US20160161460A1 - Microalgal flour compositions of optimised sensory quality - Google Patents

Microalgal flour compositions of optimised sensory quality Download PDF

Info

Publication number
US20160161460A1
US20160161460A1 US14/900,654 US201414900654A US2016161460A1 US 20160161460 A1 US20160161460 A1 US 20160161460A1 US 201414900654 A US201414900654 A US 201414900654A US 2016161460 A1 US2016161460 A1 US 2016161460A1
Authority
US
United States
Prior art keywords
composition
volatile organic
organic compounds
microalgal flour
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/900,654
Inventor
Amandine Druon
Heike Jerosch
Marilyne Guillemant
Samuel Patinier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corbion Biotech Inc
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Assigned to ROQUETTE FRERES reassignment ROQUETTE FRERES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUILLEMANT, Marilyne, JEROSCH, Heike, DRUON, Amandine, PATINIER, Samuel
Publication of US20160161460A1 publication Critical patent/US20160161460A1/en
Assigned to CORBION BIOTECH, INC. reassignment CORBION BIOTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROQUETTE FRÈRES, S.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/10Starch-containing substances, e.g. dough
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1315Non-milk proteins or fats; Seeds, pulses, cereals or soja; Fatty acids, phospholipids, mono- or diglycerides or derivatives therefrom; Egg products
    • A23L1/337
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/60Edible seaweed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0001Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 by organoleptic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to novel compositions of flour of microalgae of the Chlorella genus having an optimized sensory profile, thereby making it possible to incorporate them into food formulations without generating undesirable flavors, and also to a method for evaluating the organoleptic profile of a composition of flour of microalgae of the Chlorella genus.
  • algae there are several species of algae that can be used in food, most being “macroalgae” such as kelp, sea lettuce ( Ulva lactuca ) and red algae of the type Porphyra (cultured in Japan) or “dulse” ( Palmaria palmata ).
  • microalgae i.e. photosynthetic or non-photosynthetic single-cell microscopic algae, of marine or non-marine origin, cultured for their applications in biofuels or food.
  • spirulina Arthrospira platensis
  • open lagoons under phototrophic conditions
  • small amounts into confectionery products or drinks generally less than 0.5% weight/weight
  • lipid-rich microalgae including certain species of Chlorella type are also very popular in Asian countries as food supplements (mention is made of the omega-3-fatty-acid-producing microalgae of the Crypthecodinium or Schizochytrium genus).
  • the oil fraction of the microalgal flour which may be composed essentially of monounsaturated oils, may provide nutritional and health advantages compared with the saturated, hydrogenated and polyunsaturated oils often found in conventional food products.
  • algal powders for example produced with algae photosynthetically cultured in exterior ponds or by photobioreactors are commercially available, they have a dark green color (associated with chlorophyll) and a strong, unpleasant taste.
  • chlorellae As for chlorellae, the descriptor commonly accepted in this field is the taste of “green tea”, slightly similar to other green vegetable powders such as powdered green barley or powdered green wheat, the taste being attributed to its high chlorophyll content.
  • compositions of flour of microalgae of the Chlorella genus of suitable organoleptic quality and allowing the use thereof in more numerous and diversified food products.
  • microalgal flour compositions having an optimized sensory profile, characterized by their total content of 13 volatile organic compounds.
  • the present invention relates to a method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • the total content of 13 volatile organic compounds is determined by SPME/GC, preferably by SPME/GC-MS.
  • a low total content of 13 volatile organic compounds is associated with an optimized organoleptic quality.
  • a higher total content of 13 volatile organic compounds is associated with a medium, or even poor or unacceptable, organoleptic quality.
  • the total content of 13 volatile organic compounds is determined by the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds.
  • the total content of 13 volatile organic compounds is compared to that of a reference microalgal flour composition or compositions for which the organoleptic qualities are defined, in particular as unacceptable or acceptable.
  • the present invention also relates to a microalgal flour composition having an optimized organoleptic quality, characterized in that its total content of 13 volatile organic compounds is low, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • the composition is characterized in that the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds is between 1% and 25% relative to that of a reference microalgal flour composition of unacceptable organoleptic quality.
  • the present invention also relates to a composition for tasting a microalgal flour composition, comprising:
  • the present invention relates to a method for preparing a composition for tasting a microalgal flour composition, comprising the preparation of a tasting composition as described above, the homogenization thereof, and the heating of the composition at 60-85° C., preferably approximately 75° C. for 2-10 minutes, preferably approximately 5 minutes.
  • It relates to a method for testing the organoleptic qualities of a microalgal flour composition, comprising the preparation of a tasting composition as described in the present document and the evaluation of the organoleptic qualities by a panel of testers.
  • the present invention relates to a method for defining an analytical profile of volatile compounds making it possible to evaluate the organoleptic quality of the microalgal flour compositions, comprising:
  • the sensory analysis descriptors comprise color, coating texture, sweetness, and the following flavors: mushroom, cereals, butter/dairy product, rancid oil and vegetable aftertaste.
  • the sensory analysis is carried out using a tasting composition prepared by the method described above and explained in detail in the present document.
  • the analysis of the volatile organic compounds is carried out by SPME/GC-MS.
  • the volatile organic compounds belong to the families of saturated and diunsaturated aldehydes, unsaturated ketones, and carboxylic acids and derivatives thereof.
  • a microalgal flour composition has an “optimized sensory profile” or an “optimized organoleptic quality” when its evaluation by a sensory panel in a food formulation (for example ice cream) concludes that there is an absence of off-notes which impair the organoleptic quality of said food formulations containing these microalgal flour compositions.
  • organoleptic quality is intended to mean the property of a food in terms of taste, odor, appearance, color and consistency.
  • the “optimized sensory profile” or “optimized organoleptic quality” is then reflected by a sensory panel by obtaining the best scores on a scale of evaluation of the 4 sensory criteria (appearance, texture, savors and flavors).
  • total content is intended to mean the sum of the contents of each of the volatile organic compounds of the list.
  • approximately is intended to mean the value plus or minus 10% thereof, preferably plus or minus 5% thereof.
  • approximately 100 means between 90 and 110, preferably between 95 and 105.
  • the sensory profile of a microalgal flour composition can also be defined by the nature and the threshold of detection of odorous specific molecules, in particular of specific volatile organic compounds. Indeed, it has identified a set of 13 volatile organic compounds, the overall content of which in a microalgal flour composition makes it possible to determine the organoleptic quality thereof.
  • These 13 volatile organic compounds are the following: heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • the present invention relates to a method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • the method does not exclude the determination of the content of other volatile organic compounds.
  • the 13 volatile organic compounds are sufficient to determine the organoleptic quality of a microalgal flour composition.
  • these volatile organic compounds are sampled by solid phase microextraction (SPME) and analyzed by gas chromatography GC, in particular by GC-MS (gas chromatography-mass spectrometry).
  • SPME solid phase microextraction
  • GC-MS gas chromatography-mass spectrometry
  • the volatile fraction is extracted from the sample of the microalgal flour composition by heating said composition for a sufficient period of time in the presence of an SPME fiber.
  • the fiber may, for example, be chosen, non-exhaustively, from the group consisting of carboxen and polydimethylsiloxane (CAR/PDMS), divinylbenzene, carboxen and polydimethylsiloxane (DVB/CAR/PDMS), an alloy of metal and of polydimethylsiloxane (PDMS), a Carbopack-Z® fiber (graphitized carbon black), polyacrylate, Carbowax® polyethylene glycol (PEG), and PDMS/DVB.
  • a DVB/CAR/PDMS fiber is used.
  • the extraction can be carried out at a temperature between 40 and 70° C., preferably between 50 and 65° C., in particular approximately 60° C. for at least 10 minutes, preferably at least 15 minutes and for example between 15 minutes and 1 hour.
  • this extraction step is carried out in a sealed container.
  • a sufficient amount of sample must be used, for example at least 1 g, in particular between 1 and 10 g and in particular approximately 3 g.
  • the SPME technique is well known to those skilled in the art and is part of the general knowledge thereof.
  • the volatile organic compounds are then desorbed at a temperature compatible with the type of SPME fiber used, for example between 250 and 270° C. for the fiber used in our tests, more specifically at 250° C., and injected into the analysis system.
  • the analysis is carried out by gas chromatography GC, in particular by GC-MS.
  • GC/MS devices are commercially available, for example the GC/Mass Clarus spectrometer (PerkinElmer, USA), the Hewlett Packard 6890 gas chromatograph (Hewlett Packard, USA) and the Aglient 6890N gas chromatograph coupled to the Aglient 5973 selective mass detector.
  • the ionization methods which can be used in GC/MS are for example mass spectrometry with electron impact ionization (EI), chemical impact ionization (CI), electrospray ionization, matrix-assisted laser desorption/ionization (MALDI), luminescent discharge, field desorption (FD), etc.
  • EI electron impact ionization
  • CI chemical impact ionization
  • MALDI matrix-assisted laser desorption/ionization
  • FD field desorption
  • the columns used for the GC are preferably a Cp-Wax 52CB 60 m*0.32 mm column; df 0.25 ⁇ m or equivalent which we retained; another column tested was one of ZB-1 ms 30 m*0.25 mm type; df 1 ⁇ m.
  • the height or the surface area of the chromatography peak corresponding to the volatile organic compound correlates with the amount of said compound.
  • the term “surface area of the peak” is intended to mean the surface area of a specific ion under the curve in the SPME-GC/MS chromatogram.
  • the content of one of the 13 volatile organic compounds is determined by the surface area of the peak of the specific ion of the SPME-GC/MS chromatogram corresponding to this volatile organic compound.
  • the total content of 13 volatile organic compounds is preferably determined by the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds.
  • the content of volatile organic compounds is determined, in particular in comparison with that of a reference product.
  • the total content of volatile organic compounds of the list of the 13 defined in the present invention is considered.
  • a low total content of 13 volatile organic compounds is associated with an optimized organoleptic quality.
  • a higher total content of 13 volatile organic compounds is associated with a medium, or even poor or unacceptable, organoleptic quality.
  • the reference product is a product in which the amount of a volatile organic compound is known.
  • the reference product could comprise the 13 volatile organic compounds of the list in predefined amounts. Such a reference product makes it possible to exactly determine the amount of the volatile organic compounds.
  • the reference product is a microalgal flour composition, the organoleptic profile of which is defined.
  • the organoleptic profile is preferably determined by the method described in detail later in the present document or in the experimental section.
  • this reference product makes it possible to determine relative amounts of volatile organic compounds.
  • the content of volatile organic compounds is compared to that determined for the reference product. If it is greater than or equal to that of the reference product, then the composition tested is considered to have an insufficient or unacceptable organoleptic quality. If it is less, then the composition tested is considered to have an acceptable or optimized organoleptic quality.
  • the reference microalgal flour composition when the reference microalgal flour composition has an organoleptic profile which is unacceptable, or even very unacceptable, the content of volatile organic compounds, preferably the total content of said 13 volatile organic compounds, is compared to that determined for the reference product. If it is greater than or equal to that of the reference product, then the composition tested is considered to have an insufficient or unacceptable organoleptic quality. If it is less, then the composition tested is considered to have an acceptable or optimized organoleptic quality. In particular, it has been defined in the examples, using a reference microalgal flour composition having a very unacceptable organoleptic profile, that the composition tested has an optimized organoleptic profile when the total content of said 13 volatile organic compounds is between 1% and 25% relative to that of this reference composition (which is considered to be 100%).
  • the total content of a composition with an acceptable organoleptic quality is at least two times less than that of a composition with an unacceptable organoleptic quality, for example at least 2, 3 or 4 times less, and in a most demanding embodiment, at least 10 times less.
  • the content of said 13 volatile organic compounds, in particular their total content is considered in the method, this being after SPME/GC-EI/MS.
  • the invention thus makes it possible to classify the microalgal flour compositions according to their organoleptic quality, and to qualify the food formulations containing them, by quantifying said particular volatile organic compounds.
  • the present invention also relates to a microalgal flour composition having an optimized organoleptic quality, characterized in that its total content of 13 volatile organic compounds is low, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • the content of volatile organic compounds is determined as detailed above in the method for evaluating the organoleptic quality of a microalgal flour composition. This content is evaluated relative to that of a reference product as defined above.
  • the total content of said volatile organic compounds is low in comparison with a microalgal flour composition having an unacceptable, or even very unacceptable, organoleptic quality.
  • the total content of a composition with an acceptable organoleptic quality is at least two times less than that of a composition with an unacceptable organoleptic quality, for example at least 2, 3 or 4 times less, and in a most demanding embodiment, at least 10 times less.
  • the composition is characterized in that the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds is between 1% and 25% relative to that of a reference microalgal flour composition of unacceptable organoleptic quality.
  • microalgal flour composition is intended to mean a composition comprising at least 50%, 60%, 70%, 80% or 90% by dry weight of microalgal biomass. However, other ingredients can optionally be included in this composition.
  • microalgal flour should be understood in its broadest interpretation and as denoting, for example, a composition comprising a plurality of particles of microalgal biomass.
  • the microalgal biomass is derived from microalgal cells, which may be whole or broken, or a mixture of whole and broken cells.
  • microalgae of which it is a question in the present invention are therefore microalgae of the Chlorella genus, more particularly Chlorella protothecoides , even more particularly Chlorella deprived of chlorophyll pigments, by any method known per se to those skilled in the art (either because the culture is carried out in the dark, or because the strain has been mutated so as to no longer produce these pigments).
  • the microalgae can be chosen, non-exhaustively, from Chlorella protothecoides, Chlorella kessleri, Chlorella minutissima, Chlorella sp., Chlorella sorokiniama, Chlorella luteoviridis, Chlorella vulgaris, Chlorella reisiglii, Chlorella ellipsoidea, Chlorella saccarophila, Parachlorella kessleri, Parachlorella beijerinkii, Prototheca stagnora and Prototheca moriformis .
  • the microalgal flour composition is a Chlorella flour composition, and in particular a Chlorella protothecoides flour composition.
  • the fermentative process described in this patent application WO 2010/120923 thus allows the production of a certain number of microalgal flour compositions of variable sensory quality.
  • the method as described in the present document therefore makes it possible to select the microalgal flour compositions which have an acceptable organoleptic profile, in particular for food applications, without having to organize organoleptic evaluations by a panel of individuals in order to do so.
  • the present invention also relates to a composition for tasting microalgal flour compositions.
  • the applicant company has defined a very simple tasting matrix. Nevertheless, it makes it possible to carry out an organoleptic evaluation similar to that obtained with much more complex and very different recipes, such as an ice cream or a brioche.
  • the evaluation with this tasting matrix is much more precise or accurate than that carried out with a simple aqueous solution, which has proved to be incapable of predicting the organoleptic qualities of microalgal flour compositions in an ice cream, for example.
  • the present invention relates to a composition for tasting microalgal flour compositions, comprising:
  • the present invention relates to a method for preparing the composition for tasting a microalgal flour composition, comprising the preparation of a tasting composition as described above, the homogenization thereof, and the heating of the composition at 60-85° C., preferably approximately 75° C., for 2-10 minutes, preferably approximately 5 minutes.
  • It also relates to a method for testing the organoleptic qualities of a microalgal flour composition, comprising the preparation of a tasting composition as described above and the evaluation of the organoleptic qualities by a panel of testers. This evaluation can in particular be carried out by the methods detailed below.
  • the applicant company also provides a method for defining an analytical profile of volatile compounds making it possible to evaluate the organoleptic quality of the microalgal flour compositions, comprising:
  • a sensory panel is formed in order to evaluate the sensory properties of various batches of microalgal flour compositions, in particular Chlorella protothecoides biomass flour compositions.
  • a set of individuals, at least 10, 20 or 30, in particular approximately 15, is brought together to evaluate descriptors of several microalgal flour compositions, preferably in comparison with a sample of reference microalgal flour identified as complying, i.e. of acceptable organoleptic quality (reference batch No. 1) and another sample of very unacceptable organoleptic quality (reference batch No. 2).
  • the microalgal flour compositions are tested in the form of a tasting composition according to the present document.
  • the compositions can be tested in any other form desired by those skilled in the art, for example in the form of an ice cream or of a breadmaking product such as a brioche.
  • the reference batch of acceptable organoleptic quality is a microalgal flour composition that complies in the sense that it has the sensory profile “satisfying” all these descriptors.
  • the reference batch of very unacceptable organoleptic quality is a batch which does not satisfy the descriptors relating to the aromatic notes, i.e. to the savor and flavor descriptors, since it has a considerable vegetable aftertaste.
  • the reference batch of acceptable organoleptic quality is not necessarily the microalgal flour composition having the optimal sensory profile: it is preferably a microalgal flour composition perceived by the sensory panel as “satisfactory”, in particular having a grade of 5 on all the descriptors tested.
  • the other microalgal flour compositions are classified by the sensory panel on either side of this reference batch of acceptable organoleptic quality.
  • compositions tested are classified by the sensory panel relative to the reference batch(es) of acceptable or unacceptable, preferably acceptable, organoleptic quality.
  • the first step results in the classification of the various microalgal flour compositions tested according to their organoleptic quality.
  • analyses of variance are carried out in order to evaluate the discriminating capacity of the descriptors (descriptors of which the p-value associated with the Fisher test—type-3 ANOVA—is less than 0.20 for the Composition effect in the model descriptor ⁇ Composition+judge).
  • the Composition effect is interpreted as the discriminating capacity of the descriptors: if there is no effect (Critical Probability>0.20), the compositions were not discriminated according to this criterion. The smaller this critical probability, the more discriminating the descriptor.
  • a principal component analysis is then carried out in order to obtain sensory mapping of the compositions, and a simultaneous representation of all the compositions regarding all the descriptors.
  • This classification therefore then serves as a basis for studying the analytical profile of the volatile organic compounds and selecting molecules responsible for the poor organoleptic quality of the microalgal flour compositions.
  • the profile of the volatile organic compounds of the microalgal flour compositions is determined. It is determined by any method known to those skilled in the art, and preferably by SPME/GC-MS, as detailed above.
  • the process is carried out as follows.
  • test specimen of 3 g of sample is introduced into a sealed SPME flask (20 ml) and incubated at 60° C. for 15 min and then extracted at 60° C. for 45 min with a DVB/CAR/PDMS (abbreviation for divinylbenzene/carboxen/polydimethylsiloxane, df 50/30 ⁇ m) SPME fiber.
  • DVB/CAR/PDMS abbreviation for divinylbenzene/carboxen/polydimethylsiloxane
  • the volatile organic compounds extracted are desorbed at 250° C. in the injector of the TSQ GC-MS system from Thermo Scientific, injected in “splitless” mode and then separated on a CPwax52 (60 m ⁇ 0.25 mm, 0.25 ⁇ m) column with helium gas at 1.5 ml/min.
  • the temperature program is: 50° C. isotherm for 3 min, then programming at 5° C./minute up to 230° C., then isotherm for 20 min.
  • the detection is carried out by electron impact (EI) mass spectrometry and the compounds are identified by comparison with the EI spectra of the NIST library.
  • EI electron impact
  • the analysis of the volatile compounds gives very complex GC-MS chromatograms, with a very large number of peaks.
  • the volatile organic compounds which correlate best with the results obtained for the sensory matrix and with the off-notes are selected.
  • the volatile organic compounds belong to 4 families of compounds: aldehydes (saturated and unsaturated), unsaturated ketones, carboxylic acids and carboxylic acid derivatives.
  • an optimized organoleptic profile is associated and characterized by an analytical profile of volatile organic compounds.
  • the various organic compounds selected will be considered in terms of their total content, in comparison with reference compositions, in particular as defined above.
  • the total surface area of the chromatography peaks corresponding to the volatile organic compounds selected will be considered and compared.
  • microalgal flour composition The perception of a microalgal flour composition is generally determined by solubilization in water, the neutral medium par excellence.
  • a sensory panel was therefore formed to evaluate the sensory properties of various batches of microalgal flour, prepared according to the teaching of patent application WO 2010/12093.
  • a set of 14 individuals were brought together to produce descriptors with respect to a microalgal flour composition considered to be complying (reference batch 1), said composition being placed in aqueous solution at 10% at ambient temperature (until homogenization).
  • compositions are evaluated with regard to each descriptor in comparison to a composition identified as being acceptable (reference batch 1).
  • compositions are evaluated one after the other, on scales ranging from 1 to 9.
  • the “sweet” descriptor is evaluated as follows:
  • Table 2 below presents the results of the sensory analyses performed by the Panel on 6 different batches of microalgal flour compositions of variable organoleptic quality:
  • Tests in ice cream applications were then carried out in order to verify the relevance of the classification of the microalgal flour compositions according to the preceding test.
  • the ice cream formulation is the following:
  • a triangular test (as described in standard NF V09-013 from July 1983) is undertaken by forming a sensory panel consisting of 21 individuals who are asked to give their opinion on the organoleptic quality of two batches of ice cream produced from:
  • the applicant company chose to develop its own test by replacing the complex tasting matrix used for the ice cream formulation with a mixture that is simpler to prepare than the ice cream but more discriminating than the solution at 10% in water.
  • the recipe formulated is the following:
  • the mixture is homogenized with an immersion mixer until a homogeneous mixture is obtained (approximately 20 seconds) and is then heated at 75° C. for 5 minutes in a water bath.
  • the software is a working environment which requires the loading of modules containing the calculation functions.
  • Analyses of variance are carried out in order to evaluate the discriminating capacity of the descriptors (descriptors of which the p-value associated with the Fisher test—type-1 ANOVA—is less than 0.20 for the Composition effect in the model descriptor ⁇ composition+judge).
  • composition effect is interpreted as the discriminating capacity of the descriptors: if there is no effect (Critical Probability>0.20), the compositions were not discriminated according to this criterion. The smaller this critical probability, the more discriminating the descriptors.
  • PCA principal component analysis
  • the critical probabilities associated with the composition effect for the 2 descriptors studied are less than 0.2: the 2 descriptors are therefore discriminating.
  • the critical probability is smaller with regard to the “vegetable aftertaste” descriptor than with regard to the “butter/dairy products” descriptor, thereby signifying that a greater difference is observed between the compositions with regard to the first criterion than with regard to the second.
  • the PCA was carried out regarding the descriptors relating to the flavors only (mushroom, cereals, vegetable aftertaste, dairy product, rancid).
  • the graphic representation of this PCA is provided in FIGS. 1 and 2 .
  • This method makes it possible to establish a classification of the organoleptic quality of various microalgal flour compositions, which can be represented as follows: Batch 111>batch 31>batch 21>batch 23>reference batch 1>batch 131>batch 24>batch 53>batch 61>reference batch 2.
  • the panel judged batches 111, 31, 21, 23 and 131 to be acceptable and batches 24, 53 and 61 to be unacceptable.
  • VOCs Volatile Organic Compounds
  • test specimen of 3 g of sample is introduced into a sealed SPME flask (20 ml) and incubated at 60° C. for 15 min and then extracted at 60° C. for 45 min with a DVB/CAR/PDMS (abbreviation for divinylbenzene/carboxen/polydimethylsiloxane, df 50/30 ⁇ m) SPME fiber.
  • DVB/CAR/PDMS abbreviation for divinylbenzene/carboxen/polydimethylsiloxane
  • the volatile organic compounds extracted are desorbed in the injector of the TSQ GC-MS system from Thermo Scientific, and then separated on a CPwax52 (60 m ⁇ 0.25 mm, 0.25 ⁇ m) column with helium gas at 1.5 ml/min.
  • the temperature program is: 50° C. isotherm for 3 min, then programming at 5° C./minute up to 230° C., then isotherm for 20 min.
  • the detection is carried out by electron impact (EI) mass spectrometry and the compounds are identified by comparison with the EI spectra of the NIST library.
  • EI electron impact
  • a first approach consists in comparing the chromatographic profiles ( FIG. 3 ) and determining whether these relatively “crude” results enable a link to be made with the sensory classification as presented in example 1.
  • FV x Concentration of the compound x /olfactory threshold of the compound x
  • the total FV then corresponds to the sum of the individual FVs of the compounds x taken into account.
  • a second approach consists in adding to the list of volatile organic compounds of the above model by listing the volatile compounds identified on the SPME/GC-MS chromatogram which appear to accompany the unacceptable off-notes organoleptic classifications, in total 35: pentanal, diacetyl, hexanal, 3-penten-2-one, heptanal, 2-pentylfuran, acetone, acetol, 2-heptenal, 3-octen-2-one, nonanal, acetic acid, 2-ethyl-1-hexanol, 2,4-heptadienal, 3,5-octadien-2-one, benzaldehyde, 2-nonenal, butanoic acid, isovaleric acid, 2,4-nonadienal, 5,6-dihydro-2H-pyran-2-one, pentanoic acid, 2,4-decadienal, hexanoic acid, geranyl acetone, benzyl alcohol, pheny
  • the model is the following: Volatile organic compound ⁇ Composition; only the compounds for which the critical probability associated with the Fisher test is less than 0.05 are retained.
  • Anova table (Type-III Test) Acetic acid Sum Sq Df F value Pr(>F) (Ordinate at 5.3107e+18 1 56.504 0.0842 . the origin) Composition 2.7508e+18 9 3.252 0.4073 Residues 9.3988e+16 1 Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’0.05 ‘.’ 0.1 ‘ ’ 1
  • linear regression models After this first selection of volatile compounds, linear regression models are established: this involves explaining the “sensory classification” variable by each compound one by one.
  • the model is the following: Classification ⁇ Compound.
  • the R 2 associated with the model is an indicator for quantifying the percentage of variability explained by the compound. It may not be very high, but significant; for this reason, it is chosen to select the compounds according to the critical probability (so as not to neglect a compound which has little but significant influence on the sensory classification).
  • the critical probability is greater than 0.05 and there is therefore no linear link between the compound and the sensory classification established.
  • the critical probability is less than 0.05 and the Multiple R 2 is close to 1 (0.90). This compound is therefore significantly and strongly linked to the sensory classification.
  • Table 5 presents the sums of the surface areas of the specific ion peaks by SPME/GC-MS of these 13 molecules for each of the 10 batches of microalgal flour compositions (relative value: 100% attributed to Ref batch 2).
  • Table 7 presents the sum of the values of individual flavors of these 13 compounds, and therefore the total flavor value, determined from the relative contents of the 13 compounds and their olfactory thresholds (in the same way as the first approach):
  • microalgal flour compositions in accordance with the invention in particular those having an optimized sensory profile, can therefore be defined by their relative content of 13 particular volatile organic compounds.
  • FIG. 1 Graphic representation of the various batches (cloud of points) of the PCA
  • FIG. 2 Circle of correlation of the PCA representing the aromatic profiles of the various batches
  • FIG. 3 Chromatographic profiles representing the relative absorbances as a function of time for the various batches tested. The arrow represents the sensory classification from good (at the top) to bad (at the bottom).
  • FIG. 4 Flavor values of the batches tested, considering nonanal and t,t-2,4-decadienal.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Confectionery (AREA)
  • Fats And Perfumes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Cereal-Derived Products (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Seasonings (AREA)

Abstract

Thus, the present invention relates to a method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.

Description

  • The present invention relates to novel compositions of flour of microalgae of the Chlorella genus having an optimized sensory profile, thereby making it possible to incorporate them into food formulations without generating undesirable flavors, and also to a method for evaluating the organoleptic profile of a composition of flour of microalgae of the Chlorella genus.
  • PRESENTATION OF THE PRIOR ART
  • Historically requiring “only water and sunlight” to grow, algae have for a long time been considered to be a source of food.
  • There are several species of algae that can be used in food, most being “macroalgae” such as kelp, sea lettuce (Ulva lactuca) and red algae of the type Porphyra (cultured in Japan) or “dulse” (Palmaria palmata).
  • However, in addition to these macroalgae, there are also other algal sources represented by the “microalgae”, i.e. photosynthetic or non-photosynthetic single-cell microscopic algae, of marine or non-marine origin, cultured for their applications in biofuels or food.
  • For example, spirulina (Arthrospira platensis) is cultured in open lagoons (under phototrophic conditions) for use as a food supplement or incorporated in small amounts into confectionery products or drinks (generally less than 0.5% weight/weight).
  • Other lipid-rich microalgae, including certain species of Chlorella type are also very popular in Asian countries as food supplements (mention is made of the omega-3-fatty-acid-producing microalgae of the Crypthecodinium or Schizochytrium genus).
  • The production and the use of the flour of microalgae of Chlorella type are, for example, described in documents WO 2010/120923 and WO 2010/045368.
  • The oil fraction of the microalgal flour, which may be composed essentially of monounsaturated oils, may provide nutritional and health advantages compared with the saturated, hydrogenated and polyunsaturated oils often found in conventional food products.
  • When it is desired to industrially produce microalgal flour powders from the biomass of said microalgae, considerable difficulties remain, not only from the technological point of view, but also from the point of view of the sensory profile of the compositions produced.
  • Indeed, while algal powders for example produced with algae photosynthetically cultured in exterior ponds or by photobioreactors are commercially available, they have a dark green color (associated with chlorophyll) and a strong, unpleasant taste.
  • Even formulated in food products or as nutritional supplements, these algal powders always give this visually unattractive green color to the food product or to the nutritional supplement and have an unpleasant fishy taste or the savor of marine algae.
  • Moreover, it is known that certain species of blue algae naturally produce odorous chemical molecules such as geosmin (trans-1,10-dimethyl-trans-9-decalol) or MIB (2-methylisoborneol), generating earthy or musty odors.
  • As for chlorellae, the descriptor commonly accepted in this field is the taste of “green tea”, slightly similar to other green vegetable powders such as powdered green barley or powdered green wheat, the taste being attributed to its high chlorophyll content.
  • Their savor is usually masked only when they are mixed with vegetables with a strong savor or citrus fruit juices.
  • There is therefore still an unsatisfied need to have compositions of flour of microalgae of the Chlorella genus of suitable organoleptic quality and allowing the use thereof in more numerous and diversified food products.
  • SUMMARY OF THE INVENTION
  • The applicant company has found that it is possible to meet this need by providing microalgal flour compositions having an optimized sensory profile, characterized by their total content of 13 volatile organic compounds.
  • Thus, the present invention relates to a method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • Preferably, the total content of 13 volatile organic compounds is determined by SPME/GC, preferably by SPME/GC-MS.
  • Thus, a low total content of 13 volatile organic compounds is associated with an optimized organoleptic quality. Conversely, a higher total content of 13 volatile organic compounds is associated with a medium, or even poor or unacceptable, organoleptic quality.
  • Preferably, the total content of 13 volatile organic compounds is determined by the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds.
  • Preferably, the total content of 13 volatile organic compounds, in particular the total surface area of the chromatography peaks corresponding to the 13 volatile organic compounds, is compared to that of a reference microalgal flour composition or compositions for which the organoleptic qualities are defined, in particular as unacceptable or acceptable.
  • The present invention also relates to a microalgal flour composition having an optimized organoleptic quality, characterized in that its total content of 13 volatile organic compounds is low, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • Preferably, the composition is characterized in that the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds is between 1% and 25% relative to that of a reference microalgal flour composition of unacceptable organoleptic quality.
  • The present invention also relates to a composition for tasting a microalgal flour composition, comprising:
      • 5-10% of microalgal flour composition, preferably approximately 7%;
      • 0.5-2% of sugar, preferably approximately 1%;
      • 0.1-0.5% of vanilla flavoring, preferably approximately 0.25%; and
      • the remainder being skimmed milk, preferably approximately 91.75%,
  • the percentages being expressed by weight of the composition.
  • Thus, the present invention relates to a method for preparing a composition for tasting a microalgal flour composition, comprising the preparation of a tasting composition as described above, the homogenization thereof, and the heating of the composition at 60-85° C., preferably approximately 75° C. for 2-10 minutes, preferably approximately 5 minutes.
  • It relates to a method for testing the organoleptic qualities of a microalgal flour composition, comprising the preparation of a tasting composition as described in the present document and the evaluation of the organoleptic qualities by a panel of testers.
  • Finally, the present invention relates to a method for defining an analytical profile of volatile compounds making it possible to evaluate the organoleptic quality of the microalgal flour compositions, comprising:
      • the construction of a first matrix associating microalgal flour compositions, including two controls of acceptable and unacceptable organoleptic quality, with the evaluation of their organoleptic qualities by a sensory panel of at least 10 individuals,
      • the construction of a second matrix associating with these same compositions their characterization by a volatile organic compound analysis profile, and
      • the correlation of the first matrix with the second to produce a relationship model on the basis of which the compositions having an optimized organoleptic profile can thus be characterized by their analytical profile of volatile organic compounds.
  • Preferably, the sensory analysis descriptors comprise color, coating texture, sweetness, and the following flavors: mushroom, cereals, butter/dairy product, rancid oil and vegetable aftertaste.
  • Preferably, the sensory analysis is carried out using a tasting composition prepared by the method described above and explained in detail in the present document.
  • Preferably, the analysis of the volatile organic compounds is carried out by SPME/GC-MS.
  • Preferably, the volatile organic compounds belong to the families of saturated and diunsaturated aldehydes, unsaturated ketones, and carboxylic acids and derivatives thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • For the purposes of the invention, a microalgal flour composition has an “optimized sensory profile” or an “optimized organoleptic quality” when its evaluation by a sensory panel in a food formulation (for example ice cream) concludes that there is an absence of off-notes which impair the organoleptic quality of said food formulations containing these microalgal flour compositions.
  • The term “organoleptic quality” is intended to mean the property of a food in terms of taste, odor, appearance, color and consistency.
  • These off-notes are associated with the presence of undesirable specific odorous and/or aromatic molecules which are characterized by a perception threshold corresponding to the minimum value of the sensory stimulus required to arouse a sensation.
  • The “optimized sensory profile” or “optimized organoleptic quality” is then reflected by a sensory panel by obtaining the best scores on a scale of evaluation of the 4 sensory criteria (appearance, texture, savors and flavors).
  • The term “total content” is intended to mean the sum of the contents of each of the volatile organic compounds of the list.
  • The term “approximately” is intended to mean the value plus or minus 10% thereof, preferably plus or minus 5% thereof. For example, “approximately 100” means between 90 and 110, preferably between 95 and 105.
  • The applicant company has discovered that the sensory profile of a microalgal flour composition can also be defined by the nature and the threshold of detection of odorous specific molecules, in particular of specific volatile organic compounds. Indeed, it has identified a set of 13 volatile organic compounds, the overall content of which in a microalgal flour composition makes it possible to determine the organoleptic quality thereof. These 13 volatile organic compounds are the following: heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • Thus, the present invention relates to a method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • The method does not exclude the determination of the content of other volatile organic compounds. However, the 13 volatile organic compounds are sufficient to determine the organoleptic quality of a microalgal flour composition.
  • Preferably, these volatile organic compounds are sampled by solid phase microextraction (SPME) and analyzed by gas chromatography GC, in particular by GC-MS (gas chromatography-mass spectrometry).
  • The volatile fraction is extracted from the sample of the microalgal flour composition by heating said composition for a sufficient period of time in the presence of an SPME fiber. The fiber may, for example, be chosen, non-exhaustively, from the group consisting of carboxen and polydimethylsiloxane (CAR/PDMS), divinylbenzene, carboxen and polydimethylsiloxane (DVB/CAR/PDMS), an alloy of metal and of polydimethylsiloxane (PDMS), a Carbopack-Z® fiber (graphitized carbon black), polyacrylate, Carbowax® polyethylene glycol (PEG), and PDMS/DVB. Preferably, a DVB/CAR/PDMS fiber is used.
  • For example, the extraction can be carried out at a temperature between 40 and 70° C., preferably between 50 and 65° C., in particular approximately 60° C. for at least 10 minutes, preferably at least 15 minutes and for example between 15 minutes and 1 hour.
  • Preferably, this extraction step is carried out in a sealed container. A sufficient amount of sample must be used, for example at least 1 g, in particular between 1 and 10 g and in particular approximately 3 g. The SPME technique is well known to those skilled in the art and is part of the general knowledge thereof.
  • The volatile organic compounds are then desorbed at a temperature compatible with the type of SPME fiber used, for example between 250 and 270° C. for the fiber used in our tests, more specifically at 250° C., and injected into the analysis system.
  • Preferably, the analysis is carried out by gas chromatography GC, in particular by GC-MS.
  • Several GC/MS devices are commercially available, for example the GC/Mass Clarus spectrometer (PerkinElmer, USA), the Hewlett Packard 6890 gas chromatograph (Hewlett Packard, USA) and the Aglient 6890N gas chromatograph coupled to the Aglient 5973 selective mass detector. The ionization methods which can be used in GC/MS are for example mass spectrometry with electron impact ionization (EI), chemical impact ionization (CI), electrospray ionization, matrix-assisted laser desorption/ionization (MALDI), luminescent discharge, field desorption (FD), etc.
  • The columns used for the GC are preferably a Cp-Wax 52CB 60 m*0.32 mm column; df 0.25 μm or equivalent which we retained; another column tested was one of ZB-1 ms 30 m*0.25 mm type; df 1 μm.
  • Thus, the height or the surface area of the chromatography peak corresponding to the volatile organic compound correlates with the amount of said compound. The term “surface area of the peak” is intended to mean the surface area of a specific ion under the curve in the SPME-GC/MS chromatogram.
  • Preferably, the content of one of the 13 volatile organic compounds is determined by the surface area of the peak of the specific ion of the SPME-GC/MS chromatogram corresponding to this volatile organic compound.
  • In addition, the total content of 13 volatile organic compounds is preferably determined by the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds.
  • The content of volatile organic compounds is determined, in particular in comparison with that of a reference product. Preferably, the total content of volatile organic compounds of the list of the 13 defined in the present invention is considered.
  • Thus, a low total content of 13 volatile organic compounds is associated with an optimized organoleptic quality. Conversely, a higher total content of 13 volatile organic compounds is associated with a medium, or even poor or unacceptable, organoleptic quality.
  • In a first embodiment, the reference product is a product in which the amount of a volatile organic compound is known.
  • Ideally, the reference product could comprise the 13 volatile organic compounds of the list in predefined amounts. Such a reference product makes it possible to exactly determine the amount of the volatile organic compounds.
  • In a second embodiment, the reference product is a microalgal flour composition, the organoleptic profile of which is defined. The organoleptic profile is preferably determined by the method described in detail later in the present document or in the experimental section. Thus, this reference product makes it possible to determine relative amounts of volatile organic compounds.
  • In this embodiment, when the reference microalgal flour composition has an organoleptic profile which is acceptable or only just acceptable, the content of volatile organic compounds, preferably the total content of said 13 volatile organic compounds, is compared to that determined for the reference product. If it is greater than or equal to that of the reference product, then the composition tested is considered to have an insufficient or unacceptable organoleptic quality. If it is less, then the composition tested is considered to have an acceptable or optimized organoleptic quality.
  • In this embodiment, when the reference microalgal flour composition has an organoleptic profile which is unacceptable, or even very unacceptable, the content of volatile organic compounds, preferably the total content of said 13 volatile organic compounds, is compared to that determined for the reference product. If it is greater than or equal to that of the reference product, then the composition tested is considered to have an insufficient or unacceptable organoleptic quality. If it is less, then the composition tested is considered to have an acceptable or optimized organoleptic quality. In particular, it has been defined in the examples, using a reference microalgal flour composition having a very unacceptable organoleptic profile, that the composition tested has an optimized organoleptic profile when the total content of said 13 volatile organic compounds is between 1% and 25% relative to that of this reference composition (which is considered to be 100%). For example, the total content of a composition with an acceptable organoleptic quality is at least two times less than that of a composition with an unacceptable organoleptic quality, for example at least 2, 3 or 4 times less, and in a most demanding embodiment, at least 10 times less.
  • In one preferred embodiment, the content of said 13 volatile organic compounds, in particular their total content, is considered in the method, this being after SPME/GC-EI/MS.
  • The invention thus makes it possible to classify the microalgal flour compositions according to their organoleptic quality, and to qualify the food formulations containing them, by quantifying said particular volatile organic compounds.
  • The present invention also relates to a microalgal flour composition having an optimized organoleptic quality, characterized in that its total content of 13 volatile organic compounds is low, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
  • Indeed, it has been determined by the applicant company's studies that, the lower the total content of 13 volatile organic compounds, the better the organoleptic quality of the microalgal flour composition. Conversely, the higher the total content of 13 volatile organic compounds, the poorer the organoleptic quality of the microalgal flour composition.
  • The content of volatile organic compounds is determined as detailed above in the method for evaluating the organoleptic quality of a microalgal flour composition. This content is evaluated relative to that of a reference product as defined above.
  • For example, the total content of said volatile organic compounds is low in comparison with a microalgal flour composition having an unacceptable, or even very unacceptable, organoleptic quality. For example, the total content of a composition with an acceptable organoleptic quality is at least two times less than that of a composition with an unacceptable organoleptic quality, for example at least 2, 3 or 4 times less, and in a most demanding embodiment, at least 10 times less. Preferably, the composition is characterized in that the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds is between 1% and 25% relative to that of a reference microalgal flour composition of unacceptable organoleptic quality.
  • The term “microalgal flour composition” is intended to mean a composition comprising at least 50%, 60%, 70%, 80% or 90% by dry weight of microalgal biomass. However, other ingredients can optionally be included in this composition.
  • For the purposes of the present invention, the term “microalgal flour” should be understood in its broadest interpretation and as denoting, for example, a composition comprising a plurality of particles of microalgal biomass. The microalgal biomass is derived from microalgal cells, which may be whole or broken, or a mixture of whole and broken cells.
  • A certain number of prior art documents, such as international patent application WO 2010/120923, describe methods for the production and use in food of Chlorella microalgal biomass.
  • The microalgae of which it is a question in the present invention are therefore microalgae of the Chlorella genus, more particularly Chlorella protothecoides, even more particularly Chlorella deprived of chlorophyll pigments, by any method known per se to those skilled in the art (either because the culture is carried out in the dark, or because the strain has been mutated so as to no longer produce these pigments). In particular, the microalgae can be chosen, non-exhaustively, from Chlorella protothecoides, Chlorella kessleri, Chlorella minutissima, Chlorella sp., Chlorella sorokiniama, Chlorella luteoviridis, Chlorella vulgaris, Chlorella reisiglii, Chlorella ellipsoidea, Chlorella saccarophila, Parachlorella kessleri, Parachlorella beijerinkii, Prototheca stagnora and Prototheca moriformis. Thus, in one quite particular embodiment, the microalgal flour composition is a Chlorella flour composition, and in particular a Chlorella protothecoides flour composition.
  • The fermentative process described in this patent application WO 2010/120923 thus allows the production of a certain number of microalgal flour compositions of variable sensory quality. The method as described in the present document therefore makes it possible to select the microalgal flour compositions which have an acceptable organoleptic profile, in particular for food applications, without having to organize organoleptic evaluations by a panel of individuals in order to do so.
  • The present invention also relates to a composition for tasting microalgal flour compositions. Indeed, the applicant company has defined a very simple tasting matrix. Nevertheless, it makes it possible to carry out an organoleptic evaluation similar to that obtained with much more complex and very different recipes, such as an ice cream or a brioche. The evaluation with this tasting matrix is much more precise or accurate than that carried out with a simple aqueous solution, which has proved to be incapable of predicting the organoleptic qualities of microalgal flour compositions in an ice cream, for example.
  • Consequently, the present invention relates to a composition for tasting microalgal flour compositions, comprising:
      • 5-10% of microalgal flour composition, preferably approximately 7%;
      • 0.5-2% of sugar, preferably approximately 1%;
      • 0.1-0.5% of vanilla flavoring, preferably approximately 0.25%; and
      • the remainder being skimmed milk, preferably approximately 91.75%,
  • the percentages being expressed by weight of the composition.
  • Moreover, the present invention relates to a method for preparing the composition for tasting a microalgal flour composition, comprising the preparation of a tasting composition as described above, the homogenization thereof, and the heating of the composition at 60-85° C., preferably approximately 75° C., for 2-10 minutes, preferably approximately 5 minutes.
  • It also relates to a method for testing the organoleptic qualities of a microalgal flour composition, comprising the preparation of a tasting composition as described above and the evaluation of the organoleptic qualities by a panel of testers. This evaluation can in particular be carried out by the methods detailed below.
  • The applicant company also provides a method for defining an analytical profile of volatile compounds making it possible to evaluate the organoleptic quality of the microalgal flour compositions, comprising:
      • the construction of a first matrix associating microalgal flour compositions, including preferably two controls of acceptable and unacceptable organoleptic quality, with the evaluation of their organoleptic qualities by a sensory panel of at least 10 individuals,
      • the construction of a second matrix associating with these same compositions their characterization by a volatile organic compound analysis profile, and
      • the correlation of the first matrix with the second to produce a relationship model on the basis of which the compositions having an optimized organoleptic profile can thus be characterized by their analytical profile of volatile organic compounds.
  • A sensory panel is formed in order to evaluate the sensory properties of various batches of microalgal flour compositions, in particular Chlorella protothecoides biomass flour compositions.
  • A set of individuals, at least 10, 20 or 30, in particular approximately 15, is brought together to evaluate descriptors of several microalgal flour compositions, preferably in comparison with a sample of reference microalgal flour identified as complying, i.e. of acceptable organoleptic quality (reference batch No. 1) and another sample of very unacceptable organoleptic quality (reference batch No. 2).
  • Preferably, the microalgal flour compositions are tested in the form of a tasting composition according to the present document. Alternatively, the compositions can be tested in any other form desired by those skilled in the art, for example in the form of an ice cream or of a breadmaking product such as a brioche.
  • Preferably, the reference products as presented in the following table are associated with each descriptor:
  • Descriptors Reference
    Appearance Color (from light to dark)
    Texture Coating Whole milk + 5% cream
    Savors Sweet
    1% sucrose
    Flavors Mushroom 100 g of mushrooms in 100 ml
    of cold water/X 4 dilution
    Cereals
    10% Ebly Solution
    Butter/dairy product
    Rancid oil 1.5% Oxidized oil
    Vegetable aftertaste Very unacceptable microalgal
    flour composition
  • Of course, those skilled in the art can define other reference products if they so desire.
  • At each tasting session, several products, for example 4 to 5, are evaluated with regard to each descriptor in comparison with a reference sample or batch, preferably of reference considered to be of acceptable organoleptic quality.
  • All the products are evaluated one after the other, on scales ranging, for example, from 1 to 9 in the following way:
      • Value of 1: the descriptor evaluated is not present in the product;
      • Value of 5: the descriptor evaluated is present in the product in exactly the same way as on the reference product of acceptable organoleptic quality;
      • Value of 9: the descriptor evaluated is very present in the product.
  • The reference batch of acceptable organoleptic quality is a microalgal flour composition that complies in the sense that it has the sensory profile “satisfying” all these descriptors. The reference batch of very unacceptable organoleptic quality is a batch which does not satisfy the descriptors relating to the aromatic notes, i.e. to the savor and flavor descriptors, since it has a considerable vegetable aftertaste.
  • It is important to note that the reference batch of acceptable organoleptic quality is not necessarily the microalgal flour composition having the optimal sensory profile: it is preferably a microalgal flour composition perceived by the sensory panel as “satisfactory”, in particular having a grade of 5 on all the descriptors tested.
  • In this embodiment, the other microalgal flour compositions, the compositions tested, are classified by the sensory panel on either side of this reference batch of acceptable organoleptic quality.
  • Generally, the other compositions tested are classified by the sensory panel relative to the reference batch(es) of acceptable or unacceptable, preferably acceptable, organoleptic quality.
  • Thus, the first step results in the classification of the various microalgal flour compositions tested according to their organoleptic quality.
  • In particular, analyses of variance (ANOVAs) are carried out in order to evaluate the discriminating capacity of the descriptors (descriptors of which the p-value associated with the Fisher test—type-3 ANOVA—is less than 0.20 for the Composition effect in the model descriptor˜Composition+judge). The Composition effect is interpreted as the discriminating capacity of the descriptors: if there is no effect (Critical Probability>0.20), the compositions were not discriminated according to this criterion. The smaller this critical probability, the more discriminating the descriptor. A principal component analysis (PCA) is then carried out in order to obtain sensory mapping of the compositions, and a simultaneous representation of all the compositions regarding all the descriptors.
  • This classification therefore then serves as a basis for studying the analytical profile of the volatile organic compounds and selecting molecules responsible for the poor organoleptic quality of the microalgal flour compositions.
  • Thus, the profile of the volatile organic compounds of the microalgal flour compositions is determined. It is determined by any method known to those skilled in the art, and preferably by SPME/GC-MS, as detailed above.
  • In one very specific example, for the SPME/GC-MS analysis of the various batches of microalgal flour compositions, the process is carried out as follows.
  • A test specimen of 3 g of sample is introduced into a sealed SPME flask (20 ml) and incubated at 60° C. for 15 min and then extracted at 60° C. for 45 min with a DVB/CAR/PDMS (abbreviation for divinylbenzene/carboxen/polydimethylsiloxane, df 50/30 μm) SPME fiber.
  • The volatile organic compounds extracted are desorbed at 250° C. in the injector of the TSQ GC-MS system from Thermo Scientific, injected in “splitless” mode and then separated on a CPwax52 (60 m×0.25 mm, 0.25 μm) column with helium gas at 1.5 ml/min. The temperature program is: 50° C. isotherm for 3 min, then programming at 5° C./minute up to 230° C., then isotherm for 20 min. The detection is carried out by electron impact (EI) mass spectrometry and the compounds are identified by comparison with the EI spectra of the NIST library.
  • The analysis of the volatile compounds gives very complex GC-MS chromatograms, with a very large number of peaks. By means of analyses of variance and linear regressions, the volatile organic compounds which correlate best with the results obtained for the sensory matrix and with the off-notes are selected. Preferably, the volatile organic compounds belong to 4 families of compounds: aldehydes (saturated and unsaturated), unsaturated ketones, carboxylic acids and carboxylic acid derivatives.
  • Thus, an optimized organoleptic profile is associated and characterized by an analytical profile of volatile organic compounds.
  • In one preferred embodiment, the various organic compounds selected will be considered in terms of their total content, in comparison with reference compositions, in particular as defined above. In particular, the total surface area of the chromatography peaks corresponding to the volatile organic compounds selected will be considered and compared.
  • The invention will be understood more clearly from the examples which follow, which are intended to be illustrative and nonlimiting.
  • EXAMPLES Example 1 Definition of the Sensory Test
  • Sensory Test Conventionally Carried Out
  • The perception of a microalgal flour composition is generally determined by solubilization in water, the neutral medium par excellence.
  • A sensory panel was therefore formed to evaluate the sensory properties of various batches of microalgal flour, prepared according to the teaching of patent application WO 2010/12093.
  • Eight batches of microalgal flour were tested: batch 21, batch 23, batch 24, batch 31, batch 53, batch 61, batch 111 and batch 131, in comparison with a reference sample identified as complying or acceptable (reference batch No. 1) and another, very unacceptable, batch (reference batch No. 2).
  • A set of 14 individuals were brought together to produce descriptors with respect to a microalgal flour composition considered to be complying (reference batch 1), said composition being placed in aqueous solution at 10% at ambient temperature (until homogenization).
  • The list of descriptors retained is the following:
      • Appearance: Color
      • Texture: Coating
      • Savors: Sweet, Bitter
      • Flavors: mushroom, cereal, butter I/dairy products, rancid oil
  • Table 1 below presents the reference products associated by the panel with each descriptor:
  • TABLE 1
    Descriptors Reference
    Appearance Color (from light to dark)
    Texture Coating Whole milk + 5% cream
    Savors Sweet
    1% sucrose
    Bitterness Quinine 0.0075 g/l
    Flavors Mushroom 100 g of mushrooms in 100 ml
    of cold water/X 4 dilution
    Cereals
    10% EBLY wheat solution
    Butter/dairy product
    Rancid oil 1.5% Oxidized oil
  • At each tasting session, 4 to 5 compositions are evaluated with regard to each descriptor in comparison to a composition identified as being acceptable (reference batch 1).
  • All the compositions are evaluated one after the other, on scales ranging from 1 to 9.
  • 1: the descriptor evaluated is not present in the product
  • 5: the descriptor evaluated is present in the product in exactly the same way as on the reference product 1
  • 9: the descriptor evaluated is very present in the product.
  • For example, the “sweet” descriptor is evaluated as follows:
  • Reference
    1 2 3 4 5 6 7 8 9
  • Table 2 below presents the results of the sensory analyses performed by the Panel on 6 different batches of microalgal flour compositions of variable organoleptic quality:
  • TABLE 2
    Sensory test
    in solution
    Reference Acceptable
    batch
    1
    Batch 24 Acceptable
    Batch
    53 Acceptable
    Batch
    61 Unacceptable
    Batch
    111 Acceptable
    Batch
    131 Acceptable
  • It appears that 5 of the 6 batches tested have an organoleptic quality similar to the control, which would appear to indicate that the method for producing them is sufficiently managed to result in the obtaining of compositions of “acceptable” organoleptic quality.
  • Tests in ice cream applications were then carried out in order to verify the relevance of the classification of the microalgal flour compositions according to the preceding test.
  • The ice cream formulation is the following:
  • INGREDIENTS Amount (%)
    Skimmed milk 64.42
    Sucrose 13.5
    Crème fraîche (36% fat) 10.5
    Algal composition batches 4
    Powdered skimmed milk 3.5
    ROCLYS ® 4080 sold by 3
    ROQUETTE FRERES
    Stabilizer (CREMODAN ® SE30) 0.55
    Vanilla flavoring IFF 10836706 0.5
    Salt 0.03
    Total (%) 100
  • A triangular test (as described in standard NF V09-013 from July 1983) is undertaken by forming a sensory panel consisting of 21 individuals who are asked to give their opinion on the organoleptic quality of two batches of ice cream produced from:
      • reference batch 1 and
      • a batch chosen from the range of which the assessment in the preceding sensory test (solubilization in water) was judged to be acceptable: in this case batch 24.
  • One of the 2 ice creams is presented in duplicate to the panelists.
  • They are then asked whether they notice a difference between these three ice creams.
  • As it happens, 14 individuals out of 21 succeeded in noticing a difference; the panel therefore noticed, against all expectations, in the context of the ice cream, an organoleptic difference between the reference batch and the tested batch nevertheless judged to be acceptable in the sensory test on the powder solubilized in water.
  • The difference is significant between the two compositions (binomial distribution B (21, ⅓), with a significance threshold of 0.05). Moreover, 7 individuals also noticed a strong aftertaste to describe this production batch.
  • Tests were then undertaken on a certain number of product batches.
  • Table 3 below summarizes the results obtained.
  • TABLE 3
    Sensory test In ice cream
    in solution application
    Reference acceptable acceptable
    batch
    1
    Batch 24 acceptable unacceptable
    Batch
    53 acceptable unacceptable
    Batch
    61 unacceptable unacceptable
    Batch
    111 acceptable acceptable
    Batch
    131 acceptable acceptable
  • It is deduced therefrom that the conventional test for measuring the organoleptic quality of a microalgal flour composition in water is not suitable for predicting the organoleptic quality of the corresponding ice creams.
  • Similar results were obtained in the case of brioches prepared from these same microalgal flour compositions.
  • Test Developed by the Applicant Company for Evaluating Various Microalgal Flour Compositions According to the Invention
  • Given the aforementioned, the applicant company chose to develop its own test by replacing the complex tasting matrix used for the ice cream formulation with a mixture that is simpler to prepare than the ice cream but more discriminating than the solution at 10% in water.
  • The recipe formulated is the following:
      • 7% of microalgal flour composition
      • 1% granulated sugar
      • 0.25% household vanilla flavoring
      • 91.75% skimmed milk.
  • The mixture is homogenized with an immersion mixer until a homogeneous mixture is obtained (approximately 20 seconds) and is then heated at 75° C. for 5 minutes in a water bath.
  • The bitter descriptor was removed since it was no longer coherent in this new matrix and a new descriptor was added:
  • Descriptors Reference
    Flavors Vegetable aftertaste Microalgal flour composition
    identified as very unacceptable
    (reference batch 2)
  • The evaluation method remains the same (use of scales, reference at 5).
  • Data Processing Software
  • The analyses were carried out using the R software (freely sold):
  • R version 2.14.1 (2011 Dec. 22)
  • Copyright (C) 2011 The R Foundation for Statistical Computing
  • ISBN 3-900051-07-0
  • Platform: i386-pc-mingw32/i386 (32-bit)
  • The software is a working environment which requires the loading of modules containing the calculation functions.
  • The modules used in this study are the following:
      • For the PCA: Package FactoMineR version 1.19
      • For the ANOVA: Package car version 2.0-12
      • For the Linear Regression: Package stats version 2.14.1
  • Data Processing:
  • Analyses of variance (ANOVAs) are carried out in order to evaluate the discriminating capacity of the descriptors (descriptors of which the p-value associated with the Fisher test—type-1 ANOVA—is less than 0.20 for the Composition effect in the model descriptor˜composition+judge).
  • The “composition” effect is interpreted as the discriminating capacity of the descriptors: if there is no effect (Critical Probability>0.20), the compositions were not discriminated according to this criterion. The smaller this critical probability, the more discriminating the descriptors.
  • A principal component analysis (PCA) is then carried out in order to obtain sensory mapping of the compositions, and also a simultaneous representation of all the compositions regarding all the descriptor.
  • Various batches (batch 21, batch 23, batch 24, batch 31, batch 53, batch 61, batch 111 and batch 131) were analyzed according to the method described above.
  • Two examples regarding the descriptors “butter/dairy products” and “vegetable aftertaste” are presented here.
  • “Vegetable aftertaste”
    Analysis of variance table
    Df Sum Sq Mean Sq F value Pr(>F)
    Composition 9 109.693 12.1881 18.2423 <2e−16
    Judge 13 18.732 1.4409 2.1566 0.01298
    Residues 185 123.603 0.6681
  • “Butter/dairy products”
    Analysis of variance table
    Df Sum Sq Mean Sq F value Pr(>F)
    Composition 9 8.292 0.92131 1.4530 0.1699
    Judge 13 8.235 0.63347 0.9991 0.4547
    Residues 160 101.451 0.63407
  • It appears that the critical probabilities associated with the composition effect for the 2 descriptors studied are less than 0.2: the 2 descriptors are therefore discriminating. The critical probability is smaller with regard to the “vegetable aftertaste” descriptor than with regard to the “butter/dairy products” descriptor, thereby signifying that a greater difference is observed between the compositions with regard to the first criterion than with regard to the second.
  • Below is a table summing up the critical probabilities obtained for the composition and judge effects for all the descriptors.
  • Composition judge
    Color 1.62E−31 1.16E−05
    vegetable aftertaste 1.60E−21 1.30E−02
    Rancid oil taste 4.00E−06 9.00E−04
    Coating 1.48E−05 1.63E−02
    Cereals 4.05E−04 1.94E−07
    Mushrooms 1.37E−03 5.66E−05
    Sweet 3.23E−03 4.02E−04
    Dairy products 1.70E−01 4.55E−01
  • All the descriptors are discriminating; they are all kept for establishing the PCA.
  • Since the aromatic is an essential criterion of the compositions, the PCA was carried out regarding the descriptors relating to the flavors only (mushroom, cereals, vegetable aftertaste, dairy product, rancid). The graphic representation of this PCA is provided in FIGS. 1 and 2.
  • Since the first axis of the PCA summarizes more than 75% of the information (FIG. 1), it is the coordinates of the products on this axis which we use as “variable/classification”. This classification therefore clearly gives an account of the sensory distances between the products.
  • This method makes it possible to establish a classification of the organoleptic quality of various microalgal flour compositions, which can be represented as follows: Batch 111>batch 31>batch 21>batch 23>reference batch 1>batch 131>batch 24>batch 53>batch 61>reference batch 2.
  • There is a clear separation between, on the one hand, batches 111, 31, 21, 23 and 131 and, on the other hand, batches 24, 53 and 61.
  • From an overall point of view, the panel judged batches 111, 31, 21, 23 and 131 to be acceptable and batches 24, 53 and 61 to be unacceptable.
  • This organoleptic classification having now been established, it is possible, efficiently according to the invention, to analyze the SPME/GC-MS profile of these samples in order to identify the reference molecular targets that will make it possible to define the quality of the compositions produced.
  • Example 2 Identification of the Volatile Organic Compounds (VOCs), by SPME/GC-MS, Associated with Unacceptable Off-Notes Organoleptic Classifications
  • In order to carry out the SPME/GC-MS analysis of the various batches of microalgal flour compositions, the process is carried out as follows.
  • A test specimen of 3 g of sample is introduced into a sealed SPME flask (20 ml) and incubated at 60° C. for 15 min and then extracted at 60° C. for 45 min with a DVB/CAR/PDMS (abbreviation for divinylbenzene/carboxen/polydimethylsiloxane, df 50/30 μm) SPME fiber.
  • The volatile organic compounds extracted are desorbed in the injector of the TSQ GC-MS system from Thermo Scientific, and then separated on a CPwax52 (60 m×0.25 mm, 0.25 μm) column with helium gas at 1.5 ml/min.
  • The temperature program is: 50° C. isotherm for 3 min, then programming at 5° C./minute up to 230° C., then isotherm for 20 min.
  • The detection is carried out by electron impact (EI) mass spectrometry and the compounds are identified by comparison with the EI spectra of the NIST library.
  • The analysis of the volatile compounds by SPME/GC-MS gives complex chromatograms, with a very large number of molecules.
  • A first approach consists in comparing the chromatographic profiles (FIG. 3) and determining whether these relatively “crude” results enable a link to be made with the sensory classification as presented in example 1.
  • Visually, the chromatographic profiles of the volatile compounds of the various samples do not simply reflect the sensory classification.
  • On the other hand, integration of the surface areas of the chromatographic peaks between 3.2 and 33.5 min makes it possible to achieve this.
  • However, the error in the SPME/GC-MS analysis is considerable (standard deviation of approximately 30%); it is therefore not easy to differentiate the samples classified as “good” from the samples classified as “poor”.
  • 1st Approach
  • Since not all the volatile compounds reflect the sensory classification finely enough, it is decided firstly to identify and select two volatile molecules present in the headspace of the samples which may be responsible for the sensory descriptors: nonanal and 2,4-decadienal which are lipid degradation compounds well known for their sensory impact.
  • It is possible to introduce a notion of “flavor value” (FV) by taking into account the known olfactory threshold of these compounds, according to the following formula:

  • FVx=Concentration of the compound x/olfactory threshold of the compound x
  • with 0.07 ppb for the olfactory threshold in water of trans-2-trans-4-decadienal, and 1 ppb for nonanal.
  • The total FV then corresponds to the sum of the individual FVs of the compounds x taken into account.
  • On first analysis, this model appears to be coherent with the sensory evaluation of the various samples, but unfortunately not all (FIG. 4).
  • Consequently, it is not possible to correlate the sensory profile measured for each batch in comparison with the flavor value of the two arbitrarily chosen compounds.
  • 2nd Approach
  • A second approach consists in adding to the list of volatile organic compounds of the above model by listing the volatile compounds identified on the SPME/GC-MS chromatogram which appear to accompany the unacceptable off-notes organoleptic classifications, in total 35: pentanal, diacetyl, hexanal, 3-penten-2-one, heptanal, 2-pentylfuran, acetone, acetol, 2-heptenal, 3-octen-2-one, nonanal, acetic acid, 2-ethyl-1-hexanol, 2,4-heptadienal, 3,5-octadien-2-one, benzaldehyde, 2-nonenal, butanoic acid, isovaleric acid, 2,4-nonadienal, 5,6-dihydro-2H-pyran-2-one, pentanoic acid, 2,4-decadienal, hexanoic acid, geranyl acetone, benzyl alcohol, phenylethyl alcohol, 2-ethylhexanoic acid, heptanoic acid, myristate-1, octanoic acid, triacetin, nonanoic acid, laurate-1, and myristate-2.
  • On the other hand, for the following models, the olfactory thresholds in water of certain molecules not known to those skilled in the art were defined by the applicant company.
  • In order to select the representative volatile organic compounds, a series of analyses of variance are carried out so as to keep only the volatile organic compounds which actually differ from one composition to the other given the variability of the SPME-GC/MS measurement.
  • The model is the following: Volatile organic compound˜Composition; only the compounds for which the critical probability associated with the Fisher test is less than 0.05 are retained.
  • Two examples of ANOVA on the compounds acetic acid and 2-ethyl-1-hexanol are presented here.
  • Anova table (Type-III Test)
    Acetic acid
    Sum Sq Df F value Pr(>F)
    (Ordinate at 5.3107e+18 1 56.504 0.0842 .
    the origin)
    Composition 2.7508e+18 9 3.252 0.4073
    Residues 9.3988e+16 1
    Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’0.05 ‘.’ 0.1 ‘ ’ 1
  • Anova table (Type-III Test)
    2-ethyl-1-hexanol
    Sum Sq Df F value Pr(>f)
    (Ordinate at 2.8608e+16 1 2990.30 0.01164 *
    the origin)
    Composition 2.0894e+16 9 242.67 0.04978 *
    Residues 9.5669e+12 1
    Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  • It appears on the first volatile organic compound (acetic acid) that the composition effect is not significant (critical probability=0.40), which signifies that there is no significant difference between the products given the variability of the measurement.
  • On the 2nd compound (2-ethyl-1-hexanol), the composition effect is clearly significant (critical probability<0.05).
  • The 2-ethyl-1-hexanol, but not the acetic acid, will therefore be kept for the study.
  • After this first selection of volatile compounds, linear regression models are established: this involves explaining the “sensory classification” variable by each compound one by one.
  • As many models as there are compounds are therefore constructed. The model is the following: Classification˜Compound.
  • In order to select the final list of compounds identified as responsible for the unacceptable off-notes organoleptic classifications observed, only the compounds for which the critical probability associated with Student's test is less than 0.05 (test for nullity of the linear regression coefficient) will be kept.
  • The R2 associated with the model is an indicator for quantifying the percentage of variability explained by the compound. It may not be very high, but significant; for this reason, it is chosen to select the compounds according to the critical probability (so as not to neglect a compound which has little but significant influence on the sensory classification).
  • Coefficients:
    Estimated Std Error t value Pr(>|t|)
    (Ordinate at  5.689e−01 1.112e+00 0.512 0.621
    the origin)
    2-ethyl-1-hexanol −2.295e−09 1.710e−08 −0.134 0.896
    Residual standard error: 2.473 on 9 degrees of freedom
    Multiple R2: 0.001998 adjusted R2: −0.1089
    Statistic F: 0.01801 on 1 and 9 degrees of freedom, p value: 0.8962
  • In this example on 2-ethyl-1-hexanol, the critical probability is greater than 0.05 and there is therefore no linear link between the compound and the sensory classification established.
  • Coefficients:
    Estimated Std. Error T value Pr(>|t|)
    (Ordinate at −8.642e−01 2.729e−01 −3.167 0.0114 *
    the origin)
    3-octen-2-one  5.336e−08 5.812e−09 9.181 7.25e−06 ***
    Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    Residual standard error: 0.7688 on 9 degrees of freedom
    Multiple R2: 0.9035, adjusted R2: 0.8928
    Statistic F: 84.3 on 1 and 9 degrees of freedom, p value: 7.251e−06
  • In this other example relating to 3-octen-2-one, the critical probability is less than 0.05 and the Multiple R2 is close to 1 (0.90). This compound is therefore significantly and strongly linked to the sensory classification.
  • In the end, 13 compounds were identified: heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2, and geranyl acetone.
  • The families of diunsaturated aldehydes, diunsaturated ketones, carboxylic acids and carboxylic acid derivatives are thus found to be represented here.
  • The value of the specific ions (by SPME GC/MS) of each of these 13 molecules is given in table 4 below.
  • TABLE 4
    (elution time)
    Retention Specific ion
    time (min) (m/z)
    2,4-decadienal 27.2 81
    2,4-heptadienal 19.6 81
    2,4-nonadienal 24.7 81
    3,5-octadien-2-one 20.2 95
    3-octen-2-one 17.3 111
    heptanal 11.2 70
    2-ethylhexanoic acid 30.0 88
    heptanoic acid 30.1 60
    hexanoic acid 27.7 60
    geranyl acetone 28.0 151
    myristate-1 31.8 228
    laurate-1 37.2 112
    myristate-2 41.1 228
  • Table 5 below presents the sums of the surface areas of the specific ion peaks by SPME/GC-MS of these 13 molecules for each of the 10 batches of microalgal flour compositions (relative value: 100% attributed to Ref batch 2).
  • TABLE 5
    Total surface areas of the specific
    ions of the 13 molecules
    (%)
    Batch 111 1.4
    Batch 31 2.2
    Batch 21 6.3
    Batch 23 4.7
    Ref Batch 1 13.3
    Batch 131 15.2
    Batch 24 51.7
    Batch 53 64.3
    Batch 61 58.4
    Ref Batch 2 100
  • The olfactory thresholds in water, attributed to these 13 compounds, are presented in table 6 below.
  • TABLE 6
    olfactory threshold
    in water (ppb)
    2,4-decadienal 0.07
    2,4-heptadienal* 0.1
    2,4-nonadienal 0.01
    3,5-octadien-2-one* 1
    3-octen-2-one* 1
    heptanal 3
    2-ethylhexanoic acid* 1000
    heptanoic acid 3000
    hexanoic acid 3000
    geranyl acetone 60
    myristate-1* 1
    laurate-1* 1
    myristate-2* 1
    *olfactory threshold established by the applicant company
  • Table 7 below presents the sum of the values of individual flavors of these 13 compounds, and therefore the total flavor value, determined from the relative contents of the 13 compounds and their olfactory thresholds (in the same way as the first approach):

  • FV total=ΣFVx(some of the individual FVs),
  • with FVx=Concentration of the compound x/olfactory threshold of the compound x) for each of the 10 batches of microalgal flour compositions (value of 100% attributed to Ref batch 2).
  • TABLE 7
    Total flavor value
    (%)
    Batch 111 0.92
    Batch 31 0.44
    Batch 21 0.52
    Batch 23 0.40
    Ref Batch 1 17.7
    Batch 131 24.33
    Batch 24 31.7
    Batch 53 57.3
    Batch 61 65.6
    Ref Batch 2 100
  • This analysis by GC/MS also makes it possible to consider the scale of following values:
  • batch 111>batch 31>batch 21>batch 23>reference batch 1>batch 131>batch 24>batch 53>batch 61>reference batch 2.
  • There is clearly a perfect correspondence between the scale of sensory analysis in food formation and that of the flavor values of the 13 molecules.
  • The microalgal flour compositions in accordance with the invention, in particular those having an optimized sensory profile, can therefore be defined by their relative content of 13 particular volatile organic compounds.
  • DESCRIPTION OF THE FIGURES
  • FIG. 1: Graphic representation of the various batches (cloud of points) of the PCA
  • FIG. 2: Circle of correlation of the PCA representing the aromatic profiles of the various batches
  • FIG. 3: Chromatographic profiles representing the relative absorbances as a function of time for the various batches tested. The arrow represents the sensory classification from good (at the top) to bad (at the bottom).
  • FIG. 4: Flavor values of the batches tested, considering nonanal and t,t-2,4-decadienal.

Claims (20)

1-15. (canceled)
16. A method for determining the organoleptic quality of a microalgal flour composition, comprising determining the total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
17. The method as claimed in claim 16, wherein the total content of 13 volatile organic compounds is determined by SPME/GC.
18. The method as claimed in claim 16, wherein the total content of 13 volatile organic compounds is determined by SPME/GC-MS.
19. The method as claimed in claim 16, wherein a low total content of 13 volatile organic compounds is associated with an optimized organoleptic quality.
20. The method as claimed in claim 17, wherein the total content of 13 volatile organic compounds is determined by the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds.
21. The method as claimed in claim 16, wherein the total content of 13 volatile organic compounds is compared to that of a reference microalgal flour composition or compositions for which the organoleptic qualities are defined as unacceptable or acceptable.
22. The method as claimed in claim 20, wherein the total surface area of the chromatography peaks corresponding to the 13 volatile organic compounds is compared to that of a reference microalgal flour composition or compositions for which the organoleptic qualities are defined, in particular as unacceptable or acceptable.
23. A microalgal flour composition having an optimized organoleptic quality and a low total content of 13 volatile organic compounds, the 13 volatile organic compounds being heptanal, 3-octen-2-one, 2,4-heptadienal, 3,5-octadien-2-one, 2,4-nonadienal, 2,4-decadienal, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, myristate-1, laurate-1, myristate-2 and geranyl acetone.
24. The composition as claimed in claim 23, wherein the total surface area of the chromatography peaks after SPME/GC corresponding to the 13 volatile organic compounds is between 1% and 25% relative to a reference microalgal flour composition of unacceptable organoleptic quality.
25. A composition for tasting a microalgal flour composition, comprising:
5-10% of microalgal flour composition;
0.5-2% of sugar;
0.1-0.5% of vanilla flavoring; and
the remainder being skimmed milk,
the percentages being by weight of the composition.
26. The composition as claimed in claim 25, said composition comprising:
approximately 7% of microalgal flour;
approximately 0.25% vanilla flavoring;
approximately 1% sugar; and
the remainder being skimmed milk.
27. A method for preparing a composition for tasting a microalgal flour composition, comprising the homogenization of a composition of claim 25, and heating of the composition at 60-85° C. for 2-10 minutes.
28. The method as claimed in claim 27, said method comprising heating at approximately 75° C. for approximately 5 minutes.
29. A method for testing the organoleptic qualities of a microalgal flour composition, comprising the preparation of a composition according to the method of claim 27 and evaluation of the organoleptic qualities by a panel of testers.
30. A method for defining an analytical profile of volatile compounds making it possible to evaluate the organoleptic quality of the microalgal flour compositions, comprising:
the construction of a first matrix associating microalgal flour compositions, including two controls of acceptable and unacceptable organoleptic quality, with the evaluation of their organoleptic qualities by a sensory panel of at least 10 individuals,
the construction of a second matrix associating with these same compositions their characterization by a volatile organic compound analysis profile, and
the correlation of the first matrix with the second to produce a relationship model on the basis of which the compositions having an optimized organoleptic profile can thus be characterized by their analytical profile of volatile organic compounds.
31. The method as claimed in claim 30, wherein the sensory analysis descriptors comprise color, coating texture, sweetness, and the following flavors: mushroom, cereals, butter/dairy product, rancid oil and vegetable aftertaste.
32. The method as claimed in claim 30, wherein the sensory analysis is carried out using a composition prepared by homogenization and heating, at 60-85° C. for 2-10 minutes, a composition comprising:
5-10% of microalgal flour composition;
0.5-2% of sugar;
0.1-0.5% of vanilla flavoring; and
the remainder being skimmed milk,
the percentages being by weight of the composition.
33. The method as claimed in claim 30, wherein the analysis of the volatile organic compounds is carried out by SPME/GC-MS.
34. The method as claimed in claim 30, wherein the volatile organic compounds belong to the families of saturated and diunsaturated aldehydes, unsaturated ketones, and carboxylic acids and derivatives thereof.
US14/900,654 2013-06-26 2014-06-25 Microalgal flour compositions of optimised sensory quality Abandoned US20160161460A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1356113 2013-06-26
FR1356113A FR3007837B1 (en) 2013-06-26 2013-06-26 MICROALGUE FLOUR COMPOSITIONS OF OPTIMIZED SENSORY QUALITY
PCT/FR2014/051589 WO2014207377A1 (en) 2013-06-26 2014-06-25 Microalgal flour compositions of optimised sensory quality

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051589 A-371-Of-International WO2014207377A1 (en) 2013-06-26 2014-06-25 Microalgal flour compositions of optimised sensory quality

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/926,899 Continuation US11016071B2 (en) 2013-06-26 2018-03-20 Microalgal flour compositions of optimised sensory quality

Publications (1)

Publication Number Publication Date
US20160161460A1 true US20160161460A1 (en) 2016-06-09

Family

ID=49274825

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/900,654 Abandoned US20160161460A1 (en) 2013-06-26 2014-06-25 Microalgal flour compositions of optimised sensory quality
US15/926,899 Active 2035-02-14 US11016071B2 (en) 2013-06-26 2018-03-20 Microalgal flour compositions of optimised sensory quality

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/926,899 Active 2035-02-14 US11016071B2 (en) 2013-06-26 2018-03-20 Microalgal flour compositions of optimised sensory quality

Country Status (9)

Country Link
US (2) US20160161460A1 (en)
EP (1) EP3014265B1 (en)
JP (1) JP6427565B2 (en)
KR (1) KR20160023664A (en)
CN (1) CN105264373B (en)
BR (1) BR112015031592B1 (en)
FR (3) FR3007837B1 (en)
MX (1) MX2015017504A (en)
WO (1) WO2014207377A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303731A1 (en) * 2014-11-14 2017-10-26 Koninklijke Philips N.V. Coffee processing apparatus and method
US10119947B2 (en) 2013-08-07 2018-11-06 Corbion Biotech, Inc. Protein-rich microalgal biomass compositions of optimized sensory quality
US11193105B2 (en) 2013-03-29 2021-12-07 Corbion Biotech, Inc. Microalgal biomass protein enrichment method
CN114264766A (en) * 2021-12-31 2022-04-01 江苏艾兰得营养品有限公司 Evaluation method of sweet orange essence for VC soft sweets
US11473050B2 (en) 2016-02-08 2022-10-18 Corbion Biotech, Inc. Method for the protein enrichment of microalgal biomass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035807A2 (en) * 2013-08-13 2016-06-29 Roquette Frères Method for preparing lipid-rich compositions of microalga flour with optimised organoleptic properties
WO2015025111A1 (en) 2013-08-23 2015-02-26 Roquette Freres Method for the industrial production of flour from lipid-rich microalga biomass with no "off-notes" by controlling the oxygen availability
CN109633064A (en) * 2018-12-28 2019-04-16 无限极(中国)有限公司 A method of using 2,4- diene aldehyde compound in GC-MS measurement daily essence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303989A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Microalgal Flour

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110263A (en) * 1998-10-02 2000-04-18 Seiki Kogyo Kk Joint material
JP2001095481A (en) * 1999-10-01 2001-04-10 Shizuji Katano Dairy product sour milk beverage containing skim milk peptide
JP2004081206A (en) * 2002-06-26 2004-03-18 Dainippon Ink & Chem Inc Method for processing spirulina
JP2009201503A (en) * 2008-01-31 2009-09-10 Yamaha Motor Co Ltd Method for improving flavor of astaxanthin-containing extract
CA2638451A1 (en) 2008-08-01 2010-02-01 Profero Energy Inc. Methods and systems for gas production from a reservoir
US20100297296A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Healthier Baked Goods Containing Microalgae
US20100303961A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. Methods of Inducing Satiety
US20100303957A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. Edible Oil and Processes for Its Production from Microalgae
US20130122180A1 (en) 2008-10-14 2013-05-16 Solazyme, Inc. Microalgal Food Compositions
US20100297325A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Egg Products Containing Microalgae
US20100297323A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Gluten-free Foods Containing Microalgae
AU2009303354C9 (en) * 2008-10-14 2017-09-07 Corbion Biotech, Inc. Food compositions of microalgal biomass
US20100297331A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties
US20100297295A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Microalgae-Based Beverages
US20120128851A1 (en) 2008-10-14 2012-05-24 Solazyme, Inc Novel microalgal food compositions
US20100303990A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. High Protein and High Fiber Algal Food Materials
US20100297292A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Reduced Pigmentation Microalgae Strains and Products Therefrom
AU2010236491B2 (en) * 2009-04-14 2015-10-01 Corbion Biotech, Inc. Novel microalgal food compositions
JPWO2011096122A1 (en) * 2010-02-03 2013-06-10 森永乳業株式会社 Aloe powder manufacturing method
JP5865894B2 (en) 2010-04-14 2016-02-17 ソラザイム ロケット ニュートリショナルズ, エルエルシー High lipid microalgae powder food composition
US10098371B2 (en) 2013-01-28 2018-10-16 Solazyme Roquette Nutritionals, LLC Microalgal flour
FR3007625B1 (en) 2013-06-26 2015-07-17 Roquette Freres PROCESS FOR PRODUCING MICROALGUES BIOMASS WITH OPTIMIZED SENSORY QUALITY
EP3035807A2 (en) 2013-08-13 2016-06-29 Roquette Frères Method for preparing lipid-rich compositions of microalga flour with optimised organoleptic properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303989A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Microalgal Flour

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11193105B2 (en) 2013-03-29 2021-12-07 Corbion Biotech, Inc. Microalgal biomass protein enrichment method
US10119947B2 (en) 2013-08-07 2018-11-06 Corbion Biotech, Inc. Protein-rich microalgal biomass compositions of optimized sensory quality
US20170303731A1 (en) * 2014-11-14 2017-10-26 Koninklijke Philips N.V. Coffee processing apparatus and method
US10791868B2 (en) * 2014-11-14 2020-10-06 Koninklijke Philips N.V. Coffee processing apparatus and method
US11473050B2 (en) 2016-02-08 2022-10-18 Corbion Biotech, Inc. Method for the protein enrichment of microalgal biomass
CN114264766A (en) * 2021-12-31 2022-04-01 江苏艾兰得营养品有限公司 Evaluation method of sweet orange essence for VC soft sweets

Also Published As

Publication number Publication date
KR20160023664A (en) 2016-03-03
FR3007837B1 (en) 2015-07-17
FR3007838A1 (en) 2015-01-02
BR112015031592A2 (en) 2017-07-25
JP6427565B2 (en) 2018-11-21
FR3007624A1 (en) 2015-01-02
CN105264373A (en) 2016-01-20
MX2015017504A (en) 2016-04-13
FR3007624B1 (en) 2015-08-07
FR3007837A1 (en) 2015-01-02
EP3014265B1 (en) 2018-11-21
FR3007838B1 (en) 2015-08-07
JP2016529487A (en) 2016-09-23
EP3014265A1 (en) 2016-05-04
CN105264373B (en) 2018-10-23
BR112015031592B1 (en) 2021-11-09
WO2014207377A1 (en) 2014-12-31
US11016071B2 (en) 2021-05-25
US20180224417A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US11016071B2 (en) Microalgal flour compositions of optimised sensory quality
Choi et al. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry
Yang et al. Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases
Shukla et al. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang)
Tian et al. Flavoromics approach to identifying the key aroma compounds in traditional Chinese milk fan
Neugebauer et al. Characterization of the key odorants in high-quality extra virgin olive oils and certified off-flavor oils to elucidate aroma compounds causing a rancid off-flavor
Cheong et al. Equilibrium headspace analysis of volatile flavor compounds extracted from soursop (Annona muricata) using solid-phase microextraction
Cognat et al. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products
CN109884213A (en) A kind of method of quick analysis yellow rice wine key volatile compound
Lehner et al. The impact of ventilation during postharvest ripening on the development of flavour compounds and sensory quality of mangoes (Mangifera indica L.) cv. Kent
Majchrzak et al. Revealing dynamic changes of the volatile profile of food samples using PTR–MS
Huang et al. Flavor profile disclosure of Chinese steamed breads (CSBs) by sensomics approach
Ge et al. Aroma correlation assisted volatilome coupled network analysis strategy to unveil main aroma-active volatiles of Rosa roxburghii
US10119947B2 (en) Protein-rich microalgal biomass compositions of optimized sensory quality
Liu et al. Characterisation of flavour profiles and microbial communities of fermented peppers with different fermentation years by combining flavouromics and metagenomics
Zhang et al. Quantification of key odor-active compounds of a novel nonalcoholic beverage produced by fermentation of wort by shiitake (Lentinula edodes) and aroma genesis studies
Wang et al. Characterization of physicochemical properties and flavor profiles of fermented Chinese bamboo shoots (suansun) from Liuzhou and Guilin
Warburton Influence of sourdough fermentation on flavour formation and perception in sourdough bread
Azarnia et al. Application of gas chromatography in the analysis of flavour compounds in field peas
Yu et al. Odor profile characterization and variety identification of brown lactobacillus beverage based on untargeted metabolomics
He Sensory Characterization and Data Mining of the Relationships among the Properties of Sufu Products (Chinese Fermented Soybean Curd) Using the Multivariate Statistical Approach
Zhang et al. Evaluation of sensory and physicochemical characteristics of vitamin B₁₂ enriched whole-meal sourdough bread fermented with propionibacterium freudenreichii
PAX et al. List of contributions
Qiao et al. Quality Assessment of Loquat under Different Preservation Methods Based on Physicochemical Indicators, GC–MS and Intelligent Senses
Tang et al. Chemical and Sensory Characterization of Vidal Icewines Fermented with Different Yeast Strains. Fermentation 2021, 7, 211

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROQUETTE FRERES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRUON, AMANDINE;JEROSCH, HEIKE;GUILLEMANT, MARILYNE;AND OTHERS;SIGNING DATES FROM 20160115 TO 20160125;REEL/FRAME:037721/0420

AS Assignment

Owner name: CORBION BIOTECH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROQUETTE FRERES, S.A.;REEL/FRAME:044930/0882

Effective date: 20180209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION