US20070187005A1 - Alloy powders and coating compositions containing same - Google Patents

Alloy powders and coating compositions containing same Download PDF

Info

Publication number
US20070187005A1
US20070187005A1 US11/703,360 US70336007A US2007187005A1 US 20070187005 A1 US20070187005 A1 US 20070187005A1 US 70336007 A US70336007 A US 70336007A US 2007187005 A1 US2007187005 A1 US 2007187005A1
Authority
US
United States
Prior art keywords
alloy
weight percent
microns
coating
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/703,360
Inventor
Thomas Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair ST Technology Inc
Original Assignee
Praxair ST Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair ST Technology Inc filed Critical Praxair ST Technology Inc
Priority to US11/703,360 priority Critical patent/US20070187005A1/en
Assigned to PRAXAIR S.T. TECHNOLOGY, INC. reassignment PRAXAIR S.T. TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAYLOR, THOMAS A.
Publication of US20070187005A1 publication Critical patent/US20070187005A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements

Definitions

  • This invention relates to alloy powders suitable for thermal spraying or other cladding methods, low thermal expansion bondcoats for thermal barrier coatings, thermal barrier coatings comprising said bondcoats, methods for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating, and coating compositions suitable for thermal spraying or other cladding methods.
  • Thermal barrier coatings have become essential for hot section components in aero and IGT turbine engines, to allow them to run at todays' high temperatures.
  • the thermal barrier coating is considered a system, comprised of the superalloy substrate alloy, a metallic bondcoat and a zirconia-based outer ceramic layer.
  • the zirconia ceramic has relatively low thermal conductivity and thus provides thermal insulation to the substrate.
  • the thermal barrier coating system is operated in a temperature gradient, with the zirconia surface exposed to the hot gas side of the turbine section and the substrate alloy of the blade, vane or combustor component typically air cooled on the back side.
  • Thermal expansion mismatch between the metal and ceramic layers of the thermal barrier coating will provide a varying stress in the layers as the system is thermally cycled in service.
  • the thermal expansion of typical superalloys are only about 6 percent less than an MCrAlY bondcoat like LCO-22 (Co-32Ni-21Cr-8Al-0.5Y), and thermal stresses between them is likely to be partially relieved by plasticity. See, for example, Alloy Reference List, United Technologies Pratt and Whitney, October 1986 and T. A. Taylor and P. N. Walsh, ICMCTF Conference, San Diego, Apr. 28, 2003.
  • the interface of concern is between the bondcoat and the typical zirconia ceramic.
  • the thermal expansion from room temperature [T. A. Taylor and P. N. Walsh, supra] for these two materials are (mm/m): LCO-22 ZrO2-7%Y2O3 Difference (%) 7.51 5.3 42
  • the difference in expansion, relative to the zirconia layer is about 42 percent, and this could lead to substantial interface stress, possibly crack formation in the ceramic, if not relieved by bondcoat relaxation through creep. For fast thermal cycling, this stress may not be so relieved. Since the thermal expansion of 7% yttria stabilized zirconia is already high for a ceramic material, a search for lower expansion MCrAlY bondcoats is desirable for minimizing this inter-layer stress and perhaps leading to longer thermal barrier coating thermal cycle life. It would therefore be desirable in the art to provide lower expansion MCrAlY bondcoats for minimizing inter-layer stress that lead to longer thermal barrier coating thermal cycle life.
  • This invention relates to an alloy powder suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • This invention also relates to a coating composition suitable for thermal spraying or other cladding methods comprising an alloy powder of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • the invention has several advantages. For example, the low thermal expansion of the bondcoats made from the alloy powders of this invention minimizes or eliminates interface stress and crack formation in the ceramic layer and therefore leads to longer thermal barrier coating cycle life. There are many applications where a cast or wrought alloy having lower thermal expansion would allow an article to have superior performance. Articles fabricated from the alloy powders of this invention, e.g., cast or wrought alloy articles, may exhibit good high temperature oxidation resistance, even better than typical Ni-based superalloys or stainless steels, due to the high Cr and Al content of the alloy powders of this invention.
  • FIG. 1 depicts a graph of thermal expansion from room temperature to 1075° C. for NiCrAlY coating LN-65 (pre-stabilized 4 hours/1080° C./vacuum. dilatometer, argon, 5° C./min.) showing upsweep in expansion near 950° C., hysteresis of this effect on cooling, and slight (0.15%) additional shrinkage.
  • FIG. 2 depicts a graph of thermal expansion from room temperature to 1075° C. for NiCrAlY coatings Alloys 3, 4 and 5 (pre-stabilized 4 hours/1080° C./vacuum. dilatometer, argon, 5° C./min.).
  • FIG. 3 depicts a graph of sintering cycle curves for coating Alloy 3 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 4 depicts a graph of sintering cycle curves for coating LN-65 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 5 depicts a graph of sintering cycle curves for coating Alloy 5 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 6 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 5 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 800° C. and quenched to ice water. Visible phases include oxide bands, alpha-Cr, NiAl-type, gamma Ni—Cr—Al and gamma-prime colonies (Ni 3 Al-type).
  • FIG. 7 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 5 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 1050° C. and quenched to ice water. Visible phases include oxide bands, alpha-Cr, NiAl-type and gamma Ni—Cr—Al.
  • FIG. 8 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 3 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 1050° C. and quenched to ice water. Visible phases include oxide bands, NiAl-type and gamma Ni—Cr—Al.
  • this invention relates to alloy powders suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • the alloy powders can be coarse or fine.
  • the coarse alloy powder of this invention has a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns.
  • the fine alloy powder of this invention has a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
  • Preferred alloy powders of this invention include those where M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the coarse alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the fine alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • An alpha-Cr phase is present in the alloys of this invention up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the alloys to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the alloys of this invention may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in a thermally stabilized coating comprising the alloys of this invention at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the alloys of this invention fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • the alloys of this invention may be prepared by conventional methods such as described in Superalloys II, eds. Sims, Stoloff and Hagel, John Wiley (1987), p. 387458.
  • the alloy powders of this invention may be prepared by conventional methods such as described in U.S. Pat. Nos. 5,455,119 and 5,741,556, the disclosures of which are incorporated herein by reference.
  • This invention also relates to articles produced from the alloys above, e.g., cast or wrought alloy articles, and coatings made from the powders.
  • the powders suitable for thermal spraying or other cladding methods made from the alloys above may include up to about 10 volume percent stable oxide particles. e.g., yttria, hafnia or alumina.
  • the invention further relates to coatings made from the powders above wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
  • this invention relates to coating compositions suitable for thermal spraying or other cladding methods comprising an alloy powder of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel
  • M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably
  • the coarse alloy powders have a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, and the fine alloy powders have a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
  • Preferred coating compositions of this invention include alloy powders where M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the coarse alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the fine alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • An alpha-Cr phase is present in the alloys of this invention up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the alloys to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the alloys of this invention may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in a thermally stabilized coating comprising the alloys of this invention at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the alloys of this invention fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • oxide dispersion may also be included in the coating compositions of this invention.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the coating composition.
  • the coating compositions of this invention may be prepared by conventional methods such as described in Superalloys II, p. 459-494 (powder making) and ASM Handbook, Vol. 5, Surface Engineering 1994, p. 497-509 (thermal spray coatings).
  • This invention also relates to articles produced from the coating compositions above and coatings made from the powders.
  • the powders suitable for thermal spraying or other cladding methods made from the alloys above may include up to about 10 volume percent stable oxide particles. e.g., yttria, hafnia or alumina.
  • the invention further relates to coatings made from the powders above wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
  • the low thermal expansion bondcoats for thermal barrier coatings can comprise an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and said bondcoat having a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • Preferred bondcoats include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • the low thermal expansion bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoats may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat. Articles can be produced from the bondcoats above.
  • the low thermal expansion bondcoats can be deposited onto a metal or non-metal substrate using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoat are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like.
  • the most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat using appropriate times and temperatures to achieve a good bond for the bondcoat to the substrate and a high sintered density of the bondcoat.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • the bondcoat may comprise two metallic layers, both of the same or different low expansion alloy composition.
  • An inner layer bondcoat may be made using fine powder for the thermal spray that is dense and protective to the substrate from oxidation.
  • An outer layer bondcoat may be made from coarser powder to provide a rougher surface for the subsequent attachment of the ceramic insulating layer.
  • the low thermal expansion bondcoats for thermal barrier coatings can comprise (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns; and (ii) an outer layer comprising an outer layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof,
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils.
  • the outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoats may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition. Articles can be produced from the bondcoats above.
  • the inner layer bondcoats can be deposited onto a metal or non-metal substrate and the outer layer bondcoats can be deposited onto the inner layer bondcoats using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoats are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • the thermal barrier coatings for a metal or non-metal substrate can comprise (i) a low thermal expansion bondcoat layer applied to said substrate comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and said bondcoat having a thermal expansion of about 6.5 millimeters per meter or less between
  • Preferred bondcoat layers include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • the low thermal expansion bondcoat layers preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the bondcoat layers preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoat layers typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoat layers up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoat layer to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoat layers may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoat layer at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoat layers fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoat layers.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat layer. Articles can be produced from the thermal barrier coatings above.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art.
  • Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide.
  • Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference.
  • Ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium.
  • nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt.
  • Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • the low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat layer using appropriate times and temperatures to achieve a good bond for the bondcoat layer to the substrate and a high sintered density of the bondcoat layer.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • the thermal barrier coatings for a metal or non-metal substrate can comprise (a) a low thermal expansion bondcoat layer applied to said substrate, said bondcoat layer comprising: (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns; and (ii) an outer layer comprising an outer layer alloy of
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils.
  • the outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoats may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition. Articles can be produced from the thermal barrier coatings above.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art.
  • Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide.
  • Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference.
  • Ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium.
  • nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt.
  • Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • the low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating layer are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • a method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating can comprise (i) applying a low thermal expansion bondcoat layer to a metal or non-metal substrate, said bondcoat layer comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and
  • Preferred bondcoat layers include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • the low thermal expansion bondcoat layers preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the bondcoat layers preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoat layers typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoat layers up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoat layer to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoat layers may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoat layer at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoat layers fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoat layers.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat layer.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art.
  • Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide.
  • Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference.
  • Ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium.
  • nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt.
  • Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • the low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat layer using appropriate times and temperatures to achieve a good bond for the bondcoat layer to the substrate and a high sintered density of the bondcoat layer.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • a method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating can comprise (a) applying a low thermal expansion bondcoat layer to a metal or non-metal substrate, said bondcoat layer comprising: (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 micron
  • the inner layer alloy and the outer layer alloy may be of the same or different composition.
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
  • the alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • the outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches.
  • the low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • the inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils.
  • the outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C.
  • the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C.
  • the bondcoats may be heat treated to stabilize their equilibrium phases.
  • An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
  • the bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats.
  • the oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
  • the oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art.
  • Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide.
  • Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference.
  • Ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium.
  • nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt.
  • Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • the low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods.
  • Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating layer are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats.
  • Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • Table 1 provides a listing of nominal compositions of selected MCrAlY coatings.
  • Coatings were made by the plasma spray method using the Praxair Surface Technologies (PST) model 1108 torch with the co-axial inert gas shield protecting the spray effluent.
  • the coatings were deposited onto 12.5 millimeter diameter aluminum tube substrates, about 150 millimeter long to a coating thickness 24-36 mils.
  • the coated tubes were parted to 25 millimeter long cylinders, then most of the aluminum substrate was bored out.
  • the final step was to leach residual aluminum in 25% NaOH at a controlled temperature (less than 38° C.) for about 30 minutes. The NaOH solution does not attack the MCrAlY coating. After leaching, the coating sample was rinsed in de-ionized (DI) water, ultrasonically rinsed in DI water, rinsed in methanol and warm air-dried.
  • DI de-ionized
  • Several cylinders of each coating were vacuum heat treated for 4 hours at 1080° C.
  • One cylinder of each new alloy was analyzed for chemical composition, and at least one was run in this thermally stabilized state in the thermal expansion cycle in a PST sapphire dilatometer.
  • the dilatometer is a vertical push-rod instrument, with three support rods and the length-sensing central rod all cut from the same 600 millimeter long single crystal of sapphire.
  • the sample was loaded, the furnace tube evacuated by a roughing pump then argon back-filled, three times. Then the argon flow was set to 800 cubic millimeters per second (mm 3 /s) for the test cycle.
  • the sample had a fine-gauge type K thermocouple wired in tight contact to its mid-length. This provided the specimen temperature to the data logger.
  • the furnace control thermocouple is a separate, heavy gauge type K thermocouple.
  • the heating cycle was separately programmed by a dedicated controller.
  • the specimen length change was monitored by a lightly contacting sapphire rod connected to a linear variable differential transformer, which is remote from the hot zone. For the work reported here, the samples were heated at 5° C. per minute to 1100° C. and immediately cooled to room temperature at 5° C. per minute. If any residual sintering occurred, the data was not included in this study, but the sample re-run until it was stable.
  • the dilatometer was calibrated by running a 25 millimeter long sample of pure Ni, traceable to the National Institute of Standards and Technology. The sample was run multiple times and the average heating and cooling curves were compared to the accepted Ni expansion data published by Thermophysical Property Research Center. See Touloukian, et al., Thermal Expansion, Metallic Elements and Alloys, Thermophysical Properties Research Center—Data Series, 12, Plenum, N.Y., 1976. Any deviation was formed into a correction list which the computer applied to all subsequent samples. All samples reported here were run at least twice, most three to four times. The corrected data for each coating was compared to the average of all runs of that coating at each 100° C. increment of the computer printout.
  • NiCrAlY compositions had statistically significant lower thermal expansion than the more prevalent CoNiCrAlY or NiCoCrAlY composition classes.
  • the comparison of expansion values for 525° C. for LCO-22, NiCrAlY coating LN-33, and a predicted value for a modified LN-33 were as follows: Thermal Expansion Between 25° C. and 525° C.
  • LCO-22 32Ni—38Co—21Cr—8Al—0.5Y
  • LN-33 69Ni—20Cr—11Al—0.5Y
  • LN-33 mod 64Ni—23Cr—13Al—0.5Y
  • the thermal expansion curve of LN-33 was lower than LCO-22 up to about 900° C., then the LN-33 expansion curve swept up significantly such that at 1000° C. and above the expansion was equal to LCO-22 or LN-11 (47Ni-23Co-17Cr-12.5Al-0.5Y).
  • This upsweep has also been measured in a similar composition coating, LN-65 (67Ni-22Cr-10Al-1Y). It is speculated that the LN-33 upsweep was due to the phase transformation: ⁇ + ⁇ + ⁇ , where ⁇ is alpha Cr, ⁇ is a Ni-base alloy, and ⁇ is essentially NiAl. All these phases have high thermal expansion except alpha-Cr.
  • alpha-Cr goes into solution and NiAl is formed above about 950° C. See R. L. Dreshfield, T. P. Gabb in Superalloys II, Wiley, N.Y., 1987, p. 566.
  • the reason the other compositions have the generally higher expansion throughout the temperature range may be that alpha-Cr is either not present or is minimized by the presence of Co.
  • New coatings were plasma sprayed with the PST model 1108 plasma torch, but in a non-shielded mode (air sprayed).
  • Ni-164 Ni-164
  • three experimental alloy powders were made and prepared as coatings.
  • a standard powder lot of Ni-164, made by the vacuum melt argon atomize process (predominate particle size 60-120 microns)
  • These elemental powders had predominate particle sizes of 4-8 microns for the Al, 3-14 microns for the Cr, all measured by the Microtrac method.
  • the mixtures of 0.9 kilogram mass were V-blended for 30 minutes.
  • Table 2 shows the calculated compositions of the starting powders and the analyzed composition of the Ni-164 powder.
  • Powder Ni-164 was analyzed by the inductively coupled plasma method. Alloys 3-5 powder compositions were calculated, based on the Ni-164 analysis and the known additions of high purity Al and Cr. TABLE 2 Composition of Starting Powders (Weight Percent) Ni Cr Al Y Alloy 3 61.97 27.52 9.30 0.96 Alloy 4 60.71 25.35 12.75 0.94 Alloy 5 58.23 27.00 13.63 0.90 Ni-164 66.9 21.8 9.99 1.04
  • FIGS. 1 and 2 The thermal expansion curves of the thermally-stabilized coatings are shown in FIGS. 1 and 2 . It is seen that the LN-65 coating has essentially the same upsweep behavior of the similar composition LN-33 shown earlier. Both the heating and cooling curves are shown in FIG. 1 to demonstrate the hysteresis of the suspected phase transition near 950° C. FIG. 1 also shows that LN-65 was not completely sintered to the final state possible at 1080° C. in 4 hours. An additional 1.5 millimeters per meter (0.15%) shrinkage occurred in this first thermal expansion run after the vacuum heat treatment. Subsequent runs on the same sample do return the cooling curve to the initial specimen length. The three new alloy coatings are shown in FIG. 2 , but only the cooling curve for clarity.
  • Alloys 3 and 4 show the upsweep at about 950° C. but it is not as sharp and there is less expansion at the highest temperature of the thermal expansion run. There are similar hysteresis effects for alloys 3 and 4 as seen in LN-65. Alloy 5 appears to have essentially eliminated the upsweep, but there is still a slight effect at 950° C., which is reproducible for repeat thermal expansion runs of this alloy.
  • the vacuum sintering was done in a Lindberg furnace. The procedure was to stand the coating cylinders on trays, pump down to 90 microns pressure, back-fill with argon to 900 microns and re-pump, repeating three times, then engage the high vacuum pumps to reach a vacuum of about 10 ⁇ 3 mm Hg before heating. Heating was at 25° C. per minute to 300° C. for a one hour outgas hold then to 1080° C., holding for four hours, then cooling to room temperature at initially 35° C. per minute. During the 1080° C. soak, chamber pressure was at 5 ⁇ 10 ⁇ 5 mm Hg.
  • the dilatometer curves for the sintering cycle are shown in FIGS. 3, 4 and 5 for LN-65 and Alloy 3 and 5 coatings.
  • the length shrinkage from the dilatometer data and by separate micrometer measurements were in close agreement.
  • the percent diameter shrinkage measured by vernier micrometer was very close to the length shrinkage.
  • the third dimension, coating thickness was too small to measure accurately for shrinkage. Assuming thickness shrinkage was an equal percentage, a volume shrinkage estimate for the coatings by taking three times the length shrinkage. Estimated Percent Volume Shrinkage for 4 Hours/1080° C.
  • the dilatometer data is now examined for the dynamic changes that occur during the thermal cycle.
  • the length change plots of FIGS. 3, 4 and 5 show the data both as a function of time and temperature.
  • the curves include sintering, thermal expansion, phase development and phase transition. These curves suggest some sintering length contraction occurs before the sample reaches 1080° C., perhaps starting as low as 800° C. Significant shrinkage further occurs during the 4 hour hold at 1080° C. Finally the last segments of the curves show the cool-down to room temperature.
  • LN-65 coating started from pre-alloyed powder so only solid state sintering occurred. Alloys 3 and 5 started from powder blends, and some of the sintering is likely due to aluminum liquid phase assisted sintering, as suggested by the shrinkage noted near 660° C., perhaps seen more clearly for Alloy 3. The phase transition is apparent in these curves also, the sharp run-up near 1000° C. (heating) for LN-65 and Alloy 3, but absent in Alloy 5. On cooling, the rapid length drop near 950° C. is again seen in LN-65 and Alloy 3. The phase transition can also be seen in the time plots of LN-65 and Alloy 3, just before entering the 4 hour soak period.
  • the polished microstructures of select coatings were examined in the optical and scanning electron microscopes.
  • the coatings selected were Alloy 3 and Alloy 5.
  • separate cylinder samples were first vacuum heat treated 4 hours at 1080° C.
  • segments of the cylinders were stabilized at 800° C. and at 1050° C. (below and above the suspected phase transition).
  • the stabilization time was one hour in flowing argon, followed by a rapid quench into stirred ice water.
  • the dilatometer trace ( FIG. 1 ) for LN-65 shows that this stabilization time should have been more than adequate.
  • the coatings were metallographically polished then electrolytically etched with 1 part sulfuric acid in 7 parts methanol for 1 second at 12 volts DC.
  • the examination was done first optically with bright field and DIC at 1500 times magnification, then the identity of the alpha-Cr phase in Alloy 5 was checked in the scanning electron microscope/energy dispersive spectroscope.
  • the phases present in the three coatings were as follows: 800° C. 1050° C. Alloy 3 ⁇ , ⁇ ′, ⁇ -Cr ⁇ , ⁇ -NiAl Alloy 5 ⁇ , ⁇ ′, ⁇ -NiAl, ⁇ -Cr ⁇ -Cr, ⁇ , ⁇
  • alpha-Cr was a minor phase in Alloy 3 at 800° C., but present.
  • alpha-Cr was a major phase at both temperatures of stabilization.
  • the effects of using blended powders was also seen, the phase distribution was not uniform everywhere, which would be expected to be found in the next phase using pre-alloyed powders.
  • FIGS. 6, 7 and 8 optical micrographs of the etched microstructure of Alloy 5, at 800° C. and 1050° C. stabilization, and for Alloy 3 at 1050° C. stabilization. It is seen that alpha-Cr is not present in Alloy 3 at the higher temperature.
  • the phase size was estimated from these figures. When present, the phases were essentially the same size in both alloys.
  • the alpha-Cr phase was about 0.8-1.7 microns, of rounded cubical morphology.
  • the beta NiAl was about 2-4 microns in size.
  • the gamma prime, Ni 3 Al-type phase was very fine, about 0.25-0.5 microns, and arranged in colonies, very similar to that in superalloys. See E. W. Ross and C. T. Sims in Superalloys II, Wiley, N.Y., 1987, p. 124.
  • the phase analysis of the coatings proved the usefulness of differential interference contrast to image the gamma-prime phase (Ni 3 Al), which was not seen in bright field.
  • the phases found in Alloys 3 and 5 are different from those indicated for LN-33, including, in addition, gamma-prime. This is because the new compositions are richer in Cr and Al and have clearly moved to a new equilibrium phase field.
  • the dilatometer has proven to be very useful in this study of dynamic phase transitions and of sintering. It also gave the direct measure of the lower thermal expansion values for Alloy 5, which would lead to less thermal mismatch stress at a zirconia interface with such a new bondcoat. Similar to the opening comparison of expansion differences between LCO-22 and 7% yttria stabilized zirconia, the new Alloy 5 has the following expansion comparison, from 25° C. to 525° C. (millimeters per meter): Alloy 5 ZrO2-7%Y2O3 Difference (%) 6.42 5.3 21 Thus the expansion mismatch at 525° C. was reduced by half, compared to a current standard composition bondcoat.
  • thermal cycle testing of these thermal barrier coating systems based on the new bondcoat composition in comparison to earlier NiCoCrAlY bondcoats, should show longer life for the thermal barrier coating system using the newly discovered bondcoat alloys.
  • the plasma spray torch in air atmosphere is not the only method of coating fabrication that could use the new alloys.
  • Plasma spraying with a coaxial inert gas shroud, plasma spraying in a vacuum chamber, high velocity oxy-fuel spraying, detonation gun spraying and laser cladding are all coating methods applicable to making the new coatings.
  • the comparative thermal expansion data for the yttria-stabilized zirconia coatings were also made by the plasma spray process.
  • the new alloys can also be overcoated by oxide ceramics made by other processes, such as electron beam physical vapor deposition, liquid solution-based plasma deposition, high velocity oxy-fuel deposition, and detonation gun deposition, among others.
  • the benefits of the new low expansion bondcoat will be found independent of the deposition method of the zirconia-based ceramic top layer.
  • solid articles may also be fabricated that could benefit from low expansion.
  • thermal expansion from 25° C. to 525° C. of a typical superalloy and Alloy 5 (millimeters per meter).
  • Typical Ni Superalloy Alloy 5 7.4 6.42
  • the new NiCrAlY Alloy 5 was thus found to have lower thermal expansion than even a typical Ni-based superalloy.
  • An article of composition based on Alloy 5 or near compositions should have excellent high temperature oxidation resistance, better than most typical Ni-based superalloys or stainless steels, due to the high Cr and Al content of these new NiCrAlY alloys.
  • Powder particle size distribution is measured by the light scattering method with the powder sample suspended in a liquid solution (ASTM B 822-97) using a Microtrac model X-100 instrument (Leeds & Northrup, St. Moscow, Fla.) operated in the X-100 mode.
  • Coating surface roughness is measured by the contact stylus method (ASTM D 7127-05) using a Taylor Hobson model Surtronic 3P (Leicester, England) in the Ra mode.

Abstract

This invention relates to alloy powders suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application Ser. No. 60/772,524, filed on Feb. 13, 2006, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to alloy powders suitable for thermal spraying or other cladding methods, low thermal expansion bondcoats for thermal barrier coatings, thermal barrier coatings comprising said bondcoats, methods for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating, and coating compositions suitable for thermal spraying or other cladding methods.
  • BACKGROUND OF THE INVENTION
  • Thermal barrier coatings have become essential for hot section components in aero and IGT turbine engines, to allow them to run at todays' high temperatures. The thermal barrier coating is considered a system, comprised of the superalloy substrate alloy, a metallic bondcoat and a zirconia-based outer ceramic layer. The zirconia ceramic has relatively low thermal conductivity and thus provides thermal insulation to the substrate. In the engine, the thermal barrier coating system is operated in a temperature gradient, with the zirconia surface exposed to the hot gas side of the turbine section and the substrate alloy of the blade, vane or combustor component typically air cooled on the back side.
  • Thermal expansion mismatch between the metal and ceramic layers of the thermal barrier coating will provide a varying stress in the layers as the system is thermally cycled in service. The thermal expansion of typical superalloys are only about 6 percent less than an MCrAlY bondcoat like LCO-22 (Co-32Ni-21Cr-8Al-0.5Y), and thermal stresses between them is likely to be partially relieved by plasticity. See, for example, Alloy Reference List, United Technologies Pratt and Whitney, October 1986 and T. A. Taylor and P. N. Walsh, ICMCTF Conference, San Diego, Apr. 28, 2003. The interface of concern is between the bondcoat and the typical zirconia ceramic. At 525° C. the thermal expansion from room temperature [T. A. Taylor and P. N. Walsh, supra] for these two materials are (mm/m):
    LCO-22 ZrO2-7%Y2O3 Difference (%)
    7.51 5.3 42
  • The difference in expansion, relative to the zirconia layer is about 42 percent, and this could lead to substantial interface stress, possibly crack formation in the ceramic, if not relieved by bondcoat relaxation through creep. For fast thermal cycling, this stress may not be so relieved. Since the thermal expansion of 7% yttria stabilized zirconia is already high for a ceramic material, a search for lower expansion MCrAlY bondcoats is desirable for minimizing this inter-layer stress and perhaps leading to longer thermal barrier coating thermal cycle life. It would therefore be desirable in the art to provide lower expansion MCrAlY bondcoats for minimizing inter-layer stress that lead to longer thermal barrier coating thermal cycle life.
  • SUMMARY OF THE INVENTION
  • This invention relates to an alloy powder suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • This invention also relates to a coating composition suitable for thermal spraying or other cladding methods comprising an alloy powder of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
  • The invention has several advantages. For example, the low thermal expansion of the bondcoats made from the alloy powders of this invention minimizes or eliminates interface stress and crack formation in the ceramic layer and therefore leads to longer thermal barrier coating cycle life. There are many applications where a cast or wrought alloy having lower thermal expansion would allow an article to have superior performance. Articles fabricated from the alloy powders of this invention, e.g., cast or wrought alloy articles, may exhibit good high temperature oxidation resistance, even better than typical Ni-based superalloys or stainless steels, due to the high Cr and Al content of the alloy powders of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a graph of thermal expansion from room temperature to 1075° C. for NiCrAlY coating LN-65 (pre-stabilized 4 hours/1080° C./vacuum. dilatometer, argon, 5° C./min.) showing upsweep in expansion near 950° C., hysteresis of this effect on cooling, and slight (0.15%) additional shrinkage.
  • FIG. 2 depicts a graph of thermal expansion from room temperature to 1075° C. for NiCrAlY coatings Alloys 3, 4 and 5 (pre-stabilized 4 hours/1080° C./vacuum. dilatometer, argon, 5° C./min.).
  • FIG. 3 depicts a graph of sintering cycle curves for coating Alloy 3 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 4 depicts a graph of sintering cycle curves for coating LN-65 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 5 depicts a graph of sintering cycle curves for coating Alloy 5 from room temperature to 1080° C., 4 hour soak at 1080° C., then cooling to room temperature; heating and cooling rates of 5° C. per minute, argon atmosphere; and length change includes thermal expansion, sintering and any phase change effects.
  • FIG. 6 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 5 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 800° C. and quenched to ice water. Visible phases include oxide bands, alpha-Cr, NiAl-type, gamma Ni—Cr—Al and gamma-prime colonies (Ni3Al-type).
  • FIG. 7 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 5 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 1050° C. and quenched to ice water. Visible phases include oxide bands, alpha-Cr, NiAl-type and gamma Ni—Cr—Al.
  • FIG. 8 depicts an optical micrograph (DIC) of polished and etched cross section of Alloy 3 coating, heat treated 4 hours at 1080° C. in vacuum, then held 1 hour at 1050° C. and quenched to ice water. Visible phases include oxide bands, NiAl-type and gamma Ni—Cr—Al.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As indicated above, this invention relates to alloy powders suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns. The alloy powders can be coarse or fine. In an embodiment, the coarse alloy powder of this invention has a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns. In another embodiment, the fine alloy powder of this invention has a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
  • Preferred alloy powders of this invention include those where M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The coarse alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns. The fine alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • An alpha-Cr phase is present in the alloys of this invention up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the alloys to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The alloys of this invention may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in a thermally stabilized coating comprising the alloys of this invention at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The alloys of this invention fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • The alloys of this invention may be prepared by conventional methods such as described in Superalloys II, eds. Sims, Stoloff and Hagel, John Wiley (1987), p. 387458. The alloy powders of this invention may be prepared by conventional methods such as described in U.S. Pat. Nos. 5,455,119 and 5,741,556, the disclosures of which are incorporated herein by reference.
  • This invention also relates to articles produced from the alloys above, e.g., cast or wrought alloy articles, and coatings made from the powders. The powders suitable for thermal spraying or other cladding methods made from the alloys above may include up to about 10 volume percent stable oxide particles. e.g., yttria, hafnia or alumina. The invention further relates to coatings made from the powders above wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
  • As also indicated above, this invention relates to coating compositions suitable for thermal spraying or other cladding methods comprising an alloy powder of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns. The coarse alloy powders have a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, and the fine alloy powders have a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
  • Preferred coating compositions of this invention include alloy powders where M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The coarse alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns. The fine alloy powders preferably have a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • An alpha-Cr phase is present in the alloys of this invention up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the alloys to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The alloys of this invention may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in a thermally stabilized coating comprising the alloys of this invention at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The alloys of this invention fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the coating compositions of this invention. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the coating composition.
  • The coating compositions of this invention may be prepared by conventional methods such as described in Superalloys II, p. 459-494 (powder making) and ASM Handbook, Vol. 5, Surface Engineering 1994, p. 497-509 (thermal spray coatings).
  • This invention also relates to articles produced from the coating compositions above and coatings made from the powders. The powders suitable for thermal spraying or other cladding methods made from the alloys above may include up to about 10 volume percent stable oxide particles. e.g., yttria, hafnia or alumina. The invention further relates to coatings made from the powders above wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
  • The low thermal expansion bondcoats for thermal barrier coatings can comprise an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and said bondcoat having a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • Preferred bondcoats include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. In one embodiment, the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns. In another embodiment, the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • The low thermal expansion bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C. The bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoats may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat. Articles can be produced from the bondcoats above.
  • The low thermal expansion bondcoats can be deposited onto a metal or non-metal substrate using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoat are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat using appropriate times and temperatures to achieve a good bond for the bondcoat to the substrate and a high sintered density of the bondcoat. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above low thermal expansion bondcoats for thermal barrier coatings and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-2), filed on an even date herewith, which is incorporated herein by reference.
  • The bondcoat may comprise two metallic layers, both of the same or different low expansion alloy composition. An inner layer bondcoat may be made using fine powder for the thermal spray that is dense and protective to the substrate from oxidation. An outer layer bondcoat may be made from coarser powder to provide a rougher surface for the subsequent attachment of the ceramic insulating layer.
  • The low thermal expansion bondcoats for thermal barrier coatings can comprise (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns; and (ii) an outer layer comprising an outer layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said outer layer alloy, Cr comprises from about 15 to about 45 weight percent of said outer layer alloy, Al comprises from about 5 to about 30 weight percent of said outer layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said outer layer alloy, said outer layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, and said outer layer having a surface roughness of at least 200 micro-inches; and wherein said bondcoat has a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C. The inner layer alloy and the outer layer alloy may be of the same or different composition.
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • The outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • The inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils. The outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoats may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition. Articles can be produced from the bondcoats above.
  • The inner layer bondcoats can be deposited onto a metal or non-metal substrate and the outer layer bondcoats can be deposited onto the inner layer bondcoats using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoats are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above low thermal expansion multilayer bondcoats for thermal barrier coatings and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-3), filed on an even date herewith, which is incorporated herein by reference.
  • The thermal barrier coatings for a metal or non-metal substrate can comprise (i) a low thermal expansion bondcoat layer applied to said substrate comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and said bondcoat having a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., and (ii) a ceramic insulating layer applied to said bondcoat layer.
  • Preferred bondcoat layers include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. In one embodiment, the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns. In another embodiment, the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • The low thermal expansion bondcoat layers preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The bondcoat layers preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C. The bondcoat layers typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoat layers up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoat layer to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoat layers may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoat layer at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoat layers fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoat layers. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat layer. Articles can be produced from the thermal barrier coatings above.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art. Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide. Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference. Other ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • Some suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium. Preferably, the nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt. Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • The low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat layer using appropriate times and temperatures to achieve a good bond for the bondcoat layer to the substrate and a high sintered density of the bondcoat layer. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above thermal barrier coatings employing low thermal expansion bondcoats and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-2), filed on an even date herewith, which is incorporated herein by reference.
  • The thermal barrier coatings for a metal or non-metal substrate can comprise (a) a low thermal expansion bondcoat layer applied to said substrate, said bondcoat layer comprising: (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns; and (ii) an outer layer comprising an outer layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said outer layer alloy, Cr comprises from about 15 to about 45 weight percent of said outer layer alloy, Al comprises from about 5 to about 30 weight percent of said outer layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said outer layer alloy, said outer layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, and said outer layer having a surface roughness of at least 200 micro-inches; and wherein said bondcoat has a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., and (b) a ceramic insulating layer applied to said bondcoat layer. The inner layer alloy and the outer layer alloy may be of the same or different composition.
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • The outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • The inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils. The outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoats may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition. Articles can be produced from the thermal barrier coatings above.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art. Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide. Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference. Other ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • Some suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium. Preferably, the nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt. Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • The low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating layer are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above thermal barrier coatings employing low thermal expansion multilayer bondcoats and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-3), filed on an even date herewith, which is incorporated herein by reference.
  • A method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating can comprise (i) applying a low thermal expansion bondcoat layer to a metal or non-metal substrate, said bondcoat layer comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns, said bondcoat having a surface roughness of at least 200 micro-inches, and wherein said bondcoat layer has a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., and (ii) applying said ceramic insulating layer to said bondcoat layer.
  • Preferred bondcoat layers include those wherein, in the composition of the alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. In one embodiment, the alloy is sprayed from a coarse powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, preferably a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns. In another embodiment, the alloy is sprayed from a fine powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns, preferably a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, and more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • The low thermal expansion bondcoat layers preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The bondcoat layers preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C. The bondcoat layers typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoat layers up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoat layer to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoat layers may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoat layer at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoat layers fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoat layers. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat layer.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art. Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide. Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference. Other ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • Some suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium. Preferably, the nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt. Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • The low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoat layer using appropriate times and temperatures to achieve a good bond for the bondcoat layer to the substrate and a high sintered density of the bondcoat layer. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-2), filed on an even date herewith, which is incorporated herein by reference.
  • A method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating can comprise (a) applying a low thermal expansion bondcoat layer to a metal or non-metal substrate, said bondcoat layer comprising: (i) an inner layer comprising an inner layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said inner layer alloy, Cr comprises from about 15 to about 45 weight percent of said inner layer alloy, Al comprises from about 5 to about 30 weight percent of said inner layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said inner layer alloy, said inner layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns; and (ii) an outer layer comprising an outer layer alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, preferably nickel, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, preferably yttrium, and wherein M comprises from about 35 to about 80 weight percent of said outer layer alloy, Cr comprises from about 15 to about 45 weight percent of said outer layer alloy, Al comprises from about 5 to about 30 weight percent of said outer layer alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said outer layer alloy, said outer layer alloy thermally sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 30 microns to about 100 microns, and said outer layer having a surface roughness of at least 200 micro-inches; and wherein said bondcoat has a thermal expansion of about 6.5 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., and (b) applying said ceramic insulating layer to said bondcoat layer.
  • The inner layer alloy and the outer layer alloy may be of the same or different composition.
  • Preferred inner layer bondcoats include those wherein, in the composition of the inner layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 10 microns to about 40 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 18 microns to about 25 microns.
  • Preferred outer layer bondcoats include those wherein, in the composition of the outer layer alloy, M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy. The alloy is preferably sprayed from a powder having a mean particle size of 50 percentile point in distribution of from about 40 microns to about 85 microns, more preferably a mean particle size of 50 percentile point in distribution of from about 50 microns to about 60 microns.
  • The outer layer bondcoats preferably have a surface roughness of at least 225 micro-inches, more preferably a surface roughness of at least 250 micro-inches. The low thermal expansion bondcoats preferably have a thermal expansion of about 6.25 millimeters per meter or less between a temperature of from about 25° C. to about 525° C., more preferably a thermal expansion of about 6.0 millimeters per meter or less between a temperature of from about 25° C. to about 525° C.
  • The inner layer bondcoats typically have a thickness of from about 4 to about 320 mils, preferably a thickness of from about 40 to about 240 mils, and more preferably a thickness of from about 80 to about 160 mils. The outer layer bondcoats typically have a thickness of from about 4 to about 480 mils, preferably a thickness of from about 80 to about 400 mils, and more preferably a thickness of from about 160 to about 240 mils.
  • An alpha-Cr phase is present in the bondcoats up to a temperature of at least about 1000° C. Preferably, the alpha-Cr phase is present in an amount sufficient to control thermal expansion of the bondcoats to about 6.5 mm/m or less between a temperature of from about 25° C. to about 525° C. The bondcoats may be heat treated to stabilize their equilibrium phases. An alpha-Cr phase is preferably in equilibrium in thermally stabilized bondcoats at a temperature of about 800° C. and the alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C. The bondcoats fall within the gamma-beta-alpha-Cr region of a phase diagram, for example, an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field, at a temperature of about 1150° C.
  • An oxide dispersion may also be included in the bondcoats. The oxide dispersion may be selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia. The oxide dispersion may comprise from about 5 to about 25 volume percent of the bondcoat composition.
  • Ceramic insulating layers that can be applied to the bondcoat layer to form a thermal barrier coating are known in the art. Illustrative ceramic insulating layers comprise zirconium oxide and yttrium oxide. Preferred ceramic insulating layers include zirconia partially or fully stabilized by yttria and having a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the ceramic insulating layer to improve its thermal fatigue resistance. See, for example, U.S. Pat. No. 5,073,433, the disclosure of which is incorporated herein by reference. Other ceramic insulating layers useful in this invention include zirconia partially or fully stabilized by yttria and having a density from about 60% to 85% of the theoretical density, e.g., low density zirconia partially or fully stabilized by yttria.
  • Some suitable metal substrates include, for example, nickel base superalloys, nickel base superalloys containing titanium, cobalt base superalloys, and cobalt base superalloys containing titanium. Preferably, the nickel base superalloys would contain more than 50% by weight nickel and the cobalt base superalloys would contain more than 50% by weight cobalt. Illustrative non-metal substrates include, for example, permissible silicon-containing materials.
  • The low thermal expansion bondcoat layer can be deposited onto a metal or non-metal substrate, and the ceramic insulating layer can be deposited onto the bondcoat layer, using any thermal spray device by conventional methods. Preferred thermal spray methods for depositing the bondcoat layer and ceramic insulating layer are inert gas shrouded plasma spraying, low pressure or vacuum plasma spraying in chambers, high velocity oxygen-fuel torch spraying, detonation gun coating and the like. The most preferred method is inert gas shrouded plasma spraying. It could also be advantageous to heat treat the bondcoats using appropriate times and temperatures to achieve a good bond for the bondcoats to the substrate and a high sintered density of the bondcoats. Other means of applying a uniform deposit of powder to a substrate in addition to thermal spraying include, for example, electrophoresis, electroplating and slurry deposition.
  • The above method for minimizing or eliminating interface stress and crack formation in a ceramic insulating layer of a thermal barrier coating and other related subject matter above are disclosed and claimed in copending U.S. patent application Ser. No. (D-21398-3), filed on an even date herewith, which is incorporated herein by reference.
  • Various modifications and variations of this invention will be obvious to a worker skilled in the art and it is to be understood that such modifications and variations are to be included within the purview of this application and the spirit and scope of the claims.
  • The following examples are provided to further describe certain embodiments of the invention. The examples are intended to be illustrative in nature and are not to be construed as limiting the scope of the invention. Table 1 provides a listing of nominal compositions of selected MCrAlY coatings.
    TABLE 1
    Nominal Compositions of Coatings (Weight Percent)
    Coating Ni Co Cr Al Y
    LN-4 80 20
    LN-5B 95 5
    LN-11 47 23 17 12.5 0.5
    LN-21 48 23 20 8 0.5
    LN-33 69 20 11 0.5
    LN-46 53 15 19 12 0.5 +0.5 Mo
    LN-49 53 15 19 13 0.5 +0.5 Mo
    LCO-7 64 24 12 0.5
    LCO-22 32 38 21 8 0.5
    LCO-22 + Al 29 38 21 11 0.5
    LCO-29 75 18 7 0.5
    LCO-40 63 26 10 0.5
    LCO-49 42 28 15 14 0.5
    TM-309 42 25 23 10 0.5
    NiCo electroplate 57 43
  • EXAMPLE 1 Sample Preparation and Thermal Expansion Measurement Methods
  • Coatings were made by the plasma spray method using the Praxair Surface Technologies (PST) model 1108 torch with the co-axial inert gas shield protecting the spray effluent. The coatings were deposited onto 12.5 millimeter diameter aluminum tube substrates, about 150 millimeter long to a coating thickness 24-36 mils. The coated tubes were parted to 25 millimeter long cylinders, then most of the aluminum substrate was bored out. The final step was to leach residual aluminum in 25% NaOH at a controlled temperature (less than 38° C.) for about 30 minutes. The NaOH solution does not attack the MCrAlY coating. After leaching, the coating sample was rinsed in de-ionized (DI) water, ultrasonically rinsed in DI water, rinsed in methanol and warm air-dried.
  • Several cylinders of each coating were vacuum heat treated for 4 hours at 1080° C. One cylinder of each new alloy was analyzed for chemical composition, and at least one was run in this thermally stabilized state in the thermal expansion cycle in a PST sapphire dilatometer. The dilatometer is a vertical push-rod instrument, with three support rods and the length-sensing central rod all cut from the same 600 millimeter long single crystal of sapphire. The sample was loaded, the furnace tube evacuated by a roughing pump then argon back-filled, three times. Then the argon flow was set to 800 cubic millimeters per second (mm3/s) for the test cycle. The sample had a fine-gauge type K thermocouple wired in tight contact to its mid-length. This provided the specimen temperature to the data logger. The furnace control thermocouple is a separate, heavy gauge type K thermocouple. The heating cycle was separately programmed by a dedicated controller. The specimen length change was monitored by a lightly contacting sapphire rod connected to a linear variable differential transformer, which is remote from the hot zone. For the work reported here, the samples were heated at 5° C. per minute to 1100° C. and immediately cooled to room temperature at 5° C. per minute. If any residual sintering occurred, the data was not included in this study, but the sample re-run until it was stable.
  • The dilatometer was calibrated by running a 25 millimeter long sample of pure Ni, traceable to the National Institute of Standards and Technology. The sample was run multiple times and the average heating and cooling curves were compared to the accepted Ni expansion data published by Thermophysical Property Research Center. See Touloukian, et al., Thermal Expansion, Metallic Elements and Alloys, Thermophysical Properties Research Center—Data Series, 12, Plenum, N.Y., 1976. Any deviation was formed into a correction list which the computer applied to all subsequent samples. All samples reported here were run at least twice, most three to four times. The corrected data for each coating was compared to the average of all runs of that coating at each 100° C. increment of the computer printout. A three-sigma rule for outlier data was tested, but most data was well within bounds and included in the final average expansion curve. The runs usually agreed with each other within 0.3 millimeters per meter at each temperature, though some were more divergent. It was found that the cooling curves usually had lower variance between runs, and so they were chosen to represent the expansion behavior of the coatings.
  • In this study of a range of MCrAlY compositions, it was found that the expansion from 25 to 525° C. was correlated to the chemical composition of the coating. The multiple correlation fit gave (millimeters per meter):
    Expansion(525° C.)=8.6892−0.01242*Ni−0.05255*Cr−0.00104*Al+0.0002693*Ni*Co  Equation (1)
    where the indicated element is entered into the equation as its weight percent.
  • The reason why 525° C. was used in this discussion of expansion and mismatch stresses is that the typical MCrAlY coating has high yield stress up to about that temperature, then begins to fall rapidly by about 600° C., and is near zero at about 800° C. or higher. See T. A. Taylor and D. F. Bettridge, Surf. Coat. Technol. 86-87 (1996) 9-14. This means that at high temperature the MCrAlY may not be able to transmit a stress due to expansion mismatch to the zirconia layer because it is so weak or it readily creeps to relaxation.
  • Research measurements further found that as a class, NiCrAlY compositions had statistically significant lower thermal expansion than the more prevalent CoNiCrAlY or NiCoCrAlY composition classes. The comparison of expansion values for 525° C. for LCO-22, NiCrAlY coating LN-33, and a predicted value for a modified LN-33 (using the multiple correlation equation) were as follows:
    Thermal Expansion
    Between 25° C.
    and 525° C.
    (millimeters per meter)
    LCO-22 (32Ni—38Co—21Cr—8Al—0.5Y) 7.51
    LN-33 (69Ni—20Cr—11Al—0.5Y) 6.79
    LN-33 mod (64Ni—23Cr—13Al—0.5Y) 6.67

    Based on the logic of lower bondcoat expansion relative to the zirconia layer, it would appear that a composition like that of LN-33 would produce less interface thermal stress than LCO-22, and maybe longer thermal barrier coating cyclic life.
  • However, the thermal expansion curve of LN-33 was lower than LCO-22 up to about 900° C., then the LN-33 expansion curve swept up significantly such that at 1000° C. and above the expansion was equal to LCO-22 or LN-11 (47Ni-23Co-17Cr-12.5Al-0.5Y). This upsweep has also been measured in a similar composition coating, LN-65 (67Ni-22Cr-10Al-1Y). It is speculated that the LN-33 upsweep was due to the phase transformation:
    α+γ→β+γ,
    where α is alpha Cr, γ is a Ni-base alloy, and β is essentially NiAl. All these phases have high thermal expansion except alpha-Cr. Within the composition range of LN-33, alpha-Cr goes into solution and NiAl is formed above about 950° C. See R. L. Dreshfield, T. P. Gabb in Superalloys II, Wiley, N.Y., 1987, p. 566. The reason the other compositions have the generally higher expansion throughout the temperature range may be that alpha-Cr is either not present or is minimized by the presence of Co.
  • The above predictive Equation (1) for maintaining low thermal expansion was used in an effort to discover new NiCrAlY compositions that would retain alpha-Cr to high temperature, and thus perhaps eliminate the expansion upsweep as well.
  • New coatings were plasma sprayed with the PST model 1108 plasma torch, but in a non-shielded mode (air sprayed). One standard NiCrAlY powder (Ni-164) and three experimental alloy powders were made and prepared as coatings. For the three experimental powders, a standard powder lot of Ni-164, made by the vacuum melt argon atomize process (predominate particle size 60-120 microns), was blended with small amounts of pure Cr and Al powders. These elemental powders had predominate particle sizes of 4-8 microns for the Al, 3-14 microns for the Cr, all measured by the Microtrac method. The mixtures of 0.9 kilogram mass were V-blended for 30 minutes. Table 2 shows the calculated compositions of the starting powders and the analyzed composition of the Ni-164 powder. Powder Ni-164 was analyzed by the inductively coupled plasma method. Alloys 3-5 powder compositions were calculated, based on the Ni-164 analysis and the known additions of high purity Al and Cr.
    TABLE 2
    Composition of Starting Powders (Weight Percent)
    Ni Cr Al Y
    Alloy
    3 61.97 27.52 9.30 0.96
    Alloy 4 60.71 25.35 12.75 0.94
    Alloy 5 58.23 27.00 13.63 0.90
    Ni-164 66.9 21.8 9.99 1.04
  • The chemical analyses of the four heat treated coatings are given in Table 3. It was found that the coating made from the vacuum melted argon atomized powder was very close in composition to the original powder. However, the coatings made from the blends with added Al and Cr changed in composition. The alloy blends lost about 1 to 1.5% Al and gained about 1 to 3% Cr, going from powder to coating. The compositional shift most likely occurred in plasma spraying, but some could have occurred in the vacuum heat treatment. It is important that these analyzed results apply to the cylindrical samples that were run in the thermal expansion cycle, as discussed below. All coatings were plasma sprayed in air without inert gas shrouding and then vacuum heat treated for 4 hours at 1080° C. before chemical analysis. Coating LN-65 was made from Ni-164 powder. Oxygen analyses were by the Leco combustion method.
    TABLE 3
    Compositions of Heat Treated Coatings (Weight Percent)
    Ni Cr Al Y O
    Alloy
    3 61.5 28.45 8.53 0.83 1.11
    Alloy 4 61.7 26.24 10.67 0.84 1.06
    Alloy 5 56.0 30.68 12.15 0.80 1.35
    LN-65 67.3 21.12 9.94 1.02 0.19
  • Expansion Results
  • The thermal expansion curves of the thermally-stabilized coatings are shown in FIGS. 1 and 2. It is seen that the LN-65 coating has essentially the same upsweep behavior of the similar composition LN-33 shown earlier. Both the heating and cooling curves are shown in FIG. 1 to demonstrate the hysteresis of the suspected phase transition near 950° C. FIG. 1 also shows that LN-65 was not completely sintered to the final state possible at 1080° C. in 4 hours. An additional 1.5 millimeters per meter (0.15%) shrinkage occurred in this first thermal expansion run after the vacuum heat treatment. Subsequent runs on the same sample do return the cooling curve to the initial specimen length. The three new alloy coatings are shown in FIG. 2, but only the cooling curve for clarity. Alloys 3 and 4 show the upsweep at about 950° C. but it is not as sharp and there is less expansion at the highest temperature of the thermal expansion run. There are similar hysteresis effects for alloys 3 and 4 as seen in LN-65. Alloy 5 appears to have essentially eliminated the upsweep, but there is still a slight effect at 950° C., which is reproducible for repeat thermal expansion runs of this alloy.
  • The expansion curves gave the following values at 525° C. on cooling, and are compared to the predicted values using Equation (1) above. Three separate tests were done for the experimental data reported. The chemical analyses of the heat treated coatings of Table 3 were used in the calculation. The oxygen in the analysis was taken to be combined with yttrium first, then aluminum due to the stabilizing heat treatment at 1080° C., and only the residual metallic aluminum was used in the calculation.
    Thermal expansion between 25° C.
    and 525° C. (cooling) [mm/m]
    Experimental Calculated
    Avg. Std. Dev. Eqn. (1)
    Alloy 3 6.50 0.12 6.36
    Alloy 4 6.74 0.13 6.48
    Alloy 5 6.42 0.13 6.31
    LN-65 7.04 0.11 6.70

    The predictive Equation (1) above does well with the three new alloys, but the experimental data for LN-65 is higher than predicted. LN-65 is a composition not much different than LN-33, whose expansion data agreed very well with Equation (1).
  • Sintering Results
  • The vacuum sintering was done in a Lindberg furnace. The procedure was to stand the coating cylinders on trays, pump down to 90 microns pressure, back-fill with argon to 900 microns and re-pump, repeating three times, then engage the high vacuum pumps to reach a vacuum of about 10−3 mm Hg before heating. Heating was at 25° C. per minute to 300° C. for a one hour outgas hold then to 1080° C., holding for four hours, then cooling to room temperature at initially 35° C. per minute. During the 1080° C. soak, chamber pressure was at 5×10−5 mm Hg.
  • The cylindrical samples were measured before and after the vacuum heat treatment for weight, length and average diameter. The changes in these values relative to the as-coated sample are given in Table 4. In addition, each cylinder was measured for true density by the water immersion method (ASTM B-328-72), except that the oil-sealing step was omitted, in case the samples would be run again in the dilatometer. Separate as-coated cylinders were also measured for density, including the oil impregnation step. These density changes are also given in Table 4. All changes are decreases except density increases. Density increase values for vacuum also include one dilatometer thermal expansion cycle, room temperature to 1080° C. and return at 5° C. per minute. Effect of this extra cycle was found to increase density by 0.1 to 0.6 percent over vacuum heat treating only.
    TABLE 4
    Coating Changes Due to 4 Hours at 1080° C.
    Percent change from as-coated
    Weight Length Diameter Density
    In vacuum Alloy 3 0.60, 0.53 1.02, 1.02 1.08, 0.90  8.7
    furnace Alloy 4 0.56 1.31 1.05 12.8
    Alloy 5 0.47, 0.48 0.78, 0.69 0.62, 0.89 11.3
    LN-65 0.31 1.80 1.96 13.5
    In argon Alloy 3 0.41 0.95 0.80
    dilatometer Alloy 5 0.34 1.10 0.90 10.8
    LN-65 0.16 2.02 1.95 13.6
  • The dilatometer curves for the sintering cycle are shown in FIGS. 3, 4 and 5 for LN-65 and Alloy 3 and 5 coatings. The length shrinkage from the dilatometer data and by separate micrometer measurements were in close agreement. The percent diameter shrinkage measured by vernier micrometer was very close to the length shrinkage. The third dimension, coating thickness, was too small to measure accurately for shrinkage. Assuming thickness shrinkage was an equal percentage, a volume shrinkage estimate for the coatings by taking three times the length shrinkage.
    Estimated Percent Volume Shrinkage
    for 4 Hours/1080° C. Cycles
    Vacuum Furnace Dilatometer
    Alloy
    3 3.0 2.8
    Alloy 4 3.9
    Alloy 5 2.2 3.3
    LN-65 5.4 6.0

    These results and those of Table 4 show that dilatometry agrees well with vacuum furnace heat treatment, for final state sintering results.
  • The dilatometer data is now examined for the dynamic changes that occur during the thermal cycle. The length change plots of FIGS. 3, 4 and 5 show the data both as a function of time and temperature. The curves include sintering, thermal expansion, phase development and phase transition. These curves suggest some sintering length contraction occurs before the sample reaches 1080° C., perhaps starting as low as 800° C. Significant shrinkage further occurs during the 4 hour hold at 1080° C. Finally the last segments of the curves show the cool-down to room temperature.
  • LN-65 coating started from pre-alloyed powder so only solid state sintering occurred. Alloys 3 and 5 started from powder blends, and some of the sintering is likely due to aluminum liquid phase assisted sintering, as suggested by the shrinkage noted near 660° C., perhaps seen more clearly for Alloy 3. The phase transition is apparent in these curves also, the sharp run-up near 1000° C. (heating) for LN-65 and Alloy 3, but absent in Alloy 5. On cooling, the rapid length drop near 950° C. is again seen in LN-65 and Alloy 3. The phase transition can also be seen in the time plots of LN-65 and Alloy 3, just before entering the 4 hour soak period.
  • Coating Phase Analysis
  • The polished microstructures of select coatings were examined in the optical and scanning electron microscopes. The coatings selected were Alloy 3 and Alloy 5. In each case, separate cylinder samples were first vacuum heat treated 4 hours at 1080° C. Then segments of the cylinders were stabilized at 800° C. and at 1050° C. (below and above the suspected phase transition). The stabilization time was one hour in flowing argon, followed by a rapid quench into stirred ice water. The dilatometer trace (FIG. 1) for LN-65 shows that this stabilization time should have been more than adequate.
  • The coatings were metallographically polished then electrolytically etched with 1 part sulfuric acid in 7 parts methanol for 1 second at 12 volts DC. The examination was done first optically with bright field and DIC at 1500 times magnification, then the identity of the alpha-Cr phase in Alloy 5 was checked in the scanning electron microscope/energy dispersive spectroscope.
  • The phases present in the three coatings were as follows:
    800° C. 1050° C.
    Alloy
    3 γ, γ′, α-Cr γ, β-NiAl
    Alloy
    5 γ, γ′, β-NiAl, α-Cr α-Cr, β, γ

    In the above samples alpha-Cr was a minor phase in Alloy 3 at 800° C., but present. In Alloy 5, alpha-Cr was a major phase at both temperatures of stabilization. The effects of using blended powders was also seen, the phase distribution was not uniform everywhere, which would be expected to be found in the next phase using pre-alloyed powders.
  • In FIGS. 6, 7 and 8, optical micrographs of the etched microstructure of Alloy 5, at 800° C. and 1050° C. stabilization, and for Alloy 3 at 1050° C. stabilization. It is seen that alpha-Cr is not present in Alloy 3 at the higher temperature. The phase size was estimated from these figures. When present, the phases were essentially the same size in both alloys. The alpha-Cr phase was about 0.8-1.7 microns, of rounded cubical morphology. The beta NiAl was about 2-4 microns in size. The gamma prime, Ni3Al-type phase was very fine, about 0.25-0.5 microns, and arranged in colonies, very similar to that in superalloys. See E. W. Ross and C. T. Sims in Superalloys II, Wiley, N.Y., 1987, p. 124.
  • In development of new NiCrAlY composition coatings, looking for means to reduce the thermal expansion of the alloy and to avoid the typical NiCrAlY upsweep in thermal expansion at 950° C., several results were obtained. While it proved expeditious to use pure Cr and Al additions to a pre-alloyed NiCrAlY stock powder, there were certain undesirable effects. The chemical composition did shift somewhat from the blended composition to the final coating. Mainly aluminum was lost, but chromium gained. Alloy 5 still retained enough additional Cr and Al to test the theory that a composition retaining alpha-Cr to high temperature was needed to eliminate the expansion upsweep found in LN-65 and LN-33. Air-spray deposition did oxidize the coatings somewhat, but with the minimal aluminum lost to form alumina, the residual metallic composition still formed the desired phases in Alloy 5.
  • The phase analysis of the coatings proved the usefulness of differential interference contrast to image the gamma-prime phase (Ni3Al), which was not seen in bright field. The phases found in Alloys 3 and 5 are different from those indicated for LN-33, including, in addition, gamma-prime. This is because the new compositions are richer in Cr and Al and have clearly moved to a new equilibrium phase field.
  • The dilatometer has proven to be very useful in this study of dynamic phase transitions and of sintering. It also gave the direct measure of the lower thermal expansion values for Alloy 5, which would lead to less thermal mismatch stress at a zirconia interface with such a new bondcoat. Similar to the opening comparison of expansion differences between LCO-22 and 7% yttria stabilized zirconia, the new Alloy 5 has the following expansion comparison, from 25° C. to 525° C. (millimeters per meter):
    Alloy 5 ZrO2-7%Y2O3 Difference (%)
    6.42 5.3 21

    Thus the expansion mismatch at 525° C. was reduced by half, compared to a current standard composition bondcoat.
  • When pre-alloyed powder and shrouded plasma are used, both the chemical shifts and oxide formation found in these examples should be eliminated. Thermal cycle testing of these thermal barrier coating systems based on the new bondcoat composition, in comparison to earlier NiCoCrAlY bondcoats, should show longer life for the thermal barrier coating system using the newly discovered bondcoat alloys.
  • The plasma spray torch in air atmosphere is not the only method of coating fabrication that could use the new alloys. Plasma spraying with a coaxial inert gas shroud, plasma spraying in a vacuum chamber, high velocity oxy-fuel spraying, detonation gun spraying and laser cladding are all coating methods applicable to making the new coatings.
  • The comparative thermal expansion data for the yttria-stabilized zirconia coatings were also made by the plasma spray process. However, the new alloys can also be overcoated by oxide ceramics made by other processes, such as electron beam physical vapor deposition, liquid solution-based plasma deposition, high velocity oxy-fuel deposition, and detonation gun deposition, among others. The benefits of the new low expansion bondcoat will be found independent of the deposition method of the zirconia-based ceramic top layer.
  • In addition to new low expansion coating alloys of this invention, solid articles may also be fabricated that could benefit from low expansion. As in the example above, consider the comparison of thermal expansion from 25° C. to 525° C. of a typical superalloy and Alloy 5 (millimeters per meter).
    Typical Ni Superalloy Alloy 5
    7.4 6.42

    The new NiCrAlY Alloy 5 was thus found to have lower thermal expansion than even a typical Ni-based superalloy. There are likely many applications where a cast or wrought alloy having lower thermal expansion would allow an article to have superior performance. An article of composition based on Alloy 5 or near compositions, should have excellent high temperature oxidation resistance, better than most typical Ni-based superalloys or stainless steels, due to the high Cr and Al content of these new NiCrAlY alloys.
  • Powder particle size distribution is measured by the light scattering method with the powder sample suspended in a liquid solution (ASTM B 822-97) using a Microtrac model X-100 instrument (Leeds & Northrup, St. Petersburg, Fla.) operated in the X-100 mode.
  • Coating surface roughness is measured by the contact stylus method (ASTM D 7127-05) using a Taylor Hobson model Surtronic 3P (Leicester, England) in the Ra mode.
  • While it has been shown and described what is considered to be certain embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail can readily be made without departing from the spirit and scope of the invention. It is, therefore, intended that this invention not be limited to the exact form and detail herein shown and described, nor to anything less than the whole of the invention herein disclosed and hereinafter claimed.

Claims (28)

1. An alloy powder suitable for thermal spraying or other cladding methods comprising an alloy of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
2. The alloy powder of claim 1 wherein M is nickel and M′ is yttrium.
3. The alloy powder of claim 1 having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
4. The alloy powder of claim 1 wherein M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
5. The alloy powder of claim 1 wherein an alpha-Cr phase is present up to a temperature of at least about 1000° C.
6. The alloy powder of claim 1 that is heat treated to stabilize equilibrium phases of said alloy.
7. The alloy powder of claim 1 wherein an alpha-Cr phase is in equilibrium in a thermally stabilized coating comprising said alloy at a temperature of about 800° C. and said alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
8. The alloy powder of claim 1 that falls within an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field at a temperature of about 1150° C.
9. A metal or non-metal substrate coated with the alloy powder of claim 1.
10. The alloy powder of claim 1 with the addition of up to about 10 volume percent stable oxide particles.
11. The alloy powder of claim 1 wherein the stable oxide particles are selected from yttria, hafnia or alumina.
12. A coating made from the alloy powder of claim 1.
13. A coating made from the alloy powder of claim 1 wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
14. A cast or wrought alloy article made from the alloy powder of claim 1.
15. A coating composition suitable for thermal spraying or other cladding methods comprising an alloy powder of MCrAlM′ wherein M is an element selected from nickel, cobalt, iron and mixtures thereof, and M′ is an element selected from yttrium, zirconium, hafnium, ytterbium and mixtures thereof, and wherein M comprises from about 35 to about 80 weight percent of said alloy, Cr comprises from about 15 to about 45 weight percent of said alloy, Al comprises from about 5 to about 30 weight percent of said alloy, and M′ comprises from about 0.01 to about 1.0 weight percent of said alloy, said alloy powder having a mean particle size of 50 percentile point in distribution of from about 5 microns to about 100 microns.
16. The coating composition of claim 15 wherein M is nickel and M′ is yttrium.
17. The coating composition of claim 15 wherein said alloy powder has a mean particle size of 50 percentile point in distribution of from about 5 microns to about 50 microns.
18. The coating composition of claim 15 wherein M comprises from about 40 to about 70 weight percent of said alloy, Cr comprises from about 20 to about 40 weight percent of said alloy, Al comprises from about 10 to about 25 weight percent of said alloy, and M′ comprises from about 0.05 to about 0.95 weight percent of said alloy.
19. The coating composition of claim 15 wherein an alpha-Cr phase is present up to a temperature of at least about 1000° C.
20. The coating composition of claim 15 that is heat treated to stabilize equilibrium phases of said coating composition.
21. The coating composition of claim 15 wherein an alpha-Cr phase is in equilibrium in said coating composition that has been thermally stabilized at a temperature of about 800° C. and said alpha-Cr phase does not dissolve upon heating to a temperature of at least about 1000° C.
22. The coating composition of claim 15 that falls within an alpha-Cr+beta-NiAl+gamma (FCC Ni alloy) phase field at a temperature of about 1150° C.
23. The coating composition of claim 15 further comprising an oxide dispersion.
24. The coating composition of claim 15 wherein the oxide dispersion is selected from alumina, thoria, yttria and rare earth oxides, hafnia and zirconia.
25. The coating composition of claim 15 wherein the oxide dispersion comprises from about 5 to about 25 volume percent of said coating composition.
26. A coating made from the coating composition of claim 15.
27. A coating made from the coating composition of claim 15 wherein, during deposition of the coating, oxygen and/or carbon are intentionally added to the coating.
28. A metal or non-metal substrate coated with the coating composition of claim 15.
US11/703,360 2006-02-13 2007-02-07 Alloy powders and coating compositions containing same Abandoned US20070187005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/703,360 US20070187005A1 (en) 2006-02-13 2007-02-07 Alloy powders and coating compositions containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77252406P 2006-02-13 2006-02-13
US11/703,360 US20070187005A1 (en) 2006-02-13 2007-02-07 Alloy powders and coating compositions containing same

Publications (1)

Publication Number Publication Date
US20070187005A1 true US20070187005A1 (en) 2007-08-16

Family

ID=38367112

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/703,360 Abandoned US20070187005A1 (en) 2006-02-13 2007-02-07 Alloy powders and coating compositions containing same

Country Status (1)

Country Link
US (1) US20070187005A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080032105A1 (en) * 2006-02-13 2008-02-07 Taylor Thomas A Low thermal expansion bondcoats for thermal barrier coatings
US20090075112A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth FeCrAl Coating and Associated Methods
US20090075110A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth NiCoCrAl Coating and Associated Methods
US20090075101A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth CoNiCrAl Coating and Associated Methods
US20090075111A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth NiCrAl Coating and Associated Methods
US20100068405A1 (en) * 2008-09-15 2010-03-18 Shinde Sachin R Method of forming metallic carbide based wear resistant coating on a combustion turbine component
US20130034661A1 (en) * 2010-04-22 2013-02-07 Mtu Aero Engines Gmbh Method for processing a surface of a component
US20140044986A1 (en) * 2012-08-08 2014-02-13 MTU Aero Engines AG DUPLEX-PHASE CrAl COATING FOR IMPROVED CORROSION/OXIDATION PROTECTION
US20190047253A1 (en) * 2016-03-07 2019-02-14 Forschungszentrum Juelich Gmbh Adhesion promoter layer for joining a high-temperature protection layer to a substrate, and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3785877A (en) * 1972-09-25 1974-01-15 Special Metals Corp Treating nickel base alloys
US5073433A (en) * 1989-10-20 1991-12-17 Technology Corporation Thermal barrier coating for substrates and process for producing it
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
US5741556A (en) * 1994-06-24 1998-04-21 Praxair S.T. Technology, Inc. Process for producing an oxide dispersed MCrAlY-based coating
US5863668A (en) * 1997-10-29 1999-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled thermal expansion coat for thermal barrier coatings
US5981091A (en) * 1994-12-24 1999-11-09 Rolls-Royce Plc Article including thermal barrier coated superalloy substrate
US20030118448A1 (en) * 2001-12-20 2003-06-26 Ching-Pang Lee Article with intermediate layer and protective layer, and its fabrication

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3785877A (en) * 1972-09-25 1974-01-15 Special Metals Corp Treating nickel base alloys
US5073433A (en) * 1989-10-20 1991-12-17 Technology Corporation Thermal barrier coating for substrates and process for producing it
US5073433B1 (en) * 1989-10-20 1995-10-31 Praxair Technology Inc Thermal barrier coating for substrates and process for producing it
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
US5741556A (en) * 1994-06-24 1998-04-21 Praxair S.T. Technology, Inc. Process for producing an oxide dispersed MCrAlY-based coating
US5981091A (en) * 1994-12-24 1999-11-09 Rolls-Royce Plc Article including thermal barrier coated superalloy substrate
US5863668A (en) * 1997-10-29 1999-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled thermal expansion coat for thermal barrier coatings
US6093454A (en) * 1997-10-29 2000-07-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of producing controlled thermal expansion coat for thermal barrier coatings
US20030118448A1 (en) * 2001-12-20 2003-06-26 Ching-Pang Lee Article with intermediate layer and protective layer, and its fabrication

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080032105A1 (en) * 2006-02-13 2008-02-07 Taylor Thomas A Low thermal expansion bondcoats for thermal barrier coatings
US7910225B2 (en) * 2006-02-13 2011-03-22 Praxair S.T. Technology, Inc. Low thermal expansion bondcoats for thermal barrier coatings
US7867626B2 (en) 2007-09-14 2011-01-11 Siemens Energy, Inc. Combustion turbine component having rare earth FeCrAI coating and associated methods
US20090075101A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth CoNiCrAl Coating and Associated Methods
US20090075111A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth NiCrAl Coating and Associated Methods
US20090075110A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth NiCoCrAl Coating and Associated Methods
US20090075112A1 (en) * 2007-09-14 2009-03-19 Siemens Power Generation, Inc. Combustion Turbine Component Having Rare Earth FeCrAl Coating and Associated Methods
US8039117B2 (en) 2007-09-14 2011-10-18 Siemens Energy, Inc. Combustion turbine component having rare earth NiCoCrAl coating and associated methods
US8043718B2 (en) 2007-09-14 2011-10-25 Siemens Energy, Inc. Combustion turbine component having rare earth NiCrAl coating and associated methods
US8043717B2 (en) 2007-09-14 2011-10-25 Siemens Energy, Inc. Combustion turbine component having rare earth CoNiCrAl coating and associated methods
US20100068405A1 (en) * 2008-09-15 2010-03-18 Shinde Sachin R Method of forming metallic carbide based wear resistant coating on a combustion turbine component
US20130034661A1 (en) * 2010-04-22 2013-02-07 Mtu Aero Engines Gmbh Method for processing a surface of a component
US20140044986A1 (en) * 2012-08-08 2014-02-13 MTU Aero Engines AG DUPLEX-PHASE CrAl COATING FOR IMPROVED CORROSION/OXIDATION PROTECTION
US9689270B2 (en) * 2012-08-08 2017-06-27 MTU Aero Engines AG Duplex-phase CrAl coating for improved corrosion/oxidation protection
US20190047253A1 (en) * 2016-03-07 2019-02-14 Forschungszentrum Juelich Gmbh Adhesion promoter layer for joining a high-temperature protection layer to a substrate, and method for producing same

Similar Documents

Publication Publication Date Title
US20070187005A1 (en) Alloy powders and coating compositions containing same
Meng et al. Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment
Sivakumar et al. High temperature coatings for gas turbine blades: a review
Lee et al. Concept of functionally graded materials for advanced thermal barrier coating applications
Daroonparvar et al. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 C
Ahmadi-Pidani et al. Laser surface modification of plasma sprayed CYSZ thermal barrier coatings
Wang et al. Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability
Gonzalez‐Julian et al. Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges
Tsipas et al. The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system
US7910225B2 (en) Low thermal expansion bondcoats for thermal barrier coatings
KR20040014223A (en) Thermal barrier coating utilizing a dispersion strengthened metallic bond coat
Zhu et al. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process
JP7174811B2 (en) high temperature parts
Vorkötter et al. Superior cyclic life of thermal barrier coatings with advanced bond coats on single-crystal superalloys
Zhang Thermal barrier coatings prepared by electron beam physical vapor deposition (EB–PVD)
Gupta et al. Design of high lifetime suspension plasma sprayed thermal barrier coatings
US20070190354A1 (en) Low thermal expansion bondcoats for thermal barrier coatings
Vorkötter et al. Oxide dispersion strengthened bond coats with higher alumina content: Oxidation resistance and influence on thermal barrier coating lifetime
Chen et al. High temperature oxidation behaviour of combustion flame sprayed CoNiCrAlY coatings
JPS63118059A (en) Adiabatic coating method and gas turbine combustor
Saremi et al. Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coating on Ni superalloy
Park et al. Variation of thermal barrier coating lifetime characteristics with thermal durability evaluation methods
Taylor et al. Dilatometer studies of NiCrAlY coatings
Cui et al. Thermal durability of thermal barrier coatings with bond coat composition in cyclic thermal exposure
Najafizadeh et al. Thermal barrier ceramic coatings

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRAXAIR S.T. TECHNOLOGY, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAYLOR, THOMAS A.;REEL/FRAME:019162/0600

Effective date: 20070403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION