【0001】
【発明の属する技術分野】
本発明は、スピルリナの処理方法に関する。本発明の処理方法で得られたスピルリナは、スピルリナ特有の匂いや味が少なく、飲料、食品等に好ましく使用できる。
【0002】
【従来の技術】
スピルリナは、緑黄色野菜に特有の栄養成分や、固有の栄養成分を豊富に含み、通常の食生活において不足しがちな栄養成分を手軽に摂取できる食品である。スピルリナは一般に乾燥粉末状(スピルリナ原末)で供給されるが、スピルリナ原末は、例えば、屋外人工培養池で工業的に大量培養生産された湿藻体を、収穫し、必要に応じて濃縮し、洗浄し、乾燥する製造方法等により製造されている。しかしながら、該方法等で製造されたスピルリナ粉末は、特有の匂いや味を有し、食品分野の中でも、健康食品、特殊飼料等の極限られた分野に用いられているにすぎない。
【0003】
スピルリナの特有の臭いや味を減少させる方法としては、例えば、培養後のスピルリナ懸濁液に茶葉の抽出液を加え15〜60分放置したのちスピルリナを乾燥させ粉末とする製造方法等が挙げられる(例えば、特許文献1参照。)。しかしながら、特許文献1に記載された製造方法より得られるスピルリナ粉末でも、依然として、スピルリナ特有の匂いや味が残存している。更に、近年、一般食品分野においては、衛生管理上、食品中の大腸菌等の夾雑菌の数をより低く抑えることも求められており、スピルリナ特有の匂いや味が少なく、かつ、夾雑菌も少ないスピルリナ懸濁液やその粉末は得られていないのが現状である。
【0004】
【特許文献1】
特開平7−289201号公報(第2−3頁)
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、スピルリナ特有の匂いや味が減少し、夾雑菌も少ないスピルリナを得ることのできる、スピルリナの処理方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、鋭意検討を行った結果、スピルリナと乳酸菌とを混合し、該乳酸菌を培養することにより、スピルリナ特有の匂いや味が減少すること、乳酸菌の培養過程で生成する乳酸、酢酸等の有機酸類、バクテリオリシン等の抗菌作用により夾雑菌が減少すること、有用な機能を有する乳酸菌及びその代謝産物をスピルリナやスピルリナ由来成分に賦与することにより、食品、健康食品に利用しやすくなること等を見出し、本発明をなすに至った。
【0007】
即ち、本発明は、スピルリナと乳酸菌とからなる混合体を、水の存在下に維持し、該混合体中の乳酸菌を培養することを特徴とする、スピルリナの処理方法を提供するものである。
【0008】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明で用いるスピルリナ(Spirulina)とは、藍藻類ネンジュモ目ユレモ科スピルリナ属の微細なラセン藻であり、例えばスピルリナ・プラテンシス(Spirulina platensis)、スピルリナ・マキシマ(Spirulina maxima)、スピルリナ・ゲイトレリ(Spirulina geitleri)、スピルリナ・サイアミーゼ(Spirulina siamese)、スピルリナ・メイヤー(Spirulina major)、スピルリナ・サブサルサ(Spirulina subsalsa)、スピルリナ・プリンセプス(Spirulina princeps)、スピルリナ・ラキシシマ(Spirulina laxissima)、スピルリナ・クルタ(Spirulina curta)、スピルリナ・スピルリノイデス(Spirulina spirulinoides)等が挙げられるが、中でも、人工的に培養でき、入手が容易なことから、スピルリナ・プラテンシス、スピルリナ・マキシマ、スピルリナ・ゲイトレリ、スピルリナ・サイアミーゼが好ましい。
【0009】
スピルリナとしては、生のスピルリナ、乾燥スピルリナ、機械的処理等の方法により処理したスピルリナ処理物等が挙げられる。
【0010】
生のスピルリナは、例えば、水中で培養されたスピルリナを遠心分離、濾過等の方法により収穫して得られる。生のスピルリナは、培養池から収穫後そのままの状態で使用することもできるが、水もしくは生理食塩水で洗浄するのが好ましい。
【0011】
乾燥スピルリナは、例えば、前記方法で得られた生のスピルリナを凍結乾燥処理やスプレー乾燥処理したもの等が挙げられる。
【0012】
機械的処理等の方法により処理したスピルリナ処理物は、例えば、生のスピルリナを超音波照射処理や、ホモゲナイズ等の機械処理を行うことにより得られる。スピルリナ処理物は、その後に乾燥処理を施しても良い。
【0013】
本発明の処理方法で用いるスピルリナとしては、生のスピルリナがスピルリナの有効成分をより保持していることから好ましい。
【0014】
生のスピルリナは、通常、収穫する際の水の除去程度により、水に懸濁している懸濁状のものや、懸濁状のものに比べ水の含有量が少ないペースト状のものや、ペースト状のものに比べ水の含有量が少ないケーキ状の状態のものがあるが、いずれの状態のものでも使用できる。スピルリナは、懸濁状にしたスピルリナ(以後、懸濁液と言う。)を用いるのが好ましい。また、乾燥スピルリナやスピルリナ処理物は、乾燥している状態でも良いし、水を加えて、生のスピルリナのように懸濁状やペースト状やケーキ状にしても良い。
【0015】
スピルリナは、スピルリナの有する有効成分を損なわないためには加熱殺菌しない方が好ましいが、必要に応じて加熱殺菌したものを用いることもできる。
【0016】
次に、乳酸菌について説明する。乳酸菌は、古来から食品の保蔵と調味を目的に発酵乳製品、醸造製品、野菜・果実の漬物など多くの食品の加工に利用されてきている。また乳酸菌及びその代謝産物は、整腸作用、血中コレステロール低減作用、血圧降下作用等の様々な生理効果を有しており、機能性食品としても利用されている。
【0017】
本発明で用いる乳酸菌としては、食用として利用できる乳酸菌であれば制限無く用いることができる。乳酸菌としては、由来する生育環境により乳系乳酸菌、植物系乳酸菌、腸管系乳酸菌や、スピルリナの生育する自然塩湖に由来する乳酸菌等に分類される。また乳酸菌は、その生育至適条件により中温性菌、高温性菌、耐塩性菌等にも分類されるが、いずれの性質を有する菌でも良い。
【0018】
本発明で用いる乳酸菌としては、分類学上、ラクトバチルス(Lactobacillus)属、ペディオコッカス(Pediococcus)属、テトラゲノコッカス(Tetragenococcus)属、カルノバクテリウム(Carnobacterium)属、バゴコッカス(Vagococcus)属、ロイコノストック(Leuconostoc)属、ワイセラ(Weissella)属、オエノコッカス(Oenococcus)属、アトポビウム(Atopobium)属、ストレプトコッカス(Streptococcus)属、エンテロコッカス(Enterococcus)属、ラクトコッカス(Lactococcus)属、アエロコッカス(Aerococcus)属、アロイオコッカス(Alloiococcus)属、メリソコッカス(Melissococcus)属、ビフィドバクテリウム(Bifidobacterium)属等が挙げられ、更に、例えばラクトバチルス デルブルエキ(Lactobacillus delbrueckii)、ラクトバチルス プランタルム(Lactobacillus plantarum)、ラクトバチルス アシドフィルス(Lactobacillus acidophilus)、ラクトコッカス ラクティス(Lactococcus lactis)、ロイコノストック(Leuconostoc sp)等の種が挙げられる。乳酸菌はスピルリナ特有の臭いや味をより減少させることができることからペディオコッカス属に属する乳酸菌が好ましい。
【0019】
乳酸菌は、単独種で使用しても良いし、2種類以上の菌を混合して使用しても良い。また、後述する、スピルリナ中における培養工程において、2段階以上に同じ種類の菌を分けて植菌して培養しても良いし、異なった菌種を植菌し培養しても良い。
【0020】
乳酸菌は、寒天培地や液体培地で培養後、冷蔵保存、凍結保存、乾燥保存等の保存方法により保存しておいたものを用いても良いが、これらの保存しておいた乳酸菌を液体培地に植菌して培養したもの(以下、種培養液と略記する。)を用いるのが乳酸菌の増殖速度が速く、アセトアルデヒド、ジアセチル等のフレーバー類の産生能、有機酸産生能等の活性が高いことから好ましい。種培養液を培養するのに用いる培地は、用いる乳酸菌が生育可能な培地であれば良く制限はないが、一般に乳酸菌を培養する液体培地として例えば、Man、Rogosa、Sharpeの考案したMRS培地(メルク社製)、及び牛乳成分を利用したホエー培地、脱脂乳培地等の培地が挙げられる。種培養液の調製に用いる培地には、他の夾雑成分が混入するのを防ぐために、加熱殺菌したスピルリナ酵素分解物、スピルリナの酸又はアルカリ分解物、及びグルコース等の糖類又はアミノ酸を添加したスピルリナ分解物等を添加した培地を使用することもできる。種培養液を調製するには、通常、前記の液体培地に、保存してある乳酸菌を添加し、培養する乳酸菌に適応する好気状態または嫌気状態に維持し、静置または攪拌し、20〜40℃で、8〜36時間培養すれば良い。
【0021】
次に、本発明の処理方法について説明する。本発明の処理方法としては、スピルリナと乳酸菌とからなる混合体を、水の存在下で維持し、該混合体中の乳酸菌を培養する処理方法であれば、特に制限はない。水の存在下で維持するには、例えば、スピルリナと乳酸菌とからなる混合体を水中に維持してもよいし、スピルリナと乳酸菌とからなる混合体を湿潤下で維持してもよいが、水中に維持するのが好ましい。スピルリナと乳酸菌との混合体を、水の存在下に維持するには、例えば、
▲1▼生のスピルリナや乾燥させたスピルリナの懸濁液、ペーストに乳酸菌の培養液や乾燥状態の乳酸菌を添加する、
▲2▼生のスピルリナや乾燥させたスピルリナのケーキに、乳酸菌の培養液を添加する、
▲3▼乾燥させたスピルリナに湿潤状態になる量の乳酸菌培養液を添加する、
等の方法が挙げられる。なかでも、▲1▼の方法が好ましく、更に▲1▼の方法においてスピルリナとして生のスピルリナの懸濁液を用い、乳酸菌として培養液好ましくは種培養液を用いるのが、乳酸菌の培養能と、フレーバー産生能が高いことから好ましい。
【0022】
前記の方法で用いるスピルリナの懸濁液やペーストやケーキ、乳酸菌の培養液は水を含有しており、スピルリナと乳酸菌からなる混合体は水の存在下に維持されるが、水が足りないときは、混合体に水を加え、湿潤下や水中に維持する状態にしても良い。水は、滅菌水を用いるのが好ましい。
【0023】
スピルリナと乳酸菌の混合体を水の存在下に維持したときのスピルリナの含有量は、後述する乳酸菌培養後の収穫工程、乾燥工程で効率が良好なことから、スピルリナと乳酸菌と水との合計100重量部に対して0.1〜30重量部が好ましく、1〜20重量部がより好ましい。
【0024】
スピルリナと乳酸菌との混合体を水の存在下に維持し、乳酸菌を培養させる際の培養は、静置培養でも、混合体を水の存在下に維持した状態が液体であればプロペラ攪拌による攪拌培養でも良い。また、用いる乳酸菌の生育に適するように、培養する系を嫌気状態にしても良いし、好気状態にしても良い。
【0025】
乳酸菌の使用量は、乳酸菌が増殖する菌数であれば良いが、夾雑菌の繁殖の抑制が良好なことから乳酸菌の培養を開始する際の乳酸菌数が固形分換算スピルリナ1gあたり105〜1011個であるのが好ましく、106〜109個であるのがより好ましい。
【0026】
スピルリナと乳酸菌との混合体を水の存在下に維持したときのpHは、乳酸菌の培養により生成する乳酸などの酸により培養の過程で変化するが、培養開始時のpHが、5.0〜9.0であるのが好ましく、6.0〜8.0がより好ましい。
【0027】
培養温度は、乳酸菌が増殖可能な温度ならば何れでもよいが、乳酸菌の増殖に好適なこと、スピルリナの有効成分が損なわれないことから4〜45℃が好ましく、20〜40℃がより好ましい。
【0028】
培養時間は、1〜48時間が好ましく、3〜36時間がより好ましく、8〜24時間が特に好ましい。培養後の乳酸菌数は、他の夾雑菌の増加抑制が十分で、スピルリナ特有の味と匂いが良好に減少することから、培養開始時の乳酸菌の数の10〜1000倍に増加しているのが好ましく、80〜300倍がより好ましいい。また、pHは、乳酸菌の増殖至適pHを維持するため水酸化アンモニウム等の塩基性化合物を添加してpHを調整してもよいが、乳酸菌が生成する乳酸等によりスピルリナ水懸濁液のpHが4.0付近まで低下していることが、夾雑菌を低下させるために好ましい。
【0029】
本発明の処理方法は、スピルリナと乳酸菌とからなる混合体を、水の存在下に維持し、該混合体中の乳酸菌を培養する処理方法であれば良いが、更に水に糖を共存させ、混合体を水と糖の存在下に維持し、混合体中の乳酸菌を培養する処理方法が、スピルリナ特有の臭いと味がより減少でき、また、夾雑菌の生育を抑制することができるので好ましい。この夾雑菌の生育の抑制効果は、スピルリナとして夾雑菌が繁殖しやすい乾燥スピルリナを用いた時に特に顕著である。
【0030】
前記糖類としては、例えば、単糖類、オリゴ糖類、多糖類等が挙げられる。単糖類としては、例えば、グルコース、ガラクトース、マンノース、フルクトース、リボース、キシロース等が挙げられる。オリゴ糖類としては、例えば、スクロース、マルトース等の二糖類やガラクトオリゴ糖、フラクトオリゴ糖、大豆オリゴ糖、キシロオリゴ糖、ラフィノース等が挙げられる。多糖類としては、例えば、アミロース、アミロペクチン、セルロース、グリコーゲン、β−グルカン、ムコ多糖等が挙げられる。糖類としては、オリゴ糖が好ましく、中でも、ガラクトオリゴ糖が好ましい。
【0031】
スピルリナと乳酸菌とからなる混合体を水と糖類の存在下に維持する方法には特に制限は無く、例えば、スピルリナと乳酸菌と糖類とを混合しても良いし、予め糖類を添加したスピルリナと乳酸菌とを混合しても良いし、予め糖類を添加した乳酸菌とスピルリナとを混合しても良い。また、糖類は固形のものを使用しても良いが、予め、水等に溶解して水溶液としたものを用いるのが好ましい。
【0032】
糖類の使用量としては、スピルリナと乳酸菌と水と糖類の合計100重量部に対して0.5〜20重量部が好ましく、1〜15重量部がより好ましく、3〜10重量部が特に好ましい。
【0033】
本発明の処理方法では、乳酸菌の増殖過程で生成する乳酸、酢酸等の有機酸類、バクテリオシン類等の抗菌作用により、スピルリナ懸濁液中の他の夾雑細菌は減少し、乳酸菌が優越種となる。さらに乳酸菌の生成するアセトアルデヒド、ジアセチル等のフレーバー類により、スピルリナ特有の臭いと味が低下し食品に利用し易い香味となる。得られたスピルリナやその懸濁液は、そのまま乳酸菌飲料、乳酸菌添加食品として使用することも出来る。本発明の処理方法で得られたスピルリナは、乳酸菌の数を減らしたり、除去することなく使用することが好ましいが、必要に応じて洗浄等により乳酸菌の数を減らしたり除去することもできる。
【0034】
また、本発明の処理方法で得られたスピルリナは、必要により乾燥処理を施し、粉末化するもともできる。乾燥処理は、通常、スピルリナの水分含有率が4〜7重量%になるように行うが、乳酸菌の菌数が保持できる処理が好ましい。好ましい乾燥方法としては、例えば、凍結乾燥法、噴霧乾燥法等が挙げられるが、経済的であることから、噴霧乾燥法がより好ましい。乾燥処理する際の乾燥温度は、排風温度が高温な程、生産効率は上がるが、スピルリナの品質が良好で、乳酸菌数も低下しないことから、品温が30〜70℃となる範囲で乾燥処理するのが好ましく、より好ましくは40〜60℃となる範囲である。尚、本発明において品温とは試料温度をいうものとする。
【0035】
本発明の処理方法により得られたスピルリナは、大腸菌等の好ましくない夾雑菌が少なく、スピルリナ特有の味、匂いが減少しているとともに、有用な機能性を有する乳酸菌及びその代謝産物をスピルリナに賦与することが出来、健康食品、特殊試料にはもちろん、一般の食品、飲料、栄養補助食品等として利用することが出来る。
【0036】
【実施例】
次に本発明を参考例、実施例、比較例によって説明する。例中において、「部」、「%」は、特に断りのない限り、重量基準である。
【0037】
参考例1(乳酸菌種液の調製)
凍結保存しておいた乳酸菌ラクトバチルス プランタルムを10mlのMRS培地(Merck社製 Cat.No.10661)に植菌後、30℃で18時間静置培養して乳酸菌の種培養液を得た。これを乳酸菌培養液1とする。
【0038】
参考例2〜5(同上)
ラクトバチルス プランタルムの替わりに、参考例2ではラクトバチルス ラクティスを、参考例3ではラクトバチルス アシドフィルスを、参考例4ではロイコノストック、参考例5ではペディオコッカス ペントサセウスをそれぞれ用いた以外は参考例1と同様にして、乳酸菌培養液2、乳酸菌培養液3、乳酸菌培養液4および乳酸菌培養液5を調製した。
【0039】
実施例1
人工光を使用し、7日間連続照射下の培養池でスピルリナを培養生産し、収穫した。収穫後、生理食塩水で洗浄したのち、スピルリナ20g(固形分量20%)を、生理食塩水180mlに懸濁し懸濁液を調製した。参考例1で調製した乳酸菌培養液1を、スピルリナ乾燥重量1gあたり、5×108個の乳酸菌になる様に懸濁液に接種した。濃度が0.1モル/リットルの水酸化ナトリウム溶液でpHを7.0に調整し、30℃、24時間、静置し、乳酸菌を培養した。培養後の培養液を小型噴霧乾燥機に導き、品温55℃で噴霧乾燥を行い、スピルリナ粉末を調製した。これをスピルリナ粉末1と略記する。
【0040】
実施例2〜5
乳酸菌1の替わりに実施例2では乳酸菌培養液2を、実施例3では乳酸菌培養液3を、実施例4では乳酸菌培養液4を、実施例5では乳酸菌培養液5をそれぞれ使用した以外は実施例1と同様にして、スピルリナ粉末2〜5をそれぞれ調製した。
【0041】
実施例6
実施例1で得たスピルリナ20g(固形分量20%)を、生理食塩水180mlに懸濁し懸濁液を調製した。ここにガラクトオリゴ糖10g加え、更に、参考例1で調製した乳酸菌培養液1を、スピルリナ乾燥重量1gあたり、5×108個の乳酸菌になる様に懸濁液に接種した。濃度が0.1モル/リットルの水酸化ナトリウム溶液でpHを7.0に調整し、30℃、24時間、振盪培養し、乳酸菌を培養した。培養後の培養液を小型噴霧乾燥機に導き、品温55℃で噴霧乾燥を行い、スピルリナ粉末を調製した。これをスピルリナ粉末6と略記する。
【0042】
実施例7〜10
乳酸菌1の替わりに実施例7では乳酸菌培養液2を、実施例8では乳酸菌培養液3を、実施例9では乳酸菌培養液4を、実施例10では乳酸菌培養液5をそれぞれ使用した以外は実施例1と同様にして、スピルリナ粉末7〜10をそれぞれ調製した。尚、実施例1〜10においては、培養後の乳酸菌の数は、培養開始時の乳酸菌の数の10〜80倍に増加していた。
【0043】
比較例1
人工光を使用し、7日間連続照射下の培養池でスピルリナを培養生産し、収穫した。収穫後、生理食塩水で洗浄したのち、スピルリナ20g(固形分量20%)を、生理食塩水180mlに懸濁し懸濁液を調製した。調整後、小型噴霧乾燥機に導き、品温55℃で噴霧乾燥を行い、比較対照用スピルリナ粉末を調製した。これをスピルリナ粉末1′と略記する。
【0044】
試験例1〜10および比較試験例1
スピルリナ粉末1〜10およびスピルリナ粉末1´の乳酸菌以外の菌数(以後、一般生菌数と略記する)を測定するとともに、官能試験により味と匂いを評価した。その結果を第1表に示す。また、菌数測定の方法と、官能試験の評価は以下の方法に従って行った。また、官能試験は、10人のパネラーにより行った。
【0045】
<一般生菌数の測定>
スピルリナ粉末1.0gをリン酸緩衝生理食塩水19mlに懸濁し懸濁液を調製した。懸濁液を更にリン酸緩衝生理食塩水により1倍、10倍、102倍、103倍、及び104倍になるように希釈し、それぞれの試料希釈液1mlを普通ブイヨン寒天培地(極東製薬工業社製 Code.No.02480)10mlとシャーレ上で混合し、固化後、35℃で48時間培養した。一般生育菌のコロニーが30〜300個確認できた寒天培地を用い、該寒天培地のコロニー数を測定し、この数に希釈倍率を掛けて得られた数を一般生育菌のコロニー数とした。
【0046】
<味の評価>
スピルリナ粉末1′を標準として、スピルリナ粉末0.1gを舌の上にのせて味わい、以下の基準に従いスコアを求め、式(1)に従い強度として評価した。強度の値が小さいほどスピルリナ特有の味が少ないことを示す。
スコア+3:スピルリナ特有の風味が標準品と同等。
スコア+2:スピルリナ特有の風味が弱い。
スコア+1:スピルリナ特有の風味がかなり弱い。
スコア0:スピルリナ特有の風味がない。
強度=(0×N0+1×N1+2×N2+3×N3)/N (式1)
(N:パネラー数、N0:0と判定した人数、N1:1と判定した人数、N2:2と判定した人数、N3:3と判定した人数)
【0047】
<匂いの評価>
スピルリナ粉末1′を標準として、スピルリナ粉末2gをポリエチレン袋に入れて口を封じ、10秒間振った後袋内の匂いを嗅ぎ、以下の基準に従いスコアを求め、前記式(1)に従い強度として評価した。強度の値が小さいほどスピルリナ特有の匂いが少ないことを示す。
スコア+3:スピルリナ特有の匂いが標準品と同等。
スコア+2:スピルリナ特有の匂いが弱い。
スコア+1:スピルリナ特有の匂いがかなり弱い。
スコア0:スピルリナ特有の匂いがない。
【0048】
【表1】
【0049】
実施例11
スピルリナ乾燥粉末10gを生理食塩水190mlに懸濁し懸濁液を調製した。参考例1で調製した乳酸菌培養液1を、スピルリナ1gあたり2×108個の乳酸菌になる様に懸濁液に接種した。濃度が0.1モル/リットルの水酸化ナトリウム溶液でpHを7.0に調整し、30℃、24時間、静置し、乳酸菌を培養した。培養後の培養液を小型噴霧乾燥機に導き、品温55℃で噴霧乾燥を行い、スピルリナ粉末を調製した。これを、スピルリナ粉末11と略記する。
【0050】
実施例12〜15
乳酸菌培養液1の替わりに実施例12では乳酸菌培養液2を、実施例13では乳酸菌培養液3を、実施例14では乳酸菌培養液4を、実施例15では乳酸菌培養液5をそれぞれ使用した以外は実施例5と同様にして、スピルリナ粉末12〜15をそれぞれ調製した。
【0051】
実施例16
スピルリナ乾燥粉末10gを生理食塩水190mlに懸濁し懸濁液を調製した。ここにガラクトオリゴ糖10g加え、更に参考例1で調製した乳酸菌培養液1を、スピルリナ1gあたり2×108個の乳酸菌になる様に懸濁液に接種した。濃度が0.1モル/リットルの水酸化ナトリウム溶液でpHを7.0に調整し、30℃、24時間、静置し、乳酸菌を培養した。培養後の培養液を小型噴霧乾燥機に導き、品温55℃で噴霧乾燥を行い、スピルリナ粉末を調製した。これを、スピルリナ粉末16と略記する。
【0052】
実施例17〜20
乳酸菌培養液1の替わりに実施例17では乳酸菌培養液2を、実施例18では乳酸菌培養液3を、実施例19では乳酸菌培養液4を、実施例20では乳酸菌培養液5をそれぞれ使用した以外は実施例1と同様にして、スピルリナ粉末17〜20をそれぞれ調製した。尚、実施例11〜20においては、培養後の乳酸菌の数は、培養開始時の乳酸菌の数の50〜200倍に増加していた。
【0053】
試験例11〜20および比較試験例2
スピルリナ11〜20の調製に用いたスピルリナ乾燥粉末を比較対照用スピルリナ粉末(以下スピルリナ粉末2′と略記する)として、スピルリナ粉末11〜20およびスピルリナ粉末2´の乳酸菌数、乳酸菌以外の菌数(以後、一般生菌数と略記する)を測定するとともに、官能試験により味と匂いを評価した。その結果を第2表に示す。各項目の評価方法は試験例1〜10と同様である。
【0054】
【表2】
【0055】
【発明の効果】
本発明の処理方法により、スピルリナ特有の味と匂いが少なく、乳酸菌以外の夾雑菌が減少したスピルリナが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating spirulina. Spirulina obtained by the treatment method of the present invention has little odor and taste peculiar to spirulina and can be preferably used for beverages, foods and the like.
[0002]
[Prior art]
Spirulina is a food that contains abundant nutrients and peculiar nutrients of green and yellow vegetables, and can easily ingest nutrients that tend to be insufficient in a normal diet. Spirulina is generally supplied in the form of dry powder (spirulina bulk powder). Spirulina bulk powder is obtained, for example, by harvesting the wet alga bodies that have been industrially mass-produced in an outdoor artificial cultivation pond and, if necessary, concentrating them. , Washing, and drying. However, spirulina powder produced by this method or the like has a unique odor or taste, and is used only in extremely limited fields such as health foods and special feeds in the food field.
[0003]
Examples of a method for reducing the peculiar smell and taste of spirulina include, for example, a production method in which a tea leaf extract is added to a spirulina suspension after culture, the mixture is allowed to stand for 15 to 60 minutes, and then spirulina is dried to obtain a powder. (For example, refer to Patent Document 1). However, even in the spirulina powder obtained by the production method described in Patent Document 1, the odor and taste unique to spirulina still remain. Furthermore, in recent years, in the field of general foods, it has been required to reduce the number of contaminating bacteria such as Escherichia coli in foods in terms of hygiene management, and the odor and taste unique to Spirulina are small, and the number of contaminating bacteria is also small. At present, spirulina suspension and its powder have not been obtained.
[0004]
[Patent Document 1]
JP-A-7-289201 (pages 2-3)
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a method for treating spirulina, which can reduce odor and taste peculiar to spirulina and obtain spirulina with few contaminants.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, by mixing spirulina and lactic acid bacteria and culturing the lactic acid bacteria, the smell and taste unique to spirulina are reduced, and cultivation of lactic acid bacteria Lactic acid produced in the process, organic acids such as acetic acid, contaminants are reduced by antibacterial action such as bacteriolysin, lactic acid bacteria having a useful function and metabolites thereof by conferring to Spirulina and Spirulina-derived components, food, The present inventors have found that it can be easily used for health foods, and have accomplished the present invention.
[0007]
That is, the present invention provides a method for treating Spirulina, comprising maintaining a mixture of Spirulina and lactic acid bacteria in the presence of water and culturing the lactic acid bacteria in the mixture.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Spirulina used in the present invention is a fine spiral alga of the genus Spirulina belonging to the cyanobacterium Nostocridaceae, and is, for example, Spirulina platensis, Spirulina maxima (Spirulina maxima), Spirulina maxima sp. ), Spirulina siamese, Spirulina major, Spirulina subsalsa, Spirulina rushina, Spirulina spirinas, Spirulina spirinas Spirulina Supirurinoidesu but (Spirulina spirulinoides), and the like, among them, artificially can be cultured, because the easy availability, Spirulina platensis, Spirulina maxima, Spirulina Geitoreri, Spirulina Saiamize are preferred.
[0009]
Examples of spirulina include raw spirulina, dried spirulina, and processed spirulina processed by a mechanical treatment method.
[0010]
Raw spirulina is obtained, for example, by harvesting spirulina cultured in water by a method such as centrifugation or filtration. Raw spirulina can be used as it is after being harvested from the culture pond, but is preferably washed with water or physiological saline.
[0011]
Examples of the dried spirulina include freeze-dried and spray-dried raw spirulina obtained by the above method.
[0012]
Spirulina-treated products treated by a method such as mechanical treatment can be obtained, for example, by subjecting raw spirulina to mechanical treatment such as ultrasonic irradiation treatment or homogenization. The spirulina-treated product may be subsequently subjected to a drying treatment.
[0013]
As the spirulina used in the treatment method of the present invention, raw spirulina is preferable because it retains more effective components of spirulina.
[0014]
Raw spirulina is usually in the form of a suspension suspended in water, a paste-like form containing less water than a suspension form, or a paste, depending on the degree of water removal during harvesting. There is a cake-like state in which the water content is smaller than that of the state, but any state can be used. As spirulina, it is preferable to use spirulina in suspension (hereinafter, referred to as suspension). Further, the dried spirulina or the processed product of spirulina may be in a dry state, or may be added to water to form a suspension, paste, or cake like fresh spirulina.
[0015]
Spirulina is preferably not heat-sterilized in order not to impair the active ingredients of spirulina, but heat-sterilized spirulina may be used if necessary.
[0016]
Next, lactic acid bacteria will be described. Lactic acid bacteria have been used for processing many foods such as fermented milk products, brewed products, pickled vegetables and fruits for the purpose of preserving and seasoning foods since ancient times. In addition, lactic acid bacteria and metabolites thereof have various physiological effects such as an intestinal action, a blood cholesterol-reducing action, and a blood pressure lowering action, and are also used as functional foods.
[0017]
As the lactic acid bacteria used in the present invention, any lactic acid bacteria that can be used for food can be used without limitation. Lactic acid bacteria are classified into milk-based lactic acid bacteria, plant-based lactic acid bacteria, intestinal lactic acid bacteria, lactic acid bacteria derived from natural salt lakes where spirulina grows, and the like, depending on the growth environment from which they originate. Lactic acid bacteria are also classified into mesophilic bacteria, thermophilic bacteria, salt-tolerant bacteria and the like according to the optimum growth conditions, and may be bacteria having any properties.
[0018]
As the lactic acid bacteria used in the present invention, taxonomically, the genus Lactobacillus, the genus Pediococcus, the genus Tetragenococcus, the genus Carnobacterium, the genus Vagococcus, Genus Nouconostoc, genus Weissella, genus Oenococcus, genus Atopovium, genus Streptococcus, genus Enterococcus, genus Lactococcus, Lactococcus laccoccus , Allioococcus genus, Melissococcus genus, Bifidobacterium genus and the like, and further, for example, Lactobacillus delbrueckus, Lactobacillus lactobacillus, Lactobacillus lactobacillus, Lactobacillus lactobacillus Species such as Lactococcus lactis, Leuconostoc sp. The lactic acid bacteria are preferably lactic acid bacteria belonging to the genus Pediococcus because they can further reduce the odor and taste unique to Spirulina.
[0019]
Lactic acid bacteria may be used alone or as a mixture of two or more kinds. Further, in the culturing step in Spirulina, which will be described later, the same kind of bacteria may be divided and inoculated in two or more stages and cultured, or different bacterial species may be inoculated and cultured.
[0020]
The lactic acid bacteria may be used after culturing on an agar medium or a liquid medium, and then stored by a storage method such as refrigerated storage, frozen storage, or dry storage. Inoculated and cultured (hereinafter abbreviated as seed culture) is used because the growth rate of lactic acid bacteria is high, and the activities such as production of flavors such as acetaldehyde and diacetyl and production of organic acids are high. Is preferred. The medium used for culturing the seed culture is not particularly limited as long as the lactic acid bacterium used can grow. Generally, a liquid medium for culturing the lactic acid bacterium is, for example, an MRS medium (Merck medium devised by Man, Rogosa, and Sharpe). And whey media using milk components, skim milk media, and the like. In order to prevent other contaminants from being mixed in the medium used for preparing the seed culture, heat-sterilized Spirulina enzyme digest, Spirulina acid or alkali hydrolyzate, and spirulina to which sugars or amino acids such as glucose are added. A medium to which a decomposed product or the like has been added can also be used. To prepare a seed culture, usually, a lactic acid bacterium that has been stored is added to the liquid medium, maintained in an aerobic state or an anaerobic state suitable for the lactic acid bacterium to be cultured, and allowed to stand or stirred. The culture may be performed at 40 ° C. for 8 to 36 hours.
[0021]
Next, the processing method of the present invention will be described. The treatment method of the present invention is not particularly limited as long as the mixture comprising spirulina and lactic acid bacteria is maintained in the presence of water and the lactic acid bacteria in the mixture are cultured. To maintain in the presence of water, for example, a mixture consisting of spirulina and lactic acid bacteria may be kept in water, or a mixture consisting of spirulina and lactic acid bacteria may be kept in wet water, Is preferably maintained. To maintain a mixture of Spirulina and lactic acid bacteria in the presence of water, for example,
(1) Add a culture solution of lactic acid bacteria or a dried lactic acid bacterium to a suspension or paste of raw spirulina or dried spirulina,
(2) Add a culture solution of lactic acid bacteria to a raw spirulina cake or a dried spirulina cake.
{Circle around (3)} Add the lactic acid bacterium culture to the dried spirulina in such an amount that it becomes wet.
And the like. Above all, the method of (1) is preferable, and the method of (1) uses a suspension of raw spirulina as spirulina and uses a culture solution, preferably a seed culture solution, as lactic acid bacteria. It is preferable because of its high flavor producing ability.
[0022]
Spirulina suspension or paste or cake used in the above method, the culture solution of lactic acid bacteria contains water, the mixture of spirulina and lactic acid bacteria is maintained in the presence of water, but when water is insufficient Alternatively, water may be added to the mixture, and the mixture may be kept in a wet state or in water. It is preferable to use sterilized water.
[0023]
When the mixture of spirulina and lactic acid bacteria is maintained in the presence of water, the content of spirulina is high in the harvesting step after lactic acid bacteria cultivation described below and the drying step, and the total amount of spirulina, lactic acid bacteria and water is 100%. The amount is preferably from 0.1 to 30 parts by weight, more preferably from 1 to 20 parts by weight, based on parts by weight.
[0024]
A mixture of Spirulina and lactic acid bacteria is maintained in the presence of water, and the culture for culturing the lactic acid bacteria is a static culture. Culture may be used. Further, the culture system may be placed in an anaerobic state or an aerobic state so as to be suitable for the growth of the lactic acid bacteria used.
[0025]
The amount of lactic acid bacteria used may be any number as long as the number of lactic acid bacteria proliferates, but the number of lactic acid bacteria at the time of starting cultivation of lactic acid bacteria is 10 5 to 10 per 1 g of spirulina in terms of solid content, because the suppression of propagation of contaminating bacteria is good. The number is preferably 11 and more preferably 10 6 to 10 9 .
[0026]
When the mixture of Spirulina and lactic acid bacteria is maintained in the presence of water, the pH changes during the culturing process due to acids such as lactic acid generated by culturing the lactic acid bacteria. It is preferably 9.0, and more preferably 6.0 to 8.0.
[0027]
The culture temperature may be any temperature at which lactic acid bacteria can grow, but is preferably 4 to 45 ° C, more preferably 20 to 40 ° C, because it is suitable for growing lactic acid bacteria and the active ingredient of Spirulina is not impaired.
[0028]
The culture time is preferably 1 to 48 hours, more preferably 3 to 36 hours, and particularly preferably 8 to 24 hours. The number of lactic acid bacteria after cultivation is 10 to 1000 times the number of lactic acid bacteria at the start of cultivation since the increase in other contaminants is sufficiently suppressed and the taste and smell peculiar to Spirulina are well reduced. Is preferable, and 80 to 300 times is more preferable. The pH may be adjusted by adding a basic compound such as ammonium hydroxide to maintain the optimum pH for the growth of lactic acid bacteria. Is preferably reduced to around 4.0 in order to reduce contaminants.
[0029]
The treatment method of the present invention may be a treatment method comprising maintaining a mixture of spirulina and lactic acid bacteria in the presence of water and culturing the lactic acid bacteria in the mixture. A method for maintaining the mixture in the presence of water and sugar and culturing the lactic acid bacteria in the mixture is preferable because the odor and taste unique to Spirulina can be further reduced and the growth of contaminating bacteria can be suppressed. . This effect of suppressing the growth of contaminants is particularly remarkable when dry spirulina, in which contaminants easily grow, is used as spirulina.
[0030]
Examples of the saccharide include a monosaccharide, an oligosaccharide, and a polysaccharide. Examples of the monosaccharide include glucose, galactose, mannose, fructose, ribose, xylose and the like. Examples of the oligosaccharides include disaccharides such as sucrose and maltose, galactooligosaccharides, fructooligosaccharides, soybean oligosaccharides, xylo-oligosaccharides, raffinose and the like. Examples of the polysaccharide include amylose, amylopectin, cellulose, glycogen, β-glucan, mucopolysaccharide and the like. As the saccharide, an oligosaccharide is preferable, and among them, a galacto-oligosaccharide is preferable.
[0031]
There is no particular limitation on the method for maintaining the mixture comprising spirulina and lactic acid bacteria in the presence of water and saccharides.For example, spirulina, lactic acid bacteria and saccharides may be mixed, or spirulina and lactic acid bacteria to which saccharides have been added in advance. May be mixed, or lactic acid bacteria to which saccharides are added in advance and spirulina may be mixed. In addition, a solid saccharide may be used, but it is preferable to use a saccharide that is previously dissolved in water or the like to form an aqueous solution.
[0032]
The amount of the saccharide used is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and particularly preferably 3 to 10 parts by weight based on 100 parts by weight of the total of spirulina, lactic acid bacteria, water and saccharides.
[0033]
In the treatment method of the present invention, lactic acid produced during the growth process of lactic acid bacteria, organic acids such as acetic acid, antibacterial action such as bacteriocins, other contaminating bacteria in the spirulina suspension are reduced, and lactic acid bacteria are considered to be the dominant species. Become. In addition, flavors such as acetaldehyde and diacetyl produced by lactic acid bacteria reduce odor and taste peculiar to spirulina, and have a flavor that can be easily used in foods. The obtained spirulina and its suspension can be used as they are as lactic acid bacteria drinks and lactic acid bacteria added foods. Spirulina obtained by the treatment method of the present invention is preferably used without reducing or removing the number of lactic acid bacteria. However, if necessary, the number of lactic acid bacteria can be reduced or removed by washing or the like.
[0034]
Spirulina obtained by the treatment method of the present invention may be subjected to a drying treatment, if necessary, to be powdered. The drying treatment is usually performed so that the water content of spirulina is 4 to 7% by weight, but a treatment that can maintain the number of lactic acid bacteria is preferable. Preferred drying methods include, for example, a freeze drying method and a spray drying method, but the spray drying method is more preferable from the viewpoint of economy. As for the drying temperature at the time of the drying treatment, the higher the exhaust air temperature, the higher the production efficiency, but the quality of the spirulina is good and the number of lactic acid bacteria does not decrease, so that the drying temperature is in the range of 30 to 70 ° C. The treatment is preferably performed, and more preferably in the range of 40 to 60 ° C. In the present invention, the product temperature refers to the sample temperature.
[0035]
Spirulina obtained by the treatment method of the present invention has less undesirable contaminants such as Escherichia coli, has reduced taste and odor peculiar to Spirulina, and imparts lactic acid bacteria having useful functionality and metabolites thereof to Spirulina. It can be used not only for health foods and special samples, but also for general foods, beverages, dietary supplements and the like.
[0036]
【Example】
Next, the present invention will be described with reference examples, examples, and comparative examples. In the examples, “parts” and “%” are based on weight unless otherwise specified.
[0037]
Reference Example 1 (Preparation of lactic acid bacteria seed solution)
The lactic acid bacteria Lactobacillus plantarum frozen and preserved were inoculated into 10 ml of an MRS medium (Cat. No. 10661, manufactured by Merck), and then cultured at 30 ° C. for 18 hours to obtain a seed culture of lactic acid bacteria. This is designated as lactic acid bacteria culture solution 1.
[0038]
Reference Examples 2 to 5 (same as above)
Reference Example 1 was replaced by Lactobacillus lactis in Reference Example 2, Lactobacillus acidophilus in Reference Example 3, Leuconostoc in Reference Example 4, and Pediococcus pentosaceus in Reference Example 5 instead of Lactobacillus plantarum. The lactic acid bacteria culture 2, the lactic acid bacteria culture 3, the lactic acid bacteria culture 4, and the lactic acid bacteria culture 5 were prepared in the same manner as described above.
[0039]
Example 1
Spirulina was cultured and produced in a culture pond under continuous irradiation for 7 days using artificial light and harvested. After harvesting, after washing with physiological saline, 20 g of spirulina (solid content: 20%) was suspended in 180 ml of physiological saline to prepare a suspension. The suspension was inoculated with the lactic acid bacteria culture solution 1 prepared in Reference Example 1 so as to obtain 5 × 10 8 lactic acid bacteria per 1 g of dry weight of Spirulina. The pH was adjusted to 7.0 with a sodium hydroxide solution having a concentration of 0.1 mol / liter, the mixture was allowed to stand at 30 ° C. for 24 hours, and lactic acid bacteria were cultured. The culture solution after the culture was led to a small spray dryer and spray-dried at a product temperature of 55 ° C. to prepare Spirulina powder. This is abbreviated as Spirulina powder 1.
[0040]
Examples 2 to 5
In Example 2, lactic acid bacteria culture 2 was used instead of lactic acid bacteria 1, lactic acid bacteria culture 3 was used in Example 3, lactic acid bacteria culture 4 was used in Example 4, and lactic acid bacteria culture 5 was used in Example 5. Spirulina powders 2 to 5 were prepared in the same manner as in Example 1.
[0041]
Example 6
20 g of spirulina (solid content: 20%) obtained in Example 1 was suspended in 180 ml of physiological saline to prepare a suspension. 10 g of galactooligosaccharide was added thereto, and the lactic acid bacteria culture 1 prepared in Reference Example 1 was further inoculated into the suspension so as to obtain 5 × 10 8 lactic acid bacteria per 1 g of dry weight of Spirulina. The pH was adjusted to 7.0 with a sodium hydroxide solution having a concentration of 0.1 mol / liter, and the mixture was shake-cultured at 30 ° C. for 24 hours to culture lactic acid bacteria. The culture solution after the culture was led to a small spray dryer and spray-dried at a product temperature of 55 ° C. to prepare Spirulina powder. This is abbreviated as spirulina powder 6.
[0042]
Examples 7 to 10
In Example 7, lactic acid bacteria culture 2 was used instead of lactic acid bacteria 1, lactic acid bacteria culture 3 was used in Example 8, lactic acid bacteria culture 4 was used in Example 9, and lactic acid bacteria culture 5 was used in Example 10. Spirulina powders 7 to 10 were prepared in the same manner as in Example 1. In Examples 1 to 10, the number of lactic acid bacteria after the culture was increased to 10 to 80 times the number of lactic acid bacteria at the start of the culture.
[0043]
Comparative Example 1
Spirulina was cultured and produced in a culture pond under continuous irradiation for 7 days using artificial light and harvested. After harvesting, after washing with physiological saline, 20 g of spirulina (solid content: 20%) was suspended in 180 ml of physiological saline to prepare a suspension. After the adjustment, the mixture was led to a small spray drier and spray-dried at a product temperature of 55 ° C. to prepare a spirulina powder for comparison. This is abbreviated as Spirulina powder 1 '.
[0044]
Test Examples 1 to 10 and Comparative Test Example 1
The number of bacteria other than lactic acid bacteria of Spirulina powders 1 to 10 and Spirulina powder 1 '(hereinafter abbreviated as the number of viable bacteria) was measured, and taste and smell were evaluated by a sensory test. Table 1 shows the results. The method of measuring the number of bacteria and the evaluation of the sensory test were performed according to the following methods. The sensory test was performed by 10 panelists.
[0045]
<Measurement of general viable cell count>
Spirulina powder (1.0 g) was suspended in phosphate buffered saline (19 ml) to prepare a suspension. The suspension further 1 times with phosphate buffered saline, 10x, 10 twice, 10 three times, and diluted to 104 times, each sample dilution 1ml nutrient broth agar (Far East The mixture was mixed on a Petri dish with 10 ml of Code. No. 02480 (manufactured by Pharmaceutical Industries), solidified, and then cultured at 35 ° C. for 48 hours. The number of colonies on the agar medium was measured using an agar medium in which 30 to 300 colonies of general growing bacteria were confirmed, and this number was multiplied by a dilution factor to obtain the number of colonies of general growing bacteria.
[0046]
<Evaluation of taste>
Using Spirulina powder 1 'as a standard, 0.1 g of Spirulina powder was put on the tongue and tasted, a score was obtained according to the following criteria, and strength was evaluated according to equation (1). The smaller the strength value, the less the taste unique to spirulina.
Score +3: Spirulina-specific flavor is equivalent to the standard product.
Score + 2: Spirulina-specific flavor is weak.
Score +1: Spirulina-specific flavor is considerably weak.
Score 0: No flavor unique to Spirulina.
Intensity = (0 × N 0 + 1 × N 1 + 2 × N 2 + 3 × N 3 ) / N (Equation 1)
(N: the number of panelists, the number of persons judged as N 0 : 0, the number of persons judged as N 1 : 1, the number of persons judged as N 2 : 2, the number of persons judged as N 3 : 3)
[0047]
<Evaluation of smell>
Using Spirulina powder 1 'as a standard, 2 g of Spirulina powder was put in a polyethylene bag, the mouth was sealed, and after shaking for 10 seconds, the smell in the bag was smelled, a score was obtained according to the following criteria, and the strength was evaluated according to the above formula (1). did. The smaller the intensity value, the less the odor unique to spirulina.
Score +3: Spirulina peculiar odor is equivalent to the standard product.
Score + 2: Spirulina peculiar smell is weak.
Score +1: Smell peculiar to spirulina is very weak.
Score 0: No odor unique to spirulina.
[0048]
[Table 1]
[0049]
Example 11
Spirulina dry powder (10 g) was suspended in physiological saline (190 ml) to prepare a suspension. The suspension was inoculated with the lactic acid bacteria culture solution 1 prepared in Reference Example 1 so that 2 × 10 8 lactic acid bacteria per 1 g of Spirulina were obtained. The pH was adjusted to 7.0 with a sodium hydroxide solution having a concentration of 0.1 mol / liter, the mixture was allowed to stand at 30 ° C. for 24 hours, and lactic acid bacteria were cultured. The culture solution after the culture was led to a small spray dryer and spray-dried at a product temperature of 55 ° C. to prepare Spirulina powder. This is abbreviated as spirulina powder 11.
[0050]
Examples 12 to 15
Instead of using the lactic acid bacteria culture 1, the lactic acid bacteria culture 2 was used in Example 12, the lactic acid bacteria culture 3 was used in Example 13, the lactic acid bacteria culture 4 was used in Example 14, and the lactic acid bacteria culture 5 was used in Example 15. In the same manner as in Example 5, Spirulina powders 12 to 15 were prepared.
[0051]
Example 16
Spirulina dry powder (10 g) was suspended in physiological saline (190 ml) to prepare a suspension. 10 g of galactooligosaccharide was added thereto, and the lactic acid bacterium culture solution 1 prepared in Reference Example 1 was further inoculated to the suspension so that 2 × 10 8 lactic acid bacteria per 1 g of spirulina were obtained. The pH was adjusted to 7.0 with a sodium hydroxide solution having a concentration of 0.1 mol / liter, the mixture was allowed to stand at 30 ° C. for 24 hours, and lactic acid bacteria were cultured. The culture solution after the culture was led to a small spray dryer and spray-dried at a product temperature of 55 ° C. to prepare Spirulina powder. This is abbreviated as spirulina powder 16.
[0052]
Examples 17 to 20
Instead of using the lactic acid bacteria culture 1, the lactic acid bacteria culture 2 was used in Example 17, the lactic acid bacteria culture 3 was used in Example 18, the lactic acid bacteria culture 4 was used in Example 19, and the lactic acid bacteria culture 5 was used in Example 20. In the same manner as in Example 1, Spirulina powders 17 to 20 were prepared. In Examples 11 to 20, the number of lactic acid bacteria after culturing increased 50 to 200 times the number of lactic acid bacteria at the start of culturing.
[0053]
Test Examples 11 to 20 and Comparative Test Example 2
Spirulina dry powder used for the preparation of Spirulina 11-20 was used as a comparative Spirulina powder (hereinafter abbreviated as Spirulina powder 2 '), and the number of lactic acid bacteria and the number of bacteria other than lactic acid bacteria in Spirulina powder 11-20 and Spirulina powder 2' ( Hereinafter, the number of general viable bacteria is abbreviated), and taste and smell are evaluated by a sensory test. Table 2 shows the results. The evaluation method for each item is the same as in Test Examples 1 to 10.
[0054]
[Table 2]
[0055]
【The invention's effect】
According to the treatment method of the present invention, Spirulina having less taste and smell peculiar to Spirulina and reduced in contaminants other than lactic acid bacteria can be obtained.