US20160160437A1 - Textile fabric sheet having stain and liquid resistance and the preparation method thereof - Google Patents

Textile fabric sheet having stain and liquid resistance and the preparation method thereof Download PDF

Info

Publication number
US20160160437A1
US20160160437A1 US15/046,644 US201615046644A US2016160437A1 US 20160160437 A1 US20160160437 A1 US 20160160437A1 US 201615046644 A US201615046644 A US 201615046644A US 2016160437 A1 US2016160437 A1 US 2016160437A1
Authority
US
United States
Prior art keywords
stain
coating layer
composition
amount
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/046,644
Inventor
Soon Kie JUNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/197,986 external-priority patent/US8795780B2/en
Priority claimed from US13/468,560 external-priority patent/US9103067B2/en
Application filed by Individual filed Critical Individual
Priority to US15/046,644 priority Critical patent/US20160160437A1/en
Publication of US20160160437A1 publication Critical patent/US20160160437A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/183Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3568Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing silicon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/047Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with fluoropolymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/142Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes mixture of polyurethanes with other resins in the same layer
    • D06N3/143Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes mixture of polyurethanes with other resins in the same layer with polyurethanes and other polycondensation or polyaddition products, e.g. aminoplast
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/18Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
    • D06N3/186Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials one of the layers is on one surface of the fibrous web and the other layer is on the other surface of the fibrous web
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/01Stain or soil resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/12Permeability or impermeability properties
    • D06N2209/121Permeability to gases, adsorption
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/12Permeability or impermeability properties
    • D06N2209/126Permeability to liquids, absorption
    • D06N2209/128Non-permeable
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/14Properties of the materials having chemical properties
    • D06N2209/147Stainproof, stain repellent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1685Wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2098At least two coatings or impregnations of different chemical composition
    • Y10T442/2107At least one coating or impregnation contains particulate material

Definitions

  • This invention relates to a textile fabric sheet having stain and liquid resistance and a method of preparing the same, and more particularly, to a textile fabric sheet with excellent stain resistance, wear resistance as well as liquid barrier characteristics prepared by sequentially forming a polyurethane skin layer, acrylic coating layer and a stain-resistant coating layer on at least one surface of the fabric substrate and a method of preparing the same.
  • a textile fabric for interior application is being used for several years once installed. When they are contaminated by stains and spills, it is difficult to clean them every time, and these stains may leave bad marks on the surface, not good for aesthetics.
  • Common stains include the ones caused by ball point pens, various liquids, solid or dust, impurities or other organic materials. Liquid stains or spills often seep through the open texture of the textile fabrics into the bottom cushion/foam underneath, and cause unsanitary environment in public places like hospitals, hotels, and restaurants.
  • stain resistant textiles are treated with stain resistant coating such as a water repellent on the surface, and, if necessary, together with moisture barrier layer in the back of the fabric.
  • stain resistant coating such as a water repellent on the surface
  • moisture barrier layer in the back of the fabric.
  • stain resistant coating is simply treated on the surface of the textile fabric, the effect is quite limited, not as good as other solid surface products, due to an open constructional characteristic and the absorption property of the textile fabric.
  • This invention has been made in an effort to provide a textile fabric sheet having an excellent stain, liquid and wear resistance, not sacrificing a true textile feel, which includes a skin layer—capable of providing a solid material base, on which stain resistance coating can be applied, acting as a liquid barrier with added wear resistance characteristics—and a coating layer on top having stain resistance and a method of preparing the same.
  • An exemplary embodiment of the present invention provides a textile fabric sheet having stain and liquid resistance, including: (a) a fabric substrate; (b) a first polyurethane coating layer formed on the first surface of the fabric substrate; (c) a second aqueous acrylic coating layer formed on the first polyurethane coating layer; and (d) a third stain-resistant coating layer formed on the second aqueous acrylic coating layer.
  • the fabric substrate may be a woven or non-woven fabric composed of at least one selected from the group consisting of a polyester fiber, a viscose rayon fiber, a polyamide fiber, a polyurethane fiber, an acrylic fiber, a polyolefin fiber and a cellulose fiber.
  • an applying amount of the first polyurethane coating layer may range from 10 g/m 2 to 30 g/m 2 ; an applying amount of the second aqueous acrylic coating layer may range from 25 g/m 2 to 75 g/m 2 ; and an applying amount of the third stain-resistant coating layer may range from 10 g/m 2 to 30 g/m 2 .
  • the fabric sheet having stain and liquid resistance of the present invention is manufactured by comprising: (i) knife-coating a polyurethane coating composition on a first surface of the fabric substrate at least once and drying the composition; (ii) knife-coating an aqueous acrylic coating composition on a top of the above-coated first polyurethane coating layer at least once and drying the composition; and (iii) knife-coating a stain-resistant coating composition on a top of the above-coated second aqueous acrylic coating layer at least once and drying the composition.
  • steps (i) to (iii) it is preferable to conduct knife-coating at least once, wherein an width angle of the knife is preferably in the range of 50° to 150°.
  • a polyurethane coating composition may comprise: a polyurethane resin in an amount of 60-80 parts by weight; a curing agent in an amount of 0.1-3 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • the aqueous acrylic coating composition may comprise: an acrylic resin in an amount of 30-50 parts by weight; a softening agent in an amount of 1-5 parts by weight; an antifoaming agent in an amount of 1-5 parts by weight; a water repellent (WR) agent in an amount of 1-5 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • an acrylic resin in an amount of 30-50 parts by weight
  • a softening agent in an amount of 1-5 parts by weight
  • an antifoaming agent in an amount of 1-5 parts by weight
  • a water repellent (WR) agent in an amount of 1-5 parts by weight
  • water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • the stain-resistant coating composition may include a mixture of (i) a polyurethane resin, (ii) a silicone resin, (iii) inorganic particles, and (iv) an organic solvent.
  • the stain-resistant coating composition may comprise (i) a polyurethane resin in an amount of 20-40 parts by weight, (ii) a silicone resin in an amount of 1-10 parts by weight, (iii) inorganic particles in an amount of 1-10 parts by weight, and (d) an organic solvent in an amount to balance the stain-resistant coating composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • step (i) further comprises step of dip coating the fabric substrate with a coating solution containing a water repellent or an oil repellent and then drying it, before or after step (i).
  • the textile fabric sheet having stain and liquid resistance can exhibit a texture characteristic of a fabric substrate itself and also exhibit water resistance, stain resistance and wear resistance due to the first polyurethane coating layer, the second acrylic coating layer and the third stain-resistant coating layer formed in three layers.
  • the textile fabric sheet when used as surface finishing materials of furniture or interior, is less flawed due to good surface hardness, and is not easily stained by stains in everyday life, and the stains can be easily removed.
  • the first polyurethane coating layer and the second acrylic coating layer prevents a liquid from permeating into the fabric sheet, unlike a conventional stain resistant product, a separate moisture barrier is not needed, which is more economical.
  • FIG. 1 to FIG. 3 are a cross-sectional view showing a configuration of a textile fabric sheet having stain and liquid resistance according to an exemplary embodiment of the present invention.
  • FIGS. 4( a ) and 4( b ) is a photograph showing a textile fabric sheet having stain and liquid resistance according to an embodiment of the present invention.
  • FIG. 4( a ) shows Example 1
  • FIG. 4( b ) shows Example 3.
  • FIG. 5 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIG. 6 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIG. 7 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 8 is a photograph showing the result of evaluating stain resistance of a stain source (a mustard) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIGS. 9( a ) and 9( b ) are photographs showing the result of evaluating stain resistance of a stain source (a mustard) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIGS. 10( a ) and 10( b ) are photographs showing the result of evaluating stain resistance of a stain source (a mustard) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 11 is a photograph showing the result of evaluating stain resistance of a stain source (a ketchup) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIGS. 12( a ) and 12( b ) are photographs showing the result of evaluating stain resistance of a stain source (a ketchup) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIGS. 13( a ) and 13( b ) are photographs showing the result of evaluating stain resistance of a stain source (a ketchup) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 14 is a photograph showing the result of evaluating water repellent of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • the expression “B formed above (or below) A” or “B formed on A” used herein includes all of cases when B is directly attached to a top or bottom surface of A, when B is attached to a top or bottom surface of A by means of an adhesive layer or pressure-sensitive adhesive layer, and when at least one separate layer is formed on a top or bottom surface of A and B is attached to the separate layer directly or by means of an adhesive layer or a pressure-sensitive adhesive layer, etc.
  • FIG. 1 to FIG. 3 are a cross-sectional view of a textile fabric sheet having stain and liquid resistance according to an exemplary embodiment of the present invention.
  • a textile fabric sheet having stain and liquid resistance 100 may sequentially comprise a fabric substrate 110 woven with fabric, and a first polyurethane coating layer 120 , a second acrylic coating layer 130 and a stain-resistant coating layer 140 formed on one surface of the fabric substrate 110 .
  • the woven or non-woven fabric may be prepared with synthetic resin fibers such as a polyester fiber, a viscose rayon fiber, a polyamide fiber, a polyurethane fiber, an acrylic fiber, a polyolefin fiber and a cellulose fiber, alone or in combination; cotton (e.g., thread made of cotton); or a combination of the synthetic resin fiber and cotton.
  • synthetic resin fibers such as a polyester fiber, a viscose rayon fiber, a polyamide fiber, a polyurethane fiber, an acrylic fiber, a polyolefin fiber and a cellulose fiber, alone or in combination; cotton (e.g., thread made of cotton); or a combination of the synthetic resin fiber and cotton.
  • a woven fabric prepared with a mixture of the polyester fiber or the viscose rayon fiber, the polyamide fiber, the polyester fiber and the cotton, or the polyester fiber and the viscose rayon fiber is preferably used, but the present invention is not limited thereto.
  • a polyester textile material is woven using a
  • a method of preparing woven or non-woven fabric using the above-mentioned material may be, but is not particularly limited to, a general paper-manufacturing or weaving process.
  • the first polyurethane coating layer 120 may be formed using a conventional polyurethane resin known in the art.
  • the polyurethane resin may include polyether polyurethane, polyester polyurethane, polycarbonate polyurethane, polyetherester polyurethane, polyethercarbonate polyurethane, polycaprolactone polyurethane, hydrocarbon polyurethane, alicyclic polyurethane, aromatic polyurethane, or a combination of at least one thereof.
  • an applying amount of the polyurethane resin in the first polyurethane coating layer ( 120 ) is preferably in the range of 10 g/m 2 to 30 g/m 2 , more preferably, in the range of 10 g/m 2 to 20 g/m 2 .
  • the applying amount of the first polyurethane coating layer is in the above-mentioned range, the first polyurethane coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • an applying amount of each coating layer formed on the fabric substrate in the present invention is based on the amount applied to a fabric (polyester) 129 g/m 2 , and may appropriately vary depending on the weight of the fabric to be used.
  • the first polyurethane coating layer 120 may be a transparent type or a colored type including a pigment.
  • the fabric substrate 110 may have various colors and patterns, and thus a transparent polyurethane coating layer is preferably used to show such color and pattern as they appear originally.
  • a pigment may be any one known in the art, for example, a pigment containing an organic or inorganic component, without limitation.
  • the present invention is characterized by adding a second aqueous acrylic coating layer 130 as a medium layer between the first polyurethane coating layer 120 and the third stain-resistant coating layer 140 .
  • the second aqueous acrylic coating layer 130 coupled between the first polyurethane coating layer 120 and the third stain-resistant coating layer 140 can exhibit liquid penetration resistance and a soft textile characteristic and further increase water resistance and stain resistance.
  • the second acrylic coating layer 130 may be formed by using a normal aqueous acrylic resin known in the relevant art without limitation.
  • the second aqueous acrylic coating layer (c) may be formed by using an acrylic resin, which is a basic resin, alone or additionally comprising a normal additive known in the relevant art. For example, it is preferable to add a softening agent and an antifoaming agent to the aqueous acrylic resin.
  • an applying amount of the second aqueous acrylic coating layer (c) may range from 25 g/m 2 to 75 g/m 2 , preferably, from 30 g/m 2 to 60 g/m 2 .
  • the applying amount of the second acrylic coating layer is in the above-mentioned range, the second acrylic coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • the second acrylic coating layer 130 may be a transparent type or a colored type including a pigment.
  • a pigment may be any one known in the art, for example, a pigment containing an organic or inorganic component, without limitation.
  • the third stain-resistant coating layer 140 of the present invention may be formed on the first polyurethane coating layer 120 and the second acrylic coating layer 130 , and thus may exhibit excellent stain resistance and wear resistance.
  • the third stain-resistant coating layer 140 may be formed using a general stain-resistant material known in the art.
  • a silicone resin may be used alone or a mixture of a silicone resin and a polyurethane resin may be used.
  • the silicone resin or polyurethane resin may be a conventional one known in the art without limitation.
  • the silicone resin may have an average viscosity of 1000 to 20000 cps, but the present invention is not limited thereto.
  • the polyurethane resin may have an average viscosity of 1,000 to 20,000 cps/25° C., preferably 3,000 to 15,000 cps/25° C., more preferably 8,000 to 15,000 cps/25° C.
  • the third stain-resistant coating layer 140 may be formed by mixing a polyurethane resin; a silicone resin; and inorganic particles, or by mixing a silicone resin with at least one additive selected from the group consisting of a polyurethane resin, oil, platinum and fluorine.
  • an applying amount of the third stain-resistant coating layer 140 may range from 10 g/m 2 to 30 g/m 2 , preferably, from 15 g/m 2 to 25 g/m 2 .
  • the third stain-resistant coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • the textile fabric sheet having stain and liquid resistance according to the present invention may further comprise a water repellent layer 121 between the first polyurethane coating layer 120 and the second aqueous acrylic coating layer 130 and on the second surface of the fabric substrate.
  • the water repellent layer 121 may use a normal water-repellent agent known in the art without limitation.
  • a water repellent agent may be a silicone-based water repellent agent or a fluorine-based water repellent agent.
  • the fluorine-based water repellent agent is preferable and may exhibit strong water repellent by forming a fluorine film on a fabric surface and lowering surface tension. Since the fluorine-based water repellent agent has oil repellent as well as water repellent, it has a more advantageous effect over other water repellent agents and may be used as an anti-dust agent. Examples of an available fluorine-based water repellent agent may include perfluoro acrylate-based copolymer.
  • the water repellent layer 121 preferably comprises a softening agent, an aqueous acrylic binder and an anti-static agent in addition to the water repellent agent.
  • a softening agent e.g., a softening agent, aqueous acrylic binder and an anti-static agent in addition to the water repellent agent.
  • the components and amounts thereof are not specifically limited, and may be appropriately adjusted within the range known in the art.
  • an applying amount of the acrylic back-coating layer 122 may range from 1 g/m 2 to 15 g/m 2 , preferably, 5 g/m 2 to 15 g/m 2 .
  • an excellent liquid penetration resistance may be exhibited.
  • a polyurethane coating composition, an aqueous acrylic coating composition and a stain-resistant coating composition are sequentially coated on a fabric substrate 110 using knife coating.
  • the above coating composition may be thinly coated at least twice to maintain air permeability of the fabric substrate and soft texture.
  • each of the polyurethane coating composition, the aqueous acrylic coating composition and the stain-resistant coating composition may be knife-coated once or at least twice.
  • a diameter angle of the knife, a thickness of the knife and a viscosity of the coating composition may be appropriately controlled in consideration of texture, wear resistance and stain resistance of the final fabric sheet of the present invention.
  • the diameter angle of the knife may range from 50 to 150 degrees, preferably 70 to 110 degrees.
  • a coating layer to be formed has a larger thickness.
  • the diameter angle of the knife in the first coating step may be larger than the diameter angle of the knife in the second coating step, and thus the coating composition may be thinly coated.
  • the thickness of the coating layer to be formed may be controlled by adjusting the viscosity of the coating composition, the knife angle or the knife thickness, and thus the first polyurethane coating layer, the second acrylic coating layer and/or the third stain-resistant coating layer may be thinly and uniformly applied to a surface of the fabric substrate to have a predetermined thickness.
  • an applying amount of the coating composition may be reduced, and excellent adhesive strength may be ensured.
  • the polyurethane coating composition according to the exemplary embodiment of the present invention may be a liquid resin composition including a polyurethane resin selected according to a material of the substrate, a curing agent and an organic solvent.
  • the polyurethane resin and the curing agent are dispersed in the organic solvent and diluted at an appropriate concentration, thereby preparing the polyurethane coating composition.
  • such an polyurethane coating composition may comprise: an polyurethane resin in an amount of 60-80 parts by weight; a curing agent in an amount of 0.1-3 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • the curing agent and the organic solvent may be any of conventional ones known in the art without limitation.
  • Non-liming examples of the solvent which can be used herein may be a ketone-based solvent such as methylethylketone (MEK), methylisobutylketone (MIBK) or acetone; an alcohol-based solvent such as isopropylalcohol (IPA) or n-hexanol; or 1,2-dichlorobenzen, N-methylpyrrolidone (NMP) or N,N-dimethylformamide (DMF).
  • MEK methylethylketone
  • MIBK methylisobutylketone
  • IPA isopropylalcohol
  • NMP 1,2-dichlorobenzen, N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • the viscosity of the polyurethane coating composition to use the knife coating method may be 1000 to 20000 cps, but the present invention is not particularly limited thereto.
  • the polyurethane coating composition may contain a polyurethane resin at 10 to 30 g/m 2 .
  • the polyurethane coating layer formed as described above is exposed to air for sufficient time, thereby forming a cured film.
  • drying time and conditions may be adjusted within a conventional range.
  • the drying may be performed at room temperature or approximately 80 to 250° C. for 1 to 24 hours.
  • a second aqueous acrylic coating layer is formed by knife-coating an aqueous acrylic composition on the first polyurethane coating layer formed and drying the composition.
  • the aqueous acrylic coating composition according to the present invention may be a liquid resin composition comprising an acrylic resin selected according to a material of the substrate, a softening agent, an antifoaming agent and water.
  • an aqueous acrylic coating composition may comprise: an acrylic resin in an amount of 30-50 parts by weight; a softening agent in an amount of 1-5 parts by weight; an antifoaming agent in an amount of 1-5 parts by weight; a water repellent (WR) agent in an amount of 1-5 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • WR water repellent
  • knife coating, coating conditions and drying conditions may be the same as those used in the formation of the first polyurethane coating layer described above.
  • a third stain-resistant coating layer is formed by knife-coating a stain-resistant coating composition on the second aqueous acrylic coating layer formed and drying the composition.
  • a silicone resin generally has a high viscosity, and thus is not suitable for knife coating and does not easily form a uniform coating layer even if coated.
  • the stain-resistant coating composition suitable for a knife-coating method may contain a silicone resin in a minor amount or further use an additive capable of reducing the viscosity of the silicone resin.
  • the stain-resistant coating composition according to the exemplary embodiment of the present invention may be a combination of (i) a polyurethane resin, (ii) a silicone resin, (iii) inorganic particles, and (iv) an organic solvent.
  • the stain-resistant coating composition preferably comprises (i) a polyurethane resin in an amount of 20-40 parts by weight, (ii) a silicone resin in an amount of 1-10 parts by weight, (iii) inorganic particles in an amount of 1-10 parts by weight, and (d) an organic solvent in an amount to balance the stain-resistant coating composition to 100 parts by weight, based on 100 parts by weight of the stain-resistant coating composition.
  • the uniformly mixed stain-resistant coating composition preferably have a viscosity of 8,000 to 15,000 cps/25° C.
  • the stain-resistant coating composition may further comprise an additive capable of reducing the viscosity of the silicone resin.
  • an additive capable of reducing the viscosity of the silicone resin may be at least one additive selected from the group consisting of oil, platinum and fluorine.
  • content of the additive is no particular limitation in content of the additive as long as the additive is capable of reducing viscosity of the silicone resin in the stain-resistant coating composition.
  • the stain-resistant coating composition may use a mixture of (i) a silicone resin with (ii) at least one additive selected from the group consisting of a polyurethane resin, oil, platinum and fluorine.
  • a silicone resin and an additive be mixed in a weight ratio of 100:20-30.
  • knife coating, coating conditions and drying conditions may be the same as those used in the formation of the polyurethane coating layer described above.
  • a solid content of the stain-resistant coating composition in the second coating step may be lower than that in the first coating step.
  • a water repellent layer is formed on both surfaces of the fabric substrate.
  • the components or amounts of the solution containing the water repellent agent are not specifically limited, and may be appropriately adjusted within the range known in the art.
  • the solution may further comprise a water repellent agent, a softening agent, an aqueous acrylic binder and an anti-static agent commonly known in the art.
  • a preferable example of the solution containing the water repellent agent may include: a water repellent agent in an amount of 10 to 40 parts by weight; a softening agent in an amount of 1 to 10 parts by weight; an aqueous acrylic binder in an amount of 1 to 10 parts by weight; an anti-static agent in an amount of 0.1 to 3 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
  • a step of back-coating an oil-based acrylic composition, the component of which is different from that of the second aqueous acrylic coating layer, on the second surface of the fabric substrate coated with the water repellent agent and drying the composition may be further included between (i) the step of forming the first polyurethane coating layer and (ii) the step of forming the second aqueous acrylic coating layer.
  • the oil-based acrylic composition may be formed by using an acrylic resin alone, or comprising the acrylic resin, the styrene-butadiene rubber (SBR) and the organic solvent.
  • SBR styrene-butadiene rubber
  • a preferable example of the oil-based acrylic composition may be formed by comprising: an acrylic resin in an amount of 50 to 80 parts by weight; an SBR in an amount of 1 to 5 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
  • the textile fabric sheet according to the exemplary embodiment of the present invention prepared as described above may have a structure in which the web structure of the fabric substrate woven with a fiber is preserved, and the reduction in air permeability of the final textile fabric sheet according to the introduction of the coating layer may be minimized.
  • the textile fabric sheet having stain and liquid resistance of the present invention configured as mentioned above may have three embodiments.
  • the present invention is not restricted by the embodiments below, but various modifications and applications are possible based on need.
  • FIG. 1 is a cross-sectional view showing the first embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • the textile fabric sheet having stain and liquid resistance comprises a fabric substrate 110 , which is a woven fabric, and a first polyurethane coating layer 120 , a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140 , which are sequentially formed on the first surface of the fabric substrate.
  • FIG. 2 is a cross-sectional view showing the second embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • the textile fabric sheet having stain and liquid resistance has a structure, in which a first polyurethane coating layer 120 , a water repellent layer 121 , a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140 are sequentially formed on the first surface of the fabric substrate 110 , and a water repellent layer 121 and an oil-based acrylic back-coating layer 122 are formed on the second surface of the fabric substrate 110 .
  • FIG. 3 is a cross-sectional view of a third embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • the textile fabric sheet having stain and liquid resistance has a structure, in which a first polyurethane coating layer 120 , a water repellent layer 121 , a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140 are sequentially formed on the first surface of the fabric sheet 110 , and a water repellent layer 121 is formed on the second surface of the fabric substrate 110 .
  • the first polyurethane coating layer 120 , the second acrylic coating layer 130 and the third stain-resistant coating layer 140 are sequentially formed on the fabric substrate 110 .
  • the number and stacking sequence of coating layers constituting the textile fabric sheet having stain and liquid resistance may be freely selected according to a purpose, which is also included in the scope of the present invention.
  • a multi-layered structure having at least three layers may be formed by changing the sequence of the coating layers 120 , 130 and 140 or introducing a different surface layer.
  • the textile fabric sheet having stain and liquid resistance may be applied to various interior or exterior products.
  • the interior products can be applied to all products to which the textile fabric sheet having stain and liquid resistance will be introduced, and unlimited examples thereof may include wall paper, furniture, flooring materials, interior materials, exterior materials, surface materials, wood or interior accessories.
  • a polyurethane coating composition (viscosity: 5000-7000 cps) including a polyurethane resin having a molecular weight of 20,000 to 200,000, a curing agent and an organic solvent mixed with a mixture of MEK, EA and TO was knife-coated in a range of 13 g/m 2 on a polyester fabric.
  • a width angle of the knife was 70 to 110 degrees, and drying was performed at 150° C. for 1 to 5 minutes, thereby forming a first polyurethane coating layer.
  • the polyester fabric was applied by dip-coating in a water repellent coating solution and dried.
  • the water repellent agent was applied in a range of 3 g/m 2 .
  • the water repellent coating solution in which a water repellent agent and water are contained in a weight ratio of 30:70 wt %, was used.
  • the water repellent agent consists of a fluoride compound (perfluoro acrylate copolymer) of 15 wt %, a softening agent of 8 wt %, an aqueous acrylic binder of 5 wt % and an anti-static agent of 2 wt %.
  • an acrylic resin composition is applied in a range of 10 g/m 2 on the water repellent layer of the polyester fabric on which a polyurethane coating layer is not formed, coated and dried to form an acrylic back-coating layer.
  • the composition and amount of the acrylic resin composition are set forth in Table 1 below.
  • an aqueous acrylic resin composition was knife-coated on the polyurethane coating layer of the polyester fabric and dried.
  • the aqueous acrylic coating layer was applied in a range of 50 g/m 2 .
  • the composition and amount of the aqueous acrylic resin composition are set forth in Table 1 below.
  • a stain-resistant coating composition in which a polyurethane resin, a silicone resin, inorganic particles (silica) and an organic solvent were mixed in a weight ratio of 25:3:3:69, was knife-coated on the top of the coated aqueous acrylic coating layer, and dried to prepare a fabric sheet having stain and liquid resistance.
  • the structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 2 , a photograph of which is FIG. 4( a ) .
  • Example 2 Except that an oil-based acrylic back-coating (3) was not performed, a textile fabric sheet having stain and liquid resistance (2) was prepared in the same manner as in Example 1. The structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 3 .
  • Example 1 Except that a water repellent coating (2) and an oil-based acrylic back-coating (3) were not performed, a textile fabric sheet having stain and liquid resistance (3) was prepared in the same manner as in Example 1. The structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 1 , a photograph of which is FIG. 4( b ) .
  • the evaluation method was repeatedly performed 50 times using the same stains to evaluate a degree of staining by eyes.
  • stains an oil-based ballpoint pen, mustard and a ketchup, stains from which are the most difficult to prevent, were used.
  • a fabric sheet currently produced by Crypton was used as a control group.
  • the evaluation method was performed using coffee to evaluate the shape of the instilled coffee and/or the absorption degree of the textile fabric sheet by eyes after instillation of water into the textile fabric sheet.
  • coffee has a better penetration effect than water, and thus, was used as a material to evaluate water repellent in the subject application.
  • the instilled coffee on the fabric sheet prepared in Examples 1 and 3 existed maintaining the fundamental shape thereof as time passed and was not absorbed into the fabric sheet. Therefore, it can be noted that the fabric sheet of the present invention had an excellent water repellent effect (see FIGS. 14, 15 ( a ) and 15 ( b )).
  • the textile fabric sheet having a stain and liquid resistance of Examples 1 to 3 were tested according to an ASTM D4157 Wyzenbeek method.
  • fabric sheets produced by Crypton used in the Evaluation of Stain Resistance were used as a control group.
  • the textile fabric sheet having stain and liquid resistance of the present invention withstood more than 200,000 rubs. Therefore, it can be noted that the textile fabric sheet of the present invention had an excellent wear resistance effect (see Table 1).

Abstract

A textile fabric sheet having stain and liquid resistance includes (a) a fabric substrate, (b) a first polyurethane coating layer formed on a first surface of the fabric substrate; (c) a second aqueous acrylic coating layer formed on the first coating layer of the polyurethane coating layer; and (d) a third stain-resistant coating layer formed on the second aqueous acrylic coating layer. A method of preparing the textile fabric sheet is provided. The texture characteristic of the fabric substrate itself can be exhibited, and due to the polyurethane coating layer, the aqueous acrylic coating layer and the stain-resistant coating layer stacked in three steps, excellent water resistance, stain resistance and air permeability can be exhibited.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 14/493,768, filed Sep. 23, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/468,560 (patented as U.S. Pat. No. 9,103,067) filed May 10, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/197,986 (patented as U.S. Pat. No. 8,795,780), filed Aug. 4, 2011), the full disclosures of which are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • This invention relates to a textile fabric sheet having stain and liquid resistance and a method of preparing the same, and more particularly, to a textile fabric sheet with excellent stain resistance, wear resistance as well as liquid barrier characteristics prepared by sequentially forming a polyurethane skin layer, acrylic coating layer and a stain-resistant coating layer on at least one surface of the fabric substrate and a method of preparing the same.
  • BACKGROUND
  • Generally, a textile fabric for interior application is being used for several years once installed. When they are contaminated by stains and spills, it is difficult to clean them every time, and these stains may leave bad marks on the surface, not good for aesthetics. Common stains include the ones caused by ball point pens, various liquids, solid or dust, impurities or other organic materials. Liquid stains or spills often seep through the open texture of the textile fabrics into the bottom cushion/foam underneath, and cause unsanitary environment in public places like hospitals, hotels, and restaurants.
  • To solve the above-mentioned issues, conventional stain resistant textiles are treated with stain resistant coating such as a water repellent on the surface, and, if necessary, together with moisture barrier layer in the back of the fabric. However, when stain resistant coating is simply treated on the surface of the textile fabric, the effect is quite limited, not as good as other solid surface products, due to an open constructional characteristic and the absorption property of the textile fabric. Thus, it has been constantly required to develop a true stain resistant textile fabric that can be easily cleaned leaving no bad marks behind regardless of the type of stains.
  • SUMMARY
  • This invention has been made in an effort to provide a textile fabric sheet having an excellent stain, liquid and wear resistance, not sacrificing a true textile feel, which includes a skin layer—capable of providing a solid material base, on which stain resistance coating can be applied, acting as a liquid barrier with added wear resistance characteristics—and a coating layer on top having stain resistance and a method of preparing the same.
  • An exemplary embodiment of the present invention provides a textile fabric sheet having stain and liquid resistance, including: (a) a fabric substrate; (b) a first polyurethane coating layer formed on the first surface of the fabric substrate; (c) a second aqueous acrylic coating layer formed on the first polyurethane coating layer; and (d) a third stain-resistant coating layer formed on the second aqueous acrylic coating layer.
  • The fabric substrate may be a woven or non-woven fabric composed of at least one selected from the group consisting of a polyester fiber, a viscose rayon fiber, a polyamide fiber, a polyurethane fiber, an acrylic fiber, a polyolefin fiber and a cellulose fiber.
  • According to a preferred embodiment of the present invention, an applying amount of the first polyurethane coating layer may range from 10 g/m2 to 30 g/m2; an applying amount of the second aqueous acrylic coating layer may range from 25 g/m2 to 75 g/m2; and an applying amount of the third stain-resistant coating layer may range from 10 g/m2 to 30 g/m2.
  • Meanwhile, in order to achieve the aforesaid technical tasks, the fabric sheet having stain and liquid resistance of the present invention is manufactured by comprising: (i) knife-coating a polyurethane coating composition on a first surface of the fabric substrate at least once and drying the composition; (ii) knife-coating an aqueous acrylic coating composition on a top of the above-coated first polyurethane coating layer at least once and drying the composition; and (iii) knife-coating a stain-resistant coating composition on a top of the above-coated second aqueous acrylic coating layer at least once and drying the composition.
  • In each of steps (i) to (iii), it is preferable to conduct knife-coating at least once, wherein an width angle of the knife is preferably in the range of 50° to 150°.
  • According to a preferable embodiment of the present invention, a polyurethane coating composition may comprise: a polyurethane resin in an amount of 60-80 parts by weight; a curing agent in an amount of 0.1-3 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • Further, in step (iii) above, the aqueous acrylic coating composition may comprise: an acrylic resin in an amount of 30-50 parts by weight; a softening agent in an amount of 1-5 parts by weight; an antifoaming agent in an amount of 1-5 parts by weight; a water repellent (WR) agent in an amount of 1-5 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • Further, in step (iii) above, the stain-resistant coating composition may include a mixture of (i) a polyurethane resin, (ii) a silicone resin, (iii) inorganic particles, and (iv) an organic solvent. Here, the stain-resistant coating composition may comprise (i) a polyurethane resin in an amount of 20-40 parts by weight, (ii) a silicone resin in an amount of 1-10 parts by weight, (iii) inorganic particles in an amount of 1-10 parts by weight, and (d) an organic solvent in an amount to balance the stain-resistant coating composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • In one embodiment of the method of preparing a textile fabric sheet according to the present invention, further comprises step of dip coating the fabric substrate with a coating solution containing a water repellent or an oil repellent and then drying it, before or after step (i).
  • According to the exemplary embodiments of the present invention, the textile fabric sheet having stain and liquid resistance can exhibit a texture characteristic of a fabric substrate itself and also exhibit water resistance, stain resistance and wear resistance due to the first polyurethane coating layer, the second acrylic coating layer and the third stain-resistant coating layer formed in three layers.
  • In addition, according to the exemplary embodiments of the present invention, when used as surface finishing materials of furniture or interior, the textile fabric sheet is less flawed due to good surface hardness, and is not easily stained by stains in everyday life, and the stains can be easily removed.
  • Moreover, according to the exemplary embodiments of the present invention, since the first polyurethane coating layer and the second acrylic coating layer prevents a liquid from permeating into the fabric sheet, unlike a conventional stain resistant product, a separate moisture barrier is not needed, which is more economical.
  • The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 to FIG. 3 are a cross-sectional view showing a configuration of a textile fabric sheet having stain and liquid resistance according to an exemplary embodiment of the present invention.
  • FIGS. 4(a) and 4(b) is a photograph showing a textile fabric sheet having stain and liquid resistance according to an embodiment of the present invention. FIG. 4(a) shows Example 1, and FIG. 4(b) shows Example 3.
  • FIG. 5 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIG. 6 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIG. 7 is a photograph showing the result of evaluating stain resistance of a stain source (an oil-based pen) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 8 is a photograph showing the result of evaluating stain resistance of a stain source (a mustard) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIGS. 9(a) and 9(b) are photographs showing the result of evaluating stain resistance of a stain source (a mustard) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIGS. 10(a) and 10(b) are photographs showing the result of evaluating stain resistance of a stain source (a mustard) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 11 is a photograph showing the result of evaluating stain resistance of a stain source (a ketchup) of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIGS. 12(a) and 12(b) are photographs showing the result of evaluating stain resistance of a stain source (a ketchup) of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • FIGS. 13(a) and 13(b) are photographs showing the result of evaluating stain resistance of a stain source (a ketchup) of the conventional fabric sheet having stain and liquid resistance.
  • FIG. 14 is a photograph showing the result of evaluating water repellent of the textile fabric sheet having stain and liquid resistance manufactured in Example 1.
  • FIGS. 15(a) and 15(b) are photographs showing the result of evaluating water repellent of the textile fabric sheet having stain and liquid resistance manufactured in Example 3.
  • BRIEF DESCRIPTION OF THE INDICATIONS IN THE DRAWINGS
    • 110: a fabric substrate
    • 120: a first polyurethane coating layer
    • 121: a water repellent layer
    • 122: an oil-based acrylic back-coating layer
    • 130: a second aqueous acrylic coating layer
    • 140: a third stain-resistant coating layer
    DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawing, which form a part hereof. The illustrative embodiments described in the detailed description, drawing, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • The exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • Hereinafter, the expression “B formed above (or below) A” or “B formed on A” used herein includes all of cases when B is directly attached to a top or bottom surface of A, when B is attached to a top or bottom surface of A by means of an adhesive layer or pressure-sensitive adhesive layer, and when at least one separate layer is formed on a top or bottom surface of A and B is attached to the separate layer directly or by means of an adhesive layer or a pressure-sensitive adhesive layer, etc.
  • FIG. 1 to FIG. 3 are a cross-sectional view of a textile fabric sheet having stain and liquid resistance according to an exemplary embodiment of the present invention. Referring to FIGS. 1-3, a textile fabric sheet having stain and liquid resistance 100 may sequentially comprise a fabric substrate 110 woven with fabric, and a first polyurethane coating layer 120, a second acrylic coating layer 130 and a stain-resistant coating layer 140 formed on one surface of the fabric substrate 110.
  • A kind of the fabric substrate 110 used herein is not particularly limited, and thus a conventional woven or non-woven fabric known to those skilled in the art may be used.
  • The woven or non-woven fabric may be prepared with synthetic resin fibers such as a polyester fiber, a viscose rayon fiber, a polyamide fiber, a polyurethane fiber, an acrylic fiber, a polyolefin fiber and a cellulose fiber, alone or in combination; cotton (e.g., thread made of cotton); or a combination of the synthetic resin fiber and cotton. Among these, a woven fabric prepared with a mixture of the polyester fiber or the viscose rayon fiber, the polyamide fiber, the polyester fiber and the cotton, or the polyester fiber and the viscose rayon fiber is preferably used, but the present invention is not limited thereto. A polyester textile material is woven using a polyester fiber stretched to have very little or reduced elongation, and has high tension, low absorption and excellent drug resistance. In addition, an elastic fiber material such as spandex may be used.
  • A method of preparing woven or non-woven fabric using the above-mentioned material may be, but is not particularly limited to, a general paper-manufacturing or weaving process.
  • The fabric substrate 110 may have a thickness of 0.3 to 2 mm, but the present invention is not limited thereto.
  • In the present invention, the first polyurethane coating layer 120 formed on the surface of the fabric substrate may closely penetrate into the fabric substrate 110 while maintaining a web structure of the above mentioned fabric substrate 110 and may be thinly coated, thus exhibiting an original texture characteristic of the textile itself. In addition, the first polyurethane coating layer 120 may prevent damage to the fabric substrate 110, and exhibit improved wear resistance and excellent water resistance because liquid does not permeate thereinto.
  • The first polyurethane coating layer 120 may be formed using a conventional polyurethane resin known in the art. Non-limiting examples of the polyurethane resin may include polyether polyurethane, polyester polyurethane, polycarbonate polyurethane, polyetherester polyurethane, polyethercarbonate polyurethane, polycaprolactone polyurethane, hydrocarbon polyurethane, alicyclic polyurethane, aromatic polyurethane, or a combination of at least one thereof.
  • Further, an applying amount of the polyurethane resin in the first polyurethane coating layer (120) is preferably in the range of 10 g/m2 to 30 g/m2, more preferably, in the range of 10 g/m2 to 20 g/m2. When the applying amount of the first polyurethane coating layer is in the above-mentioned range, the first polyurethane coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • For reference, an applying amount of each coating layer formed on the fabric substrate in the present invention is based on the amount applied to a fabric (polyester) 129 g/m2, and may appropriately vary depending on the weight of the fabric to be used.
  • The first polyurethane coating layer 120 may be a transparent type or a colored type including a pigment. Generally, the fabric substrate 110 may have various colors and patterns, and thus a transparent polyurethane coating layer is preferably used to show such color and pattern as they appear originally. Here, a pigment may be any one known in the art, for example, a pigment containing an organic or inorganic component, without limitation.
  • The present invention is characterized by adding a second aqueous acrylic coating layer 130 as a medium layer between the first polyurethane coating layer 120 and the third stain-resistant coating layer 140.
  • The second aqueous acrylic coating layer 130 coupled between the first polyurethane coating layer 120 and the third stain-resistant coating layer 140 can exhibit liquid penetration resistance and a soft textile characteristic and further increase water resistance and stain resistance.
  • The second acrylic coating layer 130 may be formed by using a normal aqueous acrylic resin known in the relevant art without limitation.
  • The second aqueous acrylic coating layer (c) may be formed by using an acrylic resin, which is a basic resin, alone or additionally comprising a normal additive known in the relevant art. For example, it is preferable to add a softening agent and an antifoaming agent to the aqueous acrylic resin.
  • In the present invention, an applying amount of the second aqueous acrylic coating layer (c) may range from 25 g/m2 to 75 g/m2, preferably, from 30 g/m2 to 60 g/m2. When the applying amount of the second acrylic coating layer is in the above-mentioned range, the second acrylic coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • As well as the aforesaid first polyurethane coating layer 120, the second acrylic coating layer 130 may be a transparent type or a colored type including a pigment. Here, a pigment may be any one known in the art, for example, a pigment containing an organic or inorganic component, without limitation.
  • The third stain-resistant coating layer 140 of the present invention may be formed on the first polyurethane coating layer 120 and the second acrylic coating layer 130, and thus may exhibit excellent stain resistance and wear resistance.
  • The third stain-resistant coating layer 140 may be formed using a general stain-resistant material known in the art. For example, a silicone resin may be used alone or a mixture of a silicone resin and a polyurethane resin may be used. The silicone resin or polyurethane resin may be a conventional one known in the art without limitation. The silicone resin may have an average viscosity of 1000 to 20000 cps, but the present invention is not limited thereto. Further, the polyurethane resin may have an average viscosity of 1,000 to 20,000 cps/25° C., preferably 3,000 to 15,000 cps/25° C., more preferably 8,000 to 15,000 cps/25° C.
  • The third stain-resistant coating layer 140 may comprise general inorganic particles known in the art. Non-limiting examples of inorganic particles which can be used herein include silica (SiO2), alumina (Al2O3), SnO2, MgO, CaO, TiO2 or mixture thereof.
  • The third stain-resistant coating layer 140 may be formed by mixing a polyurethane resin; a silicone resin; and inorganic particles, or by mixing a silicone resin with at least one additive selected from the group consisting of a polyurethane resin, oil, platinum and fluorine.
  • Here, an applying amount of the third stain-resistant coating layer 140 may range from 10 g/m2 to 30 g/m2, preferably, from 15 g/m2 to 25 g/m2. When the applying an amount of the third stain-resistant coating layer is in the above-mentioned range, the third stain-resistant coating layer exhibits an excellent coating effect, and has a fast drying speed and good workability.
  • Meanwhile, the textile fabric sheet having stain and liquid resistance according to the present invention may further comprise a water repellent layer 121 between the first polyurethane coating layer 120 and the second aqueous acrylic coating layer 130 and on the second surface of the fabric substrate.
  • The water repellent layer 121 may use a normal water-repellent agent known in the art without limitation. For example, a water repellent agent may be a silicone-based water repellent agent or a fluorine-based water repellent agent. The fluorine-based water repellent agent is preferable and may exhibit strong water repellent by forming a fluorine film on a fabric surface and lowering surface tension. Since the fluorine-based water repellent agent has oil repellent as well as water repellent, it has a more advantageous effect over other water repellent agents and may be used as an anti-dust agent. Examples of an available fluorine-based water repellent agent may include perfluoro acrylate-based copolymer.
  • The water repellent layer 121 preferably comprises a softening agent, an aqueous acrylic binder and an anti-static agent in addition to the water repellent agent. Here, the components and amounts thereof are not specifically limited, and may be appropriately adjusted within the range known in the art.
  • In the present invention, an applying amount of the water repellent layer (121) may range from 1 g/m2 to 10 g/m2, preferably, 1 g/m2 to 5 g/m2.
  • Further, the textile fabric sheet having stain and liquid resistance according to the present invention may further comprise an oil-based acrylic back-coating layer 122, the component of which is different from that of the second aqueous acrylic coating layer 130, on the water repellent layer 121 formed on the second surface of the fabric substrate 110.
  • The oil-based acrylic back-coating layer 122 may be formed by using a normal oil-based acrylic resin known in the art without limitation.
  • The acrylic back-coating layer 122 may be formed by using an acrylic resin, which is a basic resin, alone or additionally comprising a normal additive known in the art, e.g., preferably, a styrene-butadiene rubber (SBR) and an organic solvent.
  • Here, an applying amount of the acrylic back-coating layer 122 may range from 1 g/m2 to 15 g/m2, preferably, 5 g/m2 to 15 g/m2. When the applying amount of the acrylic back-coating layer 122 is in the above-mentioned range, an excellent liquid penetration resistance may be exhibited.
  • The textile fabric sheet having stain and liquid resistance according to the exemplary embodiment of the present invention may be prepared according to a method to be described below, but the present invention is not particularly limited thereto.
  • In the exemplary embodiment, the method may include (i) knife-coating a polyurethane coating composition on a first surface of the fabric substrate at least once and drying the composition; (ii) knife-coating an aqueous acrylic coating composition on a top of the above-coated first polyurethane coating layer at least once and drying the composition; and (iii) knife-coating a stain-resistant coating composition on a top of the above-coated second aqueous acrylic coating layer at least once and drying the composition.
  • Knife coating is one of coating methods used when a fabric material is laminated. That is, a fabric substrate is provided on a revolving roller to move, a liquid coating composition is provided on the moving fabric substrate, and the provided liquid coating composition passes through a knife extending in a width direction and formed on the roller. Here, the thickness of the coating layer is determined according to a height of the knife.
  • Meanwhile, when the first polyurethane coating layer 120 and the second acrylic coating layer 130 are very thick, the final textile fabric sheet becomes rigid, and thus is deteriorated in texture as textiles. Thus, in the present invention, a polyurethane coating composition, an aqueous acrylic coating composition and a stain-resistant coating composition are sequentially coated on a fabric substrate 110 using knife coating. Here, the above coating composition may be thinly coated at least twice to maintain air permeability of the fabric substrate and soft texture.
  • In the exemplary embodiment, each of the polyurethane coating composition, the aqueous acrylic coating composition and the stain-resistant coating composition may be knife-coated once or at least twice. Here, a diameter angle of the knife, a thickness of the knife and a viscosity of the coating composition may be appropriately controlled in consideration of texture, wear resistance and stain resistance of the final fabric sheet of the present invention.
  • During the knife coating, the diameter angle of the knife may range from 50 to 150 degrees, preferably 70 to 110 degrees. Generally, as the knife angle is decreased and the knife thickness is increased, a coating layer to be formed has a larger thickness. Considering this, when the coating composition is coated at least twice, the diameter angle of the knife in the first coating step may be larger than the diameter angle of the knife in the second coating step, and thus the coating composition may be thinly coated. Actually, the thickness of the coating layer to be formed may be controlled by adjusting the viscosity of the coating composition, the knife angle or the knife thickness, and thus the first polyurethane coating layer, the second acrylic coating layer and/or the third stain-resistant coating layer may be thinly and uniformly applied to a surface of the fabric substrate to have a predetermined thickness. In addition, an applying amount of the coating composition may be reduced, and excellent adhesive strength may be ensured.
  • The polyurethane coating composition according to the exemplary embodiment of the present invention may be a liquid resin composition including a polyurethane resin selected according to a material of the substrate, a curing agent and an organic solvent. As an example, the polyurethane resin and the curing agent are dispersed in the organic solvent and diluted at an appropriate concentration, thereby preparing the polyurethane coating composition. As a preferable example, such an polyurethane coating composition may comprise: an polyurethane resin in an amount of 60-80 parts by weight; a curing agent in an amount of 0.1-3 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • The curing agent and the organic solvent may be any of conventional ones known in the art without limitation. Non-liming examples of the solvent which can be used herein may be a ketone-based solvent such as methylethylketone (MEK), methylisobutylketone (MIBK) or acetone; an alcohol-based solvent such as isopropylalcohol (IPA) or n-hexanol; or 1,2-dichlorobenzen, N-methylpyrrolidone (NMP) or N,N-dimethylformamide (DMF). When necessary, the polyurethane coating composition may further include a reinforcing filling agent or weight filling agent, for example, colloidal silica, fumed silica; a coloring agent and a pigment; a thermal stabilizer, a UV stabilizer and a weather stabilizer; a flame retardant, a thickening agent, an herbicide or a preservative.
  • The viscosity of the polyurethane coating composition to use the knife coating method may be 1000 to 20000 cps, but the present invention is not particularly limited thereto. Here, the polyurethane coating composition may contain a polyurethane resin at 10 to 30 g/m2.
  • The polyurethane coating layer formed as described above is exposed to air for sufficient time, thereby forming a cured film. Here, drying time and conditions may be adjusted within a conventional range. For example, the drying may be performed at room temperature or approximately 80 to 250° C. for 1 to 24 hours.
  • A second aqueous acrylic coating layer is formed by knife-coating an aqueous acrylic composition on the first polyurethane coating layer formed and drying the composition.
  • The aqueous acrylic coating composition according to the present invention may be a liquid resin composition comprising an acrylic resin selected according to a material of the substrate, a softening agent, an antifoaming agent and water. As a preferable example, such an aqueous acrylic coating composition may comprise: an acrylic resin in an amount of 30-50 parts by weight; a softening agent in an amount of 1-5 parts by weight; an antifoaming agent in an amount of 1-5 parts by weight; a water repellent (WR) agent in an amount of 1-5 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the coating composition.
  • In the formation of the second aqueous acrylic coating layer, knife coating, coating conditions and drying conditions may be the same as those used in the formation of the first polyurethane coating layer described above.
  • A third stain-resistant coating layer is formed by knife-coating a stain-resistant coating composition on the second aqueous acrylic coating layer formed and drying the composition.
  • A silicone resin generally has a high viscosity, and thus is not suitable for knife coating and does not easily form a uniform coating layer even if coated. For these reasons, in the present invention, the stain-resistant coating composition suitable for a knife-coating method may contain a silicone resin in a minor amount or further use an additive capable of reducing the viscosity of the silicone resin.
  • The stain-resistant coating composition according to the exemplary embodiment of the present invention may be a combination of (i) a polyurethane resin, (ii) a silicone resin, (iii) inorganic particles, and (iv) an organic solvent.
  • Specifically, the stain-resistant coating composition preferably comprises (i) a polyurethane resin in an amount of 20-40 parts by weight, (ii) a silicone resin in an amount of 1-10 parts by weight, (iii) inorganic particles in an amount of 1-10 parts by weight, and (d) an organic solvent in an amount to balance the stain-resistant coating composition to 100 parts by weight, based on 100 parts by weight of the stain-resistant coating composition.
  • The uniformly mixed stain-resistant coating composition preferably have a viscosity of 8,000 to 15,000 cps/25° C.
  • In the present invention, the stain-resistant coating composition may further comprise an additive capable of reducing the viscosity of the silicone resin. Non-liming examples of the additive which can be used herein may be at least one additive selected from the group consisting of oil, platinum and fluorine. There is no particular limitation in content of the additive as long as the additive is capable of reducing viscosity of the silicone resin in the stain-resistant coating composition.
  • Further, the stain-resistant coating composition may use a mixture of (i) a silicone resin with (ii) at least one additive selected from the group consisting of a polyurethane resin, oil, platinum and fluorine. For a mixture ratio of the stain-resistant coating composition, it is preferable that a silicone resin and an additive be mixed in a weight ratio of 100:20-30.
  • In the formation of the third stain-resistant coating layer, knife coating, coating conditions and drying conditions may be the same as those used in the formation of the polyurethane coating layer described above. Here, when the third stain-resistant coating layer is coated at least twice, a solid content of the stain-resistant coating composition in the second coating step may be lower than that in the first coating step.
  • Meanwhile, a step of dip-coating a fabric substrate coated with the first polyurethane coating layer in a solution containing a water repellent agent and drying the fabric substrate before or after step (i) of forming the first polyurethane coating layer. Through this step, a water repellent layer is formed on both surfaces of the fabric substrate.
  • The components or amounts of the solution containing the water repellent agent are not specifically limited, and may be appropriately adjusted within the range known in the art. For example, the solution may further comprise a water repellent agent, a softening agent, an aqueous acrylic binder and an anti-static agent commonly known in the art.
  • A preferable example of the solution containing the water repellent agent may include: a water repellent agent in an amount of 10 to 40 parts by weight; a softening agent in an amount of 1 to 10 parts by weight; an aqueous acrylic binder in an amount of 1 to 10 parts by weight; an anti-static agent in an amount of 0.1 to 3 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
  • Further, in the present invention, a step of back-coating an oil-based acrylic composition, the component of which is different from that of the second aqueous acrylic coating layer, on the second surface of the fabric substrate coated with the water repellent agent and drying the composition may be further included between (i) the step of forming the first polyurethane coating layer and (ii) the step of forming the second aqueous acrylic coating layer.
  • Here, the oil-based acrylic composition may be formed by using an acrylic resin alone, or comprising the acrylic resin, the styrene-butadiene rubber (SBR) and the organic solvent. A preferable example of the oil-based acrylic composition may be formed by comprising: an acrylic resin in an amount of 50 to 80 parts by weight; an SBR in an amount of 1 to 5 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
  • The textile fabric sheet according to the exemplary embodiment of the present invention prepared as described above may have a structure in which the web structure of the fabric substrate woven with a fiber is preserved, and the reduction in air permeability of the final textile fabric sheet according to the introduction of the coating layer may be minimized.
  • The textile fabric sheet having stain and liquid resistance of the present invention configured as mentioned above may have three embodiments. However, the present invention is not restricted by the embodiments below, but various modifications and applications are possible based on need.
  • FIG. 1 is a cross-sectional view showing the first embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • Here, the textile fabric sheet having stain and liquid resistance comprises a fabric substrate 110, which is a woven fabric, and a first polyurethane coating layer 120, a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140, which are sequentially formed on the first surface of the fabric substrate.
  • FIG. 2 is a cross-sectional view showing the second embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • Here, the textile fabric sheet having stain and liquid resistance has a structure, in which a first polyurethane coating layer 120, a water repellent layer 121, a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140 are sequentially formed on the first surface of the fabric substrate 110, and a water repellent layer 121 and an oil-based acrylic back-coating layer 122 are formed on the second surface of the fabric substrate 110.
  • FIG. 3 is a cross-sectional view of a third embodiment of the textile fabric sheet having stain and liquid resistance according to the present invention.
  • Here, the textile fabric sheet having stain and liquid resistance has a structure, in which a first polyurethane coating layer 120, a water repellent layer 121, a second aqueous acrylic coating layer 130 and a third stain-resistant coating layer 140 are sequentially formed on the first surface of the fabric sheet 110, and a water repellent layer 121 is formed on the second surface of the fabric substrate 110.
  • Meanwhile, in the present invention, the first polyurethane coating layer 120, the second acrylic coating layer 130 and the third stain-resistant coating layer 140 are sequentially formed on the fabric substrate 110. However, the number and stacking sequence of coating layers constituting the textile fabric sheet having stain and liquid resistance may be freely selected according to a purpose, which is also included in the scope of the present invention. As an example, a multi-layered structure having at least three layers may be formed by changing the sequence of the coating layers 120, 130 and 140 or introducing a different surface layer.
  • The textile fabric sheet having stain and liquid resistance according to the exemplary embodiment of the present invention may be applied to various interior or exterior products. The interior products can be applied to all products to which the textile fabric sheet having stain and liquid resistance will be introduced, and unlimited examples thereof may include wall paper, furniture, flooring materials, interior materials, exterior materials, surface materials, wood or interior accessories.
  • Hereinafter, the present invention will be described in detail with reference to Examples. However, these Examples are merely provided to describe the present invention, not to limit the scope of the present invention.
  • Example 1 Preparation of Textile Fabric Sheet Having Stain and Liquid Resistance
  • A polyurethane coating composition (viscosity: 5000-7000 cps) including a polyurethane resin having a molecular weight of 20,000 to 200,000, a curing agent and an organic solvent mixed with a mixture of MEK, EA and TO was knife-coated in a range of 13 g/m2 on a polyester fabric. Here, a width angle of the knife was 70 to 110 degrees, and drying was performed at 150° C. for 1 to 5 minutes, thereby forming a first polyurethane coating layer.
  • Thereafter, the polyester fabric was applied by dip-coating in a water repellent coating solution and dried. The water repellent agent was applied in a range of 3 g/m2. The water repellent coating solution, in which a water repellent agent and water are contained in a weight ratio of 30:70 wt %, was used. The water repellent agent consists of a fluoride compound (perfluoro acrylate copolymer) of 15 wt %, a softening agent of 8 wt %, an aqueous acrylic binder of 5 wt % and an anti-static agent of 2 wt %.
  • Then, an acrylic resin composition is applied in a range of 10 g/m2 on the water repellent layer of the polyester fabric on which a polyurethane coating layer is not formed, coated and dried to form an acrylic back-coating layer. The composition and amount of the acrylic resin composition are set forth in Table 1 below.
  • And an aqueous acrylic resin composition was knife-coated on the polyurethane coating layer of the polyester fabric and dried. The aqueous acrylic coating layer was applied in a range of 50 g/m2. The composition and amount of the aqueous acrylic resin composition are set forth in Table 1 below.
  • A stain-resistant coating composition, in which a polyurethane resin, a silicone resin, inorganic particles (silica) and an organic solvent were mixed in a weight ratio of 25:3:3:69, was knife-coated on the top of the coated aqueous acrylic coating layer, and dried to prepare a fabric sheet having stain and liquid resistance. The structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 2, a photograph of which is FIG. 4(a).
  • Example 2 Preparation of a Textile Fabric Sheet Having Stain and Liquid Resistance (2)
  • Except that an oil-based acrylic back-coating (3) was not performed, a textile fabric sheet having stain and liquid resistance (2) was prepared in the same manner as in Example 1. The structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 3.
  • Example 3 Preparation of a Textile Fabric Sheet Having Stain and Liquid Resistance (3)
  • Except that a water repellent coating (2) and an oil-based acrylic back-coating (3) were not performed, a textile fabric sheet having stain and liquid resistance (3) was prepared in the same manner as in Example 1. The structure of the finally prepared textile fabric sheet having stain and liquid resistance is shown in FIG. 1, a photograph of which is FIG. 4(b).
  • TABLE 1
    Angle
    Applying Condition of of
    Working Amount Amount Dryer Work Coating Knife
    Order Composition (wt %) (g/m2) (second/° C.) Method (°)
    1 polyurethane Polyurethane 70 13 1st: 30 sec/ Knife- 70-110
    coating resin 150° C. coating
    Curing agent 1 2nd: 40 sec/
    Solvent 29 150-170° C.
    2 Aqueous Water 70 3 1st: 30 sec/ Dip-
    water- Fluoride 15 150° C. coating
    repellent compound
    coating Softening 8
    agent
    Aqueous 5 2nd: 1 min/
    acrylic 170-180° C.
    binder
    Anti-static 2
    agent
    3 Oil-based Acrylic resin 67 10 1st: 30 sec/ Knife- 70-110
    acrylic back- 150° C. coating
    coating Toluene 30 2nd: 40 sec/
    SBR 3 150-170° C.
    4 Aqueous Water 60 50 1st: 30 sec/ Knife- 70-110
    acrylic Acrylic resin 34 150° C. coating
    coating Softening 2 2nd: 40 sec/
    agent 170-175° C.
    Antifoaming 2
    agent
    WR 2
    5 Stain- DMF 29 19 1st: 20 sec/ Knife- 70-110
    resistant MEK 40 100° C. coating
    coating Silicone 3
    resin
    Silica 3 2nd: 40 sec/
    Polyurethane 25 170-175° C.
    resin
    The above applying amount is based on the amount applied to a polyester fabric of 129 g/m2, and may vary depending on the weight of the fabric.
  • TABLE 2
    Components Manufacturer/Model
    1 polyurethane Polyurethane resin Hanjin Chemical Corporation/
    coating AG-100
    Curing agent Kukdo Chemical Co., Ltd./
    K-100
    Solvent Dong-A Chemical Co., Ltd.
    2 Aqueous Fluoride compound Namyung/NY-732FU
    water Softening agent Taekang/DK-100
    repellent Aqueous acrylic Young Woo/AK-905
    coating binder
    Anti-static agent Taekang/DK-200
    3 Oil-based Acrylic agent Young Woo/AK-906
    acrylic back- Toluene Dong-A 1.Chemical Co., Ltd./
    coating DM-100
    SBR Young Woo/KSL-106
    4 Aqueous Acrylic resin Young Woo/AK-905
    acrylic Softening agent Taekang/DK-100
    coating Antifoaming agent Lucky/101A
    Water repellent (WR) Namyung/NY732FU
    5 Stain- DMF Dong-A Chemical Co., Ltd./
    resistant DM-100
    coating MEK Dong-A Chemical Co., Ltd./
    MK-100
    Silicone resin Songjung/Si-52
    Silica Songjung/SK-40
    Polyurethane resin Songjung/SAG-420
  • Experimental Example 1 Evaluation of Physical Property of Textile Fabric Sheet Having Stain and Liquid Resistance
  • 1) Evaluation of Stain Resistance
  • Evaluation of stain resistance was performed using the textile fabric sheet having stain and liquid resistance prepared in Examples 1 and 3.
  • The evaluation method was repeatedly performed 50 times using the same stains to evaluate a degree of staining by eyes. Here, as the stains, an oil-based ballpoint pen, mustard and a ketchup, stains from which are the most difficult to prevent, were used. In addition, as a control group, a fabric sheet currently produced by Crypton was used.
  • As a result of experimentation, the oil-based ballpoint pen on the textile fabric sheets in Examples 1 and 3 was easily removed with an eraser and a fabric or paper towel without using a specific cleaner (see FIGS. 5 and 6). On the contrary, it was impossible to remove the ballpoint pen on the fabric sheet of Crypton in the same manner as in Examples 1 and 3 (see FIG. 7).
  • The mustard and ketchup stains on the textile fabric sheets in Examples 1 and 3 was completely removed with an eraser and a fabric or paper towel without using a specific cleaner (see FIGS. 8, 9(a), 9(b), 11, 12(a) and 12(b)). On the contrary, the mustard and ketchup stains, which are stain sources, were left on the fabric sheet of Crypton (see FIGS. 10(a), 10(b), 13(a) and 13(b)). Therefore, it can be noted that the textile fabric sheet of the present invention had a more excellent stain resistant effect than the control group.
  • 2) Evaluation of Water Repellent
  • Evaluation of water repellent was performed using the textile fabric sheet having stain and liquid resistance prepared in Examples 1 and 3.
  • The evaluation method was performed using coffee to evaluate the shape of the instilled coffee and/or the absorption degree of the textile fabric sheet by eyes after instillation of water into the textile fabric sheet.
  • Here, coffee has a better penetration effect than water, and thus, was used as a material to evaluate water repellent in the subject application.
  • As a result, the instilled coffee on the fabric sheet prepared in Examples 1 and 3 existed maintaining the fundamental shape thereof as time passed and was not absorbed into the fabric sheet. Therefore, it can be noted that the fabric sheet of the present invention had an excellent water repellent effect (see FIGS. 14, 15(a) and 15(b)).
  • 3) Evaluation of Wear Resistance (Friction Fastness)
  • The textile fabric sheet having a stain and liquid resistance of Examples 1 to 3 were tested according to an ASTM D4157 Wyzenbeek method. Here, as a control group, fabric sheets produced by Crypton used in the Evaluation of Stain Resistance were used.
  • Generally, when a result of the wear resistance test was 30000 rubs or more, it was indicated as heavy duty, and when a result of the wear resistance test was more than 50000 rubs, it is determined as commercially suitable.
  • The results of the test were that the fabric sheet produced by Crypton withstood 80000 rubs (1) and 50000 rubs (2), respectively, and the textile fabric sheet having stain and liquid resistance of the present invention withstood more than 200000 rubs. It can be confirmed that, regardless of abrasion of the textile, due to the polyurethane coating layer formed on its surface, the wear resistant effect was drastically improved.
  • 4) Evaluation of Wear Resistance (Friction Fastness) (2)
  • Evaluation of wear resistance was performed at Diversified Testing Laboratories, INC. using various textile fabric sheets prepared in above Examples. The textile fabric sheets were tested according to an ASTM D4157-10 Oscillatory Cylinder Method (Standard Test Method for Abrasion Resistance of Textile Fabrics). And the Evaluation of wear resistance was performed in the condition of abradant: #8 Cotton duck; tension: 4 lb; load: 3 lb.
  • As a result, the textile fabric sheet having stain and liquid resistance of the present invention withstood more than 200,000 rubs. Therefore, it can be noted that the textile fabric sheet of the present invention had an excellent wear resistance effect (see Table 1).
  • TABLE 1
    Sample Test Results
    ZENUS ® KASKADE Passed 200,000 Cycles
    ZENUS ® MOSAIC Passed 200,000 Cycles
    ZENUS ® VENDETTA Passed 200,000 Cycles
    ZENUS ® CITADEL Passed 200,000 Cycles
    ZENUS ® ORACLE Passed 200,000 Cycles
    ZENUS ® IGUAZU Passed 200,000 Cycles
    ZENUS ® ASTORIA Passed 200,000 Cycles
    ZENUS ® TRANQUIL Passed 200,000 Cycles
    ZENUS ® CALICUT Passed 200,000 Cycles
  • From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (12)

What is claimed is:
1. A method of preparing a textile fabric sheet having stain and liquid resistance, comprising:
(i) knife-coating a polyurethane coating composition on a first surface of a fabric substrate at least once and drying the polyurethane coating composition to form a first polyurethane coating layer;
(ii) knife-coating an aqueous acrylic coating composition on the top of the first polyurethane coating layer at least once and drying the aqueous acrylic coating composition to form a second aqueous acrylic coating layer; and
(iii) knife-coating a stain-resistant coating composition on the top of the second aqueous acrylic coating layer at least once and drying the stain-resistant coating composition to form a third stain-resistant coating layer to provide the textile fabric sheet,
wherein the textile fabric sheet comprises
the fabric substrate,
the first polyurethane coating layer formed on the first surface of the fabric substrate,
the second aqueous acrylic coating layer formed on the first polyurethane coating layer, and
the third stain-resistant coating layer formed on the second aqueous acrylic coating layer.
2. The method according to claim 1, wherein, in at least one knife-coatings in steps (i) to (iii), a width angle of the knife ranges from 50° to 150°.
3. The method according to claim 1, wherein the polyurethane coating composition in step (i) comprises: a polyurethane resin in an amount of 60-80 parts by weight; a curing agent in an amount of 0.1-3 parts by weight; and an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the polyurethane coating composition.
4. The method according to claim 3, wherein an applying amount of the polyurethane resin in a first polyurethane coating layer in step (i) ranges from 10 g/m2 to 30 g/m2.
5. The method according to claim 1, wherein the aqueous acrylic coating composition in step (ii) comprises: an acrylic resin in an amount of 30-50 parts by weight; a softening agent in an amount of 1-5 parts by weight; an antifoaming agent in an amount of 1-5 parts by weight; a water repellent agent in an amount of 1-5 parts by weight; and water in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
6. The method according to claim 1, wherein an applying amount of a second aqueous acrylic coating composition in step (ii) ranges from 25 g/m2 to 75 g/m2.
7. The method according to claim 1, wherein the stain-resistant coating composition in step (iii) comprises:
(i) a polyurethane resin in an amount of 20-40 parts by weight;
(ii) a silicone resin in an amount of 1-10 parts by weight;
(iii) inorganic particles in an amount of 1-10 parts by weight; and
(iv) an organic solvent in an amount to balance the composition to 100 parts by weight, based on 100 parts by weight of the composition.
8. The method of preparing a textile fabric sheet of claim 1, wherein an applying amount of a third stain-resistant coating composition in step (iii) ranges from 10 g/m2 to 30 g/m2.
9. The method of preparing a textile fabric sheet of claim 1, wherein the method further comprises a step (i-1) of dip-coating the fabric substrate in a solution containing a water repellent agent and drying the substrate to form a fifth water repellent layer on a surface of the fabric substrate, before or after step (i).
10. The method according to claim 9, wherein a water repellent layer in step (i-1) comprises a silicone-based water repellent agent, a fluorine-based water repellent agent, or a mixture thereof, and a total applying amount of the water repellent agents ranges from 1 g/m2 to 10 g/m2.
11. The method according to claim 9, wherein the method further comprises a step (i-2) of coating an oil-based acrylic composition on a second surface of the fabric substrate and drying the oil-based acrylic composition, between step (i) and step (ii), to form a sixth acrylic coating layer,
wherein the second surface of the fabric substrate is opposite to the first surface of the fabric substrate and is coated with the fifth water repellent layer, and
wherein the oil based acrylic composition has different components from the aqueous acrylic coating composition in step (ii).
12. The method according to claim 11, wherein an applying amount of an oil-based acrylic composition in step (i-2) ranges from 1 g/m2 to 15 g/m2.
US15/046,644 2011-08-04 2016-02-18 Textile fabric sheet having stain and liquid resistance and the preparation method thereof Abandoned US20160160437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/046,644 US20160160437A1 (en) 2011-08-04 2016-02-18 Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/197,986 US8795780B2 (en) 2011-08-04 2011-08-04 Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US13/468,560 US9103067B2 (en) 2011-08-04 2012-05-10 Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US14/493,768 US9322130B2 (en) 2011-08-04 2014-09-23 Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US15/046,644 US20160160437A1 (en) 2011-08-04 2016-02-18 Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/493,768 Division US9322130B2 (en) 2011-08-04 2014-09-23 Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Publications (1)

Publication Number Publication Date
US20160160437A1 true US20160160437A1 (en) 2016-06-09

Family

ID=52277433

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/493,768 Active US9322130B2 (en) 2011-08-04 2014-09-23 Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US15/046,644 Abandoned US20160160437A1 (en) 2011-08-04 2016-02-18 Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/493,768 Active US9322130B2 (en) 2011-08-04 2014-09-23 Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Country Status (1)

Country Link
US (2) US9322130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610177A (en) * 2018-12-12 2019-04-12 江南大学 A kind of preparation method and application of cation type polyurethane esters of acrylic acid water repellent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723649A (en) * 2015-03-05 2015-06-24 浙江雅娜纺织有限公司 Air-spun artificial cotton mixed shell fabric processing method and processing device thereof
US10456958B2 (en) * 2016-04-11 2019-10-29 Soon Kie JUNG Method for producing synthetic leather and synthetic leather produced by the same
JP6922738B2 (en) * 2016-06-29 2021-08-18 東レ株式会社 Automotive instrument panel skin material and its manufacturing method
KR102128225B1 (en) * 2017-09-14 2020-06-30 (주)엘지하우시스 Artificial leather manufacturing apparatus and manufacturing method thereof
CN108677550A (en) * 2018-05-25 2018-10-19 湖北联庄科技有限公司 A kind of graphene fabric coating and its coating method
TWI692563B (en) * 2019-08-06 2020-05-01 健豐全球貿易股份有限公司 Anti-fouling structure and preparation method thereof
CN114953494A (en) * 2022-03-28 2022-08-30 浙江亦阳新材料有限公司 Preparation method of sound-insulation noise-reduction wall cloth with sandwich structure and foaming machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265962A (en) 1976-12-20 1981-05-05 Burlington Industries, Inc. Low penetration coating fabric
US4430381A (en) * 1982-06-25 1984-02-07 The Buckeye Cellulose Corporation Monocarboxylic acid antimicrobials in fabrics
US5747392A (en) 1996-11-19 1998-05-05 Hi-Tex, Inc. Stain resistant, water repellant, interpenetrating polymer network coating-treated textile fabric
US5902753A (en) 1997-06-11 1999-05-11 Milliken & Company Barrier fabric composite and its method of preparation
US20030041807A1 (en) 2001-08-28 2003-03-06 Wulforst Christopher Carl Animal bed
US7485588B2 (en) 2003-01-10 2009-02-03 Yunzhang Wang Method for making textile substrates having layered finish structure for improving liquid repellency and stain release
US20080124368A1 (en) 2004-08-25 2008-05-29 Shantha Sarangapani Composition
CA2687465A1 (en) 2006-05-17 2007-11-29 Restated Duncan Revocable Family Trust (Robin L.Duncan As Trustee) Waterproof and high heat resistant coated gloves
US20080220224A1 (en) 2007-03-06 2008-09-11 Naoki Tokumoto Decorative Material
US9103067B2 (en) * 2011-08-04 2015-08-11 Soon Kie JUNG Textile fabric sheet having stain and liquid resistance and the preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610177A (en) * 2018-12-12 2019-04-12 江南大学 A kind of preparation method and application of cation type polyurethane esters of acrylic acid water repellent

Also Published As

Publication number Publication date
US20150017854A1 (en) 2015-01-15
US9322130B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
US9322130B2 (en) Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US8795780B2 (en) Textile fabric sheet having stain and liquid resistance and the preparation method thereof
US9103067B2 (en) Textile fabric sheet having stain and liquid resistance and the preparation method thereof
KR101823758B1 (en) Synthetic leather having stain resistance and the preparation method thereof
US9284683B2 (en) Highly durable outdoor textile fabric having improved resistancy and repellency
CN101228312A (en) Textile substrates having layered finishing structure
JP2002321452A (en) Flame retardant printing film material
US20170350142A1 (en) Flooring comprising a decoration printed by ink jet
JP4726636B2 (en) Antifouling synthetic leather
US6773769B1 (en) Macroporous ink receiving media
US11634598B2 (en) Ink jet composition and flameproofing method
WO2016048282A1 (en) Textile fabric sheet having stain and liquid resistance and the preparation method thereof
JP2011005642A (en) Water discolorable cloth sheet, and water discolorable drawing toy set using the same
JP2018009268A (en) Laminated fiber cloth and method for producing the same
JP2004197237A (en) Fabric for inkjet recording and method for recording and record using the same
KR200419846Y1 (en) Tarpaulin for advertising
JP2003191386A (en) Stainproof sheet
KR101292796B1 (en) Floor materials comprising aramide non-woven fabric
WO2021200500A1 (en) Decorative sheet for recoating, and decorative sheet coloring method using same
CN207143592U (en) One kind foaming shading background cloth
WO2005100009A2 (en) Finish and process to create flame-retardant textile that resists mark-off
JP2000203148A (en) Planar support for displaying image
JP2021160361A (en) Decorative sheet for recoat and coloring method of decorative sheet therewith
JP2000248462A (en) Fibrous structure for interior of automobile
JPH04158034A (en) Laminated product for curtain with excellent flameproofness

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION