US20160127672A1 - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
US20160127672A1
US20160127672A1 US14/768,924 US201314768924A US2016127672A1 US 20160127672 A1 US20160127672 A1 US 20160127672A1 US 201314768924 A US201314768924 A US 201314768924A US 2016127672 A1 US2016127672 A1 US 2016127672A1
Authority
US
United States
Prior art keywords
image
unit
image data
processing
electronic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/768,924
Inventor
Sho Kamide
Yasuyuki Motoki
Kunihiro KUWANO
Teppei Okuyama
Takeo Motohashi
Yae JOTAKI
Masakazu SEKIGUCHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Assigned to NIKON CORPORATION reassignment NIKON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOTAKI, Yae, KAMIDE, Sho, OKUYAMA, TEPPEI, KUWANO, KUNIHIRO, MOTOHASHI, Takeo, MOTOKI, YASUYUKI, SEKIGUCHI, MASAKAZU
Publication of US20160127672A1 publication Critical patent/US20160127672A1/en
Priority to US15/645,095 priority Critical patent/US10178338B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • G06K9/4604
    • G06T7/0085
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00204Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
    • H04N1/00244Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server with a server, e.g. an internet server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • H04N23/632Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control
    • H04N5/23293
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N9/735

Definitions

  • the present invention relates to an electronic apparatus.
  • a prior art digital camera system is per se known that transmits an image capture signal from an imaging element (so-called RAW data) to a server, and image processing is performed upon this image capture signal by an image processing unit that is provided in the server (for example, refer to Patent Document #1).
  • Patent Document #1 Japanese Laid-Open Patent Publication 2003-87618.
  • an electronic apparatus comprises: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a capture setting for the image capturing unit.
  • the communication unit transmits information related to details of the processing by the processing unit to the external apparatus.
  • the communication unit transmits information specifying at least one of a specification and parameters of the processing unit to the external apparatus.
  • the electronic apparatus may further comprise a recording unit that records a movie image and a still image upon a recording medium; and the determination unit may transmit the image capture signal to the external apparatus when the recording unit is to record the movie image upon the recording medium.
  • the electronic apparatus may further comprise a setting unit that is capable of setting the image capturing unit to a movie image mode and to a still image mode; and the determination unit may transmit the image capture signal to the external apparatus when the movie image mode is set by the setting unit.
  • the electronic apparatus may further comprise a display unit that displays an image processed by the external apparatus as a live view.
  • an electronic apparatus comprises: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from at least one of the image capturing unit and the processing unit.
  • the determination unit determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from the communication unit.
  • the electronic apparatus may further comprise a temperature detection unit that detects the temperature of at least one of the image capturing unit, the processing unit, and the communication unit.
  • the electronic apparatus may further comprise a recording unit that records a movie image and a still image upon a recording medium; and the determination unit may transmit the image capture signal to the external apparatus when the recording unit is to record the movie image upon the recording medium.
  • an electronic apparatus comprise: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from the communication unit.
  • the electronic apparatus may further comprise a temperature detection unit that detects the temperature of the communication unit.
  • the communication unit transmits the image capture signal and information related to the processing unit to the external apparatus.
  • FIG. 1 is a block diagram showing the structure of a photography system according to a first embodiment of the present invention
  • FIG. 2 is a flow chart showing live view processing executed by a first control unit 21 ;
  • FIG. 3 is a flow chart showing live view processing executed by a first control unit 21 according to a second embodiment
  • FIG. 4 is a time chart showing changeovers between a first ASIC 14 and a second ASIC 102 along with changes of temperature of an imaging element 12 ;
  • FIG. 5 is a figure showing an example in which a plurality of cameras are connected to a single server 100 .
  • FIG. 1 is a block diagram showing the structure of a photography system according to a first embodiment of the present invention.
  • This photography system 1 comprises a camera 10 and a server 100 .
  • the camera 10 and the server 100 are connected together via a network 80 , such as for example a LAN or a WAN, and are capable of performing mutual data communication in both directions.
  • a network 80 such as for example a LAN or a WAN
  • the camera 10 is a so-called integrated lens type digital camera that obtains image data by capturing an image of a photographic subject that has been focused by an optical system 11 consisting of a plurality of lens groups with an imaging element 12 that may, for example, be a CMOS or a CCD or the like.
  • the camera 10 comprises an A/D converter 13 , a first ASIC 14 , a display unit 15 , a recording medium 16 , an operation unit 17 , a first memory 18 , a first communication unit 19 , a temperature sensor 20 , and a first control unit 21 .
  • the A/D converter 13 converts an analog image signal outputted from the imaging element 12 to a digital image signal.
  • the first ASIC 14 is a circuit that performs image processing of various kinds (for example, color interpolation processing, tone conversion processing, image compression processing, or the like) upon the digital image signal outputted by the A/D converter 13 . And the first ASIC 14 outputs the digital signal upon which it has performed the image processing described above to the display unit 15 and/or to the recording medium 16 .
  • the imaging element 12 and the first ASIC 14 are disposed close to one another within the casing of the camera 10 , and the processing load upon the imaging element 12 and upon the first ASIC 14 increases during capture of a movie image or during image processing of a movie image, and accordingly the amount of heat generated raises the temperature of the imaging element 12 and the temperature of the first ASIC 14 .
  • the display unit 15 is a display device that comprises, for example, a liquid crystal panel or the like, and displays images (still images and moving images) on the basis of digital image signals outputted by the first ASIC 14 , and operating menu screens of various types and so on.
  • the recording medium 16 is a transportable type recording medium such as, for example, an SD card (registered trademark) or the like, and records image files on the basis of digital image signals outputted by the first ASIC 14 .
  • the operation unit 17 includes various operation members, such as a release switch for commanding preparatory operation for photography and photographic operation, a touch panel upon which settings of various types are established, a mode dial that selects the photographic mode, and so on.
  • the operation unit 17 When the user operates these operation members, the operation unit 17 outputs operating signals corresponding to these operations to the first control unit 21 . It should be understood that it would be acceptable to arrange for commands for photographing a still image and a movie image to be issued with the release switch, or alternatively a dedicated movie image capture switch may be provided. Moreover, the mode dial of this embodiment is capable of setting at least one of a plurality of still image modes and a movie image mode.
  • the first memory 18 is a non-volatile semiconductor memory such as, for example, a flash memory or the like, and the first control unit 21 stores therein in advance a control program and control parameters and so on so that the first control unit 21 controls the camera 10 .
  • the first communication unit 19 is a communication circuit that performs data communication to and from the server 100 via the network 80 , for example by wireless communication.
  • the temperature sensor 20 is provided in the neighborhood of the imaging element 12 , and detects the temperature of the imaging element 12 (in other words, the state of heat generation by the imaging element 12 ).
  • the first control unit 21 comprises a microprocessor, memory, and peripheral circuitry not shown in the figures, and provides overall control for the camera 10 by reading in and executing a predetermined control program from the first memory 18 .
  • the server 100 comprises a second communication unit 101 , a second ASIC 102 , a second memory 104 , and a second control unit 106 .
  • the second communication unit 101 is a communication circuit that performs data communication to and from the camera 10 via the network 80 , for example by wireless communication.
  • the second ASIC 102 is a circuit that performs image processing similar to that performed by the first ASIC 14 .
  • the second memory 104 is a non-volatile semiconductor memory such as, for example, a flash memory or the like, and stores therein in advance a control program and control parameters and so on so that the second control unit 106 controls the server 100 .
  • this second memory 104 also is capable of storing image data upon which image processing of various types has been performed by the second ASIC 102 .
  • live view display performed by this camera 10 will be explained.
  • the first control unit 21 performs so-called live view display upon the display unit 15 .
  • the first control unit 21 captures an image of the photographic subject with the imaging element 12 , and outputs a digital image signal corresponding to this photographic subject image to the A/D converter 13 .
  • the first ASIC 14 changes the processing for live view display according to whether the mode dial is set for photography of a still image or for photography of a movie image.
  • the imaging element 12 and the first ASIC 14 generate a live view image having the same resolution as the recording size for the movie image.
  • the amount of heat generated by the imaging element 12 and the first ASIC 14 becomes greater during live view in the movie image mode, than during live view in a still image mode.
  • the first control unit 21 deter nines whether to control the first ASIC 14 within the camera 10 to process this digital image signal, or to control the second ASIC 102 within the server 100 to perform this processing. And if the first control unit 21 has determined that the first ASIC 14 is to be controlled to process this digital image signal, then image data that has been produced by the first ASIC 14 performing various types of image processing upon the digital image signal (i.e. a live view image) is displayed upon the display unit 15 .
  • the first control unit 21 transmits the digital image signal that has been outputted by the A/D converter 13 to the server 100 via the first communication unit 19 .
  • the second control unit 106 within the server 100 causes the second ASIC 102 to perform processing upon this received digital image signal.
  • the second ASIC 102 generates image data (i.e. a live view image) by performing image processing of various types upon this digital image signal.
  • the second control unit 106 transmits this image data (i.e. the live view image) that has been generated by the second ASIC 102 to the camera 10 via the second communication unit 101 .
  • the first control unit 21 within the camera 10 displays the live view image upon the display unit 15 .
  • FIG. 2 is a flow chart showing the live view processing executed by the first control unit 21 ; in this embodiment, the processing shown in this flow chart is started in the case of live view in the movie image mode.
  • the first control unit 21 determines whether or not it is possible to perform wireless communication with the first communication unit 19 . If the state is such that wireless communication with the first communication unit 19 is possible, then the flow of control proceeds to step S 02 .
  • step S 02 the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12 , which has been detected with the temperature sensor 20 , is less than or equal to a predetermined threshold value (for example 70° C.). If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S 03 .
  • the first control unit 21 makes a decision as to whether or not the amount of image processing (i.e. the amount of calculation) required in order to generate image data (i.e. a live view image) will be greater than or equal to a predetermined threshold value. If the amount of image processing is greater than or equal to the predetermined threshold value, then the flow of control proceeds to step S 04 . It should be understood that it would also be acceptable to arrange for the predetermined threshold value to be set in five ° C. steps, as appropriate.
  • step S 04 by wireless communication via the first communication unit 19 , the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100 . And in the next step S 05 the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100 share the image processing upon the digital image signal between one another.
  • the first control unit 21 displays the image data (i.e. the live view image) upon the display unit 15 at a rate of sixty frames per second, then, among the digital image signals outputted from the A/D converter 13 at the rate of sixty times per second, the first control unit 21 may output the odd numbered frames to the first ASIC 14 , and may transmit the even numbered frames to the server 100 via the first communication unit 100 . And in this case it is suggested that the first ASIC 14 should perform image processing upon the odd numbered frames, while the second ASIC 102 performs image processing upon the image numbered frames.
  • step S 03 the amount of image processing is less than the predetermined threshold value and if in step S 02 the temperature of the imaging element 12 is less than the predetermined threshold value, then the flow of control is transferred to step S 06 .
  • the first control unit 21 transmits the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19 .
  • step S 07 the second ASIC 102 of the server 100 performs image processing upon the digital image signal received via the second communication unit 101 , and thereby generates image data (i.e. a live view image).
  • step S 01 If in step S 01 , due to some reason such as, for example, the camera 10 being a long way away from the base station for wireless communication or the like, a state becomes established in which wireless communication between the camera 10 and the server 100 is not possible, then the flow of control is transferred to step S 08 .
  • the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12 detected by the temperature sensor 20 is less than or equal to a predetermined threshold value. If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S 09 .
  • the first control unit 21 inputs the digital image signal outputted from the A/D converter 13 to the first ASIC 14 , and generates image data (i.e. a live view image) by performing image processing upon this digital image signal with the first ASIC 14 .
  • step S 10 the first control unit changes over from live view in the movie image mode to live view in a still image mode, thus alleviating the amount of processing by the imaging element 12 and the first ASIC 14 .
  • the first control unit 21 determines whether or not to transmit the digital image signal to the server 100 by referring to three operational states of the camera 10 , i.e. whether or not wireless communication with the first communication unit 19 is possible, the temperature of the imaging element 12 as detected by the temperature sensor 20 , and the amount of image processing (i.e. the image processing load or the amount of calculation) to be performed by the first ASIC 14 .
  • the first communication unit 21 causes the second ASIC 102 in the server 100 to perform processing of the digital image signal outputted from the A/D converter 13 . Since, due to this, the burden of calculation upon the first ASIC 14 is reduced and the amount of heat generated by the first ASIC 14 decreases, accordingly rise of the temperature of the imaging element 12 is suppressed.
  • the photography system according to the second embodiment has a similar structure to that of the photography system according to the first embodiment, with the exception that a temperature sensor not shown in the figures is provided in the neighborhood of the first communication unit 19 .
  • This temperature sensor not shown in the figures detects the temperature of the first communication unit 19 .
  • the amount of heat generated by the first communication unit 19 increases as the amount of communication (i.e. the amount of data communicated) increases, and this generated heat is supplied to the imaging element 12 which is provided within the same casing according to the amount of communication
  • the first control unit 21 of this embodiment determines whether or not to transmit the digital image signal to the server 100 by further referring to the temperature of the first communication unit 19 as detected by a temperature sensor not shown in the figures.
  • FIG. 3 is a flow chart showing the live view processing executed by the first control unit 21 according to this second embodiment.
  • the first control unit 21 determines whether or not it is possible to perform wireless communication with the first communication unit 19 . If the situation is such that wireless communication with the first communication unit 19 is possible, then the flow of control proceeds to step S 12 .
  • step S 12 the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12 , which has been detected with the temperature sensor 20 , is less than or equal to a predetermined threshold value. If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S 13 .
  • step S 13 the first control unit 21 makes a decision as to whether or not the amount of image processing (i.e. the amount of calculation) required in order to generate image data (i.e. a live view image) will be greater than or equal to a predetermined threshold value. If the amount of image processing is greater than or equal to the predetermined threshold value, then the flow of control proceeds to step S 14 .
  • the amount of image processing i.e. the amount of calculation
  • step S 14 by wireless communication via the first communication unit 19 , the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100 . And in the next step S 05 the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100 share the image processing upon the digital image signal between one another.
  • step S 13 the amount of image processing is less than the predetermined threshold value and if in step S 12 the temperature of the imaging element 12 is less than the predetermined threshold value, then the flow of control is transferred to step S 16 .
  • the first control unit 21 makes a decision as to whether or not the temperature of the first communication unit 19 , which has been detected with the temperature sensor not shown in the figures, is less than or equal to a predetermined threshold value (for example, 60° C.). If the temperature of the first communication unit 19 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S 17 .
  • a predetermined threshold value for example, 60° C.
  • step S 17 the first control unit 21 transmits the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19 . And then in step S 18 the second ASIC 102 of the server 100 performs image processing upon the digital image signal that has been received via the second communication unit 101 , and thereby generates image data (i.e. a live view image).
  • step S 16 If in step S 16 the temperature of the first communication unit 19 is greater than the predetermined threshold value, then the flow of control proceeds to step S 14 .
  • step S 14 and step S 15 the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19 , and image processing is performed by being shared between the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100 .
  • This is a preventative measure in case the temperature of the first communication unit 19 should become too high.
  • the threshold value for the temperature of the first communication unit 19 may be set in five ° C. steps, as appropriate.
  • steps S 14 and S 15 if the temperature of the first communication unit 19 becomes greater than or equal to a prescribed value, it may also be arranged for the control unit 21 to stop transmitting the digital image to the server 100 with the first communication unit 19 , and the first ASIC 14 to perform image processing.
  • step S 11 which is performed when the system is in a state in which wireless communication between the camera 10 and the server 100 is not possible is the same as the processing of the steps S 08 through S 10 of FIG. 2 explained in connection with the first embodiment, and accordingly explanation thereof is omitted.
  • the photography system according to the third embodiment has a structure corresponding to that of the photography system according to the first embodiment, but with the temperature sensor 20 eliminated.
  • the first control unit 21 performs image processing with the first ASIC 14 , while, during movie image photography in the movie image photographic mode, image processing is performed by the second ASIC 102 of the server 100 . Since in this manner, in this third embodiment, the first control unit 21 determines according to the photographic mode whether image processing should be performed by the first ASIC 14 or by the second ASIC 102 , accordingly it is possible to simplify the structure and the control of the photography system.
  • the live view image generated by the first ASIC 14 is outputted to the display unit 15 almost in real time
  • the live view image generated by the second ASIC 102 needs to be sent via wireless communication by the first communication unit 19 and the second communication unit 101 , so that some delay inevitably occurs.
  • the first control unit 21 it will be acceptable to arrange for the first control unit 21 to buffer the live view image outputted by the first ASIC 14 and the live view image received by the first communication unit 19 in a memory not shown in the figures, so that the display of the live view image is always delayed by a constant time interval (for example 0.5 seconds). Due to this, the live view image that is displayed upon the display unit 15 continues to be shown smoothly, even if a delay occurs in the transmission of the live view image that is transmitted from the server 100 .
  • FIG. 4 is a time chart showing several changeovers between the first ASIC 14 and the second ASIC 102 along with changes of temperature of the imaging element 12 . It should be understood that in FIG. 4 , in order to simplify the explanation, it is supposed that the first ASIC 14 and the second ASIC 102 do not share the image processing between them, as in steps S 04 and S 05 of FIG. 2 .
  • Image processing by the first ASIC 14 is started at the time point t 1 , so that live view display upon the display unit 15 starts. Subsequent to the time point t 1 , the first ASIC 14 generates heat by repeatedly executing image processing, so that the temperature of the imaging element 12 rises. And thereafter, at the time point t 2 , the temperature of the imaging element 12 as detected by the temperature sensor 20 becomes greater than the threshold value.
  • the first control unit 21 starts transmission of the digital image signal outputted from the A/D converter 13 to the server 100 at this time point, the first control unit 21 causes the first ASIC 14 to execute in parallel the image processing. And at the time point t 3 , at which point a time interval has elapsed that is sufficient for absorbing the delay accompanying wireless communication, the first control unit 21 stops image processing by the first ASIC 14 .
  • the first control unit 21 resumes image processing by the first ASIC 14 , transmission of the digital image signal to the server 100 is still performed in parallel therewith, in a similar manner to the case at the time point t 2 .
  • the first control unit 21 stops the transmission of the digital image signal to the first control unit 21 .
  • FIG. 1 a photography system was shown in which the single camera 10 and the single server 100 were connected together by the network 80 , it would also be possible for a plurality of cameras to be connected to a single server, and it would also be possible for a plurality of servers and a plurality of cameras to be connected together.
  • FIG. 5 shows an example in which a plurality of cameras (a camera 10 , a camera 30 , and a camera 50 ) are connected to a single server 100 .
  • each of the camera 10 , the camera 30 , and the camera 50 creates different photographic image data by performing photographic processing.
  • the details of the image processing that each of a first ASIC 14 comprised in the camera 10 , a third ASIC 34 comprised in the camera 30 , and a fifth ASIC 54 comprised in the camera 50 can perform are different. Accordingly, even if the same analog image signals are outputted from their corresponding imaging elements 12 , the image data generated by the first ASIC 14 , the image data generated by the third ASIC 34 , and the image data generated by the fifth ASIC 54 will differ from one another, for example in hue and/or texture and so on.
  • the server 100 shown in FIG. 5 comprises, in addition to a second ASIC 102 that is capable of performing image processing equivalent to that performed by the first ASIC 14 , a fourth ASIC 112 that is capable of performing image processing equivalent to that performed by the third ASIC 34 and a sixth ASIC 122 that is capable of performing image processing equivalent to that performed by the fifth ASIC 54 .
  • the image data that has been generated due to image processing by the fourth ASIC 112 is approximately the same as the image data that has been generated due to image processing by the third ASIC 34 .
  • the control unit of each of the cameras transmits information related to the details of the image processing executed by its ASIC to the server 10 .
  • This information may be, for example, the name of the camera type, and/or information specifying the specification of its ASIC (color, white balance, texture, and so on), and/or parameters or the like of the image processing executed by its ASIC.
  • the second control unit 106 determines which ASIC is to be used for performing processing upon the digital image signal that have been received along with this information. For example, if a digital image signal has been received from the camera 30 , the second control unit 106 may cause processing thereof to be performed by the fourth ASIC 112 .
  • the temperature sensor 20 was provided in the neighborhood of the imaging element 12 , and the first control unit 21 determined whether or not it was possible to transmit the digital image signal on the basis of the temperature of the imaging element 12 as detected by this temperature sensor 20 , it would also be acceptable to arrange to provide the temperature sensor 20 in the neighborhood of the first ASIC 14 , and to determine whether or not it is possible to transmit the digital image signal, not on the basis of the temperature of the imaging element 12 , but rather on the basis of the temperature of the first ASIC 14 . The same variation would be possible in the case of the second embodiment.
  • the device that is provided exterior to the camera 10 and that receives the digital image signal from the camera 10 and performs image processing thereof could be some type of external apparatus other than a server 100 ; for example, it could be a portable type electronic apparatus such as a personal computer or a so-called smart phone, or a tablet-type (slate-type) computer or the like.
  • the present invention is not limited to this type of embodiment.
  • a single lens reflex type digital camera it would also be possible to provide a live view button or switch that performs live view display, and in this case it could be set to movie image live view or to still image live view. It would also be possible to apply the first embodiment to this case as well.
  • 1 photography system; 10 , 30 , 50 : cameras; 11 : optical system; 12 : imaging element; 13 : A/D converter; 14 : first ASIC; 15 : display unit; 16 : recording medium; 17 : operation unit; 18 : first memory; 19 : first communication unit; 20 : temperature sensor; 21 : first control unit; 80 : network; 100 : server; 101 : second communication unit; 102 : second ASIC; 104 : second memory; 106 : second control unit.

Abstract

An electronic apparatus includes: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a capture setting for the image capturing unit.

Description

    TECHNICAL FIELD
  • The present invention relates to an electronic apparatus.
  • BACKGROUND ART
  • A prior art digital camera system is per se known that transmits an image capture signal from an imaging element (so-called RAW data) to a server, and image processing is performed upon this image capture signal by an image processing unit that is provided in the server (for example, refer to Patent Document #1).
  • CITATION LIST Patent Literature
  • Patent Document #1: Japanese Laid-Open Patent Publication 2003-87618.
  • SUMMARY OF INVENTION Technical Problem
  • With the prior art technique, there has been the problem that the convenience of use of the camera is poor, since the image processing is always performed by the server.
  • Solution to Technical Problem
  • According to the 1st aspect of the present invention, an electronic apparatus comprises: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a capture setting for the image capturing unit.
  • According to the 2nd aspect of the present invention, it is preferred that in the electronic apparatus according to the 1st aspect, the communication unit transmits information related to details of the processing by the processing unit to the external apparatus.
  • According to the 3rd aspect of the present invention, it is preferred that in the electronic apparatus according to the 2nd aspect, the communication unit transmits information specifying at least one of a specification and parameters of the processing unit to the external apparatus.
  • According to the 4th aspect of the present invention, the electronic apparatus according to any one of the 1st through 3rd aspects may further comprise a recording unit that records a movie image and a still image upon a recording medium; and the determination unit may transmit the image capture signal to the external apparatus when the recording unit is to record the movie image upon the recording medium.
  • According to the 5th aspect of the present invention, the electronic apparatus according to any one of the 1st through 4th aspects may further comprise a setting unit that is capable of setting the image capturing unit to a movie image mode and to a still image mode; and the determination unit may transmit the image capture signal to the external apparatus when the movie image mode is set by the setting unit.
  • According to the 6th aspect of the present invention, the electronic apparatus according to the 5th aspect may further comprise a display unit that displays an image processed by the external apparatus as a live view.
  • According to the 7th aspect of the present invention, an electronic apparatus comprises: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from at least one of the image capturing unit and the processing unit.
  • According to the 8th aspect of the present invention, it is preferred that in the electronic apparatus according to the 7th aspect, the determination unit determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from the communication unit.
  • According to the 9th aspect of the present invention, the electronic apparatus according to the 7th or 8th aspect may further comprise a temperature detection unit that detects the temperature of at least one of the image capturing unit, the processing unit, and the communication unit.
  • According to the 10th aspect of the present invention, the electronic apparatus according to any one of the 7th through 9th may further comprise a recording unit that records a movie image and a still image upon a recording medium; and the determination unit may transmit the image capture signal to the external apparatus when the recording unit is to record the movie image upon the recording medium.
  • According to the 11th aspect of the present invention, an electronic apparatus comprise: a processing unit that processes an image capture signal captured by an image capturing unit; a communication unit that is capable of transmitting the image capture signal captured by the image capturing unit to an external apparatus; and a determination unit that determines whether or not to transmit the image capture signal to the external apparatus, according to a state of generation of heat from the communication unit.
  • According to the 12th aspect of the present invention, the electronic apparatus according to the 11th aspect may further comprise a temperature detection unit that detects the temperature of the communication unit.
  • According to the 13th aspect of the present invention, it is preferred that in the electronic apparatus according to the 11th or 12th aspect, the communication unit transmits the image capture signal and information related to the processing unit to the external apparatus.
  • Advantageous Effects of Invention
  • According to the present invention, it is possible to provide an electronic apparatus whose convenience of use is good.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a block diagram showing the structure of a photography system according to a first embodiment of the present invention;
  • FIG. 2 is a flow chart showing live view processing executed by a first control unit 21;
  • FIG. 3 is a flow chart showing live view processing executed by a first control unit 21 according to a second embodiment;
  • FIG. 4 is a time chart showing changeovers between a first ASIC 14 and a second ASIC 102 along with changes of temperature of an imaging element 12; and
  • FIG. 5 is a figure showing an example in which a plurality of cameras are connected to a single server 100.
  • DESCRIPTION OF EMBODIMENTS Embodiment # 1
  • FIG. 1 is a block diagram showing the structure of a photography system according to a first embodiment of the present invention. This photography system 1 comprises a camera 10 and a server 100. The camera 10 and the server 100 are connected together via a network 80, such as for example a LAN or a WAN, and are capable of performing mutual data communication in both directions.
  • The camera 10 is a so-called integrated lens type digital camera that obtains image data by capturing an image of a photographic subject that has been focused by an optical system 11 consisting of a plurality of lens groups with an imaging element 12 that may, for example, be a CMOS or a CCD or the like. The camera 10 comprises an A/D converter 13, a first ASIC 14, a display unit 15, a recording medium 16, an operation unit 17, a first memory 18, a first communication unit 19, a temperature sensor 20, and a first control unit 21.
  • The A/D converter 13 converts an analog image signal outputted from the imaging element 12 to a digital image signal. The first ASIC 14 is a circuit that performs image processing of various kinds (for example, color interpolation processing, tone conversion processing, image compression processing, or the like) upon the digital image signal outputted by the A/D converter 13. And the first ASIC 14 outputs the digital signal upon which it has performed the image processing described above to the display unit 15 and/or to the recording medium 16. The imaging element 12 and the first ASIC 14 are disposed close to one another within the casing of the camera 10, and the processing load upon the imaging element 12 and upon the first ASIC 14 increases during capture of a movie image or during image processing of a movie image, and accordingly the amount of heat generated raises the temperature of the imaging element 12 and the temperature of the first ASIC 14.
  • The display unit 15 is a display device that comprises, for example, a liquid crystal panel or the like, and displays images (still images and moving images) on the basis of digital image signals outputted by the first ASIC 14, and operating menu screens of various types and so on. And the recording medium 16 is a transportable type recording medium such as, for example, an SD card (registered trademark) or the like, and records image files on the basis of digital image signals outputted by the first ASIC 14. Furthermore, the operation unit 17 includes various operation members, such as a release switch for commanding preparatory operation for photography and photographic operation, a touch panel upon which settings of various types are established, a mode dial that selects the photographic mode, and so on. When the user operates these operation members, the operation unit 17 outputs operating signals corresponding to these operations to the first control unit 21. It should be understood that it would be acceptable to arrange for commands for photographing a still image and a movie image to be issued with the release switch, or alternatively a dedicated movie image capture switch may be provided. Moreover, the mode dial of this embodiment is capable of setting at least one of a plurality of still image modes and a movie image mode.
  • The first memory 18 is a non-volatile semiconductor memory such as, for example, a flash memory or the like, and the first control unit 21 stores therein in advance a control program and control parameters and so on so that the first control unit 21 controls the camera 10. The first communication unit 19 is a communication circuit that performs data communication to and from the server 100 via the network 80, for example by wireless communication. And the temperature sensor 20 is provided in the neighborhood of the imaging element 12, and detects the temperature of the imaging element 12 (in other words, the state of heat generation by the imaging element 12).
  • The first control unit 21 comprises a microprocessor, memory, and peripheral circuitry not shown in the figures, and provides overall control for the camera 10 by reading in and executing a predetermined control program from the first memory 18.
  • The server 100 comprises a second communication unit 101, a second ASIC 102, a second memory 104, and a second control unit 106. The second communication unit 101 is a communication circuit that performs data communication to and from the camera 10 via the network 80, for example by wireless communication. And the second ASIC 102 is a circuit that performs image processing similar to that performed by the first ASIC 14.
  • The second memory 104 is a non-volatile semiconductor memory such as, for example, a flash memory or the like, and stores therein in advance a control program and control parameters and so on so that the second control unit 106 controls the server 100. In addition to the control program and the control parameters and so on mentioned above, this second memory 104 also is capable of storing image data upon which image processing of various types has been performed by the second ASIC 102.
  • Next, live view display performed by this camera 10 will be explained. When the power supply of the camera 10 is in the ON state, the first control unit 21 performs so-called live view display upon the display unit 15. When performing this live view display, the first control unit 21 captures an image of the photographic subject with the imaging element 12, and outputs a digital image signal corresponding to this photographic subject image to the A/D converter 13. It should be understood that, as previously described, with the mode dial of this embodiment, it is possible to establish any one of a plurality of settings for still image photography, and to establish a setting for movie image photography. The first ASIC 14 changes the processing for live view display according to whether the mode dial is set for photography of a still image or for photography of a movie image. In concrete terms, by contrast to the case of live viewing in a still image mode in which the live view image is generated by thinning out the image captured by the imaging element 12 so that the amount of calculation by the first ASIC 14 is reduced, in the case of live viewing in the moving image mode the imaging element 12 and the first ASIC 14 generate a live view image having the same resolution as the recording size for the movie image. In other words, in this embodiment, the amount of heat generated by the imaging element 12 and the first ASIC 14 becomes greater during live view in the movie image mode, than during live view in a still image mode.
  • On the basis of the operational state of the camera 10 (i.e. whether the live viewing is in a still image mode or is in the movie image mode), the first control unit 21 deter nines whether to control the first ASIC 14 within the camera 10 to process this digital image signal, or to control the second ASIC 102 within the server 100 to perform this processing. And if the first control unit 21 has determined that the first ASIC 14 is to be controlled to process this digital image signal, then image data that has been produced by the first ASIC 14 performing various types of image processing upon the digital image signal (i.e. a live view image) is displayed upon the display unit 15.
  • On the other hand, if the first control unit 21 has determined that the second ASIC 102 is to be controlled to process the digital image signal, then the first control unit 21 transmits the digital image signal that has been outputted by the A/D converter 13 to the server 100 via the first communication unit 19. And, upon receipt of this digital image signal via the second communication unit 101, the second control unit 106 within the server 100 causes the second ASIC 102 to perform processing upon this received digital image signal. The second ASIC 102 generates image data (i.e. a live view image) by performing image processing of various types upon this digital image signal. And the second control unit 106 transmits this image data (i.e. the live view image) that has been generated by the second ASIC 102 to the camera 10 via the second communication unit 101. Upon receipt of this image data (i.e. the live view image) via the first control unit 21, the first control unit 21 within the camera 10 displays the live view image upon the display unit 15.
  • FIG. 2 is a flow chart showing the live view processing executed by the first control unit 21; in this embodiment, the processing shown in this flow chart is started in the case of live view in the movie image mode. In a first step S01, the first control unit 21 determines whether or not it is possible to perform wireless communication with the first communication unit 19. If the state is such that wireless communication with the first communication unit 19 is possible, then the flow of control proceeds to step S02.
  • In step S02, the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12, which has been detected with the temperature sensor 20, is less than or equal to a predetermined threshold value (for example 70° C.). If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S03. In this step S03, the first control unit 21 makes a decision as to whether or not the amount of image processing (i.e. the amount of calculation) required in order to generate image data (i.e. a live view image) will be greater than or equal to a predetermined threshold value. If the amount of image processing is greater than or equal to the predetermined threshold value, then the flow of control proceeds to step S04. It should be understood that it would also be acceptable to arrange for the predetermined threshold value to be set in five ° C. steps, as appropriate.
  • In step S04, by wireless communication via the first communication unit 19, the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100. And in the next step S05 the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100 share the image processing upon the digital image signal between one another.
  • As a method of sharing the image processing by the first ASIC 14 and the second ASIC 102, it may be suggested repeatedly to perform changeover processing to the second ASIC 102, after processing by the first ASIC 14 has been performed for some fixed time period. Alternatively, if the first control unit 21 displays the image data (i.e. the live view image) upon the display unit 15 at a rate of sixty frames per second, then, among the digital image signals outputted from the A/D converter 13 at the rate of sixty times per second, the first control unit 21 may output the odd numbered frames to the first ASIC 14, and may transmit the even numbered frames to the server 100 via the first communication unit 100. And in this case it is suggested that the first ASIC 14 should perform image processing upon the odd numbered frames, while the second ASIC 102 performs image processing upon the image numbered frames.
  • On the other hand, if in step S03 the amount of image processing is less than the predetermined threshold value and if in step S02 the temperature of the imaging element 12 is less than the predetermined threshold value, then the flow of control is transferred to step S06. In this step S06, the first control unit 21 transmits the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19. And then in step S07 the second ASIC 102 of the server 100 performs image processing upon the digital image signal received via the second communication unit 101, and thereby generates image data (i.e. a live view image).
  • If in step S01, due to some reason such as, for example, the camera 10 being a long way away from the base station for wireless communication or the like, a state becomes established in which wireless communication between the camera 10 and the server 100 is not possible, then the flow of control is transferred to step S08. In this step S08, the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12 detected by the temperature sensor 20 is less than or equal to a predetermined threshold value. If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S09. In this step S09, the first control unit 21 inputs the digital image signal outputted from the A/D converter 13 to the first ASIC 14, and generates image data (i.e. a live view image) by performing image processing upon this digital image signal with the first ASIC 14.
  • On the other hand, if the temperature of the imaging element 12 is greater than the predetermined threshold value, then the flow of control is transferred to step S10. In this step S10, the first control unit changes over from live view in the movie image mode to live view in a still image mode, thus alleviating the amount of processing by the imaging element 12 and the first ASIC 14.
  • As described above, in the live view image generation processing, the first control unit 21 determines whether or not to transmit the digital image signal to the server 100 by referring to three operational states of the camera 10, i.e. whether or not wireless communication with the first communication unit 19 is possible, the temperature of the imaging element 12 as detected by the temperature sensor 20, and the amount of image processing (i.e. the image processing load or the amount of calculation) to be performed by the first ASIC 14.
  • If wireless communication can be performed (i.e. if an affirmative decision is reached in step S01), then the first communication unit 21 causes the second ASIC 102 in the server 100 to perform processing of the digital image signal outputted from the A/D converter 13. Since, due to this, the burden of calculation upon the first ASIC 14 is reduced and the amount of heat generated by the first ASIC 14 decreases, accordingly rise of the temperature of the imaging element 12 is suppressed.
  • Embodiment #2
  • The photography system according to the second embodiment has a similar structure to that of the photography system according to the first embodiment, with the exception that a temperature sensor not shown in the figures is provided in the neighborhood of the first communication unit 19. This temperature sensor not shown in the figures detects the temperature of the first communication unit 19. In a similar manner to the case with the first ASIC 14, the amount of heat generated by the first communication unit 19 increases as the amount of communication (i.e. the amount of data communicated) increases, and this generated heat is supplied to the imaging element 12 which is provided within the same casing according to the amount of communication
  • In live view image generation processing, in addition to referring to three operational states of the camera 10, i.e. to whether or not wireless communication with the first communication unit 19 is possible, to the temperature of the imaging element 12 as detected by the temperature sensor 20, and to the amount of image processing (i.e. the image processing load or the amount of calculation) to be performed by the first ASIC 14, the first control unit 21 of this embodiment determines whether or not to transmit the digital image signal to the server 100 by further referring to the temperature of the first communication unit 19 as detected by a temperature sensor not shown in the figures.
  • FIG. 3 is a flow chart showing the live view processing executed by the first control unit 21 according to this second embodiment. In a first step S11, the first control unit 21 determines whether or not it is possible to perform wireless communication with the first communication unit 19. If the situation is such that wireless communication with the first communication unit 19 is possible, then the flow of control proceeds to step S12.
  • In step S12, the first control unit 21 makes a decision as to whether or not the temperature of the imaging element 12, which has been detected with the temperature sensor 20, is less than or equal to a predetermined threshold value. If the temperature of the imaging element 12 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S13. In this step S13, the first control unit 21 makes a decision as to whether or not the amount of image processing (i.e. the amount of calculation) required in order to generate image data (i.e. a live view image) will be greater than or equal to a predetermined threshold value. If the amount of image processing is greater than or equal to the predetermined threshold value, then the flow of control proceeds to step S14.
  • In step S14, by wireless communication via the first communication unit 19, the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100. And in the next step S05 the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100 share the image processing upon the digital image signal between one another.
  • On the other hand, if in step S13 the amount of image processing is less than the predetermined threshold value and if in step S12 the temperature of the imaging element 12 is less than the predetermined threshold value, then the flow of control is transferred to step S16. In this step S16, the first control unit 21 makes a decision as to whether or not the temperature of the first communication unit 19, which has been detected with the temperature sensor not shown in the figures, is less than or equal to a predetermined threshold value (for example, 60° C.). If the temperature of the first communication unit 19 is less than or equal to the predetermined threshold value, then the flow of control proceeds to step S17. In this step S17, the first control unit 21 transmits the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19. And then in step S18 the second ASIC 102 of the server 100 performs image processing upon the digital image signal that has been received via the second communication unit 101, and thereby generates image data (i.e. a live view image).
  • If in step S16 the temperature of the first communication unit 19 is greater than the predetermined threshold value, then the flow of control proceeds to step S14. In step S14 and step S15, as already explained, the first control unit 21 transmits a portion of the digital image signal outputted from the A/D converter 13 to the server 100 by wireless communication via the first communication unit 19, and image processing is performed by being shared between the first ASIC 14 of the camera 10 and the second ASIC 102 of the server 100. This is a preventative measure in case the temperature of the first communication unit 19 should become too high. It should be understood that the threshold value for the temperature of the first communication unit 19 may be set in five ° C. steps, as appropriate.
  • Moreover, instead of steps S14 and S15, if the temperature of the first communication unit 19 becomes greater than or equal to a prescribed value, it may also be arranged for the control unit 21 to stop transmitting the digital image to the server 100 with the first communication unit 19, and the first ASIC 14 to perform image processing.
  • It should be understood that, since the processing (i.e. steps S19 through S21) following the processing in step S11 which is performed when the system is in a state in which wireless communication between the camera 10 and the server 100 is not possible is the same as the processing of the steps S08 through S10 of FIG. 2 explained in connection with the first embodiment, and accordingly explanation thereof is omitted.
  • Embodiment #3
  • The photography system according to the third embodiment has a structure corresponding to that of the photography system according to the first embodiment, but with the temperature sensor 20 eliminated. During photography of a still image in a still image photographic mode, the first control unit 21 performs image processing with the first ASIC 14, while, during movie image photography in the movie image photographic mode, image processing is performed by the second ASIC 102 of the server 100. Since in this manner, in this third embodiment, the first control unit 21 determines according to the photographic mode whether image processing should be performed by the first ASIC 14 or by the second ASIC 102, accordingly it is possible to simplify the structure and the control of the photography system.
  • Variations of the following types also fall within the scope of the present invention, and moreover one or more of the following variant embodiments can also be combined with one or a plurality of the embodiments described above.
  • Variant Embodiment #1
  • By contrast with the fact that in the first embodiment, for example, the live view image generated by the first ASIC 14 is outputted to the display unit 15 almost in real time, the live view image generated by the second ASIC 102 needs to be sent via wireless communication by the first communication unit 19 and the second communication unit 101, so that some delay inevitably occurs. In order to suppress this delay, it will be acceptable to arrange for the first control unit 21 to buffer the live view image outputted by the first ASIC 14 and the live view image received by the first communication unit 19 in a memory not shown in the figures, so that the display of the live view image is always delayed by a constant time interval (for example 0.5 seconds). Due to this, the live view image that is displayed upon the display unit 15 continues to be shown smoothly, even if a delay occurs in the transmission of the live view image that is transmitted from the server 100.
  • Furthermore, during changing over between the ASICs that are employed for generating the live view image, it would also be acceptable to arrange to provide an interval during which the first control unit 21 operates both the first ASIC 14 and the second ASIC 102. By doing this, no temporary interruption of the live view image takes place when changing over is performed. This point will now be explained in more detail in the following.
  • FIG. 4 is a time chart showing several changeovers between the first ASIC 14 and the second ASIC 102 along with changes of temperature of the imaging element 12. It should be understood that in FIG. 4, in order to simplify the explanation, it is supposed that the first ASIC 14 and the second ASIC 102 do not share the image processing between them, as in steps S04 and S05 of FIG. 2.
  • Image processing by the first ASIC 14 is started at the time point t1, so that live view display upon the display unit 15 starts. Subsequent to the time point t1, the first ASIC 14 generates heat by repeatedly executing image processing, so that the temperature of the imaging element 12 rises. And thereafter, at the time point t2, the temperature of the imaging element 12 as detected by the temperature sensor 20 becomes greater than the threshold value. Although the first control unit 21 starts transmission of the digital image signal outputted from the A/D converter 13 to the server 100 at this time point, the first control unit 21 causes the first ASIC 14 to execute in parallel the image processing. And at the time point t3, at which point a time interval has elapsed that is sufficient for absorbing the delay accompanying wireless communication, the first control unit 21 stops image processing by the first ASIC 14.
  • Subsequent to the time point t3, since the first ASIC 14 is not performing any processing, accordingly the amount of heat that it generates is extremely low, and therefore increase of the temperature of the imaging element 12 is prevented. As a result, at the time point t4, the temperature of the imaging element 12 as detected by the temperature sensor 20 becomes less than or equal to the threshold value. Although, corresponding thereto, the first control unit 21 resumes image processing by the first ASIC 14, transmission of the digital image signal to the server 100 is still performed in parallel therewith, in a similar manner to the case at the time point t2. And then at the time point t5, when a fixed time period has elapsed, the first control unit 21 stops the transmission of the digital image signal to the first control unit 21. By overlapping the operations of the two ASICs in this manner when changing over between them, it is possible to keep the influence of delay in communication to the minimum limit.
  • Variant Embodiment #2
  • While, in FIG. 1, a photography system was shown in which the single camera 10 and the single server 100 were connected together by the network 80, it would also be possible for a plurality of cameras to be connected to a single server, and it would also be possible for a plurality of servers and a plurality of cameras to be connected together. FIG. 5 shows an example in which a plurality of cameras (a camera 10, a camera 30, and a camera 50) are connected to a single server 100.
  • In FIG. 5, each of the camera 10, the camera 30, and the camera 50 creates different photographic image data by performing photographic processing. In more concrete terms, the details of the image processing that each of a first ASIC 14 comprised in the camera 10, a third ASIC 34 comprised in the camera 30, and a fifth ASIC 54 comprised in the camera 50 can perform are different. Accordingly, even if the same analog image signals are outputted from their corresponding imaging elements 12, the image data generated by the first ASIC 14, the image data generated by the third ASIC 34, and the image data generated by the fifth ASIC 54 will differ from one another, for example in hue and/or texture and so on.
  • The server 100 shown in FIG. 5 comprises, in addition to a second ASIC 102 that is capable of performing image processing equivalent to that performed by the first ASIC 14, a fourth ASIC 112 that is capable of performing image processing equivalent to that performed by the third ASIC 34 and a sixth ASIC 122 that is capable of performing image processing equivalent to that performed by the fifth ASIC 54. In other words, for example, the image data that has been generated due to image processing by the fourth ASIC 112 is approximately the same as the image data that has been generated due to image processing by the third ASIC 34.
  • With the photography system having the structure described above, along with its digital image signal, the control unit of each of the cameras transmits information related to the details of the image processing executed by its ASIC to the server 10. This information may be, for example, the name of the camera type, and/or information specifying the specification of its ASIC (color, white balance, texture, and so on), and/or parameters or the like of the image processing executed by its ASIC. And, on the basis of this information related to the details of image processing that has been received, the second control unit 106 determines which ASIC is to be used for performing processing upon the digital image signal that have been received along with this information. For example, if a digital image signal has been received from the camera 30, the second control unit 106 may cause processing thereof to be performed by the fourth ASIC 112.
  • Variant Embodiment #3
  • While, in the first embodiment described above, the temperature sensor 20 was provided in the neighborhood of the imaging element 12, and the first control unit 21 determined whether or not it was possible to transmit the digital image signal on the basis of the temperature of the imaging element 12 as detected by this temperature sensor 20, it would also be acceptable to arrange to provide the temperature sensor 20 in the neighborhood of the first ASIC 14, and to determine whether or not it is possible to transmit the digital image signal, not on the basis of the temperature of the imaging element 12, but rather on the basis of the temperature of the first ASIC 14. The same variation would be possible in the case of the second embodiment. Moreover, it would also be possible not to determine whether or not it is possible to transmit the digital image signal on the basis of the temperature detected by the temperature sensor 20, but rather on the basis of the change over time of the temperature detected by the temperature sensor 20 (i.e. on the basis of the temperature gradient). Yet further, it would also be possible to provide temperature sensors in the neighborhoods of both the imaging element 12 and the first ASIC 14.
  • Variant Embodiment #4
  • It would also be possible for the device that is provided exterior to the camera 10 and that receives the digital image signal from the camera 10 and performs image processing thereof to be some type of external apparatus other than a server 100; for example, it could be a portable type electronic apparatus such as a personal computer or a so-called smart phone, or a tablet-type (slate-type) computer or the like.
  • Variant Embodiment #5
  • In the embodiment described above, an example was explained which was an integrated lens type digital camera. However, the present invention is not limited to this type of embodiment. For example, it would also be possible to apply the present invention to a so-called single lens reflex type digital camera whose lens is interchangeable, or to a digital camera of the interchangeable lens type that has no quick return mirror (i.e. a mirror-less camera), or to a portable type electronic apparatus such as a tablet type computer or the like. It should be understood that in the case of a single lens reflex type digital camera it would also be possible to provide a live view button or switch that performs live view display, and in this case it could be set to movie image live view or to still image live view. It would also be possible to apply the first embodiment to this case as well.
  • The present invention is not to be considered as being limited to the embodiments described above; provided that the particular characteristics of the present invention are preserved, other embodiments that are considered to fall within the range of the technical concept of the present invention are also included within the scope of the present invention.
  • The contents of the disclosure of the following application, upon which priority is claimed, are hereby incorporated herein by reference: Japanese Patent Application 2013-39,128 (filed on Feb. 28, 2013).
  • REFERENCE SIGNS LIST
  • 1: photography system; 10, 30, 50: cameras; 11: optical system; 12: imaging element; 13: A/D converter; 14: first ASIC; 15: display unit; 16: recording medium; 17: operation unit; 18: first memory; 19: first communication unit; 20: temperature sensor; 21: first control unit; 80: network; 100: server; 101: second communication unit; 102: second ASIC; 104: second memory; 106: second control unit.

Claims (23)

1. An electronic apparatus, comprising:
an image capture unit that performs photography and outputs image data;
a communication unit that is capable of performing communication with an external apparatus comprising an image processing unit, and, after transmitting the image data to the external apparatus, received the image signal having been processed by the image processing unit of the external apparatus; and
a display unit that displays an image generated according to the image data received by the communication unit.
2. The electronic apparatus according to claim 1, wherein
the image capture puts movie image data during movie image photography; and
the communication unit receives the movie image data having been processed by the image processing unit of the external apparatus after transmitting the movie image data to the external apparatus, while the image capture unit it performing the movie image photography.
3. The electronic apparatus according to claim 1, further comprising
a selection unit that is capable of selecting image capture mode of the image capture unit either to a movie image photographic mode or to a still image photographic mode, wherein
the communication unit, after transmitting move image data outputted from the image capture unit to the external apparatus, receives the movie image data having been processed by the image processing unit of the external apparatus, when the movie image photographic mode is selected by the selection unit.
4. The electronic apparatus according to claim 1, further comprising
an image processing unit that, when still image data is outputted from the image capture unit, performs image processing upon that still image data.
5. The electronic apparatus according to claim 1, wherein
the communication unit, after transmitting the image data to the external apparatus, receives the image data having been processed by the image processing unit of the external apparatus, when an amount of the image data is greater than a predetermined value.
6. (canceled)
7. An electronic apparatus according to claim 1, wherein
the display unit displays a live view image generated according to the image data that has been received by the communication unit.
8. The electronic apparatus according to claim 1, further comprising
a recording unit that records the image data that has been processed by the external apparatus.
9. The electronic apparatus according to claim 1, further comprising
a recording unit that records the image data that has been outputted by the image capture unit.
10. The electronic apparatus according to claim 9, wherein
the recording unit records the image data outputted by the image capture unit during an interval in which the communication unit it not capable of communicating.
11. An electronic apparatus according to claim 1, further comprising
an image processing unit that performs image processing upon the image data during an interval in which the communication unit is not capable of communicating.
12. (canceled)
13. (canceled)
14. The electronic apparatus according to claim 1, wherein
the image data is data prior to performing color interpolation processing, data prior to performing tone conversion processing, data prior to performing contour enhancement processing, data prior to performing white balance adjustment processing, or data prior to performing image compression processing.
15. The electronic apparatus according to claim 1, wherein
the image data received by the communication unit is image data upon which color interpolation processing, tone conversion processing, contour enhancement processing, white balance adjustment processing, or image compression processing has been performed by the image processing unit of the external apparatus.
16. A display method comprising,
transmitting image data outputted from an image capturing unit to an external apparatus comprising an image processing unit;
receiving the image data having been processed by the image processing unit of the external apparatus; and
displaying an image generated according to the image data that has been received.
17. An electronic apparatus, comprising:
an image processing unit that performs image processing; and
a communication unit that is capable of communicating with an external apparatus comprising an image capture unit that outputs image data and a display unit that displays an image, wherein
when image data is received from the external apparatus, the communication unit causes the image processing unit to process the received image data into image data for an image that can be displayed by the display unit of the external apparatus, and transmits the image data to the external apparatus.
18. The electronic apparatus according to claim 17, wherein
the communication unit transmits an image that is to be displayed in live view display by the display unit of the external apparatus.
19. The electronic apparatus according to claim 17, wherein
the communication unit is capable of communicating with a plurality of external apparatuses, and, when image data is received from each of the external apparatuses, causes the image processing unit to process the received image data, and transmits the image data to the respective one of the plurality of external apparatuses.
20. The electronic apparatus according to claim 17, wherein
the image data is movie image data.
21. The electronic apparatus according to claim 17, further comprising
a recording unit that records the image data received by the communication unit.
22. The electronic apparatus according to claim 17, further comprising
a recording unit that records the image data processed by the image processing unit.
23. The electronic apparatus according to claim 17, wherein
the image data received from the external apparatus is data prior to performing color interpolation processing, data prior to performing tone conversion processing, data prior to performing contour enhancement processing, data prior to performing white balance adjustment processing, or data prior to performing image compression processing.
US14/768,924 2013-02-28 2013-08-09 Electronic apparatus Abandoned US20160127672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/645,095 US10178338B2 (en) 2013-02-28 2017-07-10 Electronic apparatus and method for conditionally providing image processing by an external apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-039128 2013-02-28
JP2013039128 2013-02-28
PCT/JP2013/071711 WO2014132465A1 (en) 2013-02-28 2013-08-09 Electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071711 A-371-Of-International WO2014132465A1 (en) 2013-02-28 2013-08-09 Electronic apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/645,095 Continuation US10178338B2 (en) 2013-02-28 2017-07-10 Electronic apparatus and method for conditionally providing image processing by an external apparatus

Publications (1)

Publication Number Publication Date
US20160127672A1 true US20160127672A1 (en) 2016-05-05

Family

ID=51427759

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/768,924 Abandoned US20160127672A1 (en) 2013-02-28 2013-08-09 Electronic apparatus
US15/645,095 Active US10178338B2 (en) 2013-02-28 2017-07-10 Electronic apparatus and method for conditionally providing image processing by an external apparatus
US16/204,163 Active US10455180B2 (en) 2013-02-28 2018-11-29 Electronic apparatus and method for conditionally providing image processing by an external apparatus
US16/427,506 Abandoned US20190289242A1 (en) 2013-02-28 2019-05-31 Electronic apparatus and method for conditionally providing image processing by an external apparatus

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/645,095 Active US10178338B2 (en) 2013-02-28 2017-07-10 Electronic apparatus and method for conditionally providing image processing by an external apparatus
US16/204,163 Active US10455180B2 (en) 2013-02-28 2018-11-29 Electronic apparatus and method for conditionally providing image processing by an external apparatus
US16/427,506 Abandoned US20190289242A1 (en) 2013-02-28 2019-05-31 Electronic apparatus and method for conditionally providing image processing by an external apparatus

Country Status (5)

Country Link
US (4) US20160127672A1 (en)
EP (1) EP2963909A4 (en)
JP (3) JPWO2014132465A1 (en)
CN (3) CN110213495B (en)
WO (1) WO2014132465A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160064948A1 (en) * 2014-08-28 2016-03-03 Apple Inc. Temperature Management in a Wireless Energy Transfer System
US9813041B1 (en) 2014-07-31 2017-11-07 Apple Inc. Automatic boost control for resonant coupled coils
US9923383B2 (en) 2014-02-23 2018-03-20 Apple Inc. Adjusting filter in a coupled coil system
US10032557B1 (en) 2014-05-29 2018-07-24 Apple Inc. Tuning of primary and secondary resonant frequency for improved efficiency of inductive power transfer
US10110051B2 (en) 2014-06-13 2018-10-23 Apple Inc. Detection of coil coupling in an inductive charging system
US10116279B2 (en) 2014-02-23 2018-10-30 Apple Inc. Impedance matching for inductive power transfer systems
US10193372B2 (en) 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
US10389274B2 (en) 2017-04-07 2019-08-20 Apple Inc. Boosted output inverter for electronic devices
US10523063B2 (en) 2017-04-07 2019-12-31 Apple Inc. Common mode noise compensation in wireless power systems
US10594159B2 (en) 2014-06-03 2020-03-17 Apple Inc. Methods for detecting mated coils
US10644531B1 (en) 2016-09-22 2020-05-05 Apple Inc. Adaptable power rectifier for wireless charger system
US10666084B2 (en) 2015-07-10 2020-05-26 Apple Inc. Detection and notification of an unpowered releasable charging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303236A (en) * 2016-08-15 2017-01-04 深圳市万普拉斯科技有限公司 Image processing method and device
JP2018207459A (en) * 2017-06-09 2018-12-27 カシオ計算機株式会社 Image transmission control apparatus, image transmission system, image transmission control method, and program
JP7251247B2 (en) * 2018-03-29 2023-04-04 株式会社リコー Communication system and communication method
WO2023032484A1 (en) * 2021-08-30 2023-03-09 富士フイルム株式会社 Imaging system, imaging terminal, and server

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147773A1 (en) * 2001-02-24 2002-10-10 Herman Herman Method and system for panoramic image generation using client-server architecture
US20070058074A1 (en) * 2005-09-13 2007-03-15 Canon Kabushiki Kaisha Image sensing apparatus and control method therefor
US20110310247A1 (en) * 2006-01-17 2011-12-22 Reality Mobile Llc System and Method for Remote Data Acquisition and Distribution
US20120307080A1 (en) * 2011-06-03 2012-12-06 Panasonic Corporation Imaging apparatus and imaging system
US20130242148A1 (en) * 2012-03-19 2013-09-19 Aptina Imaging Corporation Imaging systems with clear filter pixels

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882182B2 (en) * 1997-11-27 2007-02-14 富士フイルムホールディングス株式会社 Image display device, camera, and image communication system
US6665453B2 (en) * 1999-03-16 2003-12-16 Intel Corporation Multi-resolution support for video images
JP2002152453A (en) 2000-11-08 2002-05-24 Matsushita Electric Ind Co Ltd Digital image transmission system to mobile communication terminal
JP2003087618A (en) 2001-09-10 2003-03-20 Nikon Gijutsu Kobo:Kk Digital camera system, image storage device, and digital camera
JP2003309796A (en) * 2002-04-17 2003-10-31 Nikon Gijutsu Kobo:Kk Digital camera and digital picture reproducing device
JP4112259B2 (en) * 2002-04-01 2008-07-02 富士フイルム株式会社 Image processing system
JP2004030250A (en) * 2002-06-26 2004-01-29 Fuji Photo Film Co Ltd Image data transmitting method and portable terminal device and program
JP2004080099A (en) * 2002-08-09 2004-03-11 Canon Inc Imaging apparatus and image-processing method
US20040199303A1 (en) 2003-04-01 2004-10-07 Nikon Corporation Rental vehicle system, in-vehicle computer system, digital camera system and digital camera
JP2004304732A (en) * 2003-04-01 2004-10-28 Nikon Gijutsu Kobo:Kk Camera system
JP2005065136A (en) * 2003-08-20 2005-03-10 Fuji Photo Film Co Ltd Data transmitting apparatus
GB0329449D0 (en) 2003-12-19 2004-01-28 Omnicyte Ltd Stem cells
JP4367929B2 (en) 2004-08-27 2009-11-18 キヤノン株式会社 Mobile phone, printing system and control method thereof
JP4561253B2 (en) * 2004-09-03 2010-10-13 カシオ計算機株式会社 Image transmission apparatus, image processing apparatus, and image transmission / reception system
CN100403777C (en) * 2006-05-26 2008-07-16 佛山普立华科技有限公司 Method of digital system low-voltage stabilizing work
JP2008079260A (en) * 2006-09-25 2008-04-03 Hitachi Kokusai Electric Inc Radio communication system
JP5245257B2 (en) 2006-11-22 2013-07-24 ソニー株式会社 Image display system, display device, and display method
JP4908343B2 (en) 2007-08-06 2012-04-04 オリンパス株式会社 Imaging system
JP4831017B2 (en) * 2007-08-27 2011-12-07 ソニー株式会社 Image processing apparatus, developing apparatus, image processing method, developing method, image processing program, and developing program
JP2009081709A (en) * 2007-09-26 2009-04-16 Seiko Epson Corp Image processing system, and image processing apparatus
CN101582963A (en) * 2008-04-22 2009-11-18 索尼株式会社 Offloading processing of images from a portable digital camera
JP2010171620A (en) 2009-01-21 2010-08-05 Canon Inc Display device and control method of the same, and imaging device and control method of the same
JP4915423B2 (en) * 2009-02-19 2012-04-11 ソニー株式会社 Image processing apparatus, focal plane distortion component calculation method, image processing program, and recording medium
JP5500933B2 (en) * 2009-09-30 2014-05-21 富士フイルム株式会社 Radiographic imaging apparatus, radiographic imaging system, and program
CN102550023A (en) * 2009-10-23 2012-07-04 上海贝尔股份有限公司 Improved method and system for video monitoring
CN103945131B (en) * 2010-02-19 2018-05-01 株式会社尼康 The image acquisition method of electronic equipment and electronic equipment
JP5526929B2 (en) * 2010-03-30 2014-06-18 ソニー株式会社 Image processing apparatus, image processing method, and program
JP2012015889A (en) * 2010-07-02 2012-01-19 Sony Corp Image processing device and image processing method
JP5661367B2 (en) * 2010-08-02 2015-01-28 キヤノン株式会社 IMAGING DEVICE, ITS CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM
JP5885384B2 (en) * 2010-11-12 2016-03-15 株式会社日立国際電気 Image processing device
JP6127382B2 (en) 2011-05-13 2017-05-17 株式会社ニコン Electronic device, control method and program
JP2012257100A (en) * 2011-06-09 2012-12-27 Nikon Corp Electronic camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147773A1 (en) * 2001-02-24 2002-10-10 Herman Herman Method and system for panoramic image generation using client-server architecture
US20070058074A1 (en) * 2005-09-13 2007-03-15 Canon Kabushiki Kaisha Image sensing apparatus and control method therefor
US20110310247A1 (en) * 2006-01-17 2011-12-22 Reality Mobile Llc System and Method for Remote Data Acquisition and Distribution
US20120307080A1 (en) * 2011-06-03 2012-12-06 Panasonic Corporation Imaging apparatus and imaging system
US20130242148A1 (en) * 2012-03-19 2013-09-19 Aptina Imaging Corporation Imaging systems with clear filter pixels

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923383B2 (en) 2014-02-23 2018-03-20 Apple Inc. Adjusting filter in a coupled coil system
US10116279B2 (en) 2014-02-23 2018-10-30 Apple Inc. Impedance matching for inductive power transfer systems
US10032557B1 (en) 2014-05-29 2018-07-24 Apple Inc. Tuning of primary and secondary resonant frequency for improved efficiency of inductive power transfer
US10594159B2 (en) 2014-06-03 2020-03-17 Apple Inc. Methods for detecting mated coils
US10110051B2 (en) 2014-06-13 2018-10-23 Apple Inc. Detection of coil coupling in an inductive charging system
US10879721B2 (en) 2014-06-13 2020-12-29 Apple Inc. Detection of coil coupling in an inductive charging system
US9813041B1 (en) 2014-07-31 2017-11-07 Apple Inc. Automatic boost control for resonant coupled coils
US10014733B2 (en) * 2014-08-28 2018-07-03 Apple Inc. Temperature management in a wireless energy transfer system
US20190006892A1 (en) * 2014-08-28 2019-01-03 Apple Inc. Temperature management in a wireless energy transfer system
US20160064948A1 (en) * 2014-08-28 2016-03-03 Apple Inc. Temperature Management in a Wireless Energy Transfer System
US10879745B2 (en) * 2014-08-28 2020-12-29 Apple Inc. Temperature management in a wireless energy transfer system
US10193372B2 (en) 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
US10666084B2 (en) 2015-07-10 2020-05-26 Apple Inc. Detection and notification of an unpowered releasable charging device
US10644531B1 (en) 2016-09-22 2020-05-05 Apple Inc. Adaptable power rectifier for wireless charger system
US10523063B2 (en) 2017-04-07 2019-12-31 Apple Inc. Common mode noise compensation in wireless power systems
US10389274B2 (en) 2017-04-07 2019-08-20 Apple Inc. Boosted output inverter for electronic devices

Also Published As

Publication number Publication date
CN105144683B (en) 2019-08-09
JP6439837B2 (en) 2018-12-19
US10455180B2 (en) 2019-10-22
US10178338B2 (en) 2019-01-08
JP2019054536A (en) 2019-04-04
US20190098246A1 (en) 2019-03-28
CN110225259A (en) 2019-09-10
WO2014132465A1 (en) 2014-09-04
JPWO2014132465A1 (en) 2017-02-02
CN110213495A (en) 2019-09-06
EP2963909A4 (en) 2016-10-19
EP2963909A1 (en) 2016-01-06
US20170310919A1 (en) 2017-10-26
JP2018011327A (en) 2018-01-18
CN110213495B (en) 2021-11-05
CN110225259B (en) 2021-09-07
CN105144683A (en) 2015-12-09
US20190289242A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US10455180B2 (en) Electronic apparatus and method for conditionally providing image processing by an external apparatus
JP6238184B2 (en) Imaging device
US8937667B2 (en) Image communication apparatus and imaging apparatus
US10349010B2 (en) Imaging apparatus, electronic device and imaging system
EP2690861B1 (en) Apparatus and method to photograph an image
JP6241467B2 (en) Imaging apparatus, imaging control apparatus, imaging method, imaging control method, and program
EP3528490B1 (en) Image data frame synchronization method and terminal
US9369633B2 (en) Imaging apparatus, control method, and storage medium storing program
US9584746B2 (en) Image processing device and imaging method for obtaining a high resolution image and efficient speed for a feedback control signal
US9204028B2 (en) Device, system, method, and computer-readable device for controlling the display of images from a first, local, imaging unit and from a second imaging unit in a remote device
US10057477B2 (en) Imaging device, imaging system, communication device, imaging method, and computer readable recording medium for generating and transmitting superimposed image data
US10397462B2 (en) Imaging control apparatus and imaging apparatus for synchronous shooting
US11509810B2 (en) Image capture apparatus, operation apparatus and control methods
JP2010056768A (en) Photographing system, and photographing device and operation device constituting the same
JP6911392B2 (en) Image acquisition device, image acquisition method, program and image acquisition system
KR101643772B1 (en) Apparatus and method for image capture using image stored in camera
US10158824B2 (en) Imaging apparatus, electronic device and imaging system
WO2014208179A1 (en) Electronic apparatus and program
JP2019110372A (en) camera
JP2016165048A (en) Imaging apparatus, image output device, transfer image determination method, output image determination method and program
JP2015230448A (en) Imaging device, control method therefor, and control program

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAMIDE, SHO;MOTOKI, YASUYUKI;KUWANO, KUNIHIRO;AND OTHERS;SIGNING DATES FROM 20150908 TO 20150914;REEL/FRAME:036982/0702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION