bank pattern 135 are arranged on the planarization film 108 which is provided with the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element.
  • the first bank pattern 132 and the third bank pattern 135 can be disposed on the same layer and formed from the same material.
  • the first bank pattern 132 can be disposed in such a manner as to overlap with one edge of the first electrode 130 of the first organic light emitting element.
  • the third bank pattern 135 can be disposed in such a manner as to overlap with the other edge of first electrode 130 of the first organic light emitting element opposite to the first bank pattern 132 .
  • the third bank pattern 135 overlapping with the first electrode 130 of the first organic light emitting element can be expanded onto one edge of the first electrode 131 of the second organic light emitting element.
  • the first bank pattern 132 can be expanded onto the other edge of the first electrode 131 of the second organic light emitting element opposite to the third bank pattern 135 .
  • the third bank pattern 135 is disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second light emitting element which are separate from each other.
  • a second bank pattern 133 is disposed on a part of the upper surface of the first bank pattern 132 overlapping with not only one edge of the first electrode 130 of the first organic light emitting element but also one edge of the first electrode 131 of the second organic light emitting element.
  • the organic emission layer 136 formed from a liquefied organic emission material is disposed in a region which is surrounded with the second bank pattern 133 .
  • the organic emission layer 136 is disposed on the first electrode 130 of the first organic light emitting element, the first electrode 131 of the second organic light emitting element and the third bank pattern 135 .
  • the second electrode 134 for the first and second organic light emitting elements is disposed on the substrate 100 provided with the organic emission layer 136 .
  • the first bank pattern 132 and the third bank pattern 135 can define the first sub-emission region 301 and the second sub-emission region 302 .
  • the first sub-emission region 301 becomes a part of the upper surface of the first electrode 130 of the first organic light emitting element exposed by the first bank pattern 132 and the third bank pattern 135 .
  • the second sub-emission region 302 becomes a part of the upper surface of the first electrode 131 of the second organic light emitting element exposed by the first bank pattern 132 and the third bank pattern 135 .
  • a region occupied by the first thin film transistor Tr 1 can become the first non-emission region 300 .
  • the first non-emission region 300 includes the first bank pattern 132 overlapping with one edge of the first electrode 130 of the first organic light emitting element.
  • a liquefied organic emission material is discharged on the first bank pattern 132 which is disposed in the first non-emission region 300 .
  • the discharged liquefied-organic emission material is diffused from the first bank pattern 132 , which overlaps with one edge of the first electrode 130 of the first organic light emitting element, into the first bank pattern 132 overlapping with one edge of the first electrode 131 of the second organic light emitting element.
  • the same organic emission layer 136 can be disposed on the first sub-emission region 301 and the second sub-emission region 302 .
  • a procedure of disposing (or forming) the organic emission layer 136 on the first sub-emission region 301 and the second sub-emission region 302 can be simplified.
  • the third bank pattern 135 is disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element.
  • the two sub-emission regions can be driven using a single organic emission layer 136 .
  • Such a structure illustrated in FIG. 5 can be applied to not only the first sub-pixel but also the second sub-pixel in the same or similar manner.
  • a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention will now be described in detail with reference to FIGS. 6A and 6B .
  • FIGS. 6A and 6B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention.
  • the OLED display device according to the second embodiment of the present invention can include the same components as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted.
  • the components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • a first sub-pixel of an OLED display device includes a first non-emission region 300 and a first emission region 303 .
  • the first non-emission region 300 can be formed to have a greater width than that of the first emission region 303 .
  • the first emission region 303 includes a first sub-emission region 301 and a second sub-emission region 302 which are disposed apart from each other.
  • a third bank pattern 135 is disposed between the first sub-emission region 301 and the second sub-emission region 302 .
  • a liquefied organic emission material 401 is discharged on the first non-emission region 300 through a nozzle 400 .
  • the nozzle 400 discharges the liquefied organic emission material 401 onto the upper surface of the first bank pattern 132 which is disposed in the first non-emission region 300 and exposed by the second bank pattern 133 .
  • the liquefied organic emission material 401 a discharged on the first bank pattern 132 is diffused from the first bank pattern 132 , which overlaps with one edge of the first electrode 130 of the first organic light emitting element disposed on the first sub-emission 301 , into the first bank pattern 132 overlapping with one edge of the first electrode 131 of the second organic light emitting element on the second sub-emission region 302 .
  • Such a diffusion of the liquefied organic emission material 401 a can be performed because each of the first bank pattern 132 and the first electrodes 130 and 131 of the organic light emitting elements is formed of a hydrophilic material with a high surface energy.
  • the liquefied organic emission material 401 a can be diffused on the third bank pattern 135 because the third bank pattern 135 is formed from the same material in the same layer as the first bank pattern 132 .
  • the liquefied organic emission material disposed on the first bank pattern 132 and the first electrodes 130 and 131 of the organic light emitting elements is dried (or cured) and an organic emission layer is formed.
  • the OLED display device can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.
  • FIG. 7 is a cross-sectional view illustrating a first sub-pixel of an OLED display device according to the third embodiment of the present invention.
  • the OLED display device according to the third embodiment of the present invention can include the same components as that of the previous embodiments. As such, the description of the third embodiment overlapping with the previous embodiments will be omitted.
  • the components of the third embodiment having the same as those of the previous embodiments will be referred to by the same reference numbers and characters.
  • a first sub-pixel of an OLED display device includes a first non-emission region 300 , a first sub-emission region 301 and a second sub-emission region 302 .
  • the first non-emission region 300 includes a first pattern formation region 300 a, a second pattern formation region 300 c and a pattern absence region 300 b.
  • a first bank pattern 234 is disposed on the first pattern formation region 300 a of the first non-emission region 300 .
  • a second bank pattern 233 is disposed on the second pattern formation region 300 c of the first non-emission region 300 .
  • the first pattern formation region 300 a and the second pattern formation region 300 c are defined in such a manner as to be separate from each other.
  • the pattern absence region 300 c is provided between the first pattern formation region 300 a and the second pattern formation region 300 c. As such, the pattern absence region 300 c exposes a planarization film 108 .
  • the first bank pattern 234 is disposed in such a manner as to overlap with one edge of a first electrode 131 of a first organic light emitting element.
  • the third bank pattern 135 is disposed in such a manner as to overlap with the other edge of the first electrode 131 of the first organic light emitting element opposite to the first bank pattern 234 .
  • the third bank pattern 135 overlapping with the first electrode 130 of the first organic light emitting element can be disposed in such a manner as to expand onto one edge of a first electrode 131 of a second organic light emitting element.
  • the first bank pattern 234 can be disposed in such a manner as to overlap with the other edge of the first electrode 131 of the second organic light emitting element.
  • An organic emission layer 138 is disposed on the first bank pattern 234 , the first electrode 130 of the first organic light emitting element, the third bank pattern 135 and the first electrode 131 of the second organic light emitting element.
  • a liquefied organic emission material is discharged on the first bank pattern 234 which is disposed in the first pattern formation region 300 a of the first non-emission region 300 .
  • the liquefied organic emission material discharged in the first pattern formation region is diffused onto the first bank pattern 131 , which overlaps with the first electrode 131 of the second organic light emitting element, through the first electrode 130 of the first organic light emitting element, the third bank pattern 135 and the first electrode 131 of the second organic light emitting element.
  • the first bank pattern 234 disposed on the first pattern formation region 300 a which is separate from the second pattern formation region 300 c can be used to inject the liquefied organic emission material into the first emission region 301 and the second emission region 302 .
  • the same organic emission layer 136 can be disposed on the first sub-emission region 301 and the second sub-emission region 302 .
  • a procedure of disposing (or forming) the organic emission layer 138 on the first sub-emission region 301 and the second sub-emission region 302 can be simplified.
  • planarization film 108 exposed in the pattern absence region 300 b is formed from a hydrophobic insulation material. As such, the liquefied organic emission material may not be diffused into the pattern absence region 300 b.
  • a second electrode 139 for the first and second organic light emitting elements is disposed on an entire surface of the substrate 100 provided with the organic emission layer 138 .
  • the OLED display device is manufactured by allowing the third bank pattern 135 to be disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element.
  • the two sub-emission regions can be driven using a single organic emission layer 138 .
  • Such a structure illustrated in FIG. 7 can be applied to the second sub-pixel in the same or similar manner.
  • a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention will now be described in detail with reference to FIGS. 8A and 8B .
  • FIGS. 8A and 8B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention.
  • the OLED display device according to the third embodiment of the present invention can include the same components as those of the previous embodiments. As such, the description of the third embodiment overlapping with the previous embodiments will be omitted.
  • the components of the third embodiment having the same as those of the previous embodiments will be referred to by the same reference numbers and characters.
  • a first sub-pixel of an OLED display device includes a first non-emission region and a first emission region.
  • the first non-emission region includes a first pattern formation region 300 a, a second pattern formation region 300 c and a pattern absence region 300 b.
  • the first emission region includes a first sub-emission region 301 and a second sub-emission region 302 .
  • a first bank pattern 234 is disposed on the first pattern formation region 300 a of the first non-emission region.
  • a second bank pattern 233 is disposed on the second pattern formation region 300 c of the first non-emission region.
  • An organic emission layer is disposed on the first sub-emission region 301 and the second sub-emission region 302 .
  • a liquefied organic emission material is disposed on the first pattern formation region 300 a using a nozzle 400 .
  • the liquefied organic emission material 401 a discharged from the nozzle 400 is disposed on the upper surface of the first bank pattern 234 which covers the first pattern formation region 300 a.
  • the liquefied organic emission material 401 discharged on the first bank pattern 234 is diffused from the first bank pattern 234 , which overlaps with one edge of the first electrode 130 of the first organic light emitting element disposed in the first sub-emission region 301 , onto the first bank pattern overlapping with one edge of the first electrode of the second organic light emitting element.
  • the liquefied organic emission material can be diffused on the surfaces of the first bank pattern 234 and the first electrodes of the organic light emitting elements because the first bank pattern 234 and the first electrodes of the organic light emitting elements each are formed of a hydrophilic material with a high surface energy.
  • the liquefied organic emission material can be diffused on the third bank pattern 135 because the third bank pattern 135 is formed from the same material and in the same layer as the first bank pattern 234 .
  • the OLED display device can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is a display device that may include a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region; a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.

Description

  • This application claims the priority of Korean Patent Application No. 10-2014-0181328, filed on Dec. 16, 2014, the disclosure of which is incorporated herein by reference in its entirety for all purposes as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a display device and a method of manufacturing the same. More specifically, the present invention relates to a thin film transistor array substrate and a method of manufacturing the same.
  • 2. Discussion of the Related Art
  • As the information society continues to developed, various types of display devices are in increasing demand. In accordance therewith, a variety of flat panel display devices such as liquid crystal display (LCD) devices, plasma display panels (PDP), organic light emitting diode (OLED) display devices and so on are being recently used.
  • Among these flat panel display devices, OLED display devices are being widely used these days, because they have features such as lightweight, slimness, low power consumption, and so on. OLED display devices are classified into a RGB-mode and a white mode. The RGB mode OLED display device includes red, green and blue organic emission layers which are disposed red, green and blue sub-pixels and emit red, green and blue lights, respectively. The white mode (W-mode) OLED display device includes an organic emission layer and red, green and blue color filters. The organic emission layer is disposed in red, green and blue sub-pixels and emits white light. The red, green and blue color filters are formed in the red, green and blue sub-pixels.
  • As the definition of OLED display devices becomes higher, not only does the size of the pixels become smaller, but also the line width of a bank pattern becomes narrower. As such, when the organic emission layer of an OLED display device is formed from a liquefied organic emission material, organic emission materials formed in different, neighboring sub-pixels can be mixed with one another due to the narrowed line width of the bank pattern used as a barrier.
  • As the distances between the sub-pixels become smaller due to its increased resolution, a color blending between the red, green and blue sub-pixels of an OLED display may occur within a viewing angle, where a viewer perceives different colors depending on the angles at which the viewer views the OLED display. Due to this color blending, the picture quality may deteriorate.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to provide a display device and method of manufacturing the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An advantage of the present invention is directed to provide an organic light emitting diode (OLED) display device with improved color representation.
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. These and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a display device may, for example, include a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region; a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.
  • In another aspect of the present invention, a method of manufacturing an organic light emitting diode (OLED) display device having a thin film transistor array substrate may, for example, include forming a first sub-pixel including a first emission region and a first non-emission region on a substrate; forming a second sub-pixel adjacent to the first sub-pixel, the second sub-pixel including a second emission region and a second non-emission region; forming a first bank pattern with a hydrophilic inorganic insulation material in the first and second non-emission regions; forming a second bank pattern with a hydrophobic organic insulation material on an upper surface of the first bank pattern; and forming an organic emission layer on the first and second emission regions.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
  • FIG. 1 is a planar view illustrating an OLED display device according to the first embodiment of the present invention;
  • FIG. 2 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line I-I′ in FIG. 1;
  • FIGS. 3A and 3B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present invention;
  • FIG. 4 is a planar view illustrating an OLED display device according to the second embodiment of the present invention;
  • FIG. 5 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line II-II′ in FIG. 4;
  • FIGS. 6A and 6B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention;
  • FIG. 7 is a cross-sectional view illustrating a first sub-pixel of an OLED display device according to the third embodiment of the present invention; and
  • FIGS. 8A and 8B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In the drawings, the size, thickness, and so on of an element may be exaggerated for convenience of explanation. Wherever possible, the same reference numbers will be used throughout this disclosure to refer to the same or like parts.
  • FIG. 1 is a planar view illustrating an OLED display device according to the first embodiment of the present invention.
  • Referring to FIG. 1, an OLED display device includes a plurality of sub-pixels which are arranged on a substrate 100. In detail, the OLED display device includes a plurality of first sub-pixels 10 and a plurality of second sub-pixels 20 that are arranged in a horizontal direction of the substrate 100.
  • The first sub-pixels 10 and the second sub-pixels 20 are arranged alternately with each other in the horizontal direction of the substrate 100. Also, each of the first and second sub-pixels 10 and 20 can become one of red, green and blue sub-pixels. For example, one second sub-pixel 20 emitting a green light is disposed by one side edge of the first sub-pixel 10 emitting a red light, and another first sub-pixel 10 emitting a blue light is disposed by one side edge of the second sub-pixel 20, which emits a green light, opposite to the first sub-pixel emitting the red light. In this manner, the OLED display device including the plurality of sub-pixels can be implemented.
  • The first sub-pixel 10 includes an emission region (hereinafter, “first emission region”) 201 and a non-emission region (hereinafter, “first non-emission region”) 200. The second sub-pixel 20 includes an emission region (hereinafter, “second emission region”) 211 and a non-emission region (hereinafter, “second non-emission region”) 210. The first emission region 201 and the second emission region 211 are disposed between the first non-emission region 200 and the second non-emission region 210.
  • In other words, the first emission region 201 is disposed by one side edge of the second emission region 211, and another first emission region 201 is disposed by the other side edge of the second emission region 211. Also, one first non-emission region 200 is interposed between two different first non-emission regions 200. Moreover, one second non-emission region 210 is interposed between two different second non-emission regions 210.
  • The first non-emission region 200 and the second non-emission region 210 can be defined to have wider areas than those of the first emission region 201 and the second emission region 211. The widths of the first non-emission region 200 and the second non-emission region 210 can become larger than those of the first emission region 201 and the second emission region 211.
  • The first non-emission region 200 can have the same width as the second non-emission region 210. Also, the first emission region 201 can have the same width as the second emission region 200. The first non-emission region 200 and the second non-emission region 210 can be defined to have greater widths than those of the first emission region 201 and the second emission region 211.
  • Although it is not shown in the drawing, a first bank pattern formed of a hydrophilic inorganic material can be disposed on the first non-emission region 200 and the second non-emission region 210. Also, a second bank pattern can be disposed on a part of the surface of the first bank pattern. An organic emission layer formed from a liquefied organic emission material is disposed on a domain surrounded with the second bank pattern.
  • The domain surrounded with the second bank pattern can include the first emission region 201 and the second emission region 211. In this case, the second bank pattern can be used as a barrier that reduces or prevents organic emission layers disposed on the sub-pixels from being mixed with one another.
  • When the OLED display device has a high resolution, the size of its sub-pixel regions becomes smaller and components disposed on each sub-pixel region are also small-sized. In other words, as the resolution of the OLED display device becomes higher, the line width of the second bank pattern becomes narrower. The narrow line width of the second bank pattern may cause different organic emission materials to be mixed with one another when an organic emission layer of the high definition OLED display device is formed using liquefied organic emission materials.
  • To address this issue, the OLED display device according to an embodiment of the present invention allows organic emission materials to be coated or formed on the first non-emission region 200 of the first sub-pixel 10 and the second non-emission region 210 of the second sub-pixel 20. The organic emission materials coated or formed on the first non-emission region 200 and the second non-emission region 210 are diffused into the first emission region 201 and the second emission 211, through which organic emission layers can be formed on the first emission region 201 and the second emission region 211.
  • In the OLED display device, a liquefied organic emission material is coated on the first non-emission region 200, which has a greater width than that of the first emission region 201, and is then diffused into the first emission region 201. As such, an organic emission layer can be disposed on the first emission region 201. Also, in order to dispose an organic emission layer on the second emission region 211, another liquefied organic material is coated on the second non-emission region 210, which has a greater width than that of the second emission region 211, and is then diffused into the second emission region 211.
  • By doing so, different liquefied organic emission materials can be disposed on different sub-pixels of the OLED display device having a high resolution in such a manner as to be not mixed with one another. This will now be described with reference to FIG. 2, which is a cross-sectional view taken along line I-I′ in FIG. 1.
  • FIG. 2 is a cross-sectional view illustrating the first sub-pixel of the OLED display device taken along line I-I′ in FIG. 1.
  • Referring to FIG. 2, a thin film transistor Tr and an organic light emitting element are disposed on the substrate 100. The thin film transistor Tr includes a semiconductor layer 101, a gate electrode 103, a source electrode 105 and a drain electrode 106. The organic light emitting element includes a first electrode 109, an organic emission layer 112 and a second electrode 113.
  • The semiconductor layer 101 of the thin film transistor Tr is disposed on the substrate 100, which includes a source region 101 a, a channel region 101 b and a drain region 101 c. A gate insulation film 102 is disposed on an entire surface of the substrate 100 provided with the semiconductor layer 101. The gate electrode 103 of the thin film transistor Tr is disposed on the gate insulation film 102. Also, the gate electrode 103 is disposed in such a manner as to overlap with the channel region 101 b.
  • An interlayer insulation film 104 is disposed on an entire surface of the substrate 100 provided with the gate electrode 103. The source electrode 105 and the drain electrode 106 of the thin film transistor Tr are disposed on the interlayer insulation film 104. Also, the source electrode 105 and the drain electrode 106 are connected to the source region 101 a and the drain region 101 c of the semiconductor layer 101 via contact holes, each penetrating through the interlayer insulation film 104 and the gate insulation film 102. In this manner, the thin film transistor Tr is disposed (or formed) on the substrate 100.
  • A passivation film 107 is disposed on an entire surface of the substrate 100 provided with the thin film transistor Tr. Also, a planarization film 108 is disposed on the passivation film 107.
  • The first electrode 109 of the organic light emitting element is disposed on a part of the surface of the planarization film 108 in such a manner as to be connected to the drain electrode 106 of the thin film transistor Tr. The first electrode 109 is used as an anode electrode of the organic light emitting element, but it is not limited to this example. In other words, the first electrode 109 can be used as a cathode electrode of the organic light emitting element.
  • A first bank pattern 110 is disposed on the planarization film 108 provided with the first electrode 109. In detail, the first bank pattern 110 can be disposed in such a manner as to overlap with edges of the first electrode 109. As such, a part of the surface of the first electrode 109 can be exposed through the first bank pattern 110. The first bank pattern 110 can be formed of a hydrophilic inorganic insulation material.
  • Also, the first bank pattern 110 can define a first emission region 201 and a first non-emission region 200 of the first sub-pixel. The first emission region 201 can be a region not occupied by the first bank pattern 110. The first non-emission region 200 can be a remaining region that is occupied by not only the first bank pattern 110 but also the thin film transistor Tr.
  • A second bank pattern 111 overlapping with the first bank pattern 110 is disposed. The second bank pattern 111 can have a greater thickness and a narrower width compared to the first bank pattern 110. The second bank pattern 111 can be formed of a hydrophobic organic insulation material.
  • The organic emission layer 112 is disposed on a region that is surrounded (or defined) by the second bank pattern 111. The organic emission layer 112 can be formed from a liquefied organic emission material. When the organic emission layer 112 is formed from a liquefied organic emission material, not only can a large-sized display device be effectively fabricated, but also the manufacturing process can be simplified.
  • The liquefied organic emission material can be coated on the first non-emission region 200. In detail, the liquefied organic emission material can be coated on the first bank pattern 110 within the first non-emission region 200.
  • The liquefied organic emission material coated on the first bank pattern 110 within the first non-emission region 200 can be diffused from the first bank pattern 110, which is formed of a hydrophilic inorganic insulation material, into the first electrode 109 due to its hydrophilicity. As a result, the organic emission layer 200 can be disposed (or formed) on the first emission region 201 of the first sub-pixel and the exposed surface of the first bank pattern 110, which is disposed in the first non-emission region 200 of the first sub-pixel.
  • The first non-emission region 200 of the first sub-pixel can be defined to have a greater width than that of the first emission region 201. As such, any color blending between different sub-pixels can be reduced or prevented, even when the definition of the OLED display device becomes higher.
  • When liquefied organic emission materials are coated on the emission regions of a high definition OLED display device according to the related art, the color blending problem may occur. However, in the OLED display device according to an embodiment of the present invention, the organic emission layer 112 is formed on the first emission region 201 by coating a liquefied organic emission material on the first non-emission region 200 with a greater width than the first emission region 201 and diffusing the liquefied organic emission material on the first non-emission region 200 into the first emission region 201. As a result, the liquefied organic emission materials can be disposed on different sub-pixels substantially without being mixed with one another, even when the resolution of the OLED display device becomes higher. Also, the structure of the first-sub pixel illustrated in FIG. 2 can be applied to the second sub-pixel in the same manner.
  • A method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present invention will now be described with reference to FIGS. 3A and 3B.
  • FIGS. 3A and 3B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the first embodiment of the present disclosure.
  • Referring to FIGS. 3A and 3B, a first sub-pixel of the OLED display device includes a first emission region 201 and a first non-emission region 200. The first emission region 201 corresponds to a region which is occupied by an exposed upper surface of a first electrode 109 of an organic light emitting element through a first bank pattern 110. The first non-emission region 200 corresponds to a remaining region which is occupied by the first bank pattern 110 disposed on a planarization film 108. Also, the first non-emission region 200 includes a second bank pattern 111 which is disposed on the first bank pattern 110 and exposes a part of the upper surface of the first bank pattern 110.
  • In order to dispose an organic emission layer on the first emission region 201, a liquefied organic emission material 401 is discharged on the first non-emission region 200 through a nozzle 400. In other words, the nozzle 400 discharges the liquefied organic emission material 401 onto the upper surface of the first bank pattern 110 which is disposed in the first non-emission region 200 and exposed by the second bank pattern 111.
  • The liquefied organic emission material 401 a discharged on the first bank pattern 110 diffuses into the first electrode 109 of the organic light emitting element which is disposed in the first emission region 201. As such, the liquefied organic emission material 401 a is disposed on not only the first bank pattern 110 disposed in the first non-emission region 200 but also the first electrode 109 disposed in the first emission region 201. Such a diffusion of the liquefied organic emission material 401 results from the fact that the first bank pattern 110 and the first electrode 109 each are formed of hydrophilic materials with a high surface energy.
  • Also, the liquefied organic emission material 401 a can be discharged on the second bank pattern 111. In this case, the discharged liquefied organic emission material 401 a moves from the second bank pattern 111 into the first bank pattern 110, because the second bank pattern 111 is formed of a hydrophobic material with a low surface energy. As such, the liquefied organic emission material 401 a can be disposed substantially on the first bank pattern 110 and the first electrode 109. In accordance therewith, an organic emission layer can be disposed on the first emission region 201 without directly discharging the liquefied organic emission material 401 a on the first emission region 201.
  • Thereafter, the liquefied organic emission material 401 a disposed on the first bank pattern 110 and the first electrode 109 is dried (or cured) and forms an organic emission layer. As such, the organic emission layer can be formed on the first bank pattern 110 in the first non-emission region 200 and the first electrode 109 in the first emission region 201.
  • In this manner, the OLED display device according to an embodiment of the present disclosure can be manufactured by allowing the liquefied organic emission material to be formed on the first bank pattern within the non-emission region of the sub-pixel region and then diffused onto the first electrode within the emission region due to the surface energies. In other words, even when the emission region has a narrower width and the liquefied organic emission material is not precisely discharged over the emission region, the OLED display device according to an embodiment of the present invention can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.
  • An OLED display device according to the second embodiment of the present invention will now be described in detail with reference to FIG. 4.
  • FIG. 4 is a planar view illustrating an OLED display device according to the second embodiment of the present invention. The OLED display device of the second embodiment can include the same configuration as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted. Components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • Referring to FIG. 4, the OLED display device includes a plurality of sub-pixels arranged on a substrate 100. In detail, the OLED display device includes a plurality of first sub-pixels 30 and a plurality of second sub-pixels 40 which are arranged in a horizontal direction of the substrate 100.
  • The first sub-pixels 30 and the second sub-pixels 40 are arranged alternately with each other in the horizontal direction of the substrate 100. Also, each of the first and second sub-pixels 30 and 40 can become one of red, green and blue sub-pixels.
  • The first sub-pixel 30 includes an emission region (hereinafter, “first emission region”) 303 and a non-emission region (hereinafter, “first non-emission region”) 300. The first emission region 303 includes a first sub-emission region 301 and a second sub-emission region 302. The first sub-emission region 301 and the second sub-emission region 302 can be sequentially arranged in a vertical direction.
  • The second sub-pixel 40 includes an emission region (hereinafter, “second emission region”) 313 and a non-emission region (hereinafter, “second non-emission region”) 310. The second emission region 313 includes a third sub-emission region 311 and a fourth sub-emission region 312. The third sub-emission region 311 and the fourth sub-emission region 312 can be sequentially arranged on the vertical direction. Also, the first emission region 303 and the second emission region 313 are disposed between the first non-emission region 300 and the second non-emission region 310.
  • The first non-emission region 300 can have the same width as the second non-emission region 310. Also, the first emission region 303 can have the same width as the second emission region 313. As such, the first sub-emission region 301, the second sub-emission region 302, the third non-emission region 311 and the fourth non-emission region 312 can have the same width as one another. The first non-emission region 300 and the second non-emission region 310 can be formed to have greater widths than those of the first emission region 303 and the second emission region 313.
  • A liquefied organic emission material can be discharged on the first non-emission region 300 and the second non-emission region 310. The liquefied organic emission material discharged on the first non-emission region 300 and the second non-emission region 310 is diffused into the first emission region 303 and the second emission region 313.
  • The liquefied organic emission material can be diffused from the first non-emission region 300 into the first sub-emission region 301 and the second sub-emission region 302 because the first sub-emission region 301 and the second sub-emission region 302 of the first sub-pixel 40 are sequentially arranged in the vertical direction. Also, the liquefied organic emission material can be diffused from the second non-emission region 310 into the third sub-emission region 311 and the fourth sub-emission region 312, because the third sub-emission region 311 and the fourth sub-emission region 312 of the second sub-pixel 40 are sequentially arranged in the vertical direction.
  • In this manner, the OLED display device includes the first non-emission region 300 and the second non-emission region 310 which have greater widths than those of the first emission region 303 and the second emission region 313. As such, the liquefied organic emission materials are disposed on the first emission region 303 and the second emission region 313 substantially without being mixed with one another.
  • In detail, the organic emission material discharged on the first non-emission region 300 and the second non-emission region 310 is diffused into the first emission region 303 and the second emission region 313. As such, the organic emission layer can be formed (or disposed) on the first emission region 303 and the second emission region 313 without directly discharging the organic emission material on the first emission region 303 and the second emission region 313.
  • The OLED display device according to the second embodiment of the present invention will now be described in detail with reference to FIG. 5.
  • FIG. 5 is a cross-sectional view illustrating a first sub-pixel of the OLED display device taken along line II-II′ in FIG. 4. The OLED display device according to the second embodiment of the present disclosure can include the same components as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted. The components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • Referring to FIG. 5, a first sub-pixel of the OLED display device includes a first non-emission region 300, a first sub-emission region 301 and a second sub-emission region 302.
  • The first sub-pixel includes a first thin film transistor Tr1, a second thin film transistor Tr2, a first organic light emitting element and a second organic light emitting element which are disposed on a substrate 100. The first thin film transistor Tr1 includes a first semiconductor layer 171, a first gate electrode 173, a first source electrode 175 and a first drain electrode 176. The first semiconductor layer 171 includes a first source region 171 a, a first channel region 171 b and a first drain region 171 c. The second thin film transistor Tr2 includes a second semiconductor layer 151, a second gate electrode 153, a second source electrode 155 and a second drain electrode 156. The second semiconductor layer 151 includes a second source region 151 a, a second channel region 151 b and a second drain region 151 c.
  • The first organic light emitting element includes a first electrode 130 for the first organic light emitting element, an organic emission layer 136 and a second electrode. The second organic light emitting element includes another first electrode 131 for the second organic light emitting element, the organic emission layer 136 and the second electrode 134.
  • The first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element are arranged on a planarization film 108 disposed over the first thin film transistor Tr1 and the second thin film transistor Tr2. Also, the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element are disposed on the planarization film 108 in such a manner as to be separate from each other.
  • A first bank pattern 132 and a third bank pattern 135 are arranged on the planarization film 108 which is provided with the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element. The first bank pattern 132 and the third bank pattern 135 can be disposed on the same layer and formed from the same material.
  • In detail, the first bank pattern 132 can be disposed in such a manner as to overlap with one edge of the first electrode 130 of the first organic light emitting element. The third bank pattern 135 can be disposed in such a manner as to overlap with the other edge of first electrode 130 of the first organic light emitting element opposite to the first bank pattern 132. Also, the third bank pattern 135 overlapping with the first electrode 130 of the first organic light emitting element can be expanded onto one edge of the first electrode 131 of the second organic light emitting element. Moreover, the first bank pattern 132 can be expanded onto the other edge of the first electrode 131 of the second organic light emitting element opposite to the third bank pattern 135. In other words, the third bank pattern 135 is disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second light emitting element which are separate from each other.
  • A second bank pattern 133 is disposed on a part of the upper surface of the first bank pattern 132 overlapping with not only one edge of the first electrode 130 of the first organic light emitting element but also one edge of the first electrode 131 of the second organic light emitting element.
  • The organic emission layer 136 formed from a liquefied organic emission material is disposed in a region which is surrounded with the second bank pattern 133. In other words, the organic emission layer 136 is disposed on the first electrode 130 of the first organic light emitting element, the first electrode 131 of the second organic light emitting element and the third bank pattern 135. The second electrode 134 for the first and second organic light emitting elements is disposed on the substrate 100 provided with the organic emission layer 136.
  • The first bank pattern 132 and the third bank pattern 135 can define the first sub-emission region 301 and the second sub-emission region 302. In detail, the first sub-emission region 301 becomes a part of the upper surface of the first electrode 130 of the first organic light emitting element exposed by the first bank pattern 132 and the third bank pattern 135. The second sub-emission region 302 becomes a part of the upper surface of the first electrode 131 of the second organic light emitting element exposed by the first bank pattern 132 and the third bank pattern 135.
  • A region occupied by the first thin film transistor Tr1 can become the first non-emission region 300. The first non-emission region 300 includes the first bank pattern 132 overlapping with one edge of the first electrode 130 of the first organic light emitting element.
  • A liquefied organic emission material is discharged on the first bank pattern 132 which is disposed in the first non-emission region 300. The discharged liquefied-organic emission material is diffused from the first bank pattern 132, which overlaps with one edge of the first electrode 130 of the first organic light emitting element, into the first bank pattern 132 overlapping with one edge of the first electrode 131 of the second organic light emitting element.
  • As such, the same organic emission layer 136 can be disposed on the first sub-emission region 301 and the second sub-emission region 302. In accordance therewith, a procedure of disposing (or forming) the organic emission layer 136 on the first sub-emission region 301 and the second sub-emission region 302 can be simplified.
  • In other words, the third bank pattern 135 is disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element. As such, the two sub-emission regions can be driven using a single organic emission layer 136. Such a structure illustrated in FIG. 5 can be applied to not only the first sub-pixel but also the second sub-pixel in the same or similar manner.
  • A method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention will now be described in detail with reference to FIGS. 6A and 6B.
  • FIGS. 6A and 6B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the second embodiment of the present invention. The OLED display device according to the second embodiment of the present invention can include the same components as that of the first embodiment. As such, the description of the second embodiment overlapping with the first embodiment will be omitted. The components of the second embodiment having the same as those of the first embodiment will be referred to by the same reference numbers and characters.
  • Referring to FIGS. 6A and 6B, a first sub-pixel of an OLED display device according to the second embodiment of the present invention includes a first non-emission region 300 and a first emission region 303. The first non-emission region 300 can be formed to have a greater width than that of the first emission region 303.
  • The first emission region 303 includes a first sub-emission region 301 and a second sub-emission region 302 which are disposed apart from each other. In this case, a third bank pattern 135 is disposed between the first sub-emission region 301 and the second sub-emission region 302.
  • In order to dispose (or form) an organic emission layer on the first emission region 303, a liquefied organic emission material 401 is discharged on the first non-emission region 300 through a nozzle 400. In other words, the nozzle 400 discharges the liquefied organic emission material 401 onto the upper surface of the first bank pattern 132 which is disposed in the first non-emission region 300 and exposed by the second bank pattern 133.
  • The liquefied organic emission material 401 a discharged on the first bank pattern 132 is diffused from the first bank pattern 132, which overlaps with one edge of the first electrode 130 of the first organic light emitting element disposed on the first sub-emission 301, into the first bank pattern 132 overlapping with one edge of the first electrode 131 of the second organic light emitting element on the second sub-emission region 302. Such a diffusion of the liquefied organic emission material 401 a can be performed because each of the first bank pattern 132 and the first electrodes 130 and 131 of the organic light emitting elements is formed of a hydrophilic material with a high surface energy. Also, the liquefied organic emission material 401 a can be diffused on the third bank pattern 135 because the third bank pattern 135 is formed from the same material in the same layer as the first bank pattern 132.
  • Thereafter, the liquefied organic emission material disposed on the first bank pattern 132 and the first electrodes 130 and 131 of the organic light emitting elements is dried (or cured) and an organic emission layer is formed.
  • Although the emission region in a high definition OLED display device has a narrow width and the liquefied organic emission material is not precisely discharged over the emission region, the OLED display device according to an embodiment of the present invention can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.
  • An OLED display device according to the third embodiment of the present invention will now be described in detail with reference to FIG. 7.
  • FIG. 7 is a cross-sectional view illustrating a first sub-pixel of an OLED display device according to the third embodiment of the present invention. The OLED display device according to the third embodiment of the present invention can include the same components as that of the previous embodiments. As such, the description of the third embodiment overlapping with the previous embodiments will be omitted. The components of the third embodiment having the same as those of the previous embodiments will be referred to by the same reference numbers and characters.
  • Referring to FIG. 7, a first sub-pixel of an OLED display device according to the third embodiment of the present invention includes a first non-emission region 300, a first sub-emission region 301 and a second sub-emission region 302. The first non-emission region 300 includes a first pattern formation region 300 a, a second pattern formation region 300 c and a pattern absence region 300 b.
  • A first bank pattern 234 is disposed on the first pattern formation region 300 a of the first non-emission region 300. A second bank pattern 233 is disposed on the second pattern formation region 300 c of the first non-emission region 300. The first pattern formation region 300 a and the second pattern formation region 300 c are defined in such a manner as to be separate from each other.
  • The pattern absence region 300 c is provided between the first pattern formation region 300 a and the second pattern formation region 300 c. As such, the pattern absence region 300 c exposes a planarization film 108.
  • The first bank pattern 234 is disposed in such a manner as to overlap with one edge of a first electrode 131 of a first organic light emitting element. The third bank pattern 135 is disposed in such a manner as to overlap with the other edge of the first electrode 131 of the first organic light emitting element opposite to the first bank pattern 234. Also, the third bank pattern 135 overlapping with the first electrode 130 of the first organic light emitting element can be disposed in such a manner as to expand onto one edge of a first electrode 131 of a second organic light emitting element. Moreover, the first bank pattern 234 can be disposed in such a manner as to overlap with the other edge of the first electrode 131 of the second organic light emitting element.
  • An organic emission layer 138 is disposed on the first bank pattern 234, the first electrode 130 of the first organic light emitting element, the third bank pattern 135 and the first electrode 131 of the second organic light emitting element.
  • In order to form the organic emission layer 138, a liquefied organic emission material is discharged on the first bank pattern 234 which is disposed in the first pattern formation region 300 a of the first non-emission region 300. The liquefied organic emission material discharged in the first pattern formation region is diffused onto the first bank pattern 131, which overlaps with the first electrode 131 of the second organic light emitting element, through the first electrode 130 of the first organic light emitting element, the third bank pattern 135 and the first electrode 131 of the second organic light emitting element.
  • As a result, the first bank pattern 234 disposed on the first pattern formation region 300 a which is separate from the second pattern formation region 300 c can be used to inject the liquefied organic emission material into the first emission region 301 and the second emission region 302. As such, the same organic emission layer 136 can be disposed on the first sub-emission region 301 and the second sub-emission region 302. In accordance therewith, a procedure of disposing (or forming) the organic emission layer 138 on the first sub-emission region 301 and the second sub-emission region 302 can be simplified.
  • Meanwhile, the planarization film 108 exposed in the pattern absence region 300 b is formed from a hydrophobic insulation material. As such, the liquefied organic emission material may not be diffused into the pattern absence region 300 b.
  • A second electrode 139 for the first and second organic light emitting elements is disposed on an entire surface of the substrate 100 provided with the organic emission layer 138.
  • In this manner, the OLED display device according to an embodiment of the present invention is manufactured by allowing the third bank pattern 135 to be disposed between the first electrode 130 of the first organic light emitting element and the first electrode 131 of the second organic light emitting element. As such, the two sub-emission regions can be driven using a single organic emission layer 138. Such a structure illustrated in FIG. 7 can be applied to the second sub-pixel in the same or similar manner.
  • A method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention will now be described in detail with reference to FIGS. 8A and 8B.
  • FIGS. 8A and 8B are cross-sectional views illustrating a method of forming an organic emission layer in a first sub-pixel of an OLED display device according to the third embodiment of the present invention. The OLED display device according to the third embodiment of the present invention can include the same components as those of the previous embodiments. As such, the description of the third embodiment overlapping with the previous embodiments will be omitted. The components of the third embodiment having the same as those of the previous embodiments will be referred to by the same reference numbers and characters.
  • Referring to FIGS. 8A and 8B, a first sub-pixel of an OLED display device according to the third embodiment of the present invention includes a first non-emission region and a first emission region. The first non-emission region includes a first pattern formation region 300 a, a second pattern formation region 300 c and a pattern absence region 300 b. The first emission region includes a first sub-emission region 301 and a second sub-emission region 302.
  • A first bank pattern 234 is disposed on the first pattern formation region 300 a of the first non-emission region. A second bank pattern 233 is disposed on the second pattern formation region 300 c of the first non-emission region.
  • An organic emission layer is disposed on the first sub-emission region 301 and the second sub-emission region 302. To this end, a liquefied organic emission material is disposed on the first pattern formation region 300 a using a nozzle 400. In detail, the liquefied organic emission material 401 a discharged from the nozzle 400 is disposed on the upper surface of the first bank pattern 234 which covers the first pattern formation region 300 a.
  • The liquefied organic emission material 401 discharged on the first bank pattern 234 is diffused from the first bank pattern 234, which overlaps with one edge of the first electrode 130 of the first organic light emitting element disposed in the first sub-emission region 301, onto the first bank pattern overlapping with one edge of the first electrode of the second organic light emitting element. The liquefied organic emission material can be diffused on the surfaces of the first bank pattern 234 and the first electrodes of the organic light emitting elements because the first bank pattern 234 and the first electrodes of the organic light emitting elements each are formed of a hydrophilic material with a high surface energy. Also, the liquefied organic emission material can be diffused on the third bank pattern 135 because the third bank pattern 135 is formed from the same material and in the same layer as the first bank pattern 234.
  • Although the emission region in a high definition OLED display device has a narrow width and the liquefied organic emission material is not precisely discharged over the emission region, the OLED display device according to an embodiment of the present invention can form the organic emission layer in the emission region. Also, such a method of forming the organic emission layer can be applied to the second sub-pixel in the same or similar manner.
  • It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (28)

What is claimed is:
1. A display device comprising:
a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region;
a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and
a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.
2. The display device of claim 1, wherein the plurality of first sub-pixels and the plurality of second sub-pixels are arranged alternately with each other in a first direction.
3. The display device of claim 1, wherein the first and second non-emission regions have greater widths than those of the first and second emission regions.
4. The display device of claim 1, wherein the first and second emission regions are disposed between the first non-emission region and the second non-emission region.
5. The display device of claim 1, wherein the hydrophobic material is an organic insulating material, and the hydrophobic material is an inorganic insulating material.
6. The display device of claim 1, further comprises an organic emission layer in a region surrounded with the second bank pattern, wherein the organic emission layer is formed from a liquefied organic emission material.
7. The display device of claim 1, wherein the first emission region includes a first sub-emission region and a second sub-emission region, and the second emission region includes a third sub-emission region and a fourth sub-emission region.
8. The display device of claim 7, wherein the first and second sub-emission regions are sequentially disposed in a second direction, and the third and fourth sub-emission regions are sequentially disposed in a third direction different from the second direction.
9. The display device of claim 8, further comprises a third bank pattern between the first and second sub-emission regions and between the third and fourth sub-emission regions.
10. The display device of claim 9, wherein the third bank pattern is in the same layer and formed from a same material as the first bank pattern.
11. The display device of claim 9, further comprises
an organic emission layer in the first sub-emission region, the second sub-emission region and the third bank pattern; and
a second organic emission layer in the third sub-emission region, the fourth sub-emission region and the third bank pattern.
12. The display device of claim 1, wherein each of the first and second non-emission regions includes:
a first pattern formation region in which a first bank pattern is disposed;
a second pattern formation region in which a second bank pattern is disposed; and
a pattern absence region.
13. The display device of claim 12, wherein the first and second pattern formation regions are disposed apart from each other.
14. The display device of claim 12, wherein the pattern absence region is disposed between the first and second pattern formation regions.
15. The display device of claim 12, further comprises an organic emission layer disposed in the first pattern formation region and the emission regions.
16. The display device of claim 1, wherein the display device is an organic light emitting diode (OLED) display device, and a color filter array substrate is disposed to face the thin film transistor array substrate.
17. A method of manufacturing an organic light emitting diode (OLED) display device having a thin film transistor array substrate, the method comprising:
forming a first sub-pixel including a first emission region and a first non-emission region, on a substrate;
forming a second sub-pixel adjacent to the first sub-pixel, the second sub-pixel including a second emission region and a second non-emission region;
forming a first bank pattern with a hydrophilic inorganic insulation material in the first and second non-emission regions;
forming a second bank pattern with a hydrophobic organic insulation material on an upper surface of the first bank pattern; and
forming an organic emission layer on the first and second emission regions.
18. The method of claim 17, wherein the first and second emission regions are disposed between the first non-emission region and the second non-emission region.
19. The method of claim 17, wherein the pluralities of first sub-pixels and second sub-pixels are arranged alternately with each other in the first direction.
20. The method of claim 17, wherein the first and second non-emission regions have greater widths than those of the first and second emission regions.
21. The method of claim 17, wherein the first emission region includes a first sub-emission region and a second sub-emission region, and the second emission region includes a third sub-emission region and a fourth sub-emission region.
22. The method of claim 21, wherein the first and second sub-emission regions are sequentially disposed in a vertical direction and the third and fourth sub-emission regions are sequentially disposed in another vertical direction.
23. The method of claim 22, further comprises forming a third bank pattern, which are disposed between the first and second sub-emission regions and between the third and fourth sub-emission regions, before the formation of the organic emission layer.
24. The method of claim 23, wherein the third bank pattern is disposed in the same layer and formed from the same material as the first bank pattern.
25. The method of claim 17, wherein each of the first and second non-emission regions includes:
a first pattern formation region on which a first bank pattern is disposed;
a second pattern formation region on which a second bank pattern is disposed; and
a pattern absence region.
26. The method of claim 25, wherein the first and second pattern formation regions are disposed apart from each other.
27. The method of claim 25, wherein the pattern absence region is disposed between the first and second pattern formation regions.
28. The method of claim 17, wherein the formation of the organic emission layer includes:
discharging a liquefied organic emission material on the first bank pattern; and
enabling the liquefied organic emission material discharged on the first bank pattern to be diffused onto one of the emission regions of the first and second sub-pixels.
US14/875,023 2014-12-16 2015-10-05 Thin film transistor array substrate and method of fabricating the same Active US9748319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/632,881 US9923036B2 (en) 2014-12-16 2017-06-26 Thin film transistor array substrate and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140181328A KR101820197B1 (en) 2014-12-16 2014-12-16 Thin film transistor array substrate and fabrication method of the same
KR10-2014-0181328 2014-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/632,881 Division US9923036B2 (en) 2014-12-16 2017-06-26 Thin film transistor array substrate and method of fabricating the same

Publications (2)

Publication Number Publication Date
US20160172422A1 true US20160172422A1 (en) 2016-06-16
US9748319B2 US9748319B2 (en) 2017-08-29

Family

ID=56111955

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/875,023 Active US9748319B2 (en) 2014-12-16 2015-10-05 Thin film transistor array substrate and method of fabricating the same
US15/632,881 Active US9923036B2 (en) 2014-12-16 2017-06-26 Thin film transistor array substrate and method of fabricating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/632,881 Active US9923036B2 (en) 2014-12-16 2017-06-26 Thin film transistor array substrate and method of fabricating the same

Country Status (4)

Country Link
US (2) US9748319B2 (en)
KR (1) KR101820197B1 (en)
CN (1) CN105702681B (en)
TW (1) TWI606625B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190109153A1 (en) * 2017-10-11 2019-04-11 Boe Technology Group Co., Ltd. Array substrate and method for manufacturing the same, display apparatus
US20190181204A1 (en) * 2017-12-11 2019-06-13 Lg Display Co., Ltd. Electroluminescent Display Device
US20190267563A1 (en) * 2016-12-28 2019-08-29 Lg Display Co., Ltd. Electroluminescent display device and method for manufacturing the same
WO2020065859A1 (en) * 2018-09-27 2020-04-02 シャープ株式会社 Display device and display device production method
CN111403434A (en) * 2018-12-28 2020-07-10 乐金显示有限公司 Organic light emitting display device and method of manufacturing the same
US20210175281A1 (en) * 2019-12-09 2021-06-10 Lg Display Co., Ltd. Electroluminescent Display Device
US11094761B2 (en) * 2018-12-11 2021-08-17 Lg Display Co., Ltd. Organic light emitting display device and method of fabricating thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032736A (en) * 2016-09-22 2018-04-02 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Device
CN108010946B (en) * 2017-11-27 2022-02-25 京东方科技集团股份有限公司 Pixel defining layer, array substrate and display device
CN109378329A (en) * 2018-09-28 2019-02-22 昆山国显光电有限公司 Organic light-emitting display device and preparation method thereof, the mask plate for preparing support column
CN109860438B (en) * 2019-02-15 2020-12-15 京东方科技集团股份有限公司 Display substrate, preparation method thereof and display device
TWI688119B (en) * 2019-05-23 2020-03-11 錼創顯示科技股份有限公司 Patterned epitaxial substrate and semiconductor structure
US11469261B2 (en) * 2019-08-20 2022-10-11 Beijing Boe Technology Development Co., Ltd. Array substrate, display apparatus, and method of fabricating array substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230772A1 (en) * 2007-03-20 2008-09-25 Norihiko Kamiura Display device and method of manufacturing the display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904523B1 (en) 2002-12-26 2009-06-25 엘지디스플레이 주식회사 Thin Film Transistor for Active Matrix type Organic Light Emitting Diode Device
TWI297210B (en) 2006-02-24 2008-05-21 Toppoly Optoelectronics Corp System for displaying images including electroluminescent device and method for fabricating the same
JP5024021B2 (en) 2007-12-18 2012-09-12 セイコーエプソン株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5572942B2 (en) 2008-11-28 2014-08-20 住友化学株式会社 Light emitting device and manufacturing method thereof
KR20100067761A (en) 2008-12-12 2010-06-22 엘지디스플레이 주식회사 Organic light emitting display device and method for fabricating the same
KR20110023996A (en) 2009-09-01 2011-03-09 엘지디스플레이 주식회사 Organic light emitting display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230772A1 (en) * 2007-03-20 2008-09-25 Norihiko Kamiura Display device and method of manufacturing the display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190267563A1 (en) * 2016-12-28 2019-08-29 Lg Display Co., Ltd. Electroluminescent display device and method for manufacturing the same
US10910575B2 (en) * 2016-12-28 2021-02-02 Lg Display Co., Ltd. Electroluminescent display device and method for manufacturing the same
US20190109153A1 (en) * 2017-10-11 2019-04-11 Boe Technology Group Co., Ltd. Array substrate and method for manufacturing the same, display apparatus
US10811436B2 (en) * 2017-10-11 2020-10-20 Boe Technology Group Co., Ltd. Array substrate having a convex structure
US10847592B2 (en) * 2017-12-11 2020-11-24 Lg Display Co., Ltd. Electroluminescent display device
US20190181204A1 (en) * 2017-12-11 2019-06-13 Lg Display Co., Ltd. Electroluminescent Display Device
WO2020065859A1 (en) * 2018-09-27 2020-04-02 シャープ株式会社 Display device and display device production method
US20210351251A1 (en) * 2018-09-27 2021-11-11 Sharp Kabushiki Kaisha Display device and method of manufacturing display device
US11957001B2 (en) * 2018-09-27 2024-04-09 Sharp Kabushiki Kaisha Display device and method of manufacturing display device
US11094761B2 (en) * 2018-12-11 2021-08-17 Lg Display Co., Ltd. Organic light emitting display device and method of fabricating thereof
CN111403434A (en) * 2018-12-28 2020-07-10 乐金显示有限公司 Organic light emitting display device and method of manufacturing the same
US20210175281A1 (en) * 2019-12-09 2021-06-10 Lg Display Co., Ltd. Electroluminescent Display Device
US11658205B2 (en) * 2019-12-09 2023-05-23 Lg Display Co., Ltd. Electroluminescent display device

Also Published As

Publication number Publication date
TW201633582A (en) 2016-09-16
US9923036B2 (en) 2018-03-20
CN105702681A (en) 2016-06-22
KR101820197B1 (en) 2018-01-19
TWI606625B (en) 2017-11-21
CN105702681B (en) 2018-11-30
US9748319B2 (en) 2017-08-29
US20170294494A1 (en) 2017-10-12
KR20160073450A (en) 2016-06-27

Similar Documents

Publication Publication Date Title
US9923036B2 (en) Thin film transistor array substrate and method of fabricating the same
US11289682B2 (en) Organic light emitting diode display device
KR100927296B1 (en) Organic EL Devices and Displays
TWI545743B (en) Organic el device, method of producing organic el device, and electronic apparatus
US9843013B2 (en) Electroluminescent device and method for manufacturing same
US9728587B2 (en) Organic light emitting diode device with a color calibration layer
KR102491876B1 (en) Display apparutus
US10446614B2 (en) Organic light-emitting display device
KR101749147B1 (en) Organic light emitting display device and method for manufacturing the same
KR102007905B1 (en) Display panel and liquid crystal display including the same
US10170526B1 (en) Organic light emitting diode display panel and method for manufacturing same
KR20170052766A (en) Organic light emitting diode display device
KR20150135624A (en) Flat Panel Display Having Low Reflective Black Matrix And Method For Manufacturing The Same
KR102151609B1 (en) Display apparatus and manufacturing method of the same
TWI676163B (en) Display device having a white emitting area
US10020356B2 (en) Organic light-emitting diode display device
GB2566606A (en) Electroluminescent display device
US20150014639A1 (en) Organic light emitting diode display having reduced power consumption
US20210391557A1 (en) Oled display device and display apparatus
KR101957145B1 (en) Organic Light Emitting diode display and method of manufacturing the same
JP2019110271A (en) Display
US20170170250A1 (en) Organic el display device
US11011584B2 (en) Array substrate and fabricating method thereof, and display device
KR20170079336A (en) Organic light emitting diode display device
KR20160035685A (en) Organic Light Emitting Diode Display Having Enhanced Brightness Viewing Angle And Color Viewing Angle

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG DISPLAY CO., LTD, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, KANG HYUN;YANG, KISOUB;CHOI, SEUNG RYUL;AND OTHERS;REEL/FRAME:036971/0498

Effective date: 20150924

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4