US20160153112A1 - Metallic substrate with ceramic coating and method for obtaining it - Google Patents

Metallic substrate with ceramic coating and method for obtaining it Download PDF

Info

Publication number
US20160153112A1
US20160153112A1 US14/905,919 US201314905919A US2016153112A1 US 20160153112 A1 US20160153112 A1 US 20160153112A1 US 201314905919 A US201314905919 A US 201314905919A US 2016153112 A1 US2016153112 A1 US 2016153112A1
Authority
US
United States
Prior art keywords
metallic substrate
coating
ceramic coating
coating according
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/905,919
Inventor
Raúl Arrabal DURÁN
Endzhe Matykina
Angel Pardo GUTIÉRREZ DEL CID
Ana Rivas SALMÓN
José Antonio MAROTO SOTO
Juan Carlos Merino Senovilla
Daniel Morinigo SOTELO
Ma. Concepción MERINO CASALS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacion Cidaut
Original Assignee
Fundacion Cidaut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Cidaut filed Critical Fundacion Cidaut
Assigned to FUNDACIÓN CIDAUT reassignment FUNDACIÓN CIDAUT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RIVAS SALMON, ANA, ARRABAL-DURAN, RAUL, MAROTO SOTO, JOSE ANTONIO, MATYKINA, ENDZHE, MERINO SENOVILLA, JUAN CARLOS, MERINO-CASALS, MA CONCEPCION, MORINIGO SOTELO, DANIEL, PARDO GUTIERREZ DEL CID, ANGEL
Publication of US20160153112A1 publication Critical patent/US20160153112A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings

Definitions

  • the present invention lies in the field of electrolytic coatings.
  • the invention relates to a metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semisolid state with a thickness from 10 to 300 ⁇ m and resistant to immersion in said light metals and their alloys without compositional modification of the substrate.
  • the invention also relates to a method for obtaining a metallic substrate with a ceramic coating by plasma electrolytic oxidation wherein said substrate comprises a metallic core and an outer layer of a metal different from that of the core or an intermetallic compound, said outer layer being obtained by thermal spraying, laser, diffusion, hot galvanising or cementing.
  • Examples of applications in which a metal suffers the effect of molten aluminium are rotors, refractory oven walls, casings of immersion heater resistors, pistons and injection chambers of metals and manufacturing of compounds with a metallic or polymer matrix.
  • Ceramic coatings are known that are attached to the part to protect which partially resist degradation by the use of relatively large thickness and for a relatively short period; in addition, de to the technique used in their manufacture they cannot be used in parts with complex shapes, so that their use in areas with orifices, notches, lips, etc. is entirely excluded and they are recommended only for exposed surfaces and relatively small dimensions.
  • Another of their drawbacks is the difficulty in controlling the homogeneity of the layer thickness throughout their extension, exhibiting high porosity and thickness variation.
  • Patent EP1231299 discloses a coating on a nonferrous substrate in which a series of functional compounds are introduced on a porous starting layer.
  • this coating does not allow using ferrous substrates, which are common in the industry, as said ferrous substrates have outstanding mechanical performance and a low cost, instead using as substrate alloys of light metals (Al, Mg, . . . ) which cannot be used in accordance with the invention of said patent, as the core of the coating would degrade when subjected to temperatures very near its melting point.
  • this process is directly intended to achieve an open surface porosity that ensures the possibility of introducing lubricating elements. This porosity, in some cases greater than 30%, would be deleterious for use with molten light metals, as it would enhance the corrosion process by allowing the molten metal to penetrate to the core.
  • Patent US20120177837 discloses a coating on a metallic substrate made from ceramic powder mixed with metal, this mixture being applied on said substrate.
  • the form in which the coating is obtained affects its properties, this is, the method used to obtain the coating is related to the properties that it will have.
  • the following invention is proposed for a metallic substrate with a ceramic coating and the method for obtaining it.
  • the subject matter of the invention is a metallic substrate with a ceramic coating, wherein the metallic substrate is of any type and the coating is resistant to degradation by tribocorrosion of light metals and their alloys, in liquid and/or semi-solid state, applicable to any part of any size, however small, and to any place of the part, however internal.
  • the technical problem to solve is obtaining said metallic substrate with a ceramic coating having ideal properties regarding tribocorrosion of light metals and their alloys, in liquid and/or semi-solid state, that allows implementing it in any type of part.
  • the present invention relates to a metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semi-solid state with a thickness from 10 to 300 ⁇ m and resistant to immersion in said light metals and their alloys without compositional modification of the substrate. Particularly, it is verified that a specific time value for the resistance to immersion of the coating 81) is 1000 hours.
  • the metallic substrate is a single metal, which can be titanium or zirconium.
  • the metallic substrate comprises a metallic core and an outer layer of a metal different from that of the core or an intermetallic compound
  • the core can be made of steel, nickel, titanium, zirconium, refractory metals (Cr, Co, Nb, Mo, W, . . . ) or any of the alloys thereof
  • the outer layer is made of an intermetallic compound of titanium and aluminium.
  • the outer layer of a metal different from that of the core is normally obtained by thermal spraying, laser, hot galvanising or cementing, while the outer layer of an intermetallic compound is normally obtained by spraying or solid or liquid diffusion.
  • the ceramic coating on any substrate has been verified to present a hardness from 100 to 2000 HV, an adherence from 2 to 30 MPa, and a mean roughness, Ra, from 1 to 5 ⁇ m.
  • these parameters can be improved by physical operations such as polishing, machining, etc. as the applied coating withstands physical operations applied to it.
  • the coating provides the assembly with the substrate with the advantages of tenacity, hot mechanical strength, resistance to thermal shock and the conductivity of a metallic material.
  • the substrate with the coating can replace ceramic materials, which are fragile and expensive, in direct contact with the molten metal that withstands tribocorrosion.
  • a further advantage is that the substrate is reusable, and the ceramic coating can be generated on it as many times as needed, preventing wasting a large amount of metallic material and making the process recyclable and low in cost.
  • the invention also relates to a method for obtaining a metallic substrate with a ceramic coating by plasma electrolytic oxidation wherein said substrate comprises a core and an outer layer of a metal different from that of the core or an intermetallic compound, said outer layer being obtained by thermal spraying, laser, solid or liquid diffusion, hot galvanising or cementing.
  • the thermal spraying, laser, hot galvanising and cementing is performed on a core when the coating is obtained as an outer layer of a metal different from that of the core, while spraying and solid or liquid diffusion is performed on a core when the coating is obtained as an outer layer of an intermetallic compound.
  • One advantage of the method is that is allows obtaining a coating with a great resistance, particularly on steels, as it includes an intermediate metallic substrate or an intermetallic layer using known techniques that are therefore simple and relatively inexpensive.
  • FIG. 1 represents a SEM image of the coating after being subjected to a performance test in molten aluminium in static conditions, showing the coating layer on a metallic substrate which has not suffered any attack.
  • FIG. 2 represents a SEM image of the coating after being subjected to a performance test for forced tribocorrosion in molten aluminium, showing the molten aluminium layer that bathed the coating and the coating layer on a metallic substrate which has not suffered any attack.
  • FIG. 3 represents an assembly used for the forced tribocorrosion test in which a motor turns a shaft from which hangs the sample while it is introduced in a crucible filled with light metal in liquid or semisolid state, the shaft turning in any one of the two senses, clockwise or anticlockwise.
  • FIG. 4 represents an assembly used for the forced tribocorrosion test in which a motor turns a shaft with a carrousel from which hang the samples while they are introduced in a crucible filled with light metal in liquid or semisolid state, the shaft alternatively turning in one sense and then the opposite sense, in order to increase the wear induced by the process.
  • a surface preparation is performed for the metallic substrate ( 2 ) as follows:
  • the plasma electrolytic oxidation (PEO) coating ( 1 ) is performed as follows:
  • Electrochemical cell reactor with stirring in thermostatic sleeve, cathode AISI 316L;
  • Aqueous alkaline electrolyte specific for each of the metallic substrates ( 2 ) to be coated at a temperature of up to 60° C.
  • the voltage records show values from 10 to 1000 V.
  • the coating ( 1 ) is subjected to multiple tests for resistance to tribocorrosion of light metals in liquid and semi-solid state, both in stationary conditions in which it is simply submerged in the metal and in dynamic conditions, using tests of 1000 h in light alloy at different temperatures, preferably 590° C., 650° C. and 750° C.
  • FIG. 1 shows an enlarged view of a coating ( 1 ) on its substrate ( 2 ) after being subjected to a performance test in molten aluminium in static conditions.
  • the dynamic conditions are obtained by stirring in axial mode, FIG. 3 , and in carrousel, FIG. 4 , showing that the coating ( 1 ) remains intact at the end of the test period, FIG. 2 .
  • a motor ( 4 ) turns a shaft ( 5 ) from which hangs the sample ( 6 ) while it is introduced in a crucible ( 7 ) filled with light metal ( 8 ) in liquid or semisolid state, the shaft ( 5 ) turning in any one of the two senses, clockwise or anticlockwise.
  • the motor ( 4 ) turns a shaft ( 5 ) with a carrousel ( 9 ) from which hang the samples ( 6 ) while they are introduced in a crucible ( 7 ) filled with light metal ( 8 ) in liquid or semisolid state, the shaft ( 5 ) alternatively turning in one sense and then the opposite sense, in order to increase the wear induced by the process.
  • FIG. 2 represents an enlarge view of a coating ( 1 ) on its substrate ( 2 ) after being subjected to a performance test for forced tribocorrosion in molten aluminium, showing the molten aluminium layer ( 3 ) that bathed the coating ( 1 ), revealing that the coating ( 1 ) did not suffer any attack after 100 hours of testing.
  • the substrate ( 2 ) on which the coating ( 1 ) is obtained is made of a single metal or a core and an outer layer of a different metal than that of the core or an intermetallic compound, with similar test results for any of these configurations.
  • the coating ( 1 ) has a hardness from 100 to 2000 HV, depending to a great extent on the material of the substrate ( 2 ), as obtained from 10 measurements with a load of 10 g and a penetration time of 20 s.
  • An adherence from 2 to 30 MPa is obtained from 3 measurements with a dolly 10 mm in diameter, epoxy adhesive and a uniform traction tension increase of 1 MPa/s, as per ISO 4624.
  • the mean roughness, R a from 1 to 5 ⁇ m, and the maximum roughness, under 20 ⁇ m, are each obtained from 3 measurements with a roughness tester and 0.25 mm Gaussian filter, at a distance of 4 mm.
  • the coefficient of friction from 0.2 to 1′′ is obtained from 3 measurements using a ball-on-disk tribometer with a load of 2 N, distance 1000 m, 200 rpm (0.08 m/s), turning radius 4 mm, as per ASTM G99-04; as a countersample: WC ball with 6 mm diameter.

Abstract

Metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semi-solid state with a thickness from 10 to 300 μm and resistant to immersion in said light metals and their alloys without compositional modification of the substrate. Method for obtaining a metallic substrate with a ceramic coating by plasma electrolytic oxidation in which said substrate comprises a core and an outer layer of a metal different from that of the core or of an intermetallic compound, said outer layer being obtained by thermal spraying, laser, solid or liquid diffusion, hot galvanising or cementing. This allows obtaining a ceramic coating applicable to any metallic substrate and resistant to degradation by tribocorrosion.

Description

    OBJECT OF THE INVENTION
  • The present invention lies in the field of electrolytic coatings.
  • The invention relates to a metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semisolid state with a thickness from 10 to 300 μm and resistant to immersion in said light metals and their alloys without compositional modification of the substrate.
  • The invention also relates to a method for obtaining a metallic substrate with a ceramic coating by plasma electrolytic oxidation wherein said substrate comprises a metallic core and an outer layer of a metal different from that of the core or an intermetallic compound, said outer layer being obtained by thermal spraying, laser, diffusion, hot galvanising or cementing.
  • BACKGROUND OF THE INVENTION
  • There exist numerous applications in the casting industry, specifically for light alloys such as those of aluminium, in which the material in a molten or semisolid state is in contact with a support metal that suffers tribocorrosion, this is, a degradation due to a combination of corrosion and wear, that renders it unusable in a short or medium term.
  • Examples of applications in which a metal suffers the effect of molten aluminium are rotors, refractory oven walls, casings of immersion heater resistors, pistons and injection chambers of metals and manufacturing of compounds with a metallic or polymer matrix.
  • Consequently, there is a need to provide the metallic materials with a coating that withstands the aforementioned degradation due to tribocorrosion.
  • The use is known of ceramic materials in relation to molten metals, such as in heaters and thermocouple sleeves. These materials are very expensive and are highly inefficient in transferring heat due to the air present between the heating and measuring elements and the tube, as well as to their very low heat conductivity. However, their greatest drawback is the highly fragile nature and lack of tenacity of ceramic materials.
  • Ceramic coatings are known that are attached to the part to protect which partially resist degradation by the use of relatively large thickness and for a relatively short period; in addition, de to the technique used in their manufacture they cannot be used in parts with complex shapes, so that their use in areas with orifices, notches, lips, etc. is entirely excluded and they are recommended only for exposed surfaces and relatively small dimensions. Another of their drawbacks is the difficulty in controlling the homogeneity of the layer thickness throughout their extension, exhibiting high porosity and thickness variation.
  • Patent EP1231299 discloses a coating on a nonferrous substrate in which a series of functional compounds are introduced on a porous starting layer.
  • The drawback of this coating is that it does not allow using ferrous substrates, which are common in the industry, as said ferrous substrates have outstanding mechanical performance and a low cost, instead using as substrate alloys of light metals (Al, Mg, . . . ) which cannot be used in accordance with the invention of said patent, as the core of the coating would degrade when subjected to temperatures very near its melting point. In addition, this process is directly intended to achieve an open surface porosity that ensures the possibility of introducing lubricating elements. This porosity, in some cases greater than 30%, would be deleterious for use with molten light metals, as it would enhance the corrosion process by allowing the molten metal to penetrate to the core.
  • Patent US20120177837 discloses a coating on a metallic substrate made from ceramic powder mixed with metal, this mixture being applied on said substrate.
  • The drawback of this coating is that it is intended for manufacturing an immersion resistor that is submerged in a static metal bath and has a very simple shape. The technique used to coat the metallic substrate with a ceramic powder having a complex formulation is quite costly due to its complexity, and in addition it cannot be used for complex shapes. It would not be possible to use it for a great number of components and shapes that are currently used in the casting industry, so that its application is limited exclusively to that for which it was designed, namely an immersion heater.
  • As shown above, the form in which the coating is obtained affects its properties, this is, the method used to obtain the coating is related to the properties that it will have.
  • To overcome the aforementioned drawbacks of the state of the art, the following invention is proposed for a metallic substrate with a ceramic coating and the method for obtaining it.
  • DESCRIPTION OF THE INVENTION
  • The present invention is established and characterised in the independent claims, while the dependent claims describe additional characteristics thereof.
  • The subject matter of the invention is a metallic substrate with a ceramic coating, wherein the metallic substrate is of any type and the coating is resistant to degradation by tribocorrosion of light metals and their alloys, in liquid and/or semi-solid state, applicable to any part of any size, however small, and to any place of the part, however internal.
  • The technical problem to solve is obtaining said metallic substrate with a ceramic coating having ideal properties regarding tribocorrosion of light metals and their alloys, in liquid and/or semi-solid state, that allows implementing it in any type of part.
  • In view of the above, the present invention relates to a metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semi-solid state with a thickness from 10 to 300 μm and resistant to immersion in said light metals and their alloys without compositional modification of the substrate. Particularly, it is verified that a specific time value for the resistance to immersion of the coating 81) is 1000 hours.
  • Optionally, the metallic substrate is a single metal, which can be titanium or zirconium.
  • In another option the metallic substrate comprises a metallic core and an outer layer of a metal different from that of the core or an intermetallic compound, wherein the core can be made of steel, nickel, titanium, zirconium, refractory metals (Cr, Co, Nb, Mo, W, . . . ) or any of the alloys thereof, and the outer layer is made of an intermetallic compound of titanium and aluminium. The outer layer of a metal different from that of the core is normally obtained by thermal spraying, laser, hot galvanising or cementing, while the outer layer of an intermetallic compound is normally obtained by spraying or solid or liquid diffusion.
  • The ceramic coating on any substrate has been verified to present a hardness from 100 to 2000 HV, an adherence from 2 to 30 MPa, and a mean roughness, Ra, from 1 to 5 μm. Optionally, these parameters can be improved by physical operations such as polishing, machining, etc. as the applied coating withstands physical operations applied to it.
  • The coating provides the assembly with the substrate with the advantages of tenacity, hot mechanical strength, resistance to thermal shock and the conductivity of a metallic material.
  • Another advantage is that the substrate with the coating can replace ceramic materials, which are fragile and expensive, in direct contact with the molten metal that withstands tribocorrosion.
  • A further advantage is that the substrate is reusable, and the ceramic coating can be generated on it as many times as needed, preventing wasting a large amount of metallic material and making the process recyclable and low in cost.
  • The invention also relates to a method for obtaining a metallic substrate with a ceramic coating by plasma electrolytic oxidation wherein said substrate comprises a core and an outer layer of a metal different from that of the core or an intermetallic compound, said outer layer being obtained by thermal spraying, laser, solid or liquid diffusion, hot galvanising or cementing.
  • Preferably, the thermal spraying, laser, hot galvanising and cementing is performed on a core when the coating is obtained as an outer layer of a metal different from that of the core, while spraying and solid or liquid diffusion is performed on a core when the coating is obtained as an outer layer of an intermetallic compound.
  • One advantage of the method is that is allows obtaining a coating with a great resistance, particularly on steels, as it includes an intermediate metallic substrate or an intermetallic layer using known techniques that are therefore simple and relatively inexpensive.
  • DESCRIPTION OF THE DRAWINGS
  • This specification is supplemented with a set of drawings illustrating the preferred embodiment, which are never intended to limit the invention.
  • FIG. 1 represents a SEM image of the coating after being subjected to a performance test in molten aluminium in static conditions, showing the coating layer on a metallic substrate which has not suffered any attack.
  • FIG. 2 represents a SEM image of the coating after being subjected to a performance test for forced tribocorrosion in molten aluminium, showing the molten aluminium layer that bathed the coating and the coating layer on a metallic substrate which has not suffered any attack.
  • FIG. 3 represents an assembly used for the forced tribocorrosion test in which a motor turns a shaft from which hangs the sample while it is introduced in a crucible filled with light metal in liquid or semisolid state, the shaft turning in any one of the two senses, clockwise or anticlockwise.
  • FIG. 4 represents an assembly used for the forced tribocorrosion test in which a motor turns a shaft with a carrousel from which hang the samples while they are introduced in a crucible filled with light metal in liquid or semisolid state, the shaft alternatively turning in one sense and then the opposite sense, in order to increase the wear induced by the process.
  • PREFERRED EMBODIMENT OF THE INVENTION
  • To obtain the metallic substrate (2) with a ceramic coating (1) that is the subject matter of the invention, a surface preparation is performed for the metallic substrate (2) as follows:
      • Stripping in an acidic solution adapted to the base material being treated;
      • Working area delimited by resin;
      • Electrical contact with a copper or aluminium wire.
  • The plasma electrolytic oxidation (PEO) coating (1) is performed as follows:
  • a) Apparatus: power supply, control and data acquisition card;
  • b) Electrochemical cell: reactor with stirring in thermostatic sleeve, cathode AISI 316L;
  • c) Aqueous alkaline electrolyte, specific for each of the metallic substrates (2) to be coated at a temperature of up to 60° C.;
  • d) Treatment (0-10000 s): pulsed signal frequency of 50-4000 Hz, current density 5-800 mA/cm.
  • The voltage records show values from 10 to 1000 V.
  • This allows obtaining a thickness for the coating (1) from 10 to 300 μm, according to measurements as per ISO 2360.
  • The coating (1) is subjected to multiple tests for resistance to tribocorrosion of light metals in liquid and semi-solid state, both in stationary conditions in which it is simply submerged in the metal and in dynamic conditions, using tests of 1000 h in light alloy at different temperatures, preferably 590° C., 650° C. and 750° C. FIG. 1 shows an enlarged view of a coating (1) on its substrate (2) after being subjected to a performance test in molten aluminium in static conditions.
  • The dynamic conditions are obtained by stirring in axial mode, FIG. 3, and in carrousel, FIG. 4, showing that the coating (1) remains intact at the end of the test period, FIG. 2.
  • In the forced tribocorrosion test with stirring in axial mode, FIG. 3, a motor (4) turns a shaft (5) from which hangs the sample (6) while it is introduced in a crucible (7) filled with light metal (8) in liquid or semisolid state, the shaft (5) turning in any one of the two senses, clockwise or anticlockwise.
  • In the forced tribocorrosion test with stirring in carrousel mode, FIG. 4, the motor (4) turns a shaft (5) with a carrousel (9) from which hang the samples (6) while they are introduced in a crucible (7) filled with light metal (8) in liquid or semisolid state, the shaft (5) alternatively turning in one sense and then the opposite sense, in order to increase the wear induced by the process.
  • Multiple tests were carried out to characterize the material, changing the time of permanence inside the molten metal, increasing it (24 hours, 48 hours, 96 hours . . . ) to show the resistance of the material without compositional variation of the substrate for at least 1000 hours.
  • FIG. 2 represents an enlarge view of a coating (1) on its substrate (2) after being subjected to a performance test for forced tribocorrosion in molten aluminium, showing the molten aluminium layer (3) that bathed the coating (1), revealing that the coating (1) did not suffer any attack after 100 hours of testing.
  • The substrate (2) on which the coating (1) is obtained is made of a single metal or a core and an outer layer of a different metal than that of the core or an intermetallic compound, with similar test results for any of these configurations.
  • The coating (1) has a hardness from 100 to 2000 HV, depending to a great extent on the material of the substrate (2), as obtained from 10 measurements with a load of 10 g and a penetration time of 20 s.
  • An adherence from 2 to 30 MPa is obtained from 3 measurements with a dolly 10 mm in diameter, epoxy adhesive and a uniform traction tension increase of 1 MPa/s, as per ISO 4624.
  • The mean roughness, Ra, from 1 to 5 μm, and the maximum roughness, under 20 μm, are each obtained from 3 measurements with a roughness tester and 0.25 mm Gaussian filter, at a distance of 4 mm.
  • The coefficient of friction from 0.2 to 1″ is obtained from 3 measurements using a ball-on-disk tribometer with a load of 2 N, distance 1000 m, 200 rpm (0.08 m/s), turning radius 4 mm, as per ASTM G99-04; as a countersample: WC ball with 6 mm diameter.

Claims (39)

1. Metallic substrate with a ceramic coating obtained by plasma electrolytic oxidation, resistant to degradation by tribocorrosion of light metals and their alloys, in a liquid and/or semi-solid state, characterised in that said coating (1) has a thickness from 10 to 300 μm and is resistant to immersion in said light metals and their alloys without compositional modification of the substrate (2).
2. Metallic substrate with a ceramic coating according to claim 1, wherein the metallic substrate (2) is a single metal.
3. Metallic substrate with a ceramic coating according to claim 1, wherein the metal is titanium or zirconium.
4. Metallic substrate with a ceramic coating according to claim 1, wherein the metallic substrate (2) comprises a metallic core and an outer layer of a metal different from that of the core, said layer being obtained by thermal spraying, hot galvanising or cementing.
5. Metallic substrate with a ceramic coating according to claim 1, wherein the metallic substrate (2) comprises a metallic core and an outer layer of an intermetallic compound, said layer being obtained by spraying or by solid or liquid diffusion.
6. Metallic substrate with a ceramic coating according to claim 4, wherein the core is of steel, nickel, titanium, zirconium, refractory materials or any of the alloys thereof.
7. Metallic substrate with a ceramic coating according to claim 5, wherein the core is of steel, nickel, titanium, zirconium, refractory materials or any of the alloys thereof.
8. Metallic substrate with a ceramic coating according to claim 4, wherein the outer layer is of a light metal selected from among aluminium, magnesium, titanium and zirconium.
9. Metallic substrate with a ceramic coating according to claim 5, wherein the outer layer is of an intermetallic compound of titanium and aluminium.
10. Metallic substrate with a ceramic coating according to claim 1, wherein the coating (1) has a hardness from 100 to 2000 HV.
11. Metallic substrate with a ceramic coating according to claim 2, wherein the coating (1) has a hardness from 100 to 2000 HV.
12. Metallic substrate with a ceramic coating according to claim 3, wherein the coating (1) has a hardness from 100 to 2000 HV.
13. Metallic substrate with a ceramic coating according to claim 4, wherein the coating (1) has a hardness from 100 to 2000 HV.
14. Metallic substrate with a ceramic coating according to claim 5, wherein the coating (1) has a hardness from 100 to 2000 HV.
15. Metallic substrate with a ceramic coating according to claim 6, wherein the coating (1) has a hardness from 100 to 2000 HV.
16. Metallic substrate with a ceramic coating according to claim 7, wherein the coating (1) has a hardness from 100 to 2000 HV.
17. Metallic substrate with a ceramic coating according to claim 8, wherein the coating (1) has a hardness from 100 to 2000 HV.
18. Metallic substrate with a ceramic coating according to claim 9, wherein the coating (1) has a hardness from 100 to 2000 HV.
19. Metallic substrate with a ceramic coating according to claim 1, wherein the coating (1) has an adherence from 2 to 30 MPa.
20. Metallic substrate with a ceramic coating according to claim 2, wherein the coating (1) has an adherence from 2 to 30 MPa.
21. Metallic substrate with a ceramic coating according to claim 3, wherein the coating (1) has an adherence from 2 to 30 MPa.
22. Metallic substrate with a ceramic coating according to claim 4, wherein the coating (1) has an adherence from 2 to 30 MPa.
23. Metallic substrate with a ceramic coating according to claim 5, wherein the coating (1) has an adherence from 2 to 30 MPa.
24. Metallic substrate with a ceramic coating according to claim 6, wherein the coating (1) has an adherence from 2 to 30 MPa.
25. Metallic substrate with a ceramic coating according to claim 7, wherein the coating (1) has an adherence from 2 to 30 MPa.
26. Metallic substrate with a ceramic coating according to claim 8, wherein the coating (1) has an adherence from 2 to 30 MPa.
27. Metallic substrate with a ceramic coating according to claim 9, wherein the coating (1) has an adherence from 2 to 30 MPa.
28. Metallic substrate with a ceramic coating according to claim 1, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
29. Metallic substrate with a ceramic coating according to claim 2, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
30. Metallic substrate with a ceramic coating according to claim 3, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
31. Metallic substrate with a ceramic coating according to claim 4, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
32. Metallic substrate with a ceramic coating according to claim 5, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
33. Metallic substrate with a ceramic coating according to claim 6, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
34. Metallic substrate with a ceramic coating according to claim 7, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
35. Metallic substrate with a ceramic coating according to claim 8, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
36. Metallic substrate with a ceramic coating according to claim 9, wherein the coating (1) has a mean roughness, Ra, from 1 to 5 μm.
37. Method for obtaining a metallic substrate (2) with a ceramic coating (1) by plasma electrolytic oxidation characterised in that said substrate (2) comprises a core and an outer layer of a metal different from that of the core or of an intermetallic compound, said outer layer being obtained by thermal spraying, laser, solid or liquid diffusion, hot galvanising or cementing.
38. Method according to claim 12, wherein the thermal spraying, laser, hot galvanising and cementing is performed on a core when the coating (1) is obtained as an outer layer of a metal different from that of the core.
39. Method according to claim 12, wherein the spraying and solid or liquid diffusion is performed on a core when the coating (1) is obtained as an outer layer of an intermetallic compound.
US14/905,919 2013-07-19 2013-07-19 Metallic substrate with ceramic coating and method for obtaining it Abandoned US20160153112A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070530 WO2015007924A1 (en) 2013-07-19 2013-07-19 Metallic substrate with ceramic coating and method for obtaining it

Publications (1)

Publication Number Publication Date
US20160153112A1 true US20160153112A1 (en) 2016-06-02

Family

ID=49619951

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/905,919 Abandoned US20160153112A1 (en) 2013-07-19 2013-07-19 Metallic substrate with ceramic coating and method for obtaining it

Country Status (3)

Country Link
US (1) US20160153112A1 (en)
EP (1) EP3023521A1 (en)
WO (1) WO2015007924A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160348261A1 (en) * 2014-02-05 2016-12-01 Thyssenkrupp Steel Europe Ag Component oxidized by plasma electrolysis and method for the production thereof
WO2020032164A1 (en) * 2018-08-10 2020-02-13 地方独立行政法人山口県産業技術センター Anodized titanium material and production method therefor
CN113897654A (en) * 2021-11-11 2022-01-07 浙江工业大学 Coaxial laser-assisted micro-arc oxidation device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544674A (en) * 2016-10-25 2017-03-29 苏州胜利精密制造科技股份有限公司 The process of surface treatment that a kind of magnesium die casting workpiece and aluminum component are combined

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507574A (en) 1999-08-17 2003-02-25 アイル・コート・リミテツド Multifunctional composite coating for protection based on lightweight alloy
WO2008120046A1 (en) * 2007-04-02 2008-10-09 Gostevs, Vladimirs Method of forming a protective ceramic coating on the surface of metal products
US20120177837A1 (en) 2007-08-10 2012-07-12 Eckert C Edward Metallophobic thermally applied ceramic materials
KR101285485B1 (en) * 2008-12-26 2013-07-23 니혼 파커라이징 가부시키가이샤 Method of electrolytic ceramic coating for matal, electrolysis solution for electrolytic ceramic coating for metal, and metallic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160348261A1 (en) * 2014-02-05 2016-12-01 Thyssenkrupp Steel Europe Ag Component oxidized by plasma electrolysis and method for the production thereof
WO2020032164A1 (en) * 2018-08-10 2020-02-13 地方独立行政法人山口県産業技術センター Anodized titanium material and production method therefor
JP2020026548A (en) * 2018-08-10 2020-02-20 地方独立行政法人山口県産業技術センター Anodized titanium material, and method of producing the same
KR20210040379A (en) * 2018-08-10 2021-04-13 치호우 도쿠리츠 교우세이 호우진 야마구치켄 산교기쥬츠센터 Anodic titanium oxide material and its manufacturing method
JP7140329B2 (en) 2018-08-10 2022-09-21 地方独立行政法人山口県産業技術センター Anodized titanium material and its manufacturing method
KR102600535B1 (en) * 2018-08-10 2023-11-10 치호우 도쿠리츠 교우세이 호우진 야마구치켄 산교기쥬츠센터 Anodized titanium oxide material and method for manufacturing the same
CN113897654A (en) * 2021-11-11 2022-01-07 浙江工业大学 Coaxial laser-assisted micro-arc oxidation device and method

Also Published As

Publication number Publication date
EP3023521A1 (en) 2016-05-25
WO2015007924A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US20160153112A1 (en) Metallic substrate with ceramic coating and method for obtaining it
Hakimizad et al. The effect of pulse waveforms on surface morphology, composition and corrosion behavior of Al2O3 and Al2O3/TiO2 nano-composite PEO coatings on 7075 aluminum alloy
CN101688285B (en) Material for covering surface of hot dip galvanizing bath member, process for producing the material, and hot dip galvanizing bath member
Girelli et al. Investigation of cavitation erosion resistance of AlSi10Mg alloy for additive manufacturing
US7241350B2 (en) Corrosion resistant poly-metal diffusion coatings and a method of applying same
US20070187005A1 (en) Alloy powders and coating compositions containing same
Qi et al. Microstructure and wear behaviors of WC–12% Co coating deposited on ductile iron by electric contact surface strengthening
Wang et al. Top coating of low-molecular weight polymer MALPB used for enhanced protection on anodized AZ31B Mg alloys
US10428437B2 (en) Wear-resistant coating produced by electrodeposition and process therefor
US7910225B2 (en) Low thermal expansion bondcoats for thermal barrier coatings
Schneider et al. Interplay between parameter variation and oxide structure of a modified PAA process
Joshi et al. Dissolution and soldering behavior of nitrided hot working steel with multilayer LAFAD PVD coatings
RU2390587C2 (en) Procedure for strengthening seats of valves of internal combustion engines out of aluminium alloy
CN105779923B (en) A kind of composite coating for the zine corrosion of resistance to liquid molten and preparation method thereof
US20070190354A1 (en) Low thermal expansion bondcoats for thermal barrier coatings
Wang et al. Fabrication and corrosion resistance of plasma-sprayed glass-powder-doped Al2O3-13 wt.% TiO2 coatings
RU2722554C2 (en) Structural element for installation for application of coating by immersion into melt and method of such element production
Fratila-Apachitei et al. Electrode temperature evolution during anodic oxidation of AlSi (Cu) alloys studied in the wall-jet reactor
Zhao et al. Surface modification of die casting mold steel by a composite technique of hot-dipping and plasma electrolytic oxidation
Pelczar et al. The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy
Mizuno et al. MoB/CoCr spray coating with higher durability in molten Al and Al-Zn alloys
CN104744055B (en) The preparation method and the preparation method of coating and coating of a kind of colloidal sol for being used to prepare coating
KR20120092245A (en) Method for manufacturing mechanical part
JP4089315B2 (en) Connecting member
JP4579706B2 (en) Articles with improved zinc erosion resistance

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUNDACION CIDAUT, SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MERINO SENOVILLA, JUAN CARLOS;MAROTO SOTO, JOSE ANTONIO;RIVAS SALMON, ANA;AND OTHERS;SIGNING DATES FROM 20160111 TO 20160112;REEL/FRAME:037518/0252

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION