US20160109989A1 - Backlight Module with Low Electromagnetic Interference and Display Device Using the Same - Google Patents

Backlight Module with Low Electromagnetic Interference and Display Device Using the Same Download PDF

Info

Publication number
US20160109989A1
US20160109989A1 US14/979,621 US201514979621A US2016109989A1 US 20160109989 A1 US20160109989 A1 US 20160109989A1 US 201514979621 A US201514979621 A US 201514979621A US 2016109989 A1 US2016109989 A1 US 2016109989A1
Authority
US
United States
Prior art keywords
light source
fold
plane
section
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/979,621
Inventor
Yen-Po Yeh
Jeng-Bin Hsu
Chih-Liang Pan
Yu-Hsiu Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to US14/979,621 priority Critical patent/US20160109989A1/en
Assigned to AU OPTRONICS CORPORATION reassignment AU OPTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, JENG-BIN, CHANG, YU-HSIU, PAN, CHIH-LIANG, YEH, YEN-PO
Publication of US20160109989A1 publication Critical patent/US20160109989A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • This invention generally relates to a backlight module and a display device using the same. More particularly, this invention relates to a backlight module capable of reducing interference to an electromagnetic touch panel and a display device using the same.
  • touch display device On one hand can provide the display function and on the other hand, can serve as the interface for communication with users.
  • Conventional touch display devices mostly adopt the combination of a touch panel and a display panel.
  • the touch panels are typically classified into resistance type, capacitive type, and electromagnetic type based on their operational principles.
  • the electromagnetic touch panel has better durability, high sensitivity, and Z-axis sensing ability; therefore, the electromagnetic touch panel is popular in the touch panel market.
  • FIG. 1 is a schematic view of a conventional electromagnetic touch display device.
  • the electromagnetic touch display device includes a liquid crystal display panel 10 , an electromagnetic touch panel 20 , and a backlight module 30 .
  • the electromagnetic touch panel 20 is disposed on the back side of the liquid crystal display panel 10 and the backlight module 30 , i.e. not on the image display side.
  • the backlight module 30 is disposed on the back side of the liquid crystal display panel 10 to provide the liquid crystal display panel 10 with required light for displaying images.
  • the backlight module 30 includes a light source structure consisting of a flexible circuit board 31 and light emitting diodes 33 .
  • the flexible circuit board 31 Since the light source structure is connected to a signal source 50 disposed outside the backlight module 30 by means of the flexible circuit board 31 , the flexible circuit board 31 has to go across the area between the electromagnetic touch panel 20 and the display panel 10 . However, in the conventional design, the flexible circuit board 31 is disposed with metal wires which interfere the touch sensing operation of the electromagnetic touch panel 20 and accordingly impair the sensing accuracy.
  • An object of this invention is to provide a backlight module to reduce the interference to the sensing operation of an electromagnetic touch panel used therewith.
  • Another object of this invention is to provide a backlight module with a flexible wiring designed light source module.
  • Another further object of this invention is to provide a display device with enhanced touch sensing performance.
  • the display device of this invention includes a display panel, an electromagnetic touch panel, and a backlight module.
  • the electromagnetic touch panel is arranged on the back side of the display panel, and the backlight module is disposed between the display panel and the electromagnetic touch panel.
  • the backlight module generates light and provides the light to the display panel, such that images can be displayed on the display panel.
  • the backlight module includes a light guide plate and a light source module.
  • the light guide plate is disposed between the display panel and the electromagnetic touch panel and has a light entrance edge corresponding to a first side of the electromagnetic touch panel.
  • the light guide plate further includes one side edge which is parallel to and corresponds to a second side of the electromagnetic touch panel.
  • the light source module consists of a flexible circuit board strip and at lest one light source.
  • the flexible circuit board strip includes a light source section, a connection section, and a signal transmission section, wherein the light source section extends along the light entrance edge of the light guide plate and the first side of the electromagnetic touch panel.
  • the light source section has a light source disposing plane for the light source to be disposed thereon.
  • the signal transmission section extends along the side edge of the light guide plate and the second side of the electromagnetic touch panel, and the extending direction thereof is substantially perpendicular to the extending direction of the light source section.
  • the signal transmission section has a wiring disposing plane to include a second angle ⁇ 2 with respect to the light source disposing plane.
  • the wiring disposing plane is disposed on the vertical plane with respect to the electromagnetic touch panel.
  • a first fold and a second fold are formed on the connection section, such that the light source section and the signal transmission section are parallel to and perpendicular to the light guide plate, respectively.
  • the area of the signal transmission section projected on the electromagnetic touch panel can be minimized to about the thickness of the signal transmission section, which is measured along a normal to the wiring disposing plane. Therefore, the influence of signal wiring of the signal transmission section or transmitted power and signals to the sensing operation of the electromagnetic touch panel can be minimized. Furthermore, since the signal transmission section is disposed vertically, the increase in width or area of the overall module is significantly limited when the signal transmission section is disposed on the side edge of the light guide plate or the second side of the electromagnetic touch panel.
  • FIG. 1 is a schematic view of a conventional electromagnetic touch display device
  • FIG. 2 is a schematic view of a display device in accordance with one embodiment of this invention.
  • FIG. 3 is a schematic view of an embodiment of a light source module
  • FIG. 4 is a schematic rear view of an embodiment of a display device
  • FIG. 5 is a schematic view of an embodiment of a signal connection section
  • FIG. 6A is a schematic view of an embodiment before bending the light source module
  • FIG. 6B is a schematic view of the embodiment of FIG. 6A after a first fold is formed
  • FIG. 6C is a schematic view of the embodiment of FIG. 6B after a second fold is formed
  • FIG. 7 is a schematic view of an embodiment showing an auxiliary fold
  • FIG. 8 is a schematic view of an embodiment of a frame
  • FIG. 9A is a schematic view of another embodiment before bending the light source module
  • FIG. 9B is a schematic view of the embodiment of FIG. 9A after a first fold is formed
  • FIG. 9C is a schematic view of the embodiment of FIG. 9B after a second fold is formed
  • FIG. 10 is a schematic view of a display device in accordance with another embodiment of this invention.
  • FIG. 11 is a schematic view of another embodiment of a signal connection section.
  • the display device can be a liquid crystal display device, including household liquid crystal televisions, liquid crystal monitors for personal computers and laptop computers, liquid crystal displays of mobile phones and digital cameras, and other liquid crystal display devices of electronic products.
  • the display device can be an electronic paper display device or products with other type of display panel.
  • the display device includes a display panel 100 , an electromagnetic touch panel 200 , and a backlight module 300 .
  • the display panel 100 is preferably a liquid crystal display panel; however, in other embodiments, the display panel 100 can be an electrophoretic display panel or other types of display panels.
  • the electromagnetic touch panel 200 is preferably disposed on the back side of the display panel 100 , i.e. not on the image display side. As shown in FIG. 2 , the electromagnetic touch panel 200 is stacked parallel to the display panel 100 , and the backlight module 300 is disposed between the display panel 100 and the electromagnetic touch panel 200 .
  • the backlight module 300 is configured to generate and provide required light to the display panel 100 , such that the display panel 100 can display images.
  • the backlight module 300 preferably includes a light guide plate 310 and a light source module 330 .
  • the light guide plate 310 is disposed between the display panel 100 and the electromagnetic touch panel 200 .
  • the light guide plate 310 has a light entrance edge 311 , which is parallel to and corresponds to the first side 210 of the electromagnetic touch panel 200 .
  • the light guide plate 310 further has a side edge 313 , which is parallel to and corresponds to the second side 220 of the electromagnetic touch panel 200 .
  • the light entrance edge 311 and the first side 210 are respectively adjacent to the side edge 313 and the second side 220 to include an angle.
  • the light source module 330 consists of a flexible circuit board strip 500 and at least one light source 600 .
  • the flexible circuit board strip 500 is preferably made by cutting from a flexible printed circuit board (FPC), and the light source 600 preferably includes a side view light emitting diode (LED), which emits light from the lateral side.
  • the flexible circuit board strip 500 includes a light source section 510 , a connection section 530 , and a signal transmission section 550 .
  • the light source section 510 preferably extends along the light entrance edge 311 of the light guide plate 310 and the first side 210 of the electromagnetic touch panel 200 .
  • the light source section 510 has a light source disposing plane 511 . As shown in FIG.
  • the light source disposing plane 511 is preferably parallel to the light guide plate 310 and the electromagnetic touch panel 200 . That is, the light source disposing plane 511 is perpendicular to the plane of the light entrance edge 311 of the light guide plate 310 and the plane of the first side 210 of the electromagnetic touch panel 200 .
  • the light source 600 is disposed on the light source disposing plane 511 and preferably emits light parallel to the light source disposing plane 511 towards the light entrance edge 311 of the light guide plate 310 .
  • the light source disposing plane 511 is referred to the surface of the wider extent of the strip type light source section 510 .
  • the signal transmission section 550 extends along the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200 , and the extending direction thereof is preferably perpendicular to the extending direction of the light source section 510 .
  • the signal transmission section 550 has a wiring disposing plane 551 with signal wiring 553 disposed thereon.
  • the signal wiring 553 is connected to the light source 600 to provide power to the light source 600 for emitting light.
  • the wiring disposing plane 551 is referred to the surface of the wider extent of the strip type signal transmission section 550 .
  • the wiring disposing plane 551 can be on either side of the signal transmission section 550 .
  • the wiring disposing plane 551 and the light source disposing plane 511 can be located on the same side or opposite sides of the flexible circuit board strip 500 .
  • the wiring disposing plane 551 includes a second angle ⁇ 2 with respect to the light source disposing plane 511 .
  • the second angle ⁇ 2 is a right angle, i.e. 90 degrees.
  • the second angle can be modified according to different design need.
  • the wiring disposing plane 551 is preferably parallel to the plane of the side edge 313 of the light guide plate 310 . If the electromagnetic touch panel 200 is considered as a horizontal plane, the wiring disposing plane 551 is disposed on a vertical plane with respect to the electromagnetic touch panel 200 .
  • the area of the signal transmission section 550 projected on the electromagnetic touch panel 200 can be minimized to about only the thickness of the signal transmission section 550 , which is measured along the normal to the wiring disposing plane 551 . Therefore, the influence of the signal wining 553 or the transmitted power and signals to the electromagnetic touch panel 200 during sensing can be minimized.
  • the signal transmission section 550 is disposed vertically, the increase in width and area of the overall module is significantly limited when the signal transmission section 550 is disposed the side edge 312 of the light guide plate 310 or the second side 220 of the electromagnetic touch panel 200 .
  • the connection section 530 has a first end 531 and a second end 532 .
  • the first end 531 is connected to one end of the light source section 510
  • the second end 532 is connected to one end of the signal transmission section 550 .
  • the connection section 530 is connected between the light source section 510 and the signal transmission section 550 .
  • the connection section 530 has a first fold 710 and a second fold 720 .
  • the first fold 710 is close to the first end 531 of the connection section 530
  • the second fold 720 is close to the second end 532 .
  • connection section 530 when the folding process is completed, a portion of the connection section 530 , which is between the first fold 710 and the second fold 720 , and the light source disposing plane 511 are non-coplanar and include a first angle ⁇ 1 .
  • the first angle ⁇ 1 is about 90 degrees.
  • the first angle ⁇ 1 can be modified based on the relative positions of elements.
  • the second fold 720 is preferably located on the second end 532 of the connection section 530 , i.e. on the intersection of the connection section 530 and the signal transmission section 550 .
  • the second fold 720 makes the wiring disposing plane 551 and the light source disposing plane 511 include the second angle ⁇ 2 described above and also makes the extending direction of the signal transmission section 550 be parallel to the light source disposing plane 511 or perpendicular to the normal to the light source disposing plane 511 .
  • the light source disposing plane 511 , the wiring disposing plane 551 , and the portion of the connection section 530 between the first fold 710 and the second fold 720 are non-coplanar with respect to each other and preferably perpendicular to each other.
  • the flexible circuit board strip 500 further includes a signal connection section 570 connected to the other end of the signal transmission section 550 opposite to the connection section 530 .
  • the extending direction of the signal connection section 570 includes an angle with respect to the extending direction of the signal transmission section 550 , and this angle is preferably about 90 degrees.
  • the signal connection section 570 further includes a signal connection plane 571 parallel to the light guide plate 310 and the electromagnetic touch panel 200 .
  • the signal connection plane 571 is referred to the surface of wider extent of the strip type signal connection section 570 .
  • a control circuit board 350 is preferably provided on the back side of the backlight module 300 and parallel to the light guide plate 310 , as shown in FIG. 2 and FIG. 5 .
  • the signal connection plane 571 is horizontally connected to the control circuit board 350 to receive power and signals from the control circuit board 350 and transmit them to the light source 600 through signal transmission section 550 , so that the light source 600 can emit light.
  • the signal transmission section 550 and the signal connection section 570 can be considered as two different sections of the same flexible circuit board strip.
  • the signal connection section 570 can be constituted by arranging other electronic elements.
  • the connection region of the signal connection section 570 and the signal transmission section 550 includes a third fold 730 and a fourth fold 740 .
  • the third fold 730 is close to the signal transmission section 550
  • the fourth fold 740 is close to the signal connection section 570 .
  • the signal connection section 570 is folded inwardly towards the light guide plate 310 to form the third fold 730
  • the fold line of the third fold 730 preferably includes an angle of about 45 degrees with respect to the extending direction of the signal transmission section 550 .
  • the signal connection section 570 can be folded outwardly opposite to the light guide plate 310 to form the third fold 730 .
  • the folded part is then folded at an angle preferably of 90 degrees towards the light guide plate 310 or the control circuit board 350 to form the fourth fold 740 .
  • the fold line of the fourth fold 740 is preferably perpendicular to the extending direction of the signal connection section 570 .
  • a portion of the flexible circuit board strip between the third fold 730 and the fourth fold 740 overlaps the wiring disposing plane 551 and is substantially perpendicular to the signal connection plane 571 .
  • the light source section 510 and the signal transmission section 550 are disposed side by side, and the light source disposing plane 511 and the wiring disposing plane 551 are coplanar.
  • the connection section 530 is transversely connected between the light source section 510 and the signal transmission section 550 , such that the flexible circuit board strip 500 is in a form of U-shaped structure.
  • the flexible circuit board strip 500 can be made by directly cutting from a whole piece of flexible printed circuit board to form the light source section 510 , the connection section 530 , and the signal transmission section 550 in one piece.
  • connection section 530 is first bent downwards from the middle at an angle preferably of about 90 degrees to form the first fold 710 .
  • the first fold 710 can be formed on the first end 531 of the connection section 530 or other suitable places.
  • the fold line of the first fold 710 is preferably parallel to the extending direction of the light source section 510 , such that the folded part of the connection section 530 is substantially parallel to the light entrance edge 311 of the light guide plate 310 .
  • the connection section 530 is folded from the second end 532 at an angle preferably of 90 degrees towards the side edge 313 of the light guide plate 310 to form the second fold 720 .
  • the fold line of the second fold 720 is preferably parallel to the normal to the light source disposing plane 511 .
  • the fold line of the first fold 710 is perpendicular to the fold line of the second fold 720 .
  • part of the connection section 530 between the first fold 710 and the second fold 720 is perpendicular to the light source disposing plane 511 and the wiring disposing plane 551 .
  • one or more auxiliary folds 770 can be formed on the signal transmission section 550 , and the folding line thereof is preferably perpendicular to the extending direction of the signal transmission section 550 .
  • the auxiliary fold 770 With the disposition of the auxiliary fold 770 , the position and the distance of the signal transmission section 550 with respect to the side edges of the light guide plate 310 and the electromagnetic touch panel 200 can be modified. As shown in FIG.
  • two auxiliary folds 770 with opposite folding directions are disposed on the signal transmission section 550 , such that part of the signal transmission section 550 between the two auxiliary folds 770 is laterally shifted, thereby the part of the signal transmission section 550 between the two auxiliary folds 770 is further away from the side edges of the light guide plate 310 and the electromagnetic touch panel 200 .
  • the backlight module 300 further includes a frame 800 surrounding the light guide plate 310 and the electromagnetic touch panel 200 .
  • the frame 800 can be made of plastics.
  • the frame 800 has sidewall 810 corresponding to the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200 .
  • a groove 811 is formed in the sidewall 810 by cutting into the sidewall 810 from the plane parallel to the light guide plate 310 .
  • the plane is preferably a bottom surface opposite to the image displaying direction of the display panel 100 .
  • the signal transmission section 550 is preferably inserted from the plane of the sidewall 810 and received in the groove 811 .
  • the groove 811 since two auxiliary folds 770 of opposite directions are formed on the signal transmission section 550 , the groove 811 accordingly has a corresponding bending shape. With this bending configuration, the distance between the groove 811 and the surface of the sidewall 810 facing the light guide plate 310 can be increased to enhance the structural strength.
  • FIG. 9A shows another embodiment of this invention.
  • the light source section 510 , the connection section 530 , and the signal transmission section 550 are disposed collinearly, i.e. arranged in a straight line.
  • the light source disposing plane 511 and the wiring disposing plane 551 are coplanar.
  • the flexible circuit board strip 500 can be formed by directly cutting from a whole piece of flexible printed circuit board based on the desired shape to form the light source section 510 , the connection section 530 , and the signal transmission section 550 in one piece.
  • connection section 530 is first bent downwards at an angle preferably of 90 degrees to form the first fold 710 .
  • the fold line of the first fold 710 is preferably perpendicular to the extending direction of the light source section 510 . Therefore, the folded connection section 530 is substantially parallel to the plane of the side edge 313 of the light guide plate 310 .
  • the connection section 530 is again bent outwardly opposite to the light guide plate 310 to form the second fold 720 .
  • the fold line of the second fold 720 is inclined a certain angle from the extending direction of the signal transmission section 550 along the wiring disposing plane 551 . This angle is preferably about 45 degrees but can be modified according to the position adjustment requirement.
  • the fold line of the second fold 720 is inclined an angle from the direction of the normal to the light source disposing plane 511 along the wiring disposing plane 551 .
  • the connection section 530 can be folded inwardly towards the light guide plate 310 to form the second fold 720 .
  • the fold line of the first fold 710 and the fold line of the second fold 720 preferably include an angle of about 45 degrees.
  • part of the connection section 530 between the first fold 710 and the second fold 720 is parallel to the wiring disposing plane 551 and partially overlaps the wiring disposing plane 551 .
  • FIG. 10 shows another embodiment of the display device.
  • the backlight module 300 includes a light guide plate 310 and a light source module 330 .
  • the light guide plate 310 includes a light entrance edge 311 and a side edge 313 adjacent to each other.
  • the light entrance edge 311 and the side edge 313 correspond to the first side 210 and the second side 220 of the electromagnetic touch panel 200
  • the light source module 330 consists of a flexible circuit board strip 500 and at least one light source 600 .
  • the light source 600 preferably includes a top view LED, which emits light form the top surface.
  • the flexible circuit board strip 500 is preferably made by cutting from a flexible printed circuit board (FPC) and includes a light source section 510 , a connection section 530 , and a signal transmission section 550 .
  • the light source section 510 preferably extends along the light entrance edge 311 of the light guide plate 310 and the first side 210 of the electromagnetic touch panel 200 .
  • the light source section 510 has a light source disposing plane 511 . As shown in FIG. 10 , the light source disposing plane 511 is preferably perpendicular to the light guide plate 310 and the electromagnetic touch panel 200 .
  • the light source disposing plane 511 is parallel to the plane of the light entrance edge 311 of the light guide plate 310 and the plane of the first side 210 of the electromagnetic touch panel 200 .
  • the light source 600 is disposed on the light source disposing plane 511 and preferably emits light in a direction perpendicular to the light source disposing plane 511 towards the light entrance edge 311 of the light guide plate 310 .
  • the light source disposing plane 511 is referred to the surface of the wider extent of the strip type light source section 510 .
  • the signal transmission section 550 extends along the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200 , and the extending direction thereof is preferably perpendicular to the extending direction of the light source section 510 .
  • the signal transmission section 550 has a wiring disposing plane 551 with signal wiring 553 disposed thereon.
  • the signal wiring 553 is connected to the light source 600 to provide power to the light source 600 for emitting light.
  • the wiring disposing plane 551 is referred to the surface of the wider extent of the strip type signal transmission section 550 .
  • the wiring disposing plane 551 can be on either side of the signal transmission section 550 .
  • the wiring disposing plane 551 and the light source disposing plane 511 can be located on the same side or opposite sides of the flexible circuit board strip 500 .
  • the wiring disposing plane 551 includes an angle with respect to the light source disposing plane 511 . In one embodiment, this angle is a right angle, i.e. 90 degrees. However, in other embodiments, this angle can be modified according to different design need.
  • the wiring disposing plane 551 is preferably parallel to the plane of the side edge 313 of the light guide plate 310 . If the electromagnetic touch panel 200 is considered as a horizontal plane, the wiring disposing plane 551 is disposed on a vertical plane with respect to the electromagnetic touch panel 200 .
  • the area of the signal transmission section 550 projected on the electromagnetic touch panel 200 can be minimized to about only the thickness of the signal transmission section 550 , which is measured along the normal to the wiring disposing plane 551 . Therefore, the influence of the signal wining 553 or the transmitted power and signals to the electromagnetic touch panel 200 during sensing can be minimized.
  • the signal transmission section 550 is disposed vertically, the increase in width and area of the overall module is significantly limited when the signal transmission section 550 is disposed on the side edge 313 of the light guide plate 310 or the second side 220 of the electromagnetic touch panel 200 .
  • the connection section 530 has a first end 531 and a second end 532 .
  • the first end 531 is connected to one end of the light source section 510
  • the second end 532 is connected to one end of the signal transmission section 550 . That is, the connection section 530 is connected between the light source section 510 and the signal transmission section 550 .
  • the connection section 530 has a fold 750 .
  • the fold 750 is between the first end 531 and the second end 532 of the connection section 530 .
  • the fold 750 can be located at the connection with the light source section 510 or the signal transmission section 530 . As shown in FIG.
  • part of the flexible circuit board strip 500 following the fold 750 such as part of the connection section 530 , and the light source disposing plane 511 are non-coplanar and include an angle.
  • the angle is about 90 degrees.
  • the angle can be modified based on the relative positions of elements.
  • the fold 750 makes the wiring disposing plane 551 and the light source disposing plane 511 include an angle of about 90 degrees and also makes the extending direction of the signal transmission section 550 be parallel to the normal to the light source disposing plane 511 or perpendicular to the light source disposing plane 511 .
  • the light source disposing plane 511 and the wiring disposing plane 551 are non-coplanar with respect to each other and preferably perpendicular to each other, and part of the connection section 530 before the fold 750 and part of the connection section 530 after the fold 750 are coplanar to the light source disposing plane 511 and the wiring disposing plane 551 , respectively.
  • the flexible circuit board strip 500 further includes a signal connection section 570 connected to the other end of the signal transmission section 550 opposite to the connection section 530 .
  • the extending direction of the signal connection section 570 includes an angle with respect to the extending direction of the signal transmission section 550 , and this angle is preferably about 90 degrees.
  • the signal connection section 570 further includes a signal connection plane 571 parallel to the light guide plate 310 and the electromagnetic touch panel 200 .
  • the signal connection plane 571 is referred to the surface of wider extent of the strip type signal connection section 570 .
  • a control circuit board 350 is preferably provided on the back side of the backlight module 300 and parallel to the light guide plate 310 , as shown in FIG. 10 and FIG. 11 .
  • the signal connection plane 571 is horizontally connected to the control circuit board 350 to receive power and signals from the control circuit board 350 and transmit them to the light source 600 through signal transmission section 550 , so that the light source 600 can emit light.
  • the signal transmission section 550 and the signal connection section 570 can be considered as two different sections of the same flexible circuit board strip.
  • the signal connection section 570 can be constituted by arranging other electronic elements.
  • the connection region of the signal connection section 570 and the signal transmission section 550 includes a third fold 730 and a fourth fold 740 .
  • the third fold 730 is close to the signal transmission section 550
  • the fourth fold 740 is close to the signal connection section 570 .
  • the signal connection section 570 is folded inwardly towards the light guide plate 310 to form the third fold 730
  • the fold line of the third fold 730 preferably includes an angle of about 45 degrees with respect to the extending direction of the signal transmission section 550 .
  • the signal connection section 570 can be folded outwardly opposite to the light guide plate 310 to form the third fold 730 .
  • the folded part is then folded at an angle preferably of 90 degrees towards the light guide plate 310 or the control circuit board 350 to form the fourth fold 740 .
  • the fold line of the fourth fold 740 is preferably perpendicular to the extending direction of the signal connection section 570 .
  • a portion of the flexible circuit board strip between the third fold 730 and the fourth fold 740 overlaps the wiring disposing plane 551 and is substantially perpendicular to the signal connection plane 571 .
  • the light source section 510 , the connection section 520 , and the signal transmission section 550 are disposed collinearly, i.e. arranged in a straight line. Furthermore, the light source disposing plane 511 and the wiring disposing plane 551 are coplanar.
  • the flexible circuit board strip 500 can be formed by directly cutting from a whole piece of flexible printed circuit board based on the desired shape to form the light source section 510 , the connection section 530 , and the signal transmission section 550 in one piece.
  • connection section 530 is first bent at an angle preferably of 90 degrees to form the fold 750 .
  • the fold line of the fold 710 is preferably perpendicular to the extending direction of the light source section 510 . Therefore, the folded part of the flexible circuit board strip 500 including part of the connection section 530 and the signal transmission section 550 are substantially parallel to the plane of the side edge 313 of the light guide 310 .
  • the backlight module 300 further includes a frame 800 surrounding the light guide 310 and the electromagnetic touch panel 200 .
  • the frame 800 is similar to that described in FIG. 8 , which can include a groove formed in the sidewall and configured to accommodate the signal transmission section 550 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A display device includes a display panel, an electromagnetic touch panel, and a backlight module overlapping one another. The backlight module has a light guide plate and a light source module consisting of a flexible circuit board strip. The flexible circuit board strip includes a light source section and a signal transmission section extending along a light entrance edge and a side edge adjacent to the light entrance edge of the light guide plate, respectively. Two ends of a connection section are connected to the light source section and the signal transmission section, respectively. The connection section includes at least one first fold making the light source disposing plane of the light source section and the wiring disposing plane of the signal transmission section be non-coplanar and also makes the wiring disposing plane be parallel to the plane of the side edge of the light guide plate.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention generally relates to a backlight module and a display device using the same. More particularly, this invention relates to a backlight module capable of reducing interference to an electromagnetic touch panel and a display device using the same.
  • 2. Description of the Prior Art
  • As the competitiveness of electronic products becomes more and more drastic, the design of various electronic products is much more diverse. Apart from the improvement in functions, product appearance and user interface are also important concerns of design. In the design of electronic products, the use of touch display device has become an important part. The touch display device on one hand can provide the display function and on the other hand, can serve as the interface for communication with users.
  • Conventional touch display devices mostly adopt the combination of a touch panel and a display panel. The touch panels are typically classified into resistance type, capacitive type, and electromagnetic type based on their operational principles. Specifically, the electromagnetic touch panel has better durability, high sensitivity, and Z-axis sensing ability; therefore, the electromagnetic touch panel is popular in the touch panel market.
  • FIG. 1 is a schematic view of a conventional electromagnetic touch display device. The electromagnetic touch display device includes a liquid crystal display panel 10, an electromagnetic touch panel 20, and a backlight module 30. The electromagnetic touch panel 20 is disposed on the back side of the liquid crystal display panel 10 and the backlight module 30, i.e. not on the image display side. The backlight module 30 is disposed on the back side of the liquid crystal display panel 10 to provide the liquid crystal display panel 10 with required light for displaying images. The backlight module 30 includes a light source structure consisting of a flexible circuit board 31 and light emitting diodes 33. Since the light source structure is connected to a signal source 50 disposed outside the backlight module 30 by means of the flexible circuit board 31, the flexible circuit board 31 has to go across the area between the electromagnetic touch panel 20 and the display panel 10. However, in the conventional design, the flexible circuit board 31 is disposed with metal wires which interfere the touch sensing operation of the electromagnetic touch panel 20 and accordingly impair the sensing accuracy.
  • SUMMARY OF THE INVENTION
  • An object of this invention is to provide a backlight module to reduce the interference to the sensing operation of an electromagnetic touch panel used therewith.
  • Another object of this invention is to provide a backlight module with a flexible wiring designed light source module.
  • Another further object of this invention is to provide a display device with enhanced touch sensing performance.
  • The display device of this invention includes a display panel, an electromagnetic touch panel, and a backlight module. The electromagnetic touch panel is arranged on the back side of the display panel, and the backlight module is disposed between the display panel and the electromagnetic touch panel. The backlight module generates light and provides the light to the display panel, such that images can be displayed on the display panel. The backlight module includes a light guide plate and a light source module. The light guide plate is disposed between the display panel and the electromagnetic touch panel and has a light entrance edge corresponding to a first side of the electromagnetic touch panel. The light guide plate further includes one side edge which is parallel to and corresponds to a second side of the electromagnetic touch panel.
  • The light source module consists of a flexible circuit board strip and at lest one light source. The flexible circuit board strip includes a light source section, a connection section, and a signal transmission section, wherein the light source section extends along the light entrance edge of the light guide plate and the first side of the electromagnetic touch panel. Moreover, the light source section has a light source disposing plane for the light source to be disposed thereon. The signal transmission section extends along the side edge of the light guide plate and the second side of the electromagnetic touch panel, and the extending direction thereof is substantially perpendicular to the extending direction of the light source section. The signal transmission section has a wiring disposing plane to include a second angle θ2 with respect to the light source disposing plane. If the electromagnetic touch panel is considered as a horizontal plane, the wiring disposing plane is disposed on the vertical plane with respect to the electromagnetic touch panel. A first fold and a second fold are formed on the connection section, such that the light source section and the signal transmission section are parallel to and perpendicular to the light guide plate, respectively.
  • With the arrangement described above, the area of the signal transmission section projected on the electromagnetic touch panel can be minimized to about the thickness of the signal transmission section, which is measured along a normal to the wiring disposing plane. Therefore, the influence of signal wiring of the signal transmission section or transmitted power and signals to the sensing operation of the electromagnetic touch panel can be minimized. Furthermore, since the signal transmission section is disposed vertically, the increase in width or area of the overall module is significantly limited when the signal transmission section is disposed on the side edge of the light guide plate or the second side of the electromagnetic touch panel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a conventional electromagnetic touch display device;
  • FIG. 2 is a schematic view of a display device in accordance with one embodiment of this invention;
  • FIG.3 is a schematic view of an embodiment of a light source module;
  • FIG. 4 is a schematic rear view of an embodiment of a display device;
  • FIG. 5 is a schematic view of an embodiment of a signal connection section;
  • FIG. 6A is a schematic view of an embodiment before bending the light source module;
  • FIG. 6B is a schematic view of the embodiment of FIG. 6A after a first fold is formed;
  • FIG. 6C is a schematic view of the embodiment of FIG. 6B after a second fold is formed;
  • FIG. 7 is a schematic view of an embodiment showing an auxiliary fold;
  • FIG. 8 is a schematic view of an embodiment of a frame;
  • FIG. 9A is a schematic view of another embodiment before bending the light source module;
  • FIG. 9B is a schematic view of the embodiment of FIG. 9A after a first fold is formed;
  • FIG. 9C is a schematic view of the embodiment of FIG. 9B after a second fold is formed;
  • FIG. 10 is a schematic view of a display device in accordance with another embodiment of this invention; and
  • FIG. 11 is a schematic view of another embodiment of a signal connection section.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • This invention provides a backlight module and a display device using the same. In one embodiment, the display device can be a liquid crystal display device, including household liquid crystal televisions, liquid crystal monitors for personal computers and laptop computers, liquid crystal displays of mobile phones and digital cameras, and other liquid crystal display devices of electronic products. However, in other embodiments, the display device can be an electronic paper display device or products with other type of display panel.
  • As shown in FIG. 2, the display device includes a display panel 100, an electromagnetic touch panel 200, and a backlight module 300. In this embodiment, the display panel 100 is preferably a liquid crystal display panel; however, in other embodiments, the display panel 100 can be an electrophoretic display panel or other types of display panels. The electromagnetic touch panel 200 is preferably disposed on the back side of the display panel 100, i.e. not on the image display side. As shown in FIG. 2, the electromagnetic touch panel 200 is stacked parallel to the display panel 100, and the backlight module 300 is disposed between the display panel 100 and the electromagnetic touch panel 200. The backlight module 300 is configured to generate and provide required light to the display panel 100, such that the display panel 100 can display images.
  • In this embodiment, the backlight module 300 preferably includes a light guide plate 310 and a light source module 330. As shown in FIG. 2, the light guide plate 310 is disposed between the display panel 100 and the electromagnetic touch panel 200. The light guide plate 310 has a light entrance edge 311, which is parallel to and corresponds to the first side 210 of the electromagnetic touch panel 200. The light guide plate 310 further has a side edge 313, which is parallel to and corresponds to the second side 220 of the electromagnetic touch panel 200. As shown in FIG. 2, the light entrance edge 311 and the first side 210 are respectively adjacent to the side edge 313 and the second side 220 to include an angle.
  • As shown in FIG. 2 and FIG. 3, the light source module 330 consists of a flexible circuit board strip 500 and at least one light source 600. The flexible circuit board strip 500 is preferably made by cutting from a flexible printed circuit board (FPC), and the light source 600 preferably includes a side view light emitting diode (LED), which emits light from the lateral side. The flexible circuit board strip 500 includes a light source section 510, a connection section 530, and a signal transmission section 550. The light source section 510 preferably extends along the light entrance edge 311 of the light guide plate 310 and the first side 210 of the electromagnetic touch panel 200. Moreover, the light source section 510 has a light source disposing plane 511. As shown in FIG. 2, the light source disposing plane 511 is preferably parallel to the light guide plate 310 and the electromagnetic touch panel 200. That is, the light source disposing plane 511 is perpendicular to the plane of the light entrance edge 311 of the light guide plate 310 and the plane of the first side 210 of the electromagnetic touch panel 200. The light source 600 is disposed on the light source disposing plane 511 and preferably emits light parallel to the light source disposing plane 511 towards the light entrance edge 311 of the light guide plate 310. In one embodiment, the light source disposing plane 511 is referred to the surface of the wider extent of the strip type light source section 510.
  • As shown in FIG. 2 and FIG. 3, the signal transmission section 550 extends along the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200, and the extending direction thereof is preferably perpendicular to the extending direction of the light source section 510. The signal transmission section 550 has a wiring disposing plane 551 with signal wiring 553 disposed thereon. The signal wiring 553 is connected to the light source 600 to provide power to the light source 600 for emitting light. In one embodiment, the wiring disposing plane 551 is referred to the surface of the wider extent of the strip type signal transmission section 550. Moreover, the wiring disposing plane 551 can be on either side of the signal transmission section 550. In other words, the wiring disposing plane 551 and the light source disposing plane 511 can be located on the same side or opposite sides of the flexible circuit board strip 500. The wiring disposing plane 551 includes a second angle θ2 with respect to the light source disposing plane 511. In one embodiment, the second angle θ2 is a right angle, i.e. 90 degrees. However, in other embodiments, the second angle can be modified according to different design need. Moreover, the wiring disposing plane 551 is preferably parallel to the plane of the side edge 313 of the light guide plate 310. If the electromagnetic touch panel 200 is considered as a horizontal plane, the wiring disposing plane 551 is disposed on a vertical plane with respect to the electromagnetic touch panel 200.
  • As shown in FIG. 4, in the arrangement described above, the area of the signal transmission section 550 projected on the electromagnetic touch panel 200 can be minimized to about only the thickness of the signal transmission section 550, which is measured along the normal to the wiring disposing plane 551. Therefore, the influence of the signal wining 553 or the transmitted power and signals to the electromagnetic touch panel 200 during sensing can be minimized. Moreover, since the signal transmission section 550 is disposed vertically, the increase in width and area of the overall module is significantly limited when the signal transmission section 550 is disposed the side edge 312 of the light guide plate 310 or the second side 220 of the electromagnetic touch panel 200.
  • As shown in FIG. 2 and FIG. 3, the connection section 530 has a first end 531 and a second end 532. The first end 531 is connected to one end of the light source section 510, and the second end 532 is connected to one end of the signal transmission section 550. In other words, the connection section 530 is connected between the light source section 510 and the signal transmission section 550. The connection section 530 has a first fold 710 and a second fold 720. In this embodiment, the first fold 710 is close to the first end 531 of the connection section 530, and the second fold 720 is close to the second end 532. As shown in FIG. 3, when the folding process is completed, a portion of the connection section 530, which is between the first fold 710 and the second fold 720, and the light source disposing plane 511 are non-coplanar and include a first angle θ1. In one embodiment, the first angle θ1 is about 90 degrees. However, in other embodiment, the first angle θ1 can be modified based on the relative positions of elements. Moreover, the second fold 720 is preferably located on the second end 532 of the connection section 530, i.e. on the intersection of the connection section 530 and the signal transmission section 550. When the folding process is completed, the second fold 720 makes the wiring disposing plane 551 and the light source disposing plane 511 include the second angle θ2 described above and also makes the extending direction of the signal transmission section 550 be parallel to the light source disposing plane 511 or perpendicular to the normal to the light source disposing plane 511. In other words, in this embodiment, when the first fold 710 and the second fold 720 are formed, the light source disposing plane 511, the wiring disposing plane 551, and the portion of the connection section 530 between the first fold 710 and the second fold 720 are non-coplanar with respect to each other and preferably perpendicular to each other.
  • As shown in FIG. 5, the flexible circuit board strip 500 further includes a signal connection section 570 connected to the other end of the signal transmission section 550 opposite to the connection section 530. The extending direction of the signal connection section 570 includes an angle with respect to the extending direction of the signal transmission section 550, and this angle is preferably about 90 degrees. Moreover, the signal connection section 570 further includes a signal connection plane 571 parallel to the light guide plate 310 and the electromagnetic touch panel 200. In one embodiment, the signal connection plane 571 is referred to the surface of wider extent of the strip type signal connection section 570. A control circuit board 350 is preferably provided on the back side of the backlight module 300 and parallel to the light guide plate 310, as shown in FIG. 2 and FIG. 5. The signal connection plane 571 is horizontally connected to the control circuit board 350 to receive power and signals from the control circuit board 350 and transmit them to the light source 600 through signal transmission section 550, so that the light source 600 can emit light. In this embodiment, the signal transmission section 550 and the signal connection section 570 can be considered as two different sections of the same flexible circuit board strip. However, in other embodiments, the signal connection section 570 can be constituted by arranging other electronic elements.
  • In the embodiment of FIG. 5, the connection region of the signal connection section 570 and the signal transmission section 550 includes a third fold 730 and a fourth fold 740. The third fold 730 is close to the signal transmission section 550, and the fourth fold 740 is close to the signal connection section 570. As shown in FIG. 5, the signal connection section 570 is folded inwardly towards the light guide plate 310 to form the third fold 730, and the fold line of the third fold 730 preferably includes an angle of about 45 degrees with respect to the extending direction of the signal transmission section 550. However, in other embodiments, the signal connection section 570 can be folded outwardly opposite to the light guide plate 310 to form the third fold 730. After forming the third fold 730, the folded part is then folded at an angle preferably of 90 degrees towards the light guide plate 310 or the control circuit board 350 to form the fourth fold 740. The fold line of the fourth fold 740 is preferably perpendicular to the extending direction of the signal connection section 570. As shown in FIG. 5, a portion of the flexible circuit board strip between the third fold 730 and the fourth fold 740 overlaps the wiring disposing plane 551 and is substantially perpendicular to the signal connection plane 571.
  • In the embodiment of FIG. 6A, before the first fold 710 and the second fold 720 are formed, the light source section 510 and the signal transmission section 550 are disposed side by side, and the light source disposing plane 511 and the wiring disposing plane 551 are coplanar. The connection section 530 is transversely connected between the light source section 510 and the signal transmission section 550, such that the flexible circuit board strip 500 is in a form of U-shaped structure. In one embodiment, the flexible circuit board strip 500 can be made by directly cutting from a whole piece of flexible printed circuit board to form the light source section 510, the connection section 530, and the signal transmission section 550 in one piece.
  • As shown in FIG. 6B, the connection section 530 is first bent downwards from the middle at an angle preferably of about 90 degrees to form the first fold 710. In other embodiments, the first fold 710 can be formed on the first end 531 of the connection section 530 or other suitable places. As shown in FIG. 6B, the fold line of the first fold 710 is preferably parallel to the extending direction of the light source section 510, such that the folded part of the connection section 530 is substantially parallel to the light entrance edge 311 of the light guide plate 310. As shown in FIG. 6C, the connection section 530 is folded from the second end 532 at an angle preferably of 90 degrees towards the side edge 313 of the light guide plate 310 to form the second fold 720. The fold line of the second fold 720 is preferably parallel to the normal to the light source disposing plane 511. In the embodiment shown in FIG. 6C, when the first fold 710 and the second fold 720 are formed, the fold line of the first fold 710 is perpendicular to the fold line of the second fold 720. Moreover, part of the connection section 530 between the first fold 710 and the second fold 720 is perpendicular to the light source disposing plane 511 and the wiring disposing plane 551.
  • In the embodiment shown in FIG. 7, one or more auxiliary folds 770 can be formed on the signal transmission section 550, and the folding line thereof is preferably perpendicular to the extending direction of the signal transmission section 550. With the disposition of the auxiliary fold 770, the position and the distance of the signal transmission section 550 with respect to the side edges of the light guide plate 310 and the electromagnetic touch panel 200 can be modified. As shown in FIG. 7, two auxiliary folds 770 with opposite folding directions are disposed on the signal transmission section 550, such that part of the signal transmission section 550 between the two auxiliary folds 770 is laterally shifted, thereby the part of the signal transmission section 550 between the two auxiliary folds 770 is further away from the side edges of the light guide plate 310 and the electromagnetic touch panel 200. However, in other embodiments, it is possible to employ different number of the auxiliary folds 770 and vary the positions of the auxiliary folds 770 to change the location of the signal transmission section 550 for the purpose of achieving spatial integration with other elements. As such, the interference to the sensing operation of the electromagnetic touch panel 200 can be further reduced.
  • As shown in FIG. 8, the backlight module 300 further includes a frame 800 surrounding the light guide plate 310 and the electromagnetic touch panel 200. In one embodiment, the frame 800 can be made of plastics. The frame 800 has sidewall 810 corresponding to the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200. As shown in FIG. 8, a groove 811 is formed in the sidewall 810 by cutting into the sidewall 810 from the plane parallel to the light guide plate 310. In this embodiment, the plane is preferably a bottom surface opposite to the image displaying direction of the display panel 100. The signal transmission section 550 is preferably inserted from the plane of the sidewall 810 and received in the groove 811. In this embodiment, since two auxiliary folds 770 of opposite directions are formed on the signal transmission section 550, the groove 811 accordingly has a corresponding bending shape. With this bending configuration, the distance between the groove 811 and the surface of the sidewall 810 facing the light guide plate 310 can be increased to enhance the structural strength.
  • FIG. 9A shows another embodiment of this invention. In this embodiment, before forming the first fold 710 and the second fold 720, the light source section 510, the connection section 530, and the signal transmission section 550 are disposed collinearly, i.e. arranged in a straight line. Furthermore, the light source disposing plane 511 and the wiring disposing plane 551 are coplanar. In one embodiment, the flexible circuit board strip 500 can be formed by directly cutting from a whole piece of flexible printed circuit board based on the desired shape to form the light source section 510, the connection section 530, and the signal transmission section 550 in one piece.
  • As shown in FIG. 9B, the connection section 530 is first bent downwards at an angle preferably of 90 degrees to form the first fold 710. The fold line of the first fold 710 is preferably perpendicular to the extending direction of the light source section 510. Therefore, the folded connection section 530 is substantially parallel to the plane of the side edge 313 of the light guide plate 310. After that, as shown in FIG. 9C, the connection section 530 is again bent outwardly opposite to the light guide plate 310 to form the second fold 720. The fold line of the second fold 720 is inclined a certain angle from the extending direction of the signal transmission section 550 along the wiring disposing plane 551. This angle is preferably about 45 degrees but can be modified according to the position adjustment requirement. From another perception, the fold line of the second fold 720 is inclined an angle from the direction of the normal to the light source disposing plane 511 along the wiring disposing plane 551. In other embodiments, the connection section 530 can be folded inwardly towards the light guide plate 310 to form the second fold 720. In the embodiment of FIG. 9C, when the first fold 710 and the second fold 720 are formed, the fold line of the first fold 710 and the fold line of the second fold 720 preferably include an angle of about 45 degrees. Furthermore, part of the connection section 530 between the first fold 710 and the second fold 720 is parallel to the wiring disposing plane 551 and partially overlaps the wiring disposing plane 551.
  • FIG. 10 shows another embodiment of the display device. In this embodiment, with regard to functions and relative positions of the display panel 100, the electromagnetic touch panel 200, and the backlight module 300 are similar to those of FIG. 2 and will not be elaborated hereinafter. In this embodiment, the backlight module 300 includes a light guide plate 310 and a light source module 330. The light guide plate 310 includes a light entrance edge 311 and a side edge 313 adjacent to each other. Similarly, in this embodiment, the light entrance edge 311 and the side edge 313 correspond to the first side 210 and the second side 220 of the electromagnetic touch panel 200, and the light source module 330 consists of a flexible circuit board strip 500 and at least one light source 600. However, in this embodiment, the light source 600 preferably includes a top view LED, which emits light form the top surface. The flexible circuit board strip 500 is preferably made by cutting from a flexible printed circuit board (FPC) and includes a light source section 510, a connection section 530, and a signal transmission section 550. The light source section 510 preferably extends along the light entrance edge 311 of the light guide plate 310 and the first side 210 of the electromagnetic touch panel 200. Moreover, the light source section 510 has a light source disposing plane 511. As shown in FIG. 10, the light source disposing plane 511 is preferably perpendicular to the light guide plate 310 and the electromagnetic touch panel 200. That is, the light source disposing plane 511 is parallel to the plane of the light entrance edge 311 of the light guide plate 310 and the plane of the first side 210 of the electromagnetic touch panel 200. The light source 600 is disposed on the light source disposing plane 511 and preferably emits light in a direction perpendicular to the light source disposing plane 511 towards the light entrance edge 311 of the light guide plate 310. In one embodiment, the light source disposing plane 511 is referred to the surface of the wider extent of the strip type light source section 510.
  • As shown in FIG. 10 and FIG. 11, the signal transmission section 550 extends along the side edge 313 of the light guide plate 310 and the second side 220 of the electromagnetic touch panel 200, and the extending direction thereof is preferably perpendicular to the extending direction of the light source section 510. The signal transmission section 550 has a wiring disposing plane 551 with signal wiring 553 disposed thereon. The signal wiring 553 is connected to the light source 600 to provide power to the light source 600 for emitting light. In one embodiment, the wiring disposing plane 551 is referred to the surface of the wider extent of the strip type signal transmission section 550. Moreover, the wiring disposing plane 551 can be on either side of the signal transmission section 550. In other words, the wiring disposing plane 551 and the light source disposing plane 511 can be located on the same side or opposite sides of the flexible circuit board strip 500. The wiring disposing plane 551 includes an angle with respect to the light source disposing plane 511. In one embodiment, this angle is a right angle, i.e. 90 degrees. However, in other embodiments, this angle can be modified according to different design need. Moreover, the wiring disposing plane 551 is preferably parallel to the plane of the side edge 313 of the light guide plate 310. If the electromagnetic touch panel 200 is considered as a horizontal plane, the wiring disposing plane 551 is disposed on a vertical plane with respect to the electromagnetic touch panel 200.
  • As shown in FIG. 10 and FIG. 11, in the arrangement described above, the area of the signal transmission section 550 projected on the electromagnetic touch panel 200 can be minimized to about only the thickness of the signal transmission section 550, which is measured along the normal to the wiring disposing plane 551. Therefore, the influence of the signal wining 553 or the transmitted power and signals to the electromagnetic touch panel 200 during sensing can be minimized. Moreover, since the signal transmission section 550 is disposed vertically, the increase in width and area of the overall module is significantly limited when the signal transmission section 550 is disposed on the side edge 313 of the light guide plate 310 or the second side 220 of the electromagnetic touch panel 200.
  • As shown in FIG. 10 and FIG. 11, the connection section 530 has a first end 531 and a second end 532. The first end 531 is connected to one end of the light source section 510, and the second end 532 is connected to one end of the signal transmission section 550. That is, the connection section 530 is connected between the light source section 510 and the signal transmission section 550. The connection section 530 has a fold 750. In this embodiment, the fold 750 is between the first end 531 and the second end 532 of the connection section 530. However, in other embodiments, the fold 750 can be located at the connection with the light source section 510 or the signal transmission section 530. As shown in FIG. 11, when the folding process is completed, part of the flexible circuit board strip 500 following the fold 750, such as part of the connection section 530, and the light source disposing plane 511 are non-coplanar and include an angle. In one embodiment, the angle is about 90 degrees. However, in other embodiment, the angle can be modified based on the relative positions of elements. When the folding process is completed, the fold 750 makes the wiring disposing plane 551 and the light source disposing plane 511 include an angle of about 90 degrees and also makes the extending direction of the signal transmission section 550 be parallel to the normal to the light source disposing plane 511 or perpendicular to the light source disposing plane 511. In other words, in this embodiment, when the fold 750 is formed, the light source disposing plane 511 and the wiring disposing plane 551 are non-coplanar with respect to each other and preferably perpendicular to each other, and part of the connection section 530 before the fold 750 and part of the connection section 530 after the fold 750 are coplanar to the light source disposing plane 511 and the wiring disposing plane 551, respectively.
  • As shown in FIG. 11, the flexible circuit board strip 500 further includes a signal connection section 570 connected to the other end of the signal transmission section 550 opposite to the connection section 530. The extending direction of the signal connection section 570 includes an angle with respect to the extending direction of the signal transmission section 550, and this angle is preferably about 90 degrees. Moreover, the signal connection section 570 further includes a signal connection plane 571 parallel to the light guide plate 310 and the electromagnetic touch panel 200. In one embodiment, the signal connection plane 571 is referred to the surface of wider extent of the strip type signal connection section 570. A control circuit board 350 is preferably provided on the back side of the backlight module 300 and parallel to the light guide plate 310, as shown in FIG. 10 and FIG. 11. The signal connection plane 571 is horizontally connected to the control circuit board 350 to receive power and signals from the control circuit board 350 and transmit them to the light source 600 through signal transmission section 550, so that the light source 600 can emit light. In this embodiment, the signal transmission section 550 and the signal connection section 570 can be considered as two different sections of the same flexible circuit board strip. However, in other embodiments, the signal connection section 570 can be constituted by arranging other electronic elements.
  • In the embodiment of FIG. 11, the connection region of the signal connection section 570 and the signal transmission section 550 includes a third fold 730 and a fourth fold 740. The third fold 730 is close to the signal transmission section 550, and the fourth fold 740 is close to the signal connection section 570. As shown in FIG. 11, the signal connection section 570 is folded inwardly towards the light guide plate 310 to form the third fold 730, and the fold line of the third fold 730 preferably includes an angle of about 45 degrees with respect to the extending direction of the signal transmission section 550. However, in other embodiments, the signal connection section 570 can be folded outwardly opposite to the light guide plate 310 to form the third fold 730. After forming the third fold 730, the folded part is then folded at an angle preferably of 90 degrees towards the light guide plate 310 or the control circuit board 350 to form the fourth fold 740. The fold line of the fourth fold 740 is preferably perpendicular to the extending direction of the signal connection section 570. As shown in FIG. 11, a portion of the flexible circuit board strip between the third fold 730 and the fourth fold 740 overlaps the wiring disposing plane 551 and is substantially perpendicular to the signal connection plane 571.
  • In the embodiment of FIG. 10 and FIG. 11, before the fold 750 is formed, the light source section 510, the connection section 520, and the signal transmission section 550 are disposed collinearly, i.e. arranged in a straight line. Furthermore, the light source disposing plane 511 and the wiring disposing plane 551 are coplanar. In one embodiment, the flexible circuit board strip 500 can be formed by directly cutting from a whole piece of flexible printed circuit board based on the desired shape to form the light source section 510, the connection section 530, and the signal transmission section 550 in one piece.
  • As shown in FIG. 11, the connection section 530 is first bent at an angle preferably of 90 degrees to form the fold 750. The fold line of the fold 710 is preferably perpendicular to the extending direction of the light source section 510. Therefore, the folded part of the flexible circuit board strip 500 including part of the connection section 530 and the signal transmission section 550 are substantially parallel to the plane of the side edge 313 of the light guide 310.
  • Similarly, one or more auxiliary folds (not shown) can be formed on the signal transmission section 550 of FIG. 10 to enhance the structural strength and accommodate different design needs as describe above. Moreover, as shown in FIG. 10, the backlight module 300 further includes a frame 800 surrounding the light guide 310 and the electromagnetic touch panel 200. In this embodiment, the frame 800 is similar to that described in FIG. 8, which can include a groove formed in the sidewall and configured to accommodate the signal transmission section 550.
  • The present invention has been described through the relevant embodiments above; however, the embodiments above are only exemplary. What needs to point out is that the embodiments disclosed are not intended to limit the scope of the present invention. Contrarily, the modifications and the equivalents included in the spirit and scope of the claims are all included in the scope of this invention.

Claims (16)

What is claimed is:
1. A backlight module, comprising:
a light guide plate having a light entrance edge and a side edge adjacent to each other; and
a light source module comprising:
a flexible circuit board strip having:
a light source section having a light source disposing plane and extending along the light entrance edge;
a connection section connected to one end of the light source section; and
a signal transmission section extending along the side edge of the light guide plate, wherein the signal transmission section has a wiring disposing plane parallel to a plane of the side edge of the light guide plate, one end of the signal transmission section is connected to the connection section;
wherein the connection section includes a first fold and a second fold making a portion of the wiring disposing plane parallel to the plane of the side edge of the light guide plate and the light source disposing plane are non-coplanar and include at least one angle, before the first fold and the second fold are formed, the light source section, the connection section, and the signal transmission section are disposed collinearly, and the light source disposing plane and the wiring disposing plane are coplanar; and
a plurality of light sources, disposed along an extending direction of the light source section on the light source disposing plane, for emitting light towards the light entrance edge.
2. A backlight module, comprising:
a light guide plate having a light entrance edge and a side edge adjacent to each other; and
a light source module comprising:
a flexible circuit board strip having:
a light source section having a light source disposing plane and extending along the light entrance edge;
a connection section having a first end and a second end, wherein the first end is connected to one end of the light source section; and
a signal transmission section extending along the side edge of the light guide plate, wherein the signal transmission section has a wiring disposing plane parallel to a plane of the side edge of the light guide plate, one end of the signal transmission section is connected to the second end of the connection section;
wherein the connection section has a first fold and a second fold, part of the connection section between the first fold and the second fold and the light source disposing plane are non-coplanar and include a first angle, the second fold makes the wiring disposing plane and the light source disposing plane include a second angle, and an extending direction of the signal transmission section is parallel to the light source disposing plane, before the first fold and the second fold are formed, the light source section, the connection section, and the signal transmission section are disposed collinearly, and the light source disposing plane and the wiring disposing plane are coplanar; and
a plurality of light sources, disposed along an extending direction of the light source section on the light source disposing plane, for emitting light towards the light entrance edge.
3. A display device, comprising:
a display panel;
an electromagnetic touch panel overlapping the display panel and having a first side and a second side adjacent to each other; and
a backlight module, disposed between the display panel and the electromagnetic touch panel, for providing light to the display panel, the backlight module including:
a light source module comprising:
a flexible circuit board strip having:
a light source section having a light source disposing plane and extending along the first side of the electromagnetic touch panel;
a connection section connected to one end of the light source section; and
a signal transmission section extending along the second side of the electromagnetic touch panel, wherein the signal transmission section has a wiring disposing plane parallel to a plane of the second side, one end of the signal transmission section is connected to the connection section;
wherein the connection section has a first fold and a second fold making a portion of the wiring disposing plane parallel to the plane of the second side and the light source disposing plane are non-coplanar and include at least one angle, before the first fold and the second fold are formed, the light source section, the connection section, and the signal transmission section are disposed collinearly, and the light source disposing plane and the wiring disposing plane are coplanar; and
a plurality of light sources disposed along an extending direction of the light source section on the light source disposing plane.
4. The display device of claim 3, wherein the at least one angle includes a first angle and a second angle, so that part of the connection section between the first fold and the second fold and the light source disposing plane are non-coplanar and include the first angle, the second fold makes the wiring disposing plane and the light source disposing plane include the second angle, and an extending direction of the signal transmission section is parallel to the light source disposing plane.
5. The display device of claim 4, wherein the light source disposing plane is perpendicular to a plane of the first side of the electromagnetic touch panel.
6. The display device of claim 4, wherein the part of the connection section between the first fold and the second fold is parallel to the wiring disposing plane and partially overlaps the wiring disposing plane.
7. The display device of claim 4, wherein a fold line of the second fold is inclined along the wiring disposing plane to form an inclined angle with respect to the extending direction of the signal transmission section.
8. The display device of claim 4, wherein a fold line of the first fold is perpendicular to the extending direction of the light source section, and a fold line of the second fold is inclined along the wiring disposing plane to form an inclined angle with respect to a normal to the light source disposing plane.
9. The display device of claim 3, wherein an extending direction of the signal transmission section be parallel to a normal to the light source disposing plane.
10. The display device of claim 9, wherein before the at least one fold is formed, the light source section, the connection section, and the signal transmission section are disposed collinearly, the light source disposing plane and the wiring disposing plane are coplanar.
11. The display device of claim 9, wherein the light source disposing plane is parallel to a plane of the first side of the electromagnetic touch panel.
12. The display device of claim 10, further comprising a signal connection section connected to the other end of the signal transmission section, wherein the signal connection section includes a signal connection plane perpendicular to the light source disposing plane.
13. The display device of claim 12, wherein the signal connection plane is parallel to the electromagnetic touch panel.
14. The display device of claim 12, wherein a connection region of the signal connection section and the signal transmission section includes a third fold and a fourth fold, part of the flexible circuit board strip between the third fold and the fourth fold parallelly overlaps the wiring disposing plane and is substantially perpendicular to the signal connection plane.
15. The display device of claim 14, wherein a fold line of the third fold is inclined along wiring disposing plane to form an inclined angle with respect to an extending direction of the signal transmission section.
16. The display device of claim 14, wherein a fold line of the fourth fold is parallel to an extending direction of the signal transmission section.
US14/979,621 2009-08-11 2015-12-28 Backlight Module with Low Electromagnetic Interference and Display Device Using the Same Abandoned US20160109989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/979,621 US20160109989A1 (en) 2009-08-11 2015-12-28 Backlight Module with Low Electromagnetic Interference and Display Device Using the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW098127003 2009-08-11
TW098127003A TWI392927B (en) 2009-08-11 2009-08-11 Backlight module with low electromagnetic interference and display device using the same
US12/853,496 US9256338B2 (en) 2009-08-11 2010-08-10 Backlight module with low electromagnetic interference and display device using the same
US14/979,621 US20160109989A1 (en) 2009-08-11 2015-12-28 Backlight Module with Low Electromagnetic Interference and Display Device Using the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/853,496 Division US9256338B2 (en) 2009-08-11 2010-08-10 Backlight module with low electromagnetic interference and display device using the same

Publications (1)

Publication Number Publication Date
US20160109989A1 true US20160109989A1 (en) 2016-04-21

Family

ID=43588322

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/853,496 Active 2034-12-11 US9256338B2 (en) 2009-08-11 2010-08-10 Backlight module with low electromagnetic interference and display device using the same
US14/979,621 Abandoned US20160109989A1 (en) 2009-08-11 2015-12-28 Backlight Module with Low Electromagnetic Interference and Display Device Using the Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/853,496 Active 2034-12-11 US9256338B2 (en) 2009-08-11 2010-08-10 Backlight module with low electromagnetic interference and display device using the same

Country Status (2)

Country Link
US (2) US9256338B2 (en)
TW (1) TWI392927B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254081A1 (en) * 2020-06-19 2021-12-23 京东方科技集团股份有限公司 Display panel, display device and terminal apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106341B2 (en) * 2008-10-02 2012-12-26 株式会社ジャパンディスプレイイースト Display device
CN103307507A (en) * 2012-03-09 2013-09-18 鑫成科技(成都)有限公司 Assembly method for backlight module, backlight module and liquid crystal display device
TWI476352B (en) * 2012-04-05 2015-03-11 Radiant Opto Electronics Corp Lighting fixture
CN104731421B (en) * 2013-12-24 2018-02-13 昆山维信诺显示技术有限公司 The FPC and its installation method of a kind of capacitive touch screen
KR20150092817A (en) * 2014-02-05 2015-08-17 삼성디스플레이 주식회사 Liquid crystal display device and digitizer module for the same
US10296119B2 (en) 2015-03-31 2019-05-21 Hewlett-Packard Development Company, L.P. Printed circuit board
TWI647498B (en) * 2018-01-25 2019-01-11 友達光電股份有限公司 Flexible light emitting module, backlight module with the same, and display device using the same
US11215331B2 (en) * 2018-07-31 2022-01-04 Xiamen Eco Lighting Co. Ltd. Panel light apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250758A (en) * 1991-05-21 1993-10-05 Elf Technologies, Inc. Methods and systems of preparing extended length flexible harnesses
US20100053995A1 (en) * 2007-03-30 2010-03-04 Kazuki Ohfuku Backlight unit
US20100245703A1 (en) * 2009-03-26 2010-09-30 Chunghwa Picture Tubes, Ltd. Liquid crystal display

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267072A (en) 1999-03-17 2000-09-29 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP4815675B2 (en) 2001-02-02 2011-11-16 ソニー株式会社 Liquid crystal display device and backlight device for liquid crystal display element
KR100425168B1 (en) * 2001-07-11 2004-03-30 엘지.필립스 엘시디 주식회사 Structure for installing backlight lamp wire in liquid cristal display(LCD)
KR100546708B1 (en) * 2003-05-19 2006-01-26 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device
TWI282194B (en) * 2004-03-08 2007-06-01 P Two Ind Inc FPC connector with metal shielding for preventing from EMI
JP3994413B2 (en) 2004-03-16 2007-10-17 ミネベア株式会社 Surface lighting device
JP2005294172A (en) 2004-04-02 2005-10-20 Sharp Corp Planar lighting apparatus and display device using the same
JP4590283B2 (en) * 2004-05-21 2010-12-01 シャープ株式会社 Backlight unit and liquid crystal display device including the same
KR101129436B1 (en) 2005-05-23 2012-03-26 삼성전자주식회사 Display device
TW200725073A (en) * 2005-12-23 2007-07-01 Innolux Display Corp Liquid crystal display device
JP2007242450A (en) 2006-03-09 2007-09-20 Harison Toshiba Lighting Corp Light source unit, backlight, and display device
JP5308749B2 (en) * 2008-09-05 2013-10-09 株式会社ジャパンディスプレイ Liquid crystal display
KR101515462B1 (en) * 2008-11-13 2015-05-06 삼성디스플레이 주식회사 Liquid crystal display device and method of assembling the same
TWM359090U (en) * 2009-02-20 2009-06-11 Cheng Uei Prec Ind Co Ltd FPC connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250758A (en) * 1991-05-21 1993-10-05 Elf Technologies, Inc. Methods and systems of preparing extended length flexible harnesses
US20100053995A1 (en) * 2007-03-30 2010-03-04 Kazuki Ohfuku Backlight unit
US20100245703A1 (en) * 2009-03-26 2010-09-30 Chunghwa Picture Tubes, Ltd. Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254081A1 (en) * 2020-06-19 2021-12-23 京东方科技集团股份有限公司 Display panel, display device and terminal apparatus
US12035463B2 (en) 2020-06-19 2024-07-09 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, display device and terminal apparatus

Also Published As

Publication number Publication date
US9256338B2 (en) 2016-02-09
TWI392927B (en) 2013-04-11
US20110037717A1 (en) 2011-02-17
TW201106063A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US9256338B2 (en) Backlight module with low electromagnetic interference and display device using the same
US9383845B2 (en) Electrooptic device having input function
KR101320384B1 (en) Flexible display panel and the display apparatus comprising the flexible display panel
US9730344B2 (en) Window member and display apparatus having the same
US9575240B2 (en) Display device
US8967847B2 (en) Illumination assembly and display module
US8382358B2 (en) Double-side display panel with backlight module used therein and manufacture method thereof
JP5800507B2 (en) Liquid crystal display
JP5857496B2 (en) LIGHTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
US7463248B2 (en) System and method for constructing optical devices using fold-up portions extended from a substrate
EP2456198A1 (en) Display device comprising an infrared sensor
US20120249927A1 (en) Liquid crystal display device
US20130062521A1 (en) Electronic device and method of production of infrared light shield plate mounted in electronic device
EP3934215B1 (en) Cover plate, display screen and electronic device
US20150346863A1 (en) Touch panel and electronic device with touch panel
CN108022520A (en) Display device
US9830024B2 (en) Add-on touch device and sensing module thereof
US8717769B2 (en) Electronic apparatus
US20150136448A1 (en) Flexible Printed Wiring Board and Electronic Apparatus
KR20130061156A (en) Flexible display panel and the display apparatus comprising the flexible display panel
US8624877B2 (en) Optical touch display apparatus and optical operation apparatus
CN109254434A (en) Display device
US20230263004A1 (en) Electronic Devices Having Curved Displays With Supporting Frames
CN101661691B (en) Low-electromagnetic touch-control induction interference backlight module and display device
US10528164B2 (en) Display device, backlight unit, guide panel, and flexible printed circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEH, YEN-PO;HSU, JENG-BIN;PAN, CHIH-LIANG;AND OTHERS;SIGNING DATES FROM 20151222 TO 20151224;REEL/FRAME:037387/0993

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION