US20160165719A1 - Stretchable electronic patch having a foldable circuit layer - Google Patents
Stretchable electronic patch having a foldable circuit layer Download PDFInfo
- Publication number
- US20160165719A1 US20160165719A1 US14/644,183 US201514644183A US2016165719A1 US 20160165719 A1 US20160165719 A1 US 20160165719A1 US 201514644183 A US201514644183 A US 201514644183A US 2016165719 A1 US2016165719 A1 US 2016165719A1
- Authority
- US
- United States
- Prior art keywords
- electronic
- foldable
- patch
- layer
- circuit layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims description 43
- 239000004065 semiconductor Substances 0.000 claims description 34
- 238000004891 communication Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 23
- -1 Polyethylene Polymers 0.000 claims description 11
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 229920000573 polyethylene Polymers 0.000 claims description 11
- 239000004593 Epoxy Substances 0.000 claims description 7
- 239000004642 Polyimide Substances 0.000 claims description 7
- 239000004760 aramid Substances 0.000 claims description 7
- 229920003235 aromatic polyamide Polymers 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 7
- 229920001721 polyimide Polymers 0.000 claims description 7
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 claims description 4
- 239000013536 elastomeric material Substances 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 163
- 239000000126 substance Substances 0.000 description 13
- 239000012790 adhesive layer Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000000774 hypoallergenic effect Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001175 rotational moulding Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 230000037237 body shape Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0277—Bendability or stretchability details
- H05K1/0283—Stretchable printed circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6823—Trunk, e.g., chest, back, abdomen, hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6825—Hand
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6828—Leg
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6829—Foot or ankle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6832—Means for maintaining contact with the body using adhesives
- A61B5/6833—Adhesive patches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
- H04B1/385—Transceivers carried on the body, e.g. in helmets
-
- H04B5/0056—
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/148—Arrangements of two or more hingeably connected rigid printed circuit boards, i.e. connected by flexible means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
- A61B2562/046—Arrangements of multiple sensors of the same type in a matrix array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
- H04B1/385—Transceivers carried on the body, e.g. in helmets
- H04B2001/3866—Transceivers carried on the body, e.g. in helmets carried on the head
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0133—Elastomeric or compliant polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09027—Non-rectangular flat PCB, e.g. circular
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09218—Conductive traces
- H05K2201/09263—Meander
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10015—Non-printed capacitor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10022—Non-printed resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/1003—Non-printed inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10098—Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10151—Sensor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10166—Transistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10174—Diode
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/13—Moulding and encapsulation; Deposition techniques; Protective layers
- H05K2203/1305—Moulding and encapsulation
- H05K2203/1316—Moulded encapsulation of mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0014—Shaping of the substrate, e.g. by moulding
Definitions
- the present application relates to electronic devices, and in particular, to electronic patches that can adhere to human skin or the surface of an object, including curved surfaces.
- Wearable tags are a specific type of electronic patches.
- electronic patches or stickers can be attached not only to human bodies but also to other objects such as merchandized goods such as computers, machineries, and clothes, packaging material and shipping boxes.
- Electronic patches can communicate with smart phones or other devices wirelessly, through NFC, Bluetooth, WiFi, or other methods.
- Electronic patches can be used for tracking objects, for performing functions such as producing sound, light or vibrations, and so on. As the applications and human needs become more sophisticated and complex, there are a rapidly increasing number of tasks that electronic patches are required to perform. Because of the complex curvatures of the objects, the electronic patches are often required to be conformal to curved surfaces. In addition, the curvature of an object may vary overtime.
- NFC Near Field Communication
- NFC is a wireless communication standard which enables two devices in a short range to establish a communication channel within a short period of time through radio waves in the 13.56 MHz frequency range.
- NFC can be a useful technology for data transfer between two devices in close proximity to one another. Because it needs the two devices to be in close proximity to one another (less than 10 cm), it is more secure than other wireless technologies like Bluetooth and Wi-Fi. Hence, it can be seen as an easy and secure tool for establishing quick two-way connections for data transfer.
- NFC is a two-way communication tool, one of the devices/cards can have a passive NFC tag that can reduce the cost and still behave in the same way as any other RFID tag.
- Bluetooth is another wireless technology standard for exchanging data over relatively long distance in tens of meters. It uses short wavelength UHF radio waves from 2.4 to 2.485 GHz from fixed or mobile devices. Bluetooth devices have evolved to meet the increasing demand for low-power solutions that is required for wearable electronics. Benefited from relatively longer reading distance and active communication, Bluetooth module help wearable patches to continuously monitoring vital information without any human interference, which gives Bluetooth advantage over NFC solution in many applications.
- Wearable tag is an electronic patch that can be worn by a user.
- a wearable electronic patch is required to directly stay on user's skin and function for an extended period of time from hours to months.
- An electronic patch can contain a micro-electronic system and can be accessed using NFC, Bluetooth, WiFi, or other wireless technologies.
- An authentication wearable tag can be used as a “password” similar to a barcode. For example, it can be used to recognize a user's smart phone for authentication purpose. It can also be integrated with different sensors for other purposes such as vital signs monitoring, motion track, skin temperature measurements and ECG detection.
- a wearable electronic patch that has sensor, computation, and communication functions usually require multiple semiconductor chips assembled on flexible printed circuits.
- Semiconductor chips are rigid and have three dimensions while printed circuits are made of polymer substrate that can be flexible but not deformable to respond to curvature change of the skin commonly due to muscle movements underneath.
- Human skin can move around with high percentage of deformation, whereas a conventional electronic patch cannot move with the same amount of strains as the skin, which is one reason for user's feeling of discomfort.
- the presently disclosure attempts to address the aforementioned limitations in conventional electronic patches.
- the disclosed electronic patches are highly compliant and more stretchable, while also being able to support the circuit, chips, and other electronic components in the wearable electronic patches.
- the disclosed electronic patches can change their physical shape and dimension to relieve stresses such as repeated elongations, therefore increasing durability.
- the disclosed electronic patches can stay attached to skin for longer period of time enduring muscle movements while providing constant contact to the skin.
- the disclosed electronic patches are also breathable.
- the stretchability and the breathability make the disclosed electronic patches more comfortable for the users.
- an electronic patch includes a foldable circuit layer that includes a foldable network that includes comprising: a plurality of electronic modules comprising a plurality of electronic components, and flexible straps that connect the plurality of electronic modules, wherein the flexible straps comprise conductive circuit that are conductively connected with the plurality of electronic components in the plurality of electronic modules. Neighboring electronic modules can undulate in opposite directions normal to the foldable circuit layer.
- the electronic patch also includes an elastic layer that encloses the foldable circuit layer.
- Implementations of the system may include one or more of the following.
- the plurality of electronic modules can include a first electronic module; second electronic modules on two sides of the first electronic module along a first planar direction; third electronic modules on two sides of the first electronic module along a second planar direction, wherein the first electronic module can undulate in a direction opposite to undulation directions of the second electronic modules and the third electronic modules.
- the first electronic module and the second electronic modules can be positioned in a row, wherein the first electronic module and the third electronic modules can be positioned in a column perpendicular to the row.
- the plurality of electronic modules and the flexible straps can define holes therein, which in part forms the foldable network.
- the elastic layer can have a Young's Modulus lower than 0.3 Gpa.
- the elastic layer can include an elastomeric material or a viscoelastic polymeric material.
- the plurality of electronic modules can be formed on support substrates.
- the support substrate can have a Young's Modulus higher than 0.5 Gpa.
- the first support substrate can have Polyimide, Polyethylene, Terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- the electronic components in the plurality of electronic modules can have one or more semiconductor chips.
- the one or more semiconductor chips can wirelessly communicate with an external device.
- the electronic components in the plurality of electronic modules can include an antenna circuit configured to receive or transmit wireless signals in communications with the external device.
- the one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with the external device based on near field communication (NFC), Wi-Fi, Bluetooth, or RFID wireless communication standard.
- NFC near field communication
- the electronic components in the plurality of electronic modules can include capacitors, inductors, resistors, metal pads, diodes, transistors, or amplifiers.
- the present invention relates to an electronic patch that includes a foldable circuit layer comprising: a foldable substrate comprising a plurality of sections separated by fold lines, wherein the foldable substrate is configured to be folded along the fold lines; a conductive circuit; and a plurality of electronic components on different sections in the plurality of sections, wherein the conductive circuit is configured to connect the plurality of electronic components across the plurality of sections; and an elastic layer that encloses the undulated circuit layer.
- Implementations of the system may include one or more of the following.
- the substrate cross-sectionally can have a zigzag shape.
- the fold lines can be substantially parallel to each other.
- the present invention relates to an electronic patch, comprising: a first circuit layer comprising a substantially flat first substrate and a first conductive circuit; a second circuit layer comprising a substantially flat second substrate and a second conductive circuit; an undulated ribbon that connects the first circuit layer and the second circuit layer, wherein the undulated ribbon includes a third conductive circuit that connects the first conductive circuit and the second conductive circuit; and an elastic layer that encloses the first circuit layer, the second circuit layer, and the undulated ribbons.
- the undulated ribbon can be undulated in a direction normal to the substantially flat first substrate or the substantially flat second substrate.
- the undulated ribbon can have serpentine or zigzag shape that includes turns, folds, or loops out of a plane of the substantially flat first substrate or the substantially flat second substrate.
- the substantially flat first substrate and the substantially flat second substrate can be substantially parallel to each other.
- the undulated ribbon can be fabricated by pressing a flat circuit layer by molds comprising recesses having undulated contours.
- the electronic patch can further include: multiple undulated ribbons that connect the first circuit layer and the second circuit layer, wherein the multiple undulated ribbons define at least one opening therein.
- the first support substrate can have a Young's Modulus higher than 0.5 Gpa.
- the first support substrate can include Polyimide, Polyethylene, Terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- the undulated ribbon can have a Young's Modulus lower than 0.3 Gpa.
- the elastic layer can have a Young's Modulus lower than 0.3 Gpa.
- the elastic layer can include an elastomeric material or a viscoelastic polymeric material.
- At least one of the first circuit layer or the second circuit layer can include one or more semiconductor chips in connection with the first conductive circuit and the second conductive circuit.
- the one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with an external device.
- At least one of the first conductive circuit or the second conductive circuit can include an antenna circuit that can receive or transmit wireless signals in communications with the external device.
- the one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with the external device based on near field communication (NFC), Wi-Fi, Bluetooth, or RFID wireless communication standard.
- the electronic patch can further include an adhesive layer under the elastic layer and configured to adhere to a user's skin.
- At least one of the first circuit layer or the second circuit layer can include one or more sensors, actuators, or chemical delivery devices in connection with the conductive circuit.
- At least one of the first circuit layer or the second circuit layer can include one or more electronic components selected from the group consisting of capacitors, inductors, resistors, metal pads, diodes, transistors, and amplifiers.
- FIG. 1 illustrates the usage of a wearable electronic patch that is attached to a user's skin.
- FIGS. 2A and 2B are respectively a cross-sectional and a perspective view of an exemplified stretchable wearable electronic patch in accordance with some embodiments of the present invention.
- FIG. 3A is an exploded perspective view of another exemplified stretchable multi-layer electronic patch in accordance with some embodiments of the present invention.
- FIG. 3B is a detailed perspective view of the stretchable circuit layer in FIG. 3A .
- FIGS. 4A-4C are cross-sectional views showing the fabrication of an exemplified stretchable wearable electronic patch in accordance with some embodiments of the present invention.
- FIGS. 5A-5C are respectively top and cross-sectional views of an exemplified stretchable wearable electronic patch having foldable circuit layer in accordance with some embodiments of the present invention.
- FIGS. 6A-6D are perspective views of another exemplified stretchable wearable electronic patch having foldable circuit layer in accordance with some embodiments of the present invention.
- FIG. 7 is a cross-sectional view of a stretchable wearable electronic patch comprising the exemplified stretchable wearable electronic patch having foldable circuit layer in FIGS. 6A-6D .
- an electronic patch 100 adheres to a person's skin 110 for measuring body vital signs.
- the electronic patch 100 can be placed on forehead, hand, wrist, arm, shoulder, waist, leg, foot, or other parts of the body.
- the term “electronic patch” can also be referred to as “electronic sticker” or “electronic tag”.
- wearable electronic patches face several challenges: people's daily activities such as taking showers or bathes, swimming, exercises, holding weights, etc. involve muscle and skin movements. The electronic patches thus need to responsively change their physical dimensions to be able to adhere to the skin for extended periods of time. The electronic patches may also be rubbed by clothing, hands, or other objects numerous times a day. While Band-Aid patches usually cannot on skin for more than a week, conventional electronic patches normally have much stiffer substrates, which makes them more easily rubbed off than Band-Aid stickers. In addition, conventional electronic patches are not comfortable to wear because they are not stretchable, inflexible, and not breathable.
- an electronic patch 200 includes an elastic layer 205 , a first circuit layer 210 , a second circuit layer 220 , and one or more undulated ribbons 240 that connect the first circuit layer 210 and the second circuit layer 220 .
- the widths of the one or more undulated ribbons 240 are much larger than their thicknesses.
- the first circuit layer 210 and the second circuit layer 220 are substantially flat and are substantially parallel to each other.
- the first circuit layer 210 , the second circuit layer 220 , and the one or more undulated ribbons 240 are embedded or enclosed in the elastic layer 205 .
- the first circuit layer 210 includes a conductive circuit 215 and one or more semiconductor chips 218 .
- the second circuit layer 220 includes a conductive circuit 225 and one or more semiconductor chips 228 .
- the one or more undulated ribbons 240 include a conductive circuit 245 that connects the conductive circuit 215 and the conductive circuit 225 respectively in the first circuit layer 210 and the second circuit layer 220 .
- the conductive circuit 245 can be laid on or embedded in one of the undulated ribbons 240 .
- the conductive circuit 215 and the conductive circuit 225 can optionally include an antenna circuit, which by working with the semiconductor chips 218 , 228 can communicate with external devices based on NFC standard, RFID, Wi-Fi, Bluetooth, or other types of wireless communication standard.
- external devices include smart phones, computers, mobile payment devices, scanners and readers (e.g. RFID readers), medical devices, security systems, personal identification systems, etc.
- Wireless communications compatible with the electronic patch 200 include NFC in a frequency range near 13.56 MHz, UHF RFID at about 915 MHz, Bluetooth in 2.4 GHz or 5 GHz frequency ranges, and so on.
- the first circuit layer 210 and the second circuit layer 220 can include electronic components such as the semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, amplifiers.
- the sensors can also measure temperature, acceleration and movements, and chemical or biological substances.
- the electronic components can also include electromechanical actuators, chemical injectors, etc.
- the semiconductor chips 218 , 228 can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions.
- the elastic layer 205 is made of a non-conductive material such as an elastomeric material or a viscoelastic polymeric material.
- the elastic layer 205 serves as a polymer matrix for the first circuit layer 210 , the second circuit layer 220 , and the one or more undulated ribbons 240 .
- the elastic layer 205 can be made of a material having low Young's modulus and high failure strain. In some embodiments, the elastic layer 205 has Young's Modulus ⁇ 0.3 Gpa. In some cases, the elastic layer 205 and can have Young's Modulus ⁇ 0.1 Gpa to provide enhanced flexibility and tackability.
- Materials suitable for the elastic layer 205 include elastomers, viscoelastic polymers, such as silicone, and medical grade polyurethane that is a transparent medical dressing used to cover and protect wounds with breathability and conformation to skin.
- the first circuit layer 210 and the second circuit layer 220 include support substrates 211 , 221 that are made of sufficiently rigid materials to support to the conductive circuits 215 , 225 and the semiconductor chips 218 , 228 .
- the first circuit layer 210 and the second circuit layer 220 can have Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa.
- materials suitable for the first circuit layer 210 and the second circuit layer 220 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- the first circuit layer 210 and the second circuit layer 220 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process.
- the first circuit layer 210 and/or the second circuit layer 220 can include one or more layers of conductive metals to provide additional wiring capabilities.
- the first circuit layer 210 and the second circuit layer 220 are thinner than 0.2 mm to provide flexibility and bendability to the electronic patch 200 .
- the one or more undulated ribbons 240 have curved or wavy shapes that undulate in the normal direction perpendicular to the planar directions of the electronic patch 200 .
- the one or more undulated ribbons 240 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane of the electronic patch 200 or the first circuit layer 210 and the second circuit layer 220 .
- the user skin When the electronic patch 200 is worn on a user's skin, the user skin often stretches (or compresses) in response to user's body (thus muscle) movements, thus conforming to user's skin in different moving positions.
- the undulated ribbons 240 can elongate by unfolding at least partially some of their curved or wavy shapes without exerting excessive tensions on the conductive circuits 215 , 225 , 245 , or on the semiconductor chips 218 , 228 .
- the conductive circuits 215 , 225 , 245 and electronic components can stay intact and maintain normal functions under repeated stretches and compressions when the electronic patch 200 is worn on a user's skin.
- gaps 250 between the undulated ribbons 240 provide breathability to the electronic patch 200 .
- the elastic layer 205 can usually be made of polymer materials that are breathable and allowing moisture from user's skin to permeate and released to the air.
- the more rigid first circuit layer 210 and the second circuit layer 220 are much less permeable to moisture. Large patches of rigid and dense support substrate can shield moisture from breathed out and creates discomfort to the user.
- the gap 250 between the undulated ribbons 240 allows the moisture or aspiration to permeate through the elastic layer 205 and significantly improve comfort to the user.
- an adhesive layer (not shown) can be formed under the elastic layer 205 to allow the electronic patch 200 to be adhered to user's skin.
- the adhesive layer can be pressure sensitive, which allows the compliant wearable patches tightly adhere to human skin under pressure, applied for example by a thumb.
- the adhesive layer can be made of a medical pressure sensitive adhesive.
- An example of such adhesive is medical grade tackified Hypoallergenic Pressure Sensitive Adhesive.
- a ribbon of printed circuit can have a serpentine shape within the plane of the circuit board.
- in-plane serpentine shapes are not suitable for wearable electronic patches; they create twists when they are stretched, which often create cracks and can break the conductive circuits within and at the connection points with the circuit layers. Moreover, the twists also create pricks out of plane that may create discomfort to the wearing user.
- the presently disclosed undulated ribbons in contrast, undulate in normal directions and can thus elongate and stretch without creating twist or excessive internal tension to the conductive circuits.
- the direction of the undulation being normal to flat first substrate provides significant performance and manufacturing advantages. It allows much better stretchability comparing to the undulation being parallel to flat frustrates. And it enables a simple manufacturing process by folding or pressing, etc.
- the first circuit layer 210 , the second circuit layer 220 and the undulated ribbons 240 are formed on a common supporting substrate using flexible printed circuits process. There is no complex assembling required to connect the multiple circuit layers, which simplifies the manufacturing process and brings extra integrity into the products.
- an electronic patch 300 includes an elastic layer 310 , a stretchable circuit layer 320 , and an adhesive layer 350 formed under the stretchable circuit layer 320 .
- the stretchable circuit layer 320 includes an elastic layer 325 and a network of circuit modules 330 connected by undulated ribbons 340 embedded in the elastic layer 325 .
- the circuit modules 330 include conductive circuits 335 and semiconductor chips 338 .
- the undulated ribbons 340 include conductive lines 345 that connect the conductive circuits 335 on the different circuit modules 330 .
- the conductive circuits 345 can be laid on or embedded in their respective undulated ribbons 340 .
- the conductive circuits 335 can optionally include an antenna circuit, which by working with the semiconductor chips 338 can communicate with external devices based on NFC standard, RFID, Wi-Fi, Bluetooth, or other types of wireless communication standard.
- external devices include smart phones, computers, mobile payment devices, scanners and readers (e.g. RFID readers), medical devices, security systems, personal identification systems, etc.
- Wireless communications compatible with the electronic patch 300 includes NFC in a frequency range near 13.56 MHz, UHF RFID at about 915 MHz, Bluetooth in 2.4 GHz or 5 GHz frequency ranges, and so on.
- the circuit modules 330 can include electronic components such as the semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, amplifiers.
- the sensors can also measure temperature, acceleration and movements, and chemical or biological substances.
- the electronic components can also include electromechanical actuators, chemical injectors, etc.
- the semiconductor chips 338 can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions.
- the elastic layer 325 serves as a polymer matrix for the circuit modules 330 , and the undulated ribbons 340 .
- the elastic layer 310 , 325 can be made of a viscoelastic polymeric material having low Young's modulus and high failure strain.
- the elastic layer 310 , 325 has Young's Modulus ⁇ 0.3 Gpa.
- the elastic layer 310 , 325 and can have Young's Modulus ⁇ 0.1 Gpa to provide enhanced flexibility and tackability.
- Materials suitable for the elastic layer 310 , 325 include elastomers, viscoelastic polymers, such as silicone, and medical grade polyurethane that is a transparent medical dressing used to cover and protect wounds with breathability and conformation to skin.
- the circuit modules 330 are made of sufficiently rigid materials to support to the conductive circuits 335 and the semiconductor chips 338 .
- the circuit modules 330 can be made of a material having Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa. Examples of materials suitable for the circuit modules 330 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- the circuit modules 330 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process.
- the circuit modules 330 can include one or more layers of conductive metals to provide additional wiring capabilities. In some embodiments, the circuit modules 330 are thinner than 0.2 mm to provide flexibility and bendability to the electronic patch 300 .
- the undulated ribbons 340 have curved or wavy shapes that undulate in the normal direction perpendicular to the planar directions of the electronic patch 300 .
- the undulated ribbons 340 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane of the electronic patch 300 or the circuit modules 330 .
- the undulated ribbons 340 are shown in two exemplified (i.e. X and Y) directions.
- the undulated ribbons 340 in the disclosed electronic patches can be aligned in other orientations (ranging from 0 to 360 degrees relative an edge of a circuit module 330 ) within the plane the circuit modules 330 .
- the undulated ribbons 340 can elongate by unfolding at least partially some of their curved or wavy shapes without exerting excessive tensions on the conductive circuits 335 , or on the semiconductor chips 338 .
- the conductive circuits 335 and electronic components can stay intact and maintain normal functions under repeated stretches and compressions when the electronic patch 300 is worn on a user's skin.
- the undulated ribbons 340 can be laid out in orthogonal or other directions within the plane of the stretchable circuit layer 320 .
- the electronic patch 300 is stretchable and compressible in any in plane direction.
- gaps 348 between the undulated ribbons 340 provide breathability to the electronic patch 300 .
- the elastic layers 325 and 310 can usually be made of polymer materials that are breathable and allowing moisture from user's skin to permeate and released to the air.
- the more rigid circuit modules 330 are much less permeable to moisture. Large patches of rigid and dense support substrate can shield moisture from breathed out and creates discomfort to the user.
- the gap 348 between the undulated ribbons 340 allows the moisture or aspiration to permeate through the elastic layers 325 and 310 , and to significantly improve comfort to the user.
- the circuit modules 330 and the undulated ribbons 340 can be formed on a common piece supporting substrate using flexible printed circuits process. There is no complex assembling required to connect the multiple circuit layers, which simplifies the manufacturing process and brings extra integrity into the products.
- the adhesive layer 350 allows the electronic patch 300 to be adhered to user's skin.
- the adhesive layer can be pressure sensitive, which allows the compliant wearable patches tightly adhere to human skin under pressure, applied for example by a thumb.
- the adhesive layer can be made of a medical pressure sensitive adhesive.
- An example of such adhesive is medical grade tackified Hypoallergenic Pressure Sensitive Adhesive.
- the disclosed stretchable wearable electronic patches can be fabricated using one or more of the following steps.
- a single flat circuit layer 400 is first prepared.
- the flat circuit layer 400 includes semiconductor chips 218 , 228 and conductive circuits 215 , 225 (not shown), the conductive circuit 245 , and other electronic components that are on the first circuit layer 210 , the second circuit layer 220 , and the undulated ribbons 240 shown in FIGS. 2A and 2B .
- the flat circuit layer 400 is sandwiched between an upper mold 410 and a lower mold 430 .
- the upper mold 410 and the lower mold 430 respectively include recesses 415 , 425 and 435 , 445 for keeping space for semiconductor chips 218 , 228 during pressing.
- the recesses 415 , 435 are paired up to provide clearance for the semiconductor chip 218 .
- the recesses 425 , 445 are paired up to provide clearance for the semiconductor chip 228 .
- the upper mold 410 and the lower mold 430 respectively include recesses 420 , 440 which have undulated contours compatible with the shapes of the undulated ribbons 240 .
- the flat circuit layer 400 is transformed into the first circuit layer 210 and the second circuit layer 220 that include substantially flat substrates 211 , 221 , the undulated ribbons 240 that connects the first circuit layer 210 and the second circuit layer 220 .
- the undulated ribbons 240 is embedded with or laid on with the conductive circuit 245 .
- the shapes of the recesses 420 and 440 are configured to produce curved or wavy shapes in the undulated ribbon 240 that undulate in the normal direction perpendicular to the planar directions of the flat circuit layer 400 .
- the undulated ribbon 240 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane or the first circuit layer 210 and the second circuit layer 220 .
- the elastic layer 205 is formed around the first circuit layer 210 , the second circuit layer 220 , and the undulated ribbons 240 , which produces the electronic patch 200 .
- the elastic layer 205 can be formed by lamination or molding, including but not limited to, injection molding, transfer molding, vacuum molding, matrix molding, rotational molding, extrusion molding, blow molding, etc., by appropriate polymeric materials as described above.
- the elastic layer 205 serves as a polymer matrix for the first circuit layer 210 , the second circuit layer 220 , and the undulated ribbons 240 , which protects the electronic components and circuit and provides further flexibility and comfort.
- a foldable circuit layer 500 includes a foldable support substrate 505 and electronic elements 510 .
- the electronic elements 510 can include portions of conductive circuits, semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, and amplifiers.
- the sensors can also measure temperature, acceleration and movements, and chemical or biological substances.
- the electronic components can also include electromechanical actuators, chemical injectors, etc.
- the semiconductor chips can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions.
- the foldable support substrate 505 can also include one or more layers of conductive metals to provide additional wiring capabilities.
- the foldable support substrate 505 is made of sufficiently rigid materials to support to the electronic elements 510 .
- the foldable support substrate 505 can have Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa.
- materials suitable for the foldable support substrate 505 include Polyimide, Polyethylene, terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- the electronic elements 510 are distributed in different portions or sections separated by fold lines 515 .
- the fold lines 515 can be prepared by molding, pressing, and scoring.
- the foldable circuit layer 500 also includes flexible conductive lines laid out across the fold lines 515 , which connect different portions of the electronic elements 510 . In some embodiments, the fold lines 515 are substantially parallel to each other.
- the foldable circuit layer 500 can be pressed, creased, or folded to prepare an undulated circuit layer 520 .
- the cross-section of the foldable circuit layer 500 has a zigzag shape that undulates out of the plane of the originally foldable circuit layer 500 .
- an elastic layer 540 can be formed around the undulated circuit layer 520 similar to what is shown in FIG. 4C to produce an electronic patch 550 .
- the elastic layer 540 can be formed by laminated or molded, including but not limited to, injection molding, transfer molding, vacuum molding, matrix molding, rotational molding, extrusion molding, blow molding, etc. by appropriate polymeric materials as described above.
- the elastic layer serves as a polymer matrix for the undulated circuit layer 520 , which protects the electronic components and circuit and provides further flexibility and comfort.
- One difference between the electronic patch 550 and the electronic patch 200 shown in FIGS. 2A-2B, 4A-4C is that all or most electronic components and conductive circuits in the electronic patch 550 are on undulated portions of the foldable support substrate 505 while in the electronic patch 200 most electronic components are positioned on flat circuit layers connected by one or more undulated circuit layers.
- a foldable circuit layer 600 which is compatible with the presently disclosed stretchable electronic patch, includes a foldable network 610 of electronic modules 620 - 625 connected by flexible straps 630 .
- the electronic modules 620 - 625 can include electronic components such as conductive circuits, semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, and amplifiers.
- the sensors can also measure temperature, acceleration and movements, and chemical or biological substances.
- the electronic components can also include electromechanical actuators, chemical injectors, etc.
- the semiconductor chips can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions.
- the electronic components in the plurality of electronic modules can include an antenna circuit that can receive or transmit wireless signals in communications with the external device.
- the flexible straps 630 is formed a bendable or elastic material and includes conductive circuits that connect the conductive circuits, semiconductor chips, and other electronic components in different electronic modules 620 - 625 .
- the electronic modules 620 - 625 and the flexible straps 630 define holes 640 in between, which form the foldable network 610 in the foldable flat circuit layer 600 .
- the flexible straps 630 and the substrate in the electronic modules 620 - 625 can be formed from a same layer of substrate by techniques such as cutting, laser ablation, punching etc.
- an electronic patch 700 can further include an elastic layer 710 in which the foldable flat circuit layer 600 or the foldable network 610 is embedded.
- the elastic layer 710 similar to above described elastic layers ( 205 in FIG. 2A and 325 in FIG. 3B ), serves as an elastic (polymer) matrix for the electronic modules 620 - 625 and the flexible straps 630 .
- the elastic layer 710 can be made of a viscoelastic polymeric material having low Young's modulus and high failure strain.
- the elastic layer 710 can have Young's Modulus ⁇ 0.3 Gpa. In some cases, the elastic layer and can have Young's Modulus ⁇ 0.1 Gpa to provide enhanced flexibility and tackability.
- Materials suitable for the elastic layer include elastomers, viscoelastic polymers, such as silicone, and medical grade polyurethane that is a transparent medical dressing used to cover and protect wounds with breathability and conformation to skin.
- the elastic layer 710 are sufficiently flexible to permit and conform to the folding or crumpling of the foldable flat circuit layer 600 or the foldable network 610 .
- the electronic modules 620 - 625 are formed on substantially flat support substrates made of sufficiently rigid materials to support to the semiconductor chips and other electronic components.
- the electronic modules 620 - 625 can be made of a material having Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa.
- Examples of materials suitable for the circuit modules 330 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate.
- electronic modules 620 - 625 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process.
- the electronic modules 620 - 625 can include one or more layers of conductive metals to provide additional wiring capabilities.
- FIG. 6A shows the foldable network 610 in a flat configuration.
- the foldable network 610 can be folded or crumpled in different configurations.
- the foldable circuit layer 600 can not only fold along straight lines in the planar directions, similar to the foldable circuit layer 500 in FIG. 5A , the foldable circuit layer 600 can also simultaneously fold in two directions as shown in FIGS. 6B-6D .
- neighboring electronic modules 620 - 625 within same row or column can undulate in opposite directions the layer normal direction.
- the electronic module 621 is aligned with two neighboring electronic modules 622 , 623 in a same row and lined up with other neighboring electronic modules 624 , 625 in a same column.
- the electronic module 621 can be displaced in the layer normal direction opposite to the undulation directions of the electronic modules 622 - 625 .
- the foldable network 610 and the foldable circuit layer 600 can crumple, fold, or wrinkle locally instead of folding along parallel fold lines in predetermine directions.
- the foldable network 610 and the foldable circuit layer 600 can also form origami-type structures.
- foldable circuit layers can be very flexible in adapting to changes in body shape and positions of the person who wears the electronic patch.
- the foldable circuit layers can characterized by thickness that are scaled in mathematically fractal relationships relation to the average distance between the neighboring electronic modules, which provides flexibility and stretchability along both the normal and planar directions.
- the flexible straps can be configured in helical or coiled shapes to provide further flexibility.
- the foldable networks in the foldable circuit layers can be implemented in a knitted or weaved structures to support stretchability, flexibility, as well as reliable mechanical strength and durability.
- the applications and the types of electronic components of the disclosed electronic patches are not limited by the examples given above; they can be applicable to many other fields.
- the materials suitable for the different layers of the electronic patches are also not limited by the examples provided.
- the layouts and forms of the elastic layer, the undulated and the flat circuit layer, the breathing openings, and the electronic components can have other configurations without deviating from the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Manufacturing & Machinery (AREA)
- Structure Of Printed Boards (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
- The present application relates to electronic devices, and in particular, to electronic patches that can adhere to human skin or the surface of an object, including curved surfaces.
- Wearable tags are a specific type of electronic patches. In general, electronic patches or stickers can be attached not only to human bodies but also to other objects such as merchandized goods such as computers, machineries, and clothes, packaging material and shipping boxes. Electronic patches can communicate with smart phones or other devices wirelessly, through NFC, Bluetooth, WiFi, or other methods.
- Electronic patches can be used for tracking objects, for performing functions such as producing sound, light or vibrations, and so on. As the applications and human needs become more sophisticated and complex, there are a rapidly increasing number of tasks that electronic patches are required to perform. Because of the complex curvatures of the objects, the electronic patches are often required to be conformal to curved surfaces. In addition, the curvature of an object may vary overtime.
- Wearable tags or patches can communicate with smart phones and other devices using WiFi, Bluetooth, or NFC technologies. Near Field Communication (NFC) is a wireless communication standard which enables two devices in a short range to establish a communication channel within a short period of time through radio waves in the 13.56 MHz frequency range. NFC can be a useful technology for data transfer between two devices in close proximity to one another. Because it needs the two devices to be in close proximity to one another (less than 10 cm), it is more secure than other wireless technologies like Bluetooth and Wi-Fi. Hence, it can be seen as an easy and secure tool for establishing quick two-way connections for data transfer. NFC is a two-way communication tool, one of the devices/cards can have a passive NFC tag that can reduce the cost and still behave in the same way as any other RFID tag.
- Bluetooth is another wireless technology standard for exchanging data over relatively long distance in tens of meters. It uses short wavelength UHF radio waves from 2.4 to 2.485 GHz from fixed or mobile devices. Bluetooth devices have evolved to meet the increasing demand for low-power solutions that is required for wearable electronics. Benefited from relatively longer reading distance and active communication, Bluetooth module help wearable patches to continuously monitoring vital information without any human interference, which gives Bluetooth advantage over NFC solution in many applications.
- Wearable tag (or patch) is an electronic patch that can be worn by a user. A wearable electronic patch is required to directly stay on user's skin and function for an extended period of time from hours to months. An electronic patch can contain a micro-electronic system and can be accessed using NFC, Bluetooth, WiFi, or other wireless technologies. An authentication wearable tag can be used as a “password” similar to a barcode. For example, it can be used to recognize a user's smart phone for authentication purpose. It can also be integrated with different sensors for other purposes such as vital signs monitoring, motion track, skin temperature measurements and ECG detection.
- Despite initial development efforts, conventional wearable devices still face several drawbacks: they may not provide adequate comfort for users to wear them; they may not stay attached to user's body for the required length of time; they are usually not aesthetically appealing.
- A wearable electronic patch that has sensor, computation, and communication functions usually require multiple semiconductor chips assembled on flexible printed circuits. Semiconductor chips are rigid and have three dimensions while printed circuits are made of polymer substrate that can be flexible but not deformable to respond to curvature change of the skin commonly due to muscle movements underneath. Human skin can move around with high percentage of deformation, whereas a conventional electronic patch cannot move with the same amount of strains as the skin, which is one reason for user's feeling of discomfort.
- Another drawback of conventional electronic patches is that the rigid polymer substrate does not allow much breathability to the skin. The build-up of sweat and moisture can cause discomfort and irritation to the skin, especially after wearing it for an extended period of time. In addition, their rigid substrates are very difficult to conform to curved surfaces.
- Moreover, conventional wearable devices are often not robust enough to sustain repeated elongations during the movements of the body that the electronic patches are attached to. Under stress, different layers in electronic patches can break or delaminate rendering the patches inoperable.
- There is therefore a need for more flexible electronic patches that can stick to skin longer and are also comfortable for users to wear.
- The presently disclosure attempts to address the aforementioned limitations in conventional electronic patches. The disclosed electronic patches are highly compliant and more stretchable, while also being able to support the circuit, chips, and other electronic components in the wearable electronic patches. The disclosed electronic patches can change their physical shape and dimension to relieve stresses such as repeated elongations, therefore increasing durability. The disclosed electronic patches can stay attached to skin for longer period of time enduring muscle movements while providing constant contact to the skin.
- The disclosed electronic patches are also breathable. The stretchability and the breathability make the disclosed electronic patches more comfortable for the users.
- In one general aspect, the present invention relates to an electronic patch includes a foldable circuit layer that includes a foldable network that includes comprising: a plurality of electronic modules comprising a plurality of electronic components, and flexible straps that connect the plurality of electronic modules, wherein the flexible straps comprise conductive circuit that are conductively connected with the plurality of electronic components in the plurality of electronic modules. Neighboring electronic modules can undulate in opposite directions normal to the foldable circuit layer. The electronic patch also includes an elastic layer that encloses the foldable circuit layer.
- Implementations of the system may include one or more of the following. The plurality of electronic modules can include a first electronic module; second electronic modules on two sides of the first electronic module along a first planar direction; third electronic modules on two sides of the first electronic module along a second planar direction, wherein the first electronic module can undulate in a direction opposite to undulation directions of the second electronic modules and the third electronic modules. The first electronic module and the second electronic modules can be positioned in a row, wherein the first electronic module and the third electronic modules can be positioned in a column perpendicular to the row. The plurality of electronic modules and the flexible straps can define holes therein, which in part forms the foldable network. The elastic layer can have a Young's Modulus lower than 0.3 Gpa. The elastic layer can include an elastomeric material or a viscoelastic polymeric material. The plurality of electronic modules can be formed on support substrates. The support substrate can have a Young's Modulus higher than 0.5 Gpa. The first support substrate can have Polyimide, Polyethylene, Terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. The electronic components in the plurality of electronic modules can have one or more semiconductor chips. The one or more semiconductor chips can wirelessly communicate with an external device. The electronic components in the plurality of electronic modules can include an antenna circuit configured to receive or transmit wireless signals in communications with the external device. The one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with the external device based on near field communication (NFC), Wi-Fi, Bluetooth, or RFID wireless communication standard. The electronic components in the plurality of electronic modules can include capacitors, inductors, resistors, metal pads, diodes, transistors, or amplifiers.
- In another general aspect, the present invention relates to an electronic patch that includes a foldable circuit layer comprising: a foldable substrate comprising a plurality of sections separated by fold lines, wherein the foldable substrate is configured to be folded along the fold lines; a conductive circuit; and a plurality of electronic components on different sections in the plurality of sections, wherein the conductive circuit is configured to connect the plurality of electronic components across the plurality of sections; and an elastic layer that encloses the undulated circuit layer.
- Implementations of the system may include one or more of the following. The substrate cross-sectionally can have a zigzag shape. The fold lines can be substantially parallel to each other.
- In another general aspect, the present invention relates to an electronic patch, comprising: a first circuit layer comprising a substantially flat first substrate and a first conductive circuit; a second circuit layer comprising a substantially flat second substrate and a second conductive circuit; an undulated ribbon that connects the first circuit layer and the second circuit layer, wherein the undulated ribbon includes a third conductive circuit that connects the first conductive circuit and the second conductive circuit; and an elastic layer that encloses the first circuit layer, the second circuit layer, and the undulated ribbons.
- Implementations of the system may include one or more of the following. The undulated ribbon can be undulated in a direction normal to the substantially flat first substrate or the substantially flat second substrate. The undulated ribbon can have serpentine or zigzag shape that includes turns, folds, or loops out of a plane of the substantially flat first substrate or the substantially flat second substrate. The substantially flat first substrate and the substantially flat second substrate can be substantially parallel to each other. The undulated ribbon can be fabricated by pressing a flat circuit layer by molds comprising recesses having undulated contours. The electronic patch can further include: multiple undulated ribbons that connect the first circuit layer and the second circuit layer, wherein the multiple undulated ribbons define at least one opening therein. The first support substrate can have a Young's Modulus higher than 0.5 Gpa. The first support substrate can include Polyimide, Polyethylene, Terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. The undulated ribbon can have a Young's Modulus lower than 0.3 Gpa. The elastic layer can have a Young's Modulus lower than 0.3 Gpa. The elastic layer can include an elastomeric material or a viscoelastic polymeric material. At least one of the first circuit layer or the second circuit layer can include one or more semiconductor chips in connection with the first conductive circuit and the second conductive circuit. The one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with an external device. At least one of the first conductive circuit or the second conductive circuit can include an antenna circuit that can receive or transmit wireless signals in communications with the external device. The one or more semiconductor chips in combination with the first conductive circuit or the second conductive circuit can wirelessly communicate with the external device based on near field communication (NFC), Wi-Fi, Bluetooth, or RFID wireless communication standard. The electronic patch can further include an adhesive layer under the elastic layer and configured to adhere to a user's skin. At least one of the first circuit layer or the second circuit layer can include one or more sensors, actuators, or chemical delivery devices in connection with the conductive circuit. At least one of the first circuit layer or the second circuit layer can include one or more electronic components selected from the group consisting of capacitors, inductors, resistors, metal pads, diodes, transistors, and amplifiers.
- These and other aspects, their implementations and other features are described in detail in the drawings, the description and the claims.
-
FIG. 1 illustrates the usage of a wearable electronic patch that is attached to a user's skin. -
FIGS. 2A and 2B are respectively a cross-sectional and a perspective view of an exemplified stretchable wearable electronic patch in accordance with some embodiments of the present invention. -
FIG. 3A is an exploded perspective view of another exemplified stretchable multi-layer electronic patch in accordance with some embodiments of the present invention. -
FIG. 3B is a detailed perspective view of the stretchable circuit layer inFIG. 3A . -
FIGS. 4A-4C are cross-sectional views showing the fabrication of an exemplified stretchable wearable electronic patch in accordance with some embodiments of the present invention. -
FIGS. 5A-5C are respectively top and cross-sectional views of an exemplified stretchable wearable electronic patch having foldable circuit layer in accordance with some embodiments of the present invention. -
FIGS. 6A-6D are perspective views of another exemplified stretchable wearable electronic patch having foldable circuit layer in accordance with some embodiments of the present invention. -
FIG. 7 is a cross-sectional view of a stretchable wearable electronic patch comprising the exemplified stretchable wearable electronic patch having foldable circuit layer inFIGS. 6A-6D . - Referring to
FIG. 1 , anelectronic patch 100 adheres to a person'sskin 110 for measuring body vital signs. Theelectronic patch 100 can be placed on forehead, hand, wrist, arm, shoulder, waist, leg, foot, or other parts of the body. In the present application, the term “electronic patch” can also be referred to as “electronic sticker” or “electronic tag”. - As discussed above, wearable electronic patches face several challenges: people's daily activities such as taking showers or bathes, swimming, exercises, holding weights, etc. involve muscle and skin movements. The electronic patches thus need to responsively change their physical dimensions to be able to adhere to the skin for extended periods of time. The electronic patches may also be rubbed by clothing, hands, or other objects numerous times a day. While Band-Aid patches usually cannot on skin for more than a week, conventional electronic patches normally have much stiffer substrates, which makes them more easily rubbed off than Band-Aid stickers. In addition, conventional electronic patches are not comfortable to wear because they are not stretchable, inflexible, and not breathable.
- The presently disclosure aims to overcome the drawbacks in the conventional electronic patches, and to provide highly stretchable, compliant, and durable wearable wireless patches that are also comfortable for users to wear. Referring to
FIGS. 2A and 2B , anelectronic patch 200 includes anelastic layer 205, afirst circuit layer 210, asecond circuit layer 220, and one or moreundulated ribbons 240 that connect thefirst circuit layer 210 and thesecond circuit layer 220. The widths of the one or moreundulated ribbons 240 are much larger than their thicknesses. Thefirst circuit layer 210 and thesecond circuit layer 220 are substantially flat and are substantially parallel to each other. Thefirst circuit layer 210, thesecond circuit layer 220, and the one or moreundulated ribbons 240 are embedded or enclosed in theelastic layer 205. - The
first circuit layer 210 includes aconductive circuit 215 and one ormore semiconductor chips 218. Thesecond circuit layer 220 includes aconductive circuit 225 and one ormore semiconductor chips 228. The one or moreundulated ribbons 240 include aconductive circuit 245 that connects theconductive circuit 215 and theconductive circuit 225 respectively in thefirst circuit layer 210 and thesecond circuit layer 220. Theconductive circuit 245 can be laid on or embedded in one of the undulatedribbons 240. - The
conductive circuit 215 and theconductive circuit 225 can optionally include an antenna circuit, which by working with thesemiconductor chips electronic patch 200 include NFC in a frequency range near 13.56 MHz, UHF RFID at about 915 MHz, Bluetooth in 2.4 GHz or 5 GHz frequency ranges, and so on. - The
first circuit layer 210 and thesecond circuit layer 220 can include electronic components such as the semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, amplifiers. The sensors can also measure temperature, acceleration and movements, and chemical or biological substances. The electronic components can also include electromechanical actuators, chemical injectors, etc. The semiconductor chips 218, 228 can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions. - The
elastic layer 205 is made of a non-conductive material such as an elastomeric material or a viscoelastic polymeric material. Theelastic layer 205 serves as a polymer matrix for thefirst circuit layer 210, thesecond circuit layer 220, and the one or moreundulated ribbons 240. Theelastic layer 205 can be made of a material having low Young's modulus and high failure strain. In some embodiments, theelastic layer 205 has Young's Modulus <0.3 Gpa. In some cases, theelastic layer 205 and can have Young's Modulus <0.1 Gpa to provide enhanced flexibility and tackability. Materials suitable for theelastic layer 205 include elastomers, viscoelastic polymers, such as silicone, and medical grade polyurethane that is a transparent medical dressing used to cover and protect wounds with breathability and conformation to skin. - The
first circuit layer 210 and thesecond circuit layer 220, on the other hand, includesupport substrates conductive circuits semiconductor chips first circuit layer 210 and thesecond circuit layer 220 can have Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa. Examples of materials suitable for thefirst circuit layer 210 and thesecond circuit layer 220 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. In some embodiments, thefirst circuit layer 210 and thesecond circuit layer 220 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process. Thefirst circuit layer 210 and/or thesecond circuit layer 220 can include one or more layers of conductive metals to provide additional wiring capabilities. In some embodiments, thefirst circuit layer 210 and thesecond circuit layer 220 are thinner than 0.2 mm to provide flexibility and bendability to theelectronic patch 200. - The one or more
undulated ribbons 240 have curved or wavy shapes that undulate in the normal direction perpendicular to the planar directions of theelectronic patch 200. The one or moreundulated ribbons 240 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane of theelectronic patch 200 or thefirst circuit layer 210 and thesecond circuit layer 220. - When the
electronic patch 200 is worn on a user's skin, the user skin often stretches (or compresses) in response to user's body (thus muscle) movements, thus conforming to user's skin in different moving positions. In response, the undulatedribbons 240 can elongate by unfolding at least partially some of their curved or wavy shapes without exerting excessive tensions on theconductive circuits semiconductor chips conductive circuits electronic patch 200 is worn on a user's skin. - Moreover,
gaps 250 between the undulatedribbons 240 provide breathability to theelectronic patch 200. Theelastic layer 205 can usually be made of polymer materials that are breathable and allowing moisture from user's skin to permeate and released to the air. On the other hand, the more rigidfirst circuit layer 210 and thesecond circuit layer 220 are much less permeable to moisture. Large patches of rigid and dense support substrate can shield moisture from breathed out and creates discomfort to the user. Thegap 250 between the undulatedribbons 240 allows the moisture or aspiration to permeate through theelastic layer 205 and significantly improve comfort to the user. - In some embodiments, an adhesive layer (not shown) can be formed under the
elastic layer 205 to allow theelectronic patch 200 to be adhered to user's skin. The adhesive layer can be pressure sensitive, which allows the compliant wearable patches tightly adhere to human skin under pressure, applied for example by a thumb. For instance, the adhesive layer can be made of a medical pressure sensitive adhesive. An example of such adhesive is medical grade tackified Hypoallergenic Pressure Sensitive Adhesive. - In some efforts, a ribbon of printed circuit can have a serpentine shape within the plane of the circuit board. However, in-plane serpentine shapes are not suitable for wearable electronic patches; they create twists when they are stretched, which often create cracks and can break the conductive circuits within and at the connection points with the circuit layers. Moreover, the twists also create pricks out of plane that may create discomfort to the wearing user. The presently disclosed undulated ribbons, in contrast, undulate in normal directions and can thus elongate and stretch without creating twist or excessive internal tension to the conductive circuits. The direction of the undulation being normal to flat first substrate provides significant performance and manufacturing advantages. It allows much better stretchability comparing to the undulation being parallel to flat frustrates. And it enables a simple manufacturing process by folding or pressing, etc.
- In some cases, the
first circuit layer 210, thesecond circuit layer 220 and the undulatedribbons 240 are formed on a common supporting substrate using flexible printed circuits process. There is no complex assembling required to connect the multiple circuit layers, which simplifies the manufacturing process and brings extra integrity into the products. - In some embodiments, referring to
FIGS. 3A and 3B , anelectronic patch 300 includes anelastic layer 310, astretchable circuit layer 320, and anadhesive layer 350 formed under thestretchable circuit layer 320. Thestretchable circuit layer 320 includes anelastic layer 325 and a network ofcircuit modules 330 connected by undulatedribbons 340 embedded in theelastic layer 325. - The
circuit modules 330 includeconductive circuits 335 andsemiconductor chips 338. The undulatedribbons 340 includeconductive lines 345 that connect theconductive circuits 335 on thedifferent circuit modules 330. Theconductive circuits 345 can be laid on or embedded in their respective undulatedribbons 340. - The
conductive circuits 335 can optionally include an antenna circuit, which by working with thesemiconductor chips 338 can communicate with external devices based on NFC standard, RFID, Wi-Fi, Bluetooth, or other types of wireless communication standard. Examples of external devices include smart phones, computers, mobile payment devices, scanners and readers (e.g. RFID readers), medical devices, security systems, personal identification systems, etc. Wireless communications compatible with theelectronic patch 300 includes NFC in a frequency range near 13.56 MHz, UHF RFID at about 915 MHz, Bluetooth in 2.4 GHz or 5 GHz frequency ranges, and so on. - The
circuit modules 330 can include electronic components such as the semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, amplifiers. The sensors can also measure temperature, acceleration and movements, and chemical or biological substances. The electronic components can also include electromechanical actuators, chemical injectors, etc. The semiconductor chips 338 can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions. - The
elastic layer 325 serves as a polymer matrix for thecircuit modules 330, and the undulatedribbons 340. Theelastic layer elastic layer elastic layer elastic layer - The
circuit modules 330, on the other hand, are made of sufficiently rigid materials to support to theconductive circuits 335 and the semiconductor chips 338. In some embodiments, thecircuit modules 330 can be made of a material having Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa. Examples of materials suitable for thecircuit modules 330 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. In some embodiments, thecircuit modules 330 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process. Thecircuit modules 330 can include one or more layers of conductive metals to provide additional wiring capabilities. In some embodiments, thecircuit modules 330 are thinner than 0.2 mm to provide flexibility and bendability to theelectronic patch 300. - The undulated
ribbons 340 have curved or wavy shapes that undulate in the normal direction perpendicular to the planar directions of theelectronic patch 300. The undulatedribbons 340 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane of theelectronic patch 300 or thecircuit modules 330. - In
FIGS. 3A and 3B , to simplifying the illustration, the undulatedribbons 340 are shown in two exemplified (i.e. X and Y) directions. In general, the undulatedribbons 340 in the disclosed electronic patches can be aligned in other orientations (ranging from 0 to 360 degrees relative an edge of a circuit module 330) within the plane thecircuit modules 330. - When the
electronic patch 300 is worn on a user's skin, the user skin often stretches (or compresses) in response to user's body (thus muscle) movements, thus conforming to user's skin in different moving positions. In response, the undulatedribbons 340 can elongate by unfolding at least partially some of their curved or wavy shapes without exerting excessive tensions on theconductive circuits 335, or on the semiconductor chips 338. Thus theconductive circuits 335 and electronic components can stay intact and maintain normal functions under repeated stretches and compressions when theelectronic patch 300 is worn on a user's skin. It should be noted that the undulatedribbons 340 can be laid out in orthogonal or other directions within the plane of thestretchable circuit layer 320. Theelectronic patch 300 is stretchable and compressible in any in plane direction. - Moreover,
gaps 348 between the undulatedribbons 340 provide breathability to theelectronic patch 300. Theelastic layers rigid circuit modules 330 are much less permeable to moisture. Large patches of rigid and dense support substrate can shield moisture from breathed out and creates discomfort to the user. Thegap 348 between the undulatedribbons 340 allows the moisture or aspiration to permeate through theelastic layers - In some cases, the
circuit modules 330 and the undulatedribbons 340 can be formed on a common piece supporting substrate using flexible printed circuits process. There is no complex assembling required to connect the multiple circuit layers, which simplifies the manufacturing process and brings extra integrity into the products. - The
adhesive layer 350 allows theelectronic patch 300 to be adhered to user's skin. The adhesive layer can be pressure sensitive, which allows the compliant wearable patches tightly adhere to human skin under pressure, applied for example by a thumb. For instance, the adhesive layer can be made of a medical pressure sensitive adhesive. An example of such adhesive is medical grade tackified Hypoallergenic Pressure Sensitive Adhesive. - Referring to
FIGS. 4A-4B , the disclosed stretchable wearable electronic patches can be fabricated using one or more of the following steps. A singleflat circuit layer 400 is first prepared. Theflat circuit layer 400 includessemiconductor chips conductive circuits 215, 225 (not shown), theconductive circuit 245, and other electronic components that are on thefirst circuit layer 210, thesecond circuit layer 220, and the undulatedribbons 240 shown inFIGS. 2A and 2B . - As shown in
FIG. 4A , theflat circuit layer 400 is sandwiched between anupper mold 410 and alower mold 430. Theupper mold 410 and thelower mold 430 respectively includerecesses semiconductor chips recesses semiconductor chip 218. Therecesses semiconductor chip 228. Theupper mold 410 and thelower mold 430 respectively includerecesses ribbons 240. When theupper mold 410 and thelower mold 430 are held pressed against each other under pressure, a (middle) portion of theflat circuit layer 400 is pressed following the contours of therecesses ribbons 240 with undulation in the layer normal direction. - After pressing, referring to
FIG. 4B , theflat circuit layer 400 is transformed into thefirst circuit layer 210 and thesecond circuit layer 220 that include substantiallyflat substrates ribbons 240 that connects thefirst circuit layer 210 and thesecond circuit layer 220. The undulatedribbons 240 is embedded with or laid on with theconductive circuit 245. The shapes of therecesses ribbon 240 that undulate in the normal direction perpendicular to the planar directions of theflat circuit layer 400. The undulatedribbon 240 can also be characterized having serpentine or zigzag shapes that have turns, folds, or loops out of the plane or thefirst circuit layer 210 and thesecond circuit layer 220. - Afterwards, referring to
FIG. 4C , theelastic layer 205 is formed around thefirst circuit layer 210, thesecond circuit layer 220, and the undulatedribbons 240, which produces theelectronic patch 200. Theelastic layer 205 can be formed by lamination or molding, including but not limited to, injection molding, transfer molding, vacuum molding, matrix molding, rotational molding, extrusion molding, blow molding, etc., by appropriate polymeric materials as described above. Theelastic layer 205 serves as a polymer matrix for thefirst circuit layer 210, thesecond circuit layer 220, and the undulatedribbons 240, which protects the electronic components and circuit and provides further flexibility and comfort. - In some embodiments, referring to
FIG. 5A , afoldable circuit layer 500 includes afoldable support substrate 505 andelectronic elements 510. Theelectronic elements 510 can include portions of conductive circuits, semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, and amplifiers. The sensors can also measure temperature, acceleration and movements, and chemical or biological substances. The electronic components can also include electromechanical actuators, chemical injectors, etc. The semiconductor chips can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions. Thefoldable support substrate 505 can also include one or more layers of conductive metals to provide additional wiring capabilities. - The
foldable support substrate 505 is made of sufficiently rigid materials to support to theelectronic elements 510. In some embodiments, thefoldable support substrate 505 can have Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa. Examples of materials suitable for thefoldable support substrate 505 include Polyimide, Polyethylene, terephthalate, PEEK, Polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. - In the
foldable circuit layer 500, theelectronic elements 510 are distributed in different portions or sections separated byfold lines 515. The fold lines 515 can be prepared by molding, pressing, and scoring. Thefoldable circuit layer 500 also includes flexible conductive lines laid out across thefold lines 515, which connect different portions of theelectronic elements 510. In some embodiments, thefold lines 515 are substantially parallel to each other. - Referring to
FIG. 5B , thefoldable circuit layer 500 can be pressed, creased, or folded to prepare an undulatedcircuit layer 520. After folding, the cross-section of thefoldable circuit layer 500 has a zigzag shape that undulates out of the plane of the originallyfoldable circuit layer 500. - In some embodiments, referring to
FIG. 5C , anelastic layer 540 can be formed around the undulatedcircuit layer 520 similar to what is shown inFIG. 4C to produce anelectronic patch 550. Theelastic layer 540 can be formed by laminated or molded, including but not limited to, injection molding, transfer molding, vacuum molding, matrix molding, rotational molding, extrusion molding, blow molding, etc. by appropriate polymeric materials as described above. The elastic layer serves as a polymer matrix for the undulatedcircuit layer 520, which protects the electronic components and circuit and provides further flexibility and comfort. - One difference between the
electronic patch 550 and theelectronic patch 200 shown inFIGS. 2A-2B, 4A-4C is that all or most electronic components and conductive circuits in theelectronic patch 550 are on undulated portions of thefoldable support substrate 505 while in theelectronic patch 200 most electronic components are positioned on flat circuit layers connected by one or more undulated circuit layers. - In some embodiments, referring to
FIG. 6A , afoldable circuit layer 600, which is compatible with the presently disclosed stretchable electronic patch, includes afoldable network 610 of electronic modules 620-625 connected byflexible straps 630. The electronic modules 620-625 can include electronic components such as conductive circuits, semiconductor chips, resistors, capacitors, inductors, diodes (including for example photo sensitive and light emitting types), sensors, transistors, and amplifiers. The sensors can also measure temperature, acceleration and movements, and chemical or biological substances. The electronic components can also include electromechanical actuators, chemical injectors, etc. The semiconductor chips can perform communications, logic, signal or data processing, control, calibration, status report, diagnostics, and other functions. The electronic components in the plurality of electronic modules can include an antenna circuit that can receive or transmit wireless signals in communications with the external device. - The
flexible straps 630 is formed a bendable or elastic material and includes conductive circuits that connect the conductive circuits, semiconductor chips, and other electronic components in different electronic modules 620-625. The electronic modules 620-625 and theflexible straps 630 defineholes 640 in between, which form thefoldable network 610 in the foldableflat circuit layer 600. In some embodiments, theflexible straps 630 and the substrate in the electronic modules 620-625 can be formed from a same layer of substrate by techniques such as cutting, laser ablation, punching etc. - Referring to
FIG. 7 , anelectronic patch 700 can further include anelastic layer 710 in which the foldableflat circuit layer 600 or thefoldable network 610 is embedded. Theelastic layer 710, similar to above described elastic layers (205 inFIG. 2A and 325 inFIG. 3B ), serves as an elastic (polymer) matrix for the electronic modules 620-625 and the flexible straps 630. Theelastic layer 710 can be made of a viscoelastic polymeric material having low Young's modulus and high failure strain. In some embodiments, theelastic layer 710 can have Young's Modulus <0.3 Gpa. In some cases, the elastic layer and can have Young's Modulus <0.1 Gpa to provide enhanced flexibility and tackability. Materials suitable for the elastic layer include elastomers, viscoelastic polymers, such as silicone, and medical grade polyurethane that is a transparent medical dressing used to cover and protect wounds with breathability and conformation to skin. Theelastic layer 710 are sufficiently flexible to permit and conform to the folding or crumpling of the foldableflat circuit layer 600 or thefoldable network 610. - The electronic modules 620-625, on the other hand, are formed on substantially flat support substrates made of sufficiently rigid materials to support to the semiconductor chips and other electronic components. In some embodiments, the electronic modules 620-625 can be made of a material having Young's Modulus larger than 0.5 Gpa, such as in a range between 1.0-10 Gpa. Examples of materials suitable for the
circuit modules 330 include Polyimide, polyester, Aramid, Composite, Glass epoxy, and Polyethylene naphalate. In some embodiments, electronic modules 620-625 are thicker than 0.001 mm to allow enough strength to support the circuits and chips during manufacturing process. The electronic modules 620-625 can include one or more layers of conductive metals to provide additional wiring capabilities. -
FIG. 6A shows thefoldable network 610 in a flat configuration. Referring toFIGS. 6B-6D , thefoldable network 610 can be folded or crumpled in different configurations. In should be noted that thefoldable circuit layer 600 can not only fold along straight lines in the planar directions, similar to thefoldable circuit layer 500 inFIG. 5A , thefoldable circuit layer 600 can also simultaneously fold in two directions as shown inFIGS. 6B-6D . In other words, unlike theelectronic elements 510 that are folded in parallel fold lines 515 (FIGS. 5A-5C ), neighboring electronic modules 620-625 within same row or column can undulate in opposite directions the layer normal direction. For example, theelectronic module 621 is aligned with two neighboringelectronic modules electronic modules electronic module 621 can be displaced in the layer normal direction opposite to the undulation directions of the electronic modules 622-625. - In another view, the
foldable network 610 and thefoldable circuit layer 600 can crumple, fold, or wrinkle locally instead of folding along parallel fold lines in predetermine directions. In some embodiments, thefoldable network 610 and thefoldable circuit layer 600 can also form origami-type structures. - An advantage of the above disclosed foldable circuit layers is that they can be very flexible in adapting to changes in body shape and positions of the person who wears the electronic patch. The their foiled or crumpled states, the foldable circuit layers can characterized by thickness that are scaled in mathematically fractal relationships relation to the average distance between the neighboring electronic modules, which provides flexibility and stretchability along both the normal and planar directions.
- It should be noted that other types of foldable networks or foldable circuit layers are also compatible with the presently disclosed electronic patches. For example, the flexible straps can be configured in helical or coiled shapes to provide further flexibility. Moreover, the foldable networks in the foldable circuit layers can be implemented in a knitted or weaved structures to support stretchability, flexibility, as well as reliable mechanical strength and durability.
- While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination.
- Only a few examples and implementations are described. Other implementations, variations, modifications and enhancements to the described examples and implementations may be made without deviating from the spirit of the present invention. For example, the applications and the types of electronic components of the disclosed electronic patches are not limited by the examples given above; they can be applicable to many other fields. The materials suitable for the different layers of the electronic patches are also not limited by the examples provided. The layouts and forms of the elastic layer, the undulated and the flat circuit layer, the breathing openings, and the electronic components can have other configurations without deviating from the present invention.
Claims (17)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/644,183 US9380698B1 (en) | 2014-12-05 | 2015-03-10 | Stretchable electronic patch having a foldable circuit layer |
US15/171,510 US9585245B2 (en) | 2014-12-05 | 2016-06-02 | Stretchable electronic patch having a foldable circuit layer |
CN201680085444.7A CN110545711B (en) | 2014-12-05 | 2016-06-24 | Retractable electronic patch with foldable circuit layer |
PCT/US2016/039304 WO2017209775A1 (en) | 2014-12-05 | 2016-06-24 | Stretchable electronic patch having a foldable circuit layer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462088399P | 2014-12-05 | 2014-12-05 | |
US14/616,986 US9378450B1 (en) | 2014-12-05 | 2015-02-09 | Stretchable electronic patch having a circuit layer undulating in the thickness direction |
US14/644,183 US9380698B1 (en) | 2014-12-05 | 2015-03-10 | Stretchable electronic patch having a foldable circuit layer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/616,986 Continuation-In-Part US9378450B1 (en) | 2014-12-05 | 2015-02-09 | Stretchable electronic patch having a circuit layer undulating in the thickness direction |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/171,510 Continuation US9585245B2 (en) | 2014-12-05 | 2016-06-02 | Stretchable electronic patch having a foldable circuit layer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160165719A1 true US20160165719A1 (en) | 2016-06-09 |
US9380698B1 US9380698B1 (en) | 2016-06-28 |
Family
ID=56095628
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/644,183 Active US9380698B1 (en) | 2014-12-05 | 2015-03-10 | Stretchable electronic patch having a foldable circuit layer |
US15/171,510 Active US9585245B2 (en) | 2014-12-05 | 2016-06-02 | Stretchable electronic patch having a foldable circuit layer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/171,510 Active US9585245B2 (en) | 2014-12-05 | 2016-06-02 | Stretchable electronic patch having a foldable circuit layer |
Country Status (3)
Country | Link |
---|---|
US (2) | US9380698B1 (en) |
CN (1) | CN110545711B (en) |
WO (1) | WO2017209775A1 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160045135A1 (en) * | 2014-08-18 | 2016-02-18 | Samsung Electronics Co., Ltd. | Wearable biometric information measurement device |
US20170344055A1 (en) * | 2016-05-25 | 2017-11-30 | Intel Corporation | Structural brace for electronic circuit with stretchable substrate |
WO2018011464A1 (en) * | 2016-07-11 | 2018-01-18 | Forciot Oy | A force and/or pressure sensor |
EP3292885A1 (en) * | 2016-09-06 | 2018-03-14 | BIOTRONIK SE & Co. KG | Stretchable electrode conductor assembly and medical implant |
WO2018068921A1 (en) * | 2016-10-14 | 2018-04-19 | Robert Bosch Gmbh | Sensor device for a vehicle, motor vehicle |
WO2018069309A1 (en) * | 2016-10-14 | 2018-04-19 | Robert Bosch Gmbh | Sensor device for a vehicle, in particular a motor vehicle |
CN107953848A (en) * | 2016-10-14 | 2018-04-24 | 罗伯特·博世有限公司 | For vehicle, the sensor device of motor vehicle |
EP3311735A1 (en) * | 2016-10-19 | 2018-04-25 | King's Metal Fiber Technologies Co., Ltd. | Flexible apparatus |
JP2018105775A (en) * | 2016-12-27 | 2018-07-05 | 公立大学法人大阪府立大学 | Flexible device |
US20180192520A1 (en) * | 2016-12-29 | 2018-07-05 | Intel Corporation | Stretchable electronic system based on controlled buckled flexible printed circuit board (pcb) |
WO2019096828A1 (en) * | 2017-11-15 | 2019-05-23 | Smith & Nephew Plc | Integrated sensor enabled wound monitoring and/or therapy dressings and systems |
CN111149216A (en) * | 2017-05-12 | 2020-05-12 | 东莞市棒棒糖电子科技有限公司 | Wearable power management system |
US20200395118A1 (en) * | 2018-03-08 | 2020-12-17 | Duke University | Electronic identification tagging systems, methods, applicators, and tapes for tracking and managing medical equipment and other objects |
US10944072B2 (en) | 2015-11-03 | 2021-03-09 | Cornell University | Stretchable electroluminescent devices |
US10955671B2 (en) * | 2018-03-01 | 2021-03-23 | Invensas Corporation | Stretchable film assembly with conductive traces |
US11076997B2 (en) | 2017-07-25 | 2021-08-03 | Smith & Nephew Plc | Restriction of sensor-monitored region for sensor-enabled wound dressings |
WO2021217066A3 (en) * | 2020-04-24 | 2021-12-02 | Cornell University | Catheter-deployable soft robotic sensor arrays and processing of flexible circuits |
US20220015227A1 (en) * | 2018-10-31 | 2022-01-13 | Dai Nippon Printing Co., Ltd. | Wiring board and method for manufacturing wiring board |
US11296731B2 (en) * | 2018-03-07 | 2022-04-05 | Phc Holdings Corporation | Communication device |
US11324424B2 (en) | 2017-03-09 | 2022-05-10 | Smith & Nephew Plc | Apparatus and method for imaging blood in a target region of tissue |
US11357102B2 (en) * | 2016-11-29 | 2022-06-07 | Imec Vzw | Method for forming non-flat devices |
US20220210907A1 (en) * | 2020-12-28 | 2022-06-30 | Ascensia Diabetes Care Holdings Ag | Flexible circuit boards for continuous analyte monitoring devices |
US20230027621A1 (en) * | 2020-08-20 | 2023-01-26 | AUO Corporation | Stretchable electronic device |
US11596553B2 (en) | 2017-09-27 | 2023-03-07 | Smith & Nephew Plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
US11633147B2 (en) | 2017-09-10 | 2023-04-25 | Smith & Nephew Plc | Sensor enabled wound therapy dressings and systems implementing cybersecurity |
US11633153B2 (en) | 2017-06-23 | 2023-04-25 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11638664B2 (en) | 2017-07-25 | 2023-05-02 | Smith & Nephew Plc | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
US11684280B2 (en) * | 2017-06-07 | 2023-06-27 | Laerdal Medical As | Pulse meter for newborn |
US11690570B2 (en) | 2017-03-09 | 2023-07-04 | Smith & Nephew Plc | Wound dressing, patch member and method of sensing one or more wound parameters |
US11717447B2 (en) | 2016-05-13 | 2023-08-08 | Smith & Nephew Plc | Sensor enabled wound monitoring and therapy apparatus |
EP3725256B1 (en) * | 2019-04-16 | 2023-08-30 | Stryker European Operations Limited | Tracker for surgical navigation |
US11759144B2 (en) | 2017-09-10 | 2023-09-19 | Smith & Nephew Plc | Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings |
US11791030B2 (en) | 2017-05-15 | 2023-10-17 | Smith & Nephew Plc | Wound analysis device and method |
US11839464B2 (en) | 2017-09-28 | 2023-12-12 | Smith & Nephew, Plc | Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus |
US11883262B2 (en) | 2017-04-11 | 2024-01-30 | Smith & Nephew Plc | Component positioning and stress relief for sensor enabled wound dressings |
US11925735B2 (en) | 2017-08-10 | 2024-03-12 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11931165B2 (en) | 2017-09-10 | 2024-03-19 | Smith & Nephew Plc | Electrostatic discharge protection for sensors in wound therapy |
US11957545B2 (en) | 2017-09-26 | 2024-04-16 | Smith & Nephew Plc | Sensor positioning and optical sensing for sensor enabled wound therapy dressings and systems |
US11969538B2 (en) | 2018-12-21 | 2024-04-30 | T.J.Smith And Nephew, Limited | Wound therapy systems and methods with multiple power sources |
US12005159B2 (en) | 2019-11-07 | 2024-06-11 | Cornell University | Conformal, non-occluding sensor array for cardiac mapping and ablation |
US12033738B2 (en) | 2017-05-15 | 2024-07-09 | Smith & Nephew Plc | Negative pressure wound therapy system using eulerian video magnification |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009114624A2 (en) | 2008-03-12 | 2009-09-17 | Bluesky Medical Group Inc. | Negative pressure dressing and method of using same |
US10213586B2 (en) | 2015-01-28 | 2019-02-26 | Chrono Therapeutics Inc. | Drug delivery methods and systems |
CA2977814A1 (en) | 2015-03-12 | 2016-09-15 | Chrono Therapeutics Inc. | Craving input and support system |
US20190045627A1 (en) * | 2015-09-17 | 2019-02-07 | Sekisui Polymatech Co., Ltd. | Elastic Wiring Member |
JP2020503950A (en) | 2017-01-06 | 2020-02-06 | クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. | Device and method for transdermal drug delivery |
CN110446464A (en) * | 2017-04-04 | 2019-11-12 | 豪夫迈·罗氏有限公司 | Medical sensor system, especially continuous glucose monitoring system |
US10186749B1 (en) | 2017-09-18 | 2019-01-22 | Qualcomm Incorporated | Systems and methods for a remote near field communication antenna unit |
US11120324B2 (en) * | 2017-10-24 | 2021-09-14 | Avery Dennison Retail Information Services, Llc | Planar conductive device that forms a coil for an RFID tag when folded |
CA3101966A1 (en) | 2018-05-29 | 2019-12-05 | Morningside Venture Investments Limited | Drug delivery methods and systems |
KR102105125B1 (en) * | 2018-06-27 | 2020-05-29 | 한국광기술원 | A stretchable patches with double printing wiring structure and a stretchable patch manufacturing method with double printing wiring structure |
GB2592508B (en) | 2018-09-12 | 2022-08-31 | Smith & Nephew | Device, apparatus and method of determining skin perfusion pressure |
GB2614490B (en) | 2019-03-18 | 2023-12-06 | Smith & Nephew | Design rules for sensor integrated substrates |
KR102262458B1 (en) * | 2019-05-23 | 2021-06-09 | 한국광기술원 | Light irradiation device for arthritis |
WO2020243430A1 (en) * | 2019-05-31 | 2020-12-03 | Vivonics, Inc. | System and method to electronically coordinate and document patient care regardless of physical setting |
GB201914443D0 (en) | 2019-10-07 | 2019-11-20 | Smith & Nephew | Sensor enabled negative pressure wound monitoring apparatus with different impedances inks |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3143208C2 (en) * | 1981-10-30 | 1984-07-05 | Max-E. Dipl.-Ing. 7320 Göppingen Reeb | Identification arrangement in the form of a label-like strip which can be attached to an object and a method for the production thereof |
US6528131B1 (en) * | 1991-04-22 | 2003-03-04 | Luc Lafond | Insulated assembly incorporating a thermoplastic barrier member |
GB9123638D0 (en) * | 1991-11-07 | 1992-01-02 | Magill Alan R | Apparel & fabric & devices suitable for health monitoring applications |
US5529502A (en) * | 1994-06-01 | 1996-06-25 | Motorola, Inc. | Solderless flexible circuit carrier to printed circuit board interconnection |
DE19736063C2 (en) * | 1997-08-20 | 2000-01-05 | Orga Kartensysteme Gmbh | Smart card |
US7295189B2 (en) * | 2003-12-29 | 2007-11-13 | Nokia Corporation | Printable electromechanical input means and an electronic device including such input means |
WO2006026741A1 (en) | 2004-08-31 | 2006-03-09 | Lifescan Scotland Limited | Wearable sensor device and system |
JP2006252390A (en) * | 2005-03-14 | 2006-09-21 | Renesas Technology Corp | Ic card manufacturing method and ic card |
US20080068175A1 (en) * | 2006-09-14 | 2008-03-20 | Symbol Technologies, Inc. | Antenna Arrangements for Radio Frequency Identification (RFID) Tags |
JP5210613B2 (en) * | 2006-12-27 | 2013-06-12 | 株式会社半導体エネルギー研究所 | Semiconductor device |
CA2576615C (en) * | 2007-02-01 | 2012-01-03 | Emma Mixed Signal C.V. | Body radiation and conductivity in rf communication |
US20090171180A1 (en) | 2007-12-28 | 2009-07-02 | Trevor Pering | Method and apparatus for configuring wearable sensors |
JP2009259975A (en) * | 2008-04-15 | 2009-11-05 | Toshiba Corp | Semiconductor integrated circuit device |
US8389862B2 (en) * | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
JP5689066B2 (en) * | 2008-11-12 | 2015-03-25 | エムシー10 インコーポレイテッドMc10,Inc. | Highly extendable electronic components |
WO2010086033A1 (en) * | 2009-01-30 | 2010-08-05 | Interuniversitair Microelektronica Centrum Vzw | Stretchable electronic device |
DE102009029215A1 (en) * | 2009-09-04 | 2011-03-10 | Robert Bosch Gmbh | Device for determining body functions |
KR101920445B1 (en) * | 2010-05-25 | 2018-11-20 | 삼성전자주식회사 | Light emitting devices |
US8477492B2 (en) * | 2010-08-19 | 2013-07-02 | Apple Inc. | Formed PCB |
US8717165B2 (en) | 2011-03-22 | 2014-05-06 | Tassilo Gernandt | Apparatus and method for locating, tracking, controlling and recognizing tagged objects using RFID technology |
US9706647B2 (en) * | 2013-05-14 | 2017-07-11 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
WO2014205434A2 (en) * | 2013-06-21 | 2014-12-24 | Mc10, Inc. | Band with conformable electronics |
FR3013555B1 (en) * | 2013-11-15 | 2015-12-11 | Zodiac Aero Electric | FLAT ELECTRONIC CIRCUIT AND CORRESPONDING THREE DIMENSIONAL ELECTRONIC CIRCUIT |
US9513666B2 (en) * | 2014-07-25 | 2016-12-06 | VivaLnk, Inc. | Highly compliant wearable wireless patch having stress-relief capability |
US9861289B2 (en) * | 2014-10-22 | 2018-01-09 | VivaLnk, Inc. | Compliant wearable patch capable of measuring electrical signals |
-
2015
- 2015-03-10 US US14/644,183 patent/US9380698B1/en active Active
-
2016
- 2016-06-02 US US15/171,510 patent/US9585245B2/en active Active
- 2016-06-24 CN CN201680085444.7A patent/CN110545711B/en active Active
- 2016-06-24 WO PCT/US2016/039304 patent/WO2017209775A1/en active Application Filing
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10575741B2 (en) * | 2014-08-18 | 2020-03-03 | Samsung Electronics Co., Ltd | Wearable biometric information measurement device |
US20160045135A1 (en) * | 2014-08-18 | 2016-02-18 | Samsung Electronics Co., Ltd. | Wearable biometric information measurement device |
US10944072B2 (en) | 2015-11-03 | 2021-03-09 | Cornell University | Stretchable electroluminescent devices |
US11717447B2 (en) | 2016-05-13 | 2023-08-08 | Smith & Nephew Plc | Sensor enabled wound monitoring and therapy apparatus |
US20170344055A1 (en) * | 2016-05-25 | 2017-11-30 | Intel Corporation | Structural brace for electronic circuit with stretchable substrate |
CN112525390A (en) * | 2016-07-11 | 2021-03-19 | 富西特有限公司 | Force and/or pressure sensor |
WO2018011464A1 (en) * | 2016-07-11 | 2018-01-18 | Forciot Oy | A force and/or pressure sensor |
EP3623784A1 (en) * | 2016-07-11 | 2020-03-18 | Forciot OY | A capacitive force and/or pressure sensor |
US10591367B2 (en) | 2016-07-11 | 2020-03-17 | Forciot Oy | Capacitive force and/or pressure sensor having stretchable electrodes |
EP3292885A1 (en) * | 2016-09-06 | 2018-03-14 | BIOTRONIK SE & Co. KG | Stretchable electrode conductor assembly and medical implant |
CN107953848A (en) * | 2016-10-14 | 2018-04-24 | 罗伯特·博世有限公司 | For vehicle, the sensor device of motor vehicle |
CN110063092A (en) * | 2016-10-14 | 2019-07-26 | 罗伯特·博世有限公司 | For vehicle, the sensor device of motor vehicles |
US20190313532A1 (en) * | 2016-10-14 | 2019-10-10 | Robert Bosch Gmbh | Sensor Device for a Vehicle, Motor Vehicle |
WO2018069309A1 (en) * | 2016-10-14 | 2018-04-19 | Robert Bosch Gmbh | Sensor device for a vehicle, in particular a motor vehicle |
WO2018068921A1 (en) * | 2016-10-14 | 2018-04-19 | Robert Bosch Gmbh | Sensor device for a vehicle, motor vehicle |
EP3311735A1 (en) * | 2016-10-19 | 2018-04-25 | King's Metal Fiber Technologies Co., Ltd. | Flexible apparatus |
US11357102B2 (en) * | 2016-11-29 | 2022-06-07 | Imec Vzw | Method for forming non-flat devices |
JP2018105775A (en) * | 2016-12-27 | 2018-07-05 | 公立大学法人大阪府立大学 | Flexible device |
US20180192520A1 (en) * | 2016-12-29 | 2018-07-05 | Intel Corporation | Stretchable electronic system based on controlled buckled flexible printed circuit board (pcb) |
US11324424B2 (en) | 2017-03-09 | 2022-05-10 | Smith & Nephew Plc | Apparatus and method for imaging blood in a target region of tissue |
US11690570B2 (en) | 2017-03-09 | 2023-07-04 | Smith & Nephew Plc | Wound dressing, patch member and method of sensing one or more wound parameters |
US11883262B2 (en) | 2017-04-11 | 2024-01-30 | Smith & Nephew Plc | Component positioning and stress relief for sensor enabled wound dressings |
CN111149216A (en) * | 2017-05-12 | 2020-05-12 | 东莞市棒棒糖电子科技有限公司 | Wearable power management system |
US11791030B2 (en) | 2017-05-15 | 2023-10-17 | Smith & Nephew Plc | Wound analysis device and method |
US12033738B2 (en) | 2017-05-15 | 2024-07-09 | Smith & Nephew Plc | Negative pressure wound therapy system using eulerian video magnification |
US11684280B2 (en) * | 2017-06-07 | 2023-06-27 | Laerdal Medical As | Pulse meter for newborn |
US12102447B2 (en) | 2017-06-23 | 2024-10-01 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11633153B2 (en) | 2017-06-23 | 2023-04-25 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11076997B2 (en) | 2017-07-25 | 2021-08-03 | Smith & Nephew Plc | Restriction of sensor-monitored region for sensor-enabled wound dressings |
US11638664B2 (en) | 2017-07-25 | 2023-05-02 | Smith & Nephew Plc | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
US11925735B2 (en) | 2017-08-10 | 2024-03-12 | Smith & Nephew Plc | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11759144B2 (en) | 2017-09-10 | 2023-09-19 | Smith & Nephew Plc | Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings |
US12114994B2 (en) | 2017-09-10 | 2024-10-15 | Smith & Nephew Plc | Sensor enabled wound therapy dressings and systems implementing cybersecurity |
US11633147B2 (en) | 2017-09-10 | 2023-04-25 | Smith & Nephew Plc | Sensor enabled wound therapy dressings and systems implementing cybersecurity |
US11931165B2 (en) | 2017-09-10 | 2024-03-19 | Smith & Nephew Plc | Electrostatic discharge protection for sensors in wound therapy |
US11957545B2 (en) | 2017-09-26 | 2024-04-16 | Smith & Nephew Plc | Sensor positioning and optical sensing for sensor enabled wound therapy dressings and systems |
US12097092B2 (en) | 2017-09-27 | 2024-09-24 | Smith & Nephew Plc | pH sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
US11596553B2 (en) | 2017-09-27 | 2023-03-07 | Smith & Nephew Plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
US11839464B2 (en) | 2017-09-28 | 2023-12-12 | Smith & Nephew, Plc | Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus |
US11559438B2 (en) | 2017-11-15 | 2023-01-24 | Smith & Nephew Plc | Integrated sensor enabled wound monitoring and/or therapy dressings and systems |
WO2019096828A1 (en) * | 2017-11-15 | 2019-05-23 | Smith & Nephew Plc | Integrated sensor enabled wound monitoring and/or therapy dressings and systems |
US12124035B2 (en) | 2018-03-01 | 2024-10-22 | Adeia Semiconductor Technologies Llc | Stretchable film assembly with conductive traces |
US10955671B2 (en) * | 2018-03-01 | 2021-03-23 | Invensas Corporation | Stretchable film assembly with conductive traces |
US11296731B2 (en) * | 2018-03-07 | 2022-04-05 | Phc Holdings Corporation | Communication device |
US20200395118A1 (en) * | 2018-03-08 | 2020-12-17 | Duke University | Electronic identification tagging systems, methods, applicators, and tapes for tracking and managing medical equipment and other objects |
US20220015227A1 (en) * | 2018-10-31 | 2022-01-13 | Dai Nippon Printing Co., Ltd. | Wiring board and method for manufacturing wiring board |
US11744011B2 (en) * | 2018-10-31 | 2023-08-29 | Dai Nippon Printing Co., Ltd. | Wiring board and method for manufacturing wiring board |
EP3876682A4 (en) * | 2018-10-31 | 2022-12-07 | Dai Nippon Printing Co., Ltd. | Wiring board and method for manufacturing wiring board |
US11969538B2 (en) | 2018-12-21 | 2024-04-30 | T.J.Smith And Nephew, Limited | Wound therapy systems and methods with multiple power sources |
EP4252694A3 (en) * | 2019-04-16 | 2023-12-06 | Stryker European Operations Limited | Tracker for surgical navigation |
EP3725256B1 (en) * | 2019-04-16 | 2023-08-30 | Stryker European Operations Limited | Tracker for surgical navigation |
US12005159B2 (en) | 2019-11-07 | 2024-06-11 | Cornell University | Conformal, non-occluding sensor array for cardiac mapping and ablation |
WO2021217066A3 (en) * | 2020-04-24 | 2021-12-02 | Cornell University | Catheter-deployable soft robotic sensor arrays and processing of flexible circuits |
US11751329B2 (en) * | 2020-08-20 | 2023-09-05 | AUO Corporation | Stretchable electronic device |
US20230027621A1 (en) * | 2020-08-20 | 2023-01-26 | AUO Corporation | Stretchable electronic device |
US20220210907A1 (en) * | 2020-12-28 | 2022-06-30 | Ascensia Diabetes Care Holdings Ag | Flexible circuit boards for continuous analyte monitoring devices |
US11812551B2 (en) * | 2020-12-28 | 2023-11-07 | Ascensia Diabetes Care Holdings Ag | Flexible circuit boards for continuous analyte monitoring devices |
WO2022144342A1 (en) * | 2020-12-28 | 2022-07-07 | Ascensia Diabetes Care Holdings Ag | Flexible circuit boards for continuous analyte monitoring devices |
Also Published As
Publication number | Publication date |
---|---|
US9585245B2 (en) | 2017-02-28 |
US20160278204A1 (en) | 2016-09-22 |
CN110545711A (en) | 2019-12-06 |
CN110545711B (en) | 2023-11-07 |
US9380698B1 (en) | 2016-06-28 |
WO2017209775A1 (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9585245B2 (en) | Stretchable electronic patch having a foldable circuit layer | |
US9378450B1 (en) | Stretchable electronic patch having a circuit layer undulating in the thickness direction | |
US9632533B2 (en) | Stretchable wireless device | |
US9560975B2 (en) | Three dimensional electronic patch | |
US9861289B2 (en) | Compliant wearable patch capable of measuring electrical signals | |
US20160317057A1 (en) | Compliant wearable patch capable of measuring electrical signals | |
US9563836B2 (en) | Stretchable multi-layer wearable tag capable of wireless communications | |
US10595781B2 (en) | Electronic stickers with modular structures | |
EP3114911B1 (en) | Multi-part flexible encapsulation housing for electronic devices | |
US20160004952A1 (en) | Wearable tag capable of wireless communications | |
CN106934444B (en) | Modular structure electronic patch | |
CN111201839A (en) | Wiring board and method for manufacturing wiring board | |
CN111213435A (en) | Wiring board and method for manufacturing wiring board | |
CN111165077A (en) | Wiring board and method for manufacturing wiring board | |
CN105375106B (en) | The wearable patch of stretchable multilayer wireless communication | |
CN112997588A (en) | Wiring board and method for manufacturing wiring board | |
US20190391283A1 (en) | Wearable dermatological systems with battery-free sensors | |
JP7480489B2 (en) | Wiring board and method for manufacturing the same | |
WO2018013153A1 (en) | Compliant wearable patch capable of measuring electrical signals | |
CN112997587A (en) | Wiring board and method for manufacturing wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: VIVALNK, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVALNK LIMITED (CAYMAN ISLAND);REEL/FRAME:043731/0920 Effective date: 20151120 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |