US20160141008A1 - Low power memory device - Google Patents
Low power memory device Download PDFInfo
- Publication number
- US20160141008A1 US20160141008A1 US15/006,902 US201615006902A US2016141008A1 US 20160141008 A1 US20160141008 A1 US 20160141008A1 US 201615006902 A US201615006902 A US 201615006902A US 2016141008 A1 US2016141008 A1 US 2016141008A1
- Authority
- US
- United States
- Prior art keywords
- bit line
- memory cell
- coupled
- memory device
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1069—I/O lines read out arrangements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1057—Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/12—Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/06—Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/18—Bit line organisation; Bit line lay-out
Definitions
- This invention relates to a memory device, and more particularly to a low power memory device.
- a conventional memory device includes a memory cell array 10 , a plurality of parallel bit lines 11 coupled to the memory cell array 10 , and a plurality of parallel word lines 12 coupled to the memory cell array 10 .
- the memory cell array 10 includes a plurality of memory cells 13 .
- the word lines 12 intersect the bit lines 11 , and are electrically isolated from the bit lines 11 .
- the word lines 12 transmit a control input to the memory cells 13 in order to control the memory cells 13 to output data stored therein to the bit lines 11 .
- each bit line 11 is made longer to be coupled to more memory cells 13 , which inevitably increases a capacitance seen thereat.
- a plurality of sense amplifiers 14 are employed to be coupled respectively to the bit lines 11 to assist in amplifying voltages on the bit lines 11 in order to facilitate data transmission and allow the memory device to operate at a higher frequency.
- the sense amplifiers 14 may be undesirable components of the memory device due to their relatively large power consumption. Therefore, it may be beneficial to attempt to address the issue of the capacitance seen at each bit line 11 , and to omit the sense amplifiers 14 altogether.
- an object of this invention is to provide a memory device that does not require a sense amplifier, and that consumes relatively small power.
- a memory device comprises a memory cell unit, a bit line unit and a buffering unit.
- the memory cell unit includes a plurality of memory cell groups. Each of the memory cell groups includes at least one memory cell for storing data therein.
- the bit line unit includes a plurality of first bit lines, each of which is coupled to the at least one memory cell of a respective one of the memory cell groups, and a second bit line for transmitting to-be-read data.
- the buffering unit includes a plurality of tri-state buffers. Each of the tri-state buffers has an input terminal coupled to a respective one of the first bit lines, and an output terminal coupled to the second bit line.
- a memory device comprises a memory cell unit, a bit line unit and a buffering unit.
- the memory cell unit includes a plurality of memory cell groups. Each of the memory cell groups includes at least one memory cell for storing data therein.
- the bit line unit includes a plurality of first bit lines, each of which is coupled to the at least one memory cell of a respective one of the memory cell groups, and a second bit line for transmitting to-be-read data.
- the buffering unit includes a plurality of two-state buffers. Each of the two-state buffers has an input terminal coupled to a respective one of the first bit lines, and an output terminal coupled to the second bit line. Each of the two-state buffers is operable between an output enable state and an output disable state based on a voltage at the input terminal, and outputs a predetermined reference voltage at the output terminal when operating in the output enable state.
- FIG. 1 is a schematic circuit block diagram illustrating a conventional memory device
- FIG. 2 is a schematic circuit block diagram illustrating the first preferred embodiment of a memory device according to this invention
- FIG. 3 is a schematic circuit diagram illustrating an alternative of a tri-state of the first preferred embodiment
- FIG. 4 is a schematic circuit diagram illustrating an example of a first switch of the first preferred embodiment
- FIGS. 5 to 8 are schematic circuit block diagrams illustrating variations of the first preferred embodiment
- FIG. 9 is a schematic circuit block diagram illustrating the second preferred embodiment of a memory device according to this invention.
- FIG. 10 is a schematic circuit diagram illustrating an example of a two-state buffer of the second preferred embodiment
- FIGS. 11 to 13 are schematic circuit diagrams illustrating alternatives of the two-state buffer of the second preferred embodiment.
- FIGS. 14 to 18 are schematic circuit block diagrams illustrating variations of the second preferred embodiment.
- the first preferred embodiment of a memory device includes a memory cell unit 2 , a bit line unit 3 , a buffering unit 5 , a plurality of first switches 52 and a biasing unit 6 .
- the memory cell unit 2 includes a plurality of memory cell groups 20 .
- Each memory cell group 20 includes at least one memory cell (MC) 21 for storing data therein.
- the memory cell unit 2 is in the form of a memory cell line and includes, for example, thirty-two (32) memory cell groups 20 , and each memory cell group 20 includes, for example, eight (8) memory cells 21 . That is, the total number of the memory cells is, for example, two-hundred-and-fifty-six (256).
- the memory cell groups 20 do not necessarily have to have equal numbers of memory cells 21 in other embodiments of this invention.
- the bit line unit 3 includes a plurality of first bit lines 31 each coupled to the memory cells 21 of a respective memory cell group 20 , a second bit line 32 for transmitting to-be-read data, a third bit line 41 for transmitting to-be-written data, and a plurality of fourth bit lines 42 each coupled to the memory cells 21 of a respective memory cell group 20 .
- the buffering unit 5 includes a plurality of tri-state buffers 51 .
- Each tri-state buffer 51 has an input terminal coupled to a respective first bit line 31 , and an output terminal coupled to the second bit line 32 .
- Each tri-state buffer 51 is operable between an output enable state and an output disable state, outputs one of two predetermined reference voltages (e.g., a logic high voltage and a logic low voltage) at the output terminal based on a voltage at the input terminal when operating in the output enable state, and does not output any voltage at the output terminal (i.e., exhibiting high impedance at the output terminal) when operating in the output disable state.
- two predetermined reference voltages e.g., a logic high voltage and a logic low voltage
- each tri-state buffer 51 is a buffer that is activated and deactivated in the output enable state and the output disable state, respectively.
- each tri-state buffer 51 may be constituted by a buffer 515 and a switch 514 that is coupled to the buffer 515 and that is turned on and off to bring the tri-state buffer 51 in the output enable state and the output disable state, respectively.
- each tri-state buffer 51 the voltage at the output terminal may be in-phase or anti-phase with the voltage at the input terminal. Since each tri-state buffer 51 having the anti-phase configuration may only include, for example, three transistors, the buffering unit 5 has the advantage of occupying a relatively small area when each tri-state buffer 51 has the anti-phase configuration. Moreover, if a voltage at the second bit line 32 is anti-phase with the data stored in each memory cell 21 when the memory cell 21 is read, an inverter (not shown) may be required to be coupled to the second bit line 32 for inverting the voltage at the second bit line 32 .
- Each first switch 52 is coupled between the third bit line 41 and a respective fourth bit line 42 .
- each first switch 52 is an N-channel metal oxide semiconductor field effect transistor (MOSFET) (see FIG. 4 ) or alternatively, a P-channel one.
- MOSFET metal oxide semiconductor field effect transistor
- this invention is not limited to such configuration.
- each first switch 52 may be a field effect transistor (FET) of other types, e.g., a fin field effect transistor (FinFET).
- the first switches 52 and the fourth bit lines 42 may be omitted in other embodiments.
- the third bit line 41 is coupled to the memory cells 21 of each memory cell group 20 .
- the biasing unit 6 includes a plurality of first biasing circuits (FBCs) 61 and a second biasing circuit (SBC) 62 .
- Each first biasing circuit 61 is coupled to a respective first bit line 31 and the input terminal of a respective tri-state buffer 51 , and supplies a first predetermined bias voltage thereto when none of the memory cells 21 of a respective memory cell group 20 is read.
- the second biasing circuit 62 is coupled to the second bit line 32 , and supplies a second predetermined bias voltage thereto when all of the tri-state buffers 51 operate in the output disable state.
- each of the first and second predetermined bias voltages may be the logic high voltage or the logic low voltage, depending on the configuration of the memory cells 21 .
- the second biasing circuit 62 may be omitted in other embodiments, in which case the second bit line 32 is adapted to be coupled to an external circuit that can supply the second predetermined bias voltage thereto.
- the corresponding first switch 52 is turned on while the other first switches 52 remain turned off, such that the data is written into the selected memory cell 21 through the third bit line 41 , the corresponding first switch 52 and the corresponding fourth bit line 42 .
- the corresponding tri-state buffer 51 switches to the output enable state while the other tri-state buffers 51 remain in the output disable state, such that the data stored in the selected memory cell 21 is read through the corresponding first bit line 31 , the corresponding tri-state buffer 51 and the second bit line 32 .
- each memory cell 21 is read and written at different terminals.
- each memory cell 21 may be read and written at the same terminal, in which case the fourth bit lines 42 are omitted, and each first switch 52 is coupled to a respective first bit line 31 instead.
- FIG. 6 illustrates a variation of the first preferred embodiment.
- the first biasing circuits 61 (see FIG. 2 ) are omitted, and each memory cell group 20 further includes a dummy cell 22 that is coupled to the respective first bit line 31 .
- the dummy cell 22 supplies the first predetermined bias voltage to the respective first bit line 31 when none of the memory cells 21 is read.
- the third bit line 41 (see FIG. 2 )
- the fourth bit lines 42 see FIG. 2
- the first switches 52 see FIG. 2
- FIG. 7 illustrates another variation of the first preferred embodiment.
- the first biasing circuits 61 (see FIG. 2 ) are also omitted, and for each memory cell group 20 , one of the memory cells 21 serves as a parking cell ( 21 a ), and outputs the data stored therein to bias the corresponding first bit line 31 when none of the memory cells 21 is read.
- the third bit line 41 (see FIG. 2 )
- the fourth bit lines 42 (see FIG. 2 )
- the first switches 52 see FIG. 2 ) are not depicted in FIG. 7 for simplicity of illustration.
- FIG. 8 illustrates yet another variation of the first preferred embodiment.
- the third bit line 41 (see FIG. 2 ) and the fourth bit lines 42 (see FIG. 2 ) are omitted, and each first switch 52 is coupled between a respective first bit line 31 and the second bit line 32 instead.
- the second bit line 32 further transmits to-be-written data.
- the memory device of this embodiment shown in FIG. 2 has the following advantages:
- each first bit line 31 is relatively short and is coupled to a relatively small number (i.e., 8 instead of 256) of memory cells 21 , a capacitance seen thereat can be reduced to 1/32 that of the conventional memory device (see FIG. 1 ). Since it is relatively easy to improve driving capability of each tri-state buffer 51 , a resistance seen at the second bit line 32 can be relatively small compared to the conventional memory device (see FIG. 1 ). For example, it is assumed that the memory device of this embodiment is fabricated using a 28 nm process.
- a time constant (e.g., 5RC) of each first bit line 31 may be 0.125 ns with a resistance of 25K ⁇ and a capacitance of 1 fF
- a time constant (e.g., 5RC) of the second bit line 32 may be 0.15 ns with a resistance of 2K ⁇ and a capacitance of 15 fF. Due to the relatively small time constants, the memory device of this embodiment can be read at a relatively high frequency compared to the conventional memory device (see FIG. 1 ).
- each tri-state buffer 51 assists in driving the second data line 32 , a sense amplifier is not required, thereby reducing overall power consumption of the memory device of this embodiment.
- the memory device of this embodiment can be read and written at the same order of frequency.
- each first biasing circuit 61 supplies the first predetermined bias voltage to the input terminal of the respective tri-state buffer 51 when none of the memory cells 21 of the respective memory cell group 20 is read, the input terminal of each tri-state buffer 51 will not be floating, thereby preventing unnecessary power consumption by the memory device of this embodiment.
- each of the memory devices shown respectively in FIGS. 6 and 7 since the input terminal of each tri-state buffer 51 is biased by the dummy cell 22 or the parking cell ( 21 a ) of the respective memory cell group 20 , instead of the respective first biasing circuit 61 (see FIG. 2 ), the memory device has relatively low design complexity, thereby reducing design time and costs.
- the second preferred embodiment of a memory device is a modification of the first preferred embodiment.
- the buffering unit 5 of the second preferred embodiment includes a plurality of two-state buffers 53 .
- Each two-state buffer 53 has an input terminal coupled to a respective first biasing circuit 61 , and an output terminal coupled to the second bit line 32 .
- the memory device of the second preferred embodiment further includes a plurality of second switches 7 .
- Each second switch 7 is coupled between the input terminal of a respective two-state buffer 53 and a respective first bit line 31 .
- Each two-state buffer 53 is operable between an output enable state and an output disable state based on a voltage at the input terminal, outputs a predetermined reference voltage at the output terminal when operating in the output enable state, and does not output any voltage at the output terminal (i.e., exhibiting high impedance at the output terminal) when operating in the output disable state.
- the predetermined reference voltage may be the logic high voltage or the logic low voltage depending on design choice.
- Each two-state buffer 53 may be a transistor (e.g., a FET such as a MOSFET or a FinFET) that has a first terminal (e.g., one of a source terminal and a drain terminal) for receiving the predetermined reference voltage, a second terminal (e.g., the other of the source terminal and the drain terminal) serving as the output terminal, and a control terminal (e.g., a gate terminal) serving as the input terminal, and that is turned on and off to bring the two-state buffer 53 in the output enable state and the output disable state, respectively.
- a transistor e.g., a FET such as a MOSFET or a FinFET
- the predetermined reference voltage is the logic high voltage
- each two-state buffer 53 is an N-channel FET, such that each two-state buffer 53 outputs the logic high voltage at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output disable state).
- the predetermined reference voltage is the logic low voltage
- each two-state buffer 53 is an N-channel FET, such that each two-state buffer 53 outputs the logic low voltage at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output disable state).
- the predetermined reference voltage is the logic high voltage
- each two-state buffer 53 is a P-channel FET, such that each two-state buffer 53 outputs the logic high voltage at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output disable state).
- the predetermined reference voltage is the logic low voltage
- each two-state buffer 53 is a P-channel FET, such that each two-state buffer 53 outputs the logic low voltage at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output disable state).
- each first biasing circuit 61 supplies the first predetermined bias voltage to the input terminal of the respective two-state buffer 53 when none of the memory cells 21 of the respective memory cell group 20 is read.
- the second biasing circuit 62 supplies the second predetermined bias voltage to the second bit line 32 when all of the two-state buffers 53 operate in the output disable state.
- Each of the first and second predetermined bias voltages may be the logic high voltage or the logic low voltage.
- the first predetermined bias voltage may be the logic low voltage
- the second predetermined bias voltage may be the logic low voltage, such that each two-state buffer 53 is biased to the logic low voltage at the input terminal and thus operates in the output disable state if none of the memory cells 21 of the respective memory cell group 20 is read, and such that the second bit line 32 is biased to the logic low voltage if all of the two-state buffers 53 operate in the output disable state.
- one of the memory cells 21 is selected to have data stored therein be read.
- the corresponding two-state buffer 53 switches to the output enable state and outputs the logic high voltage to the second bit line 32 while other two-state buffers 53 remain in the output disable state.
- the data stored in the selected memory cell 21 makes the voltage at the input terminal of the corresponding two-state buffer 53 sufficiently low, all of the two-state buffers 53 remain in the output disable state, and the second biasing circuit 62 supplies the logic low voltage to the second bit line 32 .
- the first predetermined bias voltage may be the logic low voltage, and the second predetermined bias voltage may be the logic high voltage; when each two-state buffer 53 has the configuration shown in FIG. 12 , the first predetermined bias voltage may be the logic high voltage, and the second predetermined bias voltage may be the logic low voltage; and when each two-state buffer 53 has the configuration shown in FIG. 13 , the first predetermined bias voltage may be the logic high voltage, and the second predetermined bias voltage may be the logic high voltage.
- each second switch 7 is turned on when one of the memory cells 21 of the respective memory cell group 20 is read, and is turned off when none of the memory cells 21 of the respective memory cell group 20 is read.
- each second switch 7 is an N-channel MOSFET (see FIG. 4 ) or may alternatively be a P-channel one.
- this invention is not limited to such configuration.
- each second switch 7 may be a FET of other types, e.g., a FinFET.
- the second switches 7 may be omitted. In this case, the input terminal of each two-state buffer 53 is coupled to the respective first bit line 31 .
- the first switches 52 and the fourth bit lines 42 may be omitted. In this case, as shown in FIG. 14 , the third bit line 41 is coupled to the memory cells 21 of each memory cell group 20 .
- FIG. 15 illustrates a variation of the second preferred embodiment.
- the second switches 7 (see FIG. 9 ) and the first biasing circuits 61 (see FIG. 9 ) are omitted
- the input terminal of each two-state buffer 53 is coupled to the respective first bit line 31
- each memory cell group 20 further includes a dummy cell 22 that is coupled to the respective first bit line 31 .
- the dummy cell 22 supplies the first predetermined bias voltage to the respective first bit line 31 when none of the memory cells 21 is read.
- the third bit line 41 (see FIG. 9 ), the fourth bit lines 42 (see FIG. 9 ) and the first switches 52 (see FIG. 9 ) are not depicted in FIG. 15 for simplicity of illustration.
- FIG. 16 illustrates another variation of the second preferred embodiment.
- the second switches 7 (see FIG. 9 ) and the first biasing circuits 61 (see FIG. 9 ) are omitted, and for each memory cell group 20 , one of the memory cells 21 serves as a parking cell ( 21 a ), and outputs the data stored therein to bias the corresponding first bit line 31 when none of the memory cells 21 is read.
- the third bit line 41 (see FIG. 9 ), the fourth bit lines 42 (see FIG. 9 ) and the first switches 52 (see FIG. 9 ) are not depicted in FIG. 15 for simplicity of illustration.
- FIG. 17 illustrates yet another variation of the second preferred embodiment.
- each second switch 7 is coupled between the output terminal of the respective two-state buffer 53 and the second bit line 32 .
- the second switch 7 when none of the memory cells 21 of the respective memory cell group 20 is read, the second switch 7 is off, and no current can flow through the respective two-state buffer 53 even if the input terminal of the respective two-state buffer 53 is floating.
- the first biasing circuits 61 may be omitted as shown.
- FIG. 18 illustrates still another variation of the second preferred embodiment.
- the third bit line 41 (see FIG. 9 ) and the fourth bit lines 42 (see FIG. 9 ) are omitted, and each first switch 52 is coupled between a respective first bit line 31 and the second bit line 32 instead.
- the second bit line 32 further transmits to-be-written data.
- the memory device of this embodiment further has the following advantages:
- the buffering unit 5 of this embodiment occupies a relatively small area, and has a relatively low design complexity and a relatively flexible layout, as compared to that of the first preferred embodiment (see FIG. 2 ).
Landscapes
- Static Random-Access Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
A memory device includes a memory cell unit, a bit line unit and a buffering unit. The memory cell unit includes a plurality of memory cell groups. Each memory cell group includes at least one memory cell for storing data therein. The bit line unit includes a plurality of first bit lines each coupled to the at least one memory cell of a respective memory cell group, and a second bit line for transmitting to-be-read data. The buffering unit includes a plurality of two-state buffers. Each two-state buffer has an input terminal coupled to a respective first bit line, and an output terminal coupled to the second bit line. The memory device does not require a sense amplifier, and thus consumes relatively small power. The memory device can operate at a relatively high frequency when properly configured.
Description
- This invention relates to a memory device, and more particularly to a low power memory device.
- Referring to
FIG. 1 , a conventional memory device includes amemory cell array 10, a plurality ofparallel bit lines 11 coupled to thememory cell array 10, and a plurality ofparallel word lines 12 coupled to thememory cell array 10. - The
memory cell array 10 includes a plurality ofmemory cells 13. Theword lines 12 intersect thebit lines 11, and are electrically isolated from thebit lines 11. Theword lines 12 transmit a control input to thememory cells 13 in order to control thememory cells 13 to output data stored therein to thebit lines 11. - As the demand for storage capacity of memory devices increases,
memory cell arrays 10 with manymore memory cells 13 would be preferable. However, to accommodate this, eachbit line 11 is made longer to be coupled tomore memory cells 13, which inevitably increases a capacitance seen thereat. - Because of the relatively large capacitance seen at each
bit line 11, voltages outputted by thememory cells 13 may not promptly propagate to the bit lines 11 (i.e., thememory cells 13 may not be able to drive thebit lines 11 efficiently). As a result, a plurality ofsense amplifiers 14 are employed to be coupled respectively to thebit lines 11 to assist in amplifying voltages on thebit lines 11 in order to facilitate data transmission and allow the memory device to operate at a higher frequency. - Nonetheless, the
sense amplifiers 14 may be undesirable components of the memory device due to their relatively large power consumption. Therefore, it may be beneficial to attempt to address the issue of the capacitance seen at eachbit line 11, and to omit thesense amplifiers 14 altogether. - Therefore, an object of this invention is to provide a memory device that does not require a sense amplifier, and that consumes relatively small power.
- According to one aspect of this invention, a memory device comprises a memory cell unit, a bit line unit and a buffering unit. The memory cell unit includes a plurality of memory cell groups. Each of the memory cell groups includes at least one memory cell for storing data therein. The bit line unit includes a plurality of first bit lines, each of which is coupled to the at least one memory cell of a respective one of the memory cell groups, and a second bit line for transmitting to-be-read data. The buffering unit includes a plurality of tri-state buffers. Each of the tri-state buffers has an input terminal coupled to a respective one of the first bit lines, and an output terminal coupled to the second bit line.
- According to another aspect of this invention, a memory device comprises a memory cell unit, a bit line unit and a buffering unit. The memory cell unit includes a plurality of memory cell groups. Each of the memory cell groups includes at least one memory cell for storing data therein. The bit line unit includes a plurality of first bit lines, each of which is coupled to the at least one memory cell of a respective one of the memory cell groups, and a second bit line for transmitting to-be-read data. The buffering unit includes a plurality of two-state buffers. Each of the two-state buffers has an input terminal coupled to a respective one of the first bit lines, and an output terminal coupled to the second bit line. Each of the two-state buffers is operable between an output enable state and an output disable state based on a voltage at the input terminal, and outputs a predetermined reference voltage at the output terminal when operating in the output enable state.
- Other features and advantages of this invention will become apparent in the following detailed description of the preferred embodiments of this invention with reference to the accompanying drawings, of which:
-
FIG. 1 is a schematic circuit block diagram illustrating a conventional memory device; -
FIG. 2 is a schematic circuit block diagram illustrating the first preferred embodiment of a memory device according to this invention; -
FIG. 3 is a schematic circuit diagram illustrating an alternative of a tri-state of the first preferred embodiment; -
FIG. 4 is a schematic circuit diagram illustrating an example of a first switch of the first preferred embodiment; -
FIGS. 5 to 8 are schematic circuit block diagrams illustrating variations of the first preferred embodiment; -
FIG. 9 is a schematic circuit block diagram illustrating the second preferred embodiment of a memory device according to this invention; -
FIG. 10 is a schematic circuit diagram illustrating an example of a two-state buffer of the second preferred embodiment; -
FIGS. 11 to 13 are schematic circuit diagrams illustrating alternatives of the two-state buffer of the second preferred embodiment; and -
FIGS. 14 to 18 are schematic circuit block diagrams illustrating variations of the second preferred embodiment. - Before this invention is described in greater detail with reference to the accompanying preferred embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
- Referring to
FIG. 2 , the first preferred embodiment of a memory device according to this invention includes amemory cell unit 2, abit line unit 3, abuffering unit 5, a plurality offirst switches 52 and abiasing unit 6. - The
memory cell unit 2 includes a plurality ofmemory cell groups 20. Eachmemory cell group 20 includes at least one memory cell (MC) 21 for storing data therein. In this embodiment, thememory cell unit 2 is in the form of a memory cell line and includes, for example, thirty-two (32)memory cell groups 20, and eachmemory cell group 20 includes, for example, eight (8)memory cells 21. That is, the total number of the memory cells is, for example, two-hundred-and-fifty-six (256). However, it should be noted that thememory cell groups 20 do not necessarily have to have equal numbers ofmemory cells 21 in other embodiments of this invention. - The
bit line unit 3 includes a plurality offirst bit lines 31 each coupled to thememory cells 21 of a respectivememory cell group 20, asecond bit line 32 for transmitting to-be-read data, athird bit line 41 for transmitting to-be-written data, and a plurality offourth bit lines 42 each coupled to thememory cells 21 of a respectivememory cell group 20. - The
buffering unit 5 includes a plurality of tri-statebuffers 51. Each tri-statebuffer 51 has an input terminal coupled to a respectivefirst bit line 31, and an output terminal coupled to thesecond bit line 32. Each tri-statebuffer 51 is operable between an output enable state and an output disable state, outputs one of two predetermined reference voltages (e.g., a logic high voltage and a logic low voltage) at the output terminal based on a voltage at the input terminal when operating in the output enable state, and does not output any voltage at the output terminal (i.e., exhibiting high impedance at the output terminal) when operating in the output disable state. - In this embodiment, each tri-state
buffer 51 is a buffer that is activated and deactivated in the output enable state and the output disable state, respectively. However, as shown inFIG. 3 , in other embodiments, each tri-statebuffer 51 may be constituted by abuffer 515 and aswitch 514 that is coupled to thebuffer 515 and that is turned on and off to bring the tri-statebuffer 51 in the output enable state and the output disable state, respectively. - Referring back to
FIG. 2 , it is noted that, for each tri-statebuffer 51, the voltage at the output terminal may be in-phase or anti-phase with the voltage at the input terminal. Since each tri-statebuffer 51 having the anti-phase configuration may only include, for example, three transistors, thebuffering unit 5 has the advantage of occupying a relatively small area when each tri-statebuffer 51 has the anti-phase configuration. Moreover, if a voltage at thesecond bit line 32 is anti-phase with the data stored in eachmemory cell 21 when thememory cell 21 is read, an inverter (not shown) may be required to be coupled to thesecond bit line 32 for inverting the voltage at thesecond bit line 32. - Each
first switch 52 is coupled between thethird bit line 41 and a respectivefourth bit line 42. In this embodiment, eachfirst switch 52 is an N-channel metal oxide semiconductor field effect transistor (MOSFET) (seeFIG. 4 ) or alternatively, a P-channel one. However, this invention is not limited to such configuration. For example, eachfirst switch 52 may be a field effect transistor (FET) of other types, e.g., a fin field effect transistor (FinFET). - It is noted that the
first switches 52 and thefourth bit lines 42 may be omitted in other embodiments. In this case, as shown inFIG. 5 , thethird bit line 41 is coupled to thememory cells 21 of eachmemory cell group 20. - Referring back to
FIG. 2 , thebiasing unit 6 includes a plurality of first biasing circuits (FBCs) 61 and a second biasing circuit (SBC) 62. Eachfirst biasing circuit 61 is coupled to a respectivefirst bit line 31 and the input terminal of a respective tri-statebuffer 51, and supplies a first predetermined bias voltage thereto when none of thememory cells 21 of a respectivememory cell group 20 is read. Thesecond biasing circuit 62 is coupled to thesecond bit line 32, and supplies a second predetermined bias voltage thereto when all of the tri-statebuffers 51 operate in the output disable state. - It is noted that each of the first and second predetermined bias voltages may be the logic high voltage or the logic low voltage, depending on the configuration of the
memory cells 21. Moreover, thesecond biasing circuit 62 may be omitted in other embodiments, in which case thesecond bit line 32 is adapted to be coupled to an external circuit that can supply the second predetermined bias voltage thereto. - In operation, when one of the
memory cells 21 is selected to have data written thereinto, the correspondingfirst switch 52 is turned on while the otherfirst switches 52 remain turned off, such that the data is written into the selectedmemory cell 21 through thethird bit line 41, the correspondingfirst switch 52 and the correspondingfourth bit line 42. When one of thememory cells 21 is selected to have data stored therein be read, the correspondingtri-state buffer 51 switches to the output enable state while the othertri-state buffers 51 remain in the output disable state, such that the data stored in the selectedmemory cell 21 is read through the correspondingfirst bit line 31, the correspondingtri-state buffer 51 and thesecond bit line 32. - It is noted that, in this embodiment, each
memory cell 21 is read and written at different terminals. However, in other embodiments, eachmemory cell 21 may be read and written at the same terminal, in which case thefourth bit lines 42 are omitted, and eachfirst switch 52 is coupled to a respectivefirst bit line 31 instead. -
FIG. 6 illustrates a variation of the first preferred embodiment. In this case, the first biasing circuits 61 (seeFIG. 2 ) are omitted, and eachmemory cell group 20 further includes adummy cell 22 that is coupled to the respectivefirst bit line 31. For eachmemory cell group 20, thedummy cell 22 supplies the first predetermined bias voltage to the respectivefirst bit line 31 when none of thememory cells 21 is read. It is noted that the third bit line 41 (seeFIG. 2 ), the fourth bit lines 42 (seeFIG. 2 ) and the first switches 52 (seeFIG. 2 ) are not depicted inFIG. 6 for simplicity of illustration. -
FIG. 7 illustrates another variation of the first preferred embodiment. In this case, the first biasing circuits 61 (seeFIG. 2 ) are also omitted, and for eachmemory cell group 20, one of thememory cells 21 serves as a parking cell (21 a), and outputs the data stored therein to bias the correspondingfirst bit line 31 when none of thememory cells 21 is read. It is noted that the third bit line 41 (seeFIG. 2 ), the fourth bit lines 42 (seeFIG. 2 ) and the first switches 52 (seeFIG. 2 ) are not depicted inFIG. 7 for simplicity of illustration. -
FIG. 8 illustrates yet another variation of the first preferred embodiment. In this case, the third bit line 41 (seeFIG. 2 ) and the fourth bit lines 42 (seeFIG. 2 ) are omitted, and eachfirst switch 52 is coupled between a respectivefirst bit line 31 and thesecond bit line 32 instead. Moreover, thesecond bit line 32 further transmits to-be-written data. - In view of the above, the memory device of this embodiment shown in
FIG. 2 has the following advantages: - 1. Since each
first bit line 31 is relatively short and is coupled to a relatively small number (i.e., 8 instead of 256) ofmemory cells 21, a capacitance seen thereat can be reduced to 1/32 that of the conventional memory device (seeFIG. 1 ). Since it is relatively easy to improve driving capability of eachtri-state buffer 51, a resistance seen at thesecond bit line 32 can be relatively small compared to the conventional memory device (seeFIG. 1 ). For example, it is assumed that the memory device of this embodiment is fabricated using a 28 nm process. In this case, a time constant (e.g., 5RC) of eachfirst bit line 31 may be 0.125 ns with a resistance of 25KΩ and a capacitance of 1 fF, and a time constant (e.g., 5RC) of thesecond bit line 32 may be 0.15 ns with a resistance of 2KΩ and a capacitance of 15 fF. Due to the relatively small time constants, the memory device of this embodiment can be read at a relatively high frequency compared to the conventional memory device (seeFIG. 1 ). - 2. Since each
tri-state buffer 51 assists in driving thesecond data line 32, a sense amplifier is not required, thereby reducing overall power consumption of the memory device of this embodiment. - 3. By using a driving circuit (not shown) with a large driving capability to drive the
third bit line 41, a time constant of thethird bit line 41 can approximate that of eachfirst bit line 31. Therefore, the memory device of this embodiment can be read and written at the same order of frequency. - 4. Since each
first biasing circuit 61 supplies the first predetermined bias voltage to the input terminal of the respectivetri-state buffer 51 when none of thememory cells 21 of the respectivememory cell group 20 is read, the input terminal of eachtri-state buffer 51 will not be floating, thereby preventing unnecessary power consumption by the memory device of this embodiment. - Moreover, for each of the memory devices shown respectively in
FIGS. 6 and 7 , since the input terminal of eachtri-state buffer 51 is biased by thedummy cell 22 or the parking cell (21 a) of the respectivememory cell group 20, instead of the respective first biasing circuit 61 (seeFIG. 2 ), the memory device has relatively low design complexity, thereby reducing design time and costs. - Referring to
FIG. 9 , the second preferred embodiment of a memory device according to this invention is a modification of the first preferred embodiment. Instead of the tri-state buffers 51 (seeFIG. 2 ) of the first preferred embodiment, thebuffering unit 5 of the second preferred embodiment includes a plurality of two-state buffers 53. Each two-state buffer 53 has an input terminal coupled to a respectivefirst biasing circuit 61, and an output terminal coupled to thesecond bit line 32. Moreover, the memory device of the second preferred embodiment further includes a plurality ofsecond switches 7. Eachsecond switch 7 is coupled between the input terminal of a respective two-state buffer 53 and a respectivefirst bit line 31. - Each two-
state buffer 53 is operable between an output enable state and an output disable state based on a voltage at the input terminal, outputs a predetermined reference voltage at the output terminal when operating in the output enable state, and does not output any voltage at the output terminal (i.e., exhibiting high impedance at the output terminal) when operating in the output disable state. - The predetermined reference voltage may be the logic high voltage or the logic low voltage depending on design choice. Each two-
state buffer 53 may be a transistor (e.g., a FET such as a MOSFET or a FinFET) that has a first terminal (e.g., one of a source terminal and a drain terminal) for receiving the predetermined reference voltage, a second terminal (e.g., the other of the source terminal and the drain terminal) serving as the output terminal, and a control terminal (e.g., a gate terminal) serving as the input terminal, and that is turned on and off to bring the two-state buffer 53 in the output enable state and the output disable state, respectively. - In a first example, as shown in
FIG. 10 , the predetermined reference voltage is the logic high voltage, and each two-state buffer 53 is an N-channel FET, such that each two-state buffer 53 outputs the logic high voltage at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output disable state). - In a second example, as shown in
FIG. 11 , the predetermined reference voltage is the logic low voltage, and each two-state buffer 53 is an N-channel FET, such that each two-state buffer 53 outputs the logic low voltage at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output disable state). - In a third example, as shown in
FIG. 12 , the predetermined reference voltage is the logic high voltage, and each two-state buffer 53 is a P-channel FET, such that each two-state buffer 53 outputs the logic high voltage at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output disable state). - In a fourth example, as shown in
FIG. 13 , the predetermined reference voltage is the logic low voltage, and each two-state buffer 53 is a P-channel FET, such that each two-state buffer 53 outputs the logic low voltage at the output terminal when the voltage at the input terminal is sufficiently low (i.e., the two-state buffer 53 operating in the output enable state), and exhibits high impedance at the output terminal when the voltage at the input terminal is sufficiently high (i.e., the two-state buffer 53 operating in the output disable state). - Referring back to
FIG. 9 , eachfirst biasing circuit 61 supplies the first predetermined bias voltage to the input terminal of the respective two-state buffer 53 when none of thememory cells 21 of the respectivememory cell group 20 is read. Thesecond biasing circuit 62 supplies the second predetermined bias voltage to thesecond bit line 32 when all of the two-state buffers 53 operate in the output disable state. - Each of the first and second predetermined bias voltages may be the logic high voltage or the logic low voltage. When each two-
state buffer 53 has the configuration shown inFIG. 10 , the first predetermined bias voltage may be the logic low voltage, and the second predetermined bias voltage may be the logic low voltage, such that each two-state buffer 53 is biased to the logic low voltage at the input terminal and thus operates in the output disable state if none of thememory cells 21 of the respectivememory cell group 20 is read, and such that thesecond bit line 32 is biased to the logic low voltage if all of the two-state buffers 53 operate in the output disable state. In operation, one of thememory cells 21 is selected to have data stored therein be read. When the data stored in the selectedmemory cell 21 makes the voltage at the input terminal of the corresponding two-state buffer 53 sufficiently high, the corresponding two-state buffer 53 switches to the output enable state and outputs the logic high voltage to thesecond bit line 32 while other two-state buffers 53 remain in the output disable state. When the data stored in the selectedmemory cell 21 makes the voltage at the input terminal of the corresponding two-state buffer 53 sufficiently low, all of the two-state buffers 53 remain in the output disable state, and thesecond biasing circuit 62 supplies the logic low voltage to thesecond bit line 32. - Similarly, when each two-
state buffer 53 has the configuration shown inFIG. 11 , the first predetermined bias voltage may be the logic low voltage, and the second predetermined bias voltage may be the logic high voltage; when each two-state buffer 53 has the configuration shown inFIG. 12 , the first predetermined bias voltage may be the logic high voltage, and the second predetermined bias voltage may be the logic low voltage; and when each two-state buffer 53 has the configuration shown inFIG. 13 , the first predetermined bias voltage may be the logic high voltage, and the second predetermined bias voltage may be the logic high voltage. - Referring back to
FIG. 9 , eachsecond switch 7 is turned on when one of thememory cells 21 of the respectivememory cell group 20 is read, and is turned off when none of thememory cells 21 of the respectivememory cell group 20 is read. In this embodiment, eachsecond switch 7 is an N-channel MOSFET (seeFIG. 4 ) or may alternatively be a P-channel one. However, this invention is not limited to such configuration. For example, eachsecond switch 7 may be a FET of other types, e.g., a FinFET. - It is noted that in other embodiments, the following modifications may be made to the second preferred embodiment:
- 1. The second switches 7 may be omitted. In this case, the input terminal of each two-
state buffer 53 is coupled to the respectivefirst bit line 31. - 2. The first switches 52 and the fourth bit lines 42 may be omitted. In this case, as shown in
FIG. 14 , thethird bit line 41 is coupled to thememory cells 21 of eachmemory cell group 20. -
FIG. 15 illustrates a variation of the second preferred embodiment. In this case, the second switches 7 (seeFIG. 9 ) and the first biasing circuits 61 (seeFIG. 9 ) are omitted, the input terminal of each two-state buffer 53 is coupled to the respectivefirst bit line 31, and eachmemory cell group 20 further includes adummy cell 22 that is coupled to the respectivefirst bit line 31. For eachmemory cell group 20, thedummy cell 22 supplies the first predetermined bias voltage to the respectivefirst bit line 31 when none of thememory cells 21 is read. It is noted that the third bit line 41 (seeFIG. 9 ), the fourth bit lines 42 (seeFIG. 9 ) and the first switches 52 (seeFIG. 9 ) are not depicted inFIG. 15 for simplicity of illustration. -
FIG. 16 illustrates another variation of the second preferred embodiment. In this case, the second switches 7 (seeFIG. 9 ) and the first biasing circuits 61 (seeFIG. 9 ) are omitted, and for eachmemory cell group 20, one of thememory cells 21 serves as a parking cell (21 a), and outputs the data stored therein to bias the correspondingfirst bit line 31 when none of thememory cells 21 is read. It is noted that the third bit line 41 (seeFIG. 9 ), the fourth bit lines 42 (seeFIG. 9 ) and the first switches 52 (seeFIG. 9 ) are not depicted inFIG. 15 for simplicity of illustration. -
FIG. 17 illustrates yet another variation of the second preferred embodiment. In this case, eachsecond switch 7 is coupled between the output terminal of the respective two-state buffer 53 and thesecond bit line 32. For eachsecond switch 7, when none of thememory cells 21 of the respectivememory cell group 20 is read, thesecond switch 7 is off, and no current can flow through the respective two-state buffer 53 even if the input terminal of the respective two-state buffer 53 is floating. As a result, the first biasing circuits 61 (seeFIG. 9 ) may be omitted as shown. -
FIG. 18 illustrates still another variation of the second preferred embodiment. In this case, the third bit line 41 (seeFIG. 9 ) and the fourth bit lines 42 (seeFIG. 9 ) are omitted, and eachfirst switch 52 is coupled between a respectivefirst bit line 31 and thesecond bit line 32 instead. Moreover, thesecond bit line 32 further transmits to-be-written data. - In view of the above, the memory device of this embodiment further has the following advantages:
- 1. Since the configuration of the two-
state buffer 53 is simpler than that of the tri-state buffer 51 (seeFIG. 2 ), and since the operating state of each two-state buffer 53 is controlled by the voltage at the input terminal, thebuffering unit 5 of this embodiment occupies a relatively small area, and has a relatively low design complexity and a relatively flexible layout, as compared to that of the first preferred embodiment (seeFIG. 2 ). - 2. Since all of the
second switches 7 are turned off and thus the voltage at the input terminal of each two-state buffer 53 remains unchanged when none of thememory cells 21 is read, unnecessary power consumption by the memory device can be prevented even if any of thememory cells 21 outputs the data stored therein at this time. - While this invention has been described in connection with what are considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation and equivalent arrangements.
Claims (13)
1. A memory device comprising:
a memory cell unit including a plurality of memory cell groups, each of said memory cell groups including at least one memory cell for storing data therein;
a bit line unit including a plurality of first bit lines, each of which is coupled to said at least one memory cell of a respective one of said memory cell groups, and a second bit line for transmitting to-be-read data; and
a buffering unit including a plurality of two-state buffers, each of said two-state buffers having an input terminal coupled to a respective one of said first bit lines, and an output terminal coupled to said second bit line, each of said two-state buffers being operable between an output enable state and an output disable state based on a voltage at said input terminal, and outputting a predetermined reference voltage at said output terminal when operating in the output enable state.
2. The memory device of claim 1 , wherein each of said two-state buffers is a transistor that has a first terminal for receiving the predetermined reference voltage, a second terminal serving as said output terminal, and a control terminal serving as said input terminal.
3. The memory device of claim 1 , wherein each of said two-state buffers is a field effect transistor that has a source terminal, a drain terminal and a gate terminal, one of said source and drain terminals receiving the predetermined reference voltage, the other of said source and drain terminals serving as said output terminal, said gate terminal serving as said input terminal.
4. The memory device of claim 1 , further comprising a biasing unit that is coupled to said input terminal of each of said two-state buffers for supplying a predetermined bias voltage thereto.
5. The memory device of claim 1 , further comprising a biasing unit that is coupled to said second bit line for supplying a predetermined bias voltage thereto.
6. The memory device of claim 1 , wherein each of said memory cell groups further includes a dummy cell that is coupled to a respective one of said first bit lines for supplying a predetermined bias voltage thereto.
7. The memory device of claim 1 , wherein one of said at least one memory cell of each of said memory cell groups outputs the data stored therein to bias a corresponding one of said first bit lines.
8. The memory device of claim 1 , further comprising a plurality of switches, each of said switches being coupled between said input terminal of a respective one of said two-state buffers and a respective one of said first bit lines.
9. The memory device of claim 1 , further comprising a plurality of switches, each of said switches being coupled between said output terminal of a respective one of said two-state buffers and said second bit line.
10. The memory device of claim 1 , wherein said bit line unit further includes a third bit line that is coupled to said at least one memory cell of each of said memory cell groups and that transmits to-be-written data.
11. The memory device of claim 1 , further comprising a plurality of switches;
wherein said bit line unit further includes a third bit line for transmitting to-be-written data, and a plurality of fourth bit lines, each of which is coupled to said at least one memory cell of a respective one of said memory cell groups; and
wherein each of said switches is coupled between said third bit line and a respective one of said fourth bit lines.
12. The memory device of claim 1 , further comprising a plurality of switches;
wherein each of said switches is coupled between a respective one of said first bit lines and said second bit line; and
wherein said second bit line further transmits to-be-written data.
13-21. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/006,902 US20160141008A1 (en) | 2014-03-28 | 2016-01-26 | Low power memory device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103111756A TWI527056B (en) | 2014-03-28 | 2014-03-28 | Low power memory |
TW103111756 | 2014-03-28 | ||
US14/318,506 US9431073B2 (en) | 2014-03-28 | 2014-06-27 | Low power memory device |
US15/006,902 US20160141008A1 (en) | 2014-03-28 | 2016-01-26 | Low power memory device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/318,506 Division US9431073B2 (en) | 2014-03-28 | 2014-06-27 | Low power memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160141008A1 true US20160141008A1 (en) | 2016-05-19 |
Family
ID=54166077
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/318,506 Expired - Fee Related US9431073B2 (en) | 2014-03-28 | 2014-06-27 | Low power memory device |
US15/006,902 Abandoned US20160141008A1 (en) | 2014-03-28 | 2016-01-26 | Low power memory device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/318,506 Expired - Fee Related US9431073B2 (en) | 2014-03-28 | 2014-06-27 | Low power memory device |
Country Status (3)
Country | Link |
---|---|
US (2) | US9431073B2 (en) |
CN (1) | CN104951411B (en) |
TW (1) | TWI527056B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10607692B2 (en) * | 2017-06-29 | 2020-03-31 | SK Hynix Inc. | Serializer and memory device including the same |
CN112750476A (en) * | 2019-10-29 | 2021-05-04 | 深圳市国微电子有限公司 | Configuration memory bit line control circuit and FPGA bit line control system |
US11257550B2 (en) * | 2020-06-12 | 2022-02-22 | Taiwan Semiconductor Manufacturing Company Limited | Bias control for memory cells with multiple gate electrodes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6882555B2 (en) * | 2003-06-18 | 2005-04-19 | Lattice Semiconductor Corporation | Bi-directional buffering for memory data lines |
US7196942B2 (en) * | 2004-10-20 | 2007-03-27 | Stmicroelectronics Pvt. Ltd. | Configuration memory structure |
US7626850B2 (en) * | 2007-04-17 | 2009-12-01 | Texas Instruments Incorporated | Systems and devices for implementing sub-threshold memory devices |
US8320163B2 (en) * | 2009-06-10 | 2012-11-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Eight-transistor SRAM memory with shared bit-lines |
US8913440B2 (en) * | 2011-10-05 | 2014-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tracking mechanisms |
KR20140028556A (en) * | 2012-08-29 | 2014-03-10 | 에스케이하이닉스 주식회사 | Semiconductor integrated circuit having differential signal transfer scheme and driving method thereof |
TWI484499B (en) * | 2012-09-14 | 2015-05-11 | Univ Nat Chiao Tung | Ripple bit-lines/search-lines for improving leakage/variation tolerance and density/performance of static random access memory |
-
2014
- 2014-03-28 TW TW103111756A patent/TWI527056B/en not_active IP Right Cessation
- 2014-06-03 CN CN201410243163.2A patent/CN104951411B/en not_active Expired - Fee Related
- 2014-06-27 US US14/318,506 patent/US9431073B2/en not_active Expired - Fee Related
-
2016
- 2016-01-26 US US15/006,902 patent/US20160141008A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
TW201537583A (en) | 2015-10-01 |
US20150279435A1 (en) | 2015-10-01 |
CN104951411A (en) | 2015-09-30 |
CN104951411B (en) | 2017-12-29 |
US9431073B2 (en) | 2016-08-30 |
TWI527056B (en) | 2016-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8339892B2 (en) | Semiconductor memory device | |
US9171618B2 (en) | Semiconductor integrated circuit and processor | |
US8072823B2 (en) | Semiconductor memory device | |
US8638593B2 (en) | Semiconductor device | |
US10115450B1 (en) | Cascode complimentary dual level shifter | |
US9966956B2 (en) | Semiconductor integrated circuit device | |
US20170287537A1 (en) | Low power consumption memory device | |
US20160141008A1 (en) | Low power memory device | |
US7158428B2 (en) | Semiconductor memory device having hierarchical bit line structure | |
JP6979084B2 (en) | Dual power rail cascode driver for long device life and how to configure it | |
US11380406B2 (en) | Output circuit | |
US11443795B2 (en) | SRAM with address dependent power usage | |
US20140362649A1 (en) | Semiconductor memory device | |
CN106575525B (en) | Semiconductor memory device with a plurality of memory cells | |
US9196322B2 (en) | Semiconductor memory device that does not require a sense amplifier | |
US8427889B2 (en) | Memory device and associated main word line and word line driving circuit | |
US9013950B2 (en) | Column select signal generation circuit | |
US20060203600A1 (en) | Low power word line control circuits with boosted voltage output for semiconductor memory | |
US9378807B2 (en) | Non-volatile static random access memory circuits | |
US10332578B2 (en) | Semiconductor device | |
US9704548B1 (en) | Semiconductor memory apparatus | |
US8351272B2 (en) | Apparatuses and methods to reduce power consumption in digital circuits | |
TW201928971A (en) | Memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |