US20160099386A1 - Light emitting diode and manufacturing method thereof - Google Patents

Light emitting diode and manufacturing method thereof Download PDF

Info

Publication number
US20160099386A1
US20160099386A1 US14/969,568 US201514969568A US2016099386A1 US 20160099386 A1 US20160099386 A1 US 20160099386A1 US 201514969568 A US201514969568 A US 201514969568A US 2016099386 A1 US2016099386 A1 US 2016099386A1
Authority
US
United States
Prior art keywords
electrode
semiconductor layer
type semiconductor
conductive patterns
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/969,568
Inventor
Doo Hyeb YOUN
Young-Jun Yu
Kwang Hyo Chung
Choon Gi Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Priority to US14/969,568 priority Critical patent/US20160099386A1/en
Publication of US20160099386A1 publication Critical patent/US20160099386A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a light emitting diode (hereinafter, referred to as “LED”) and a manufacturing method thereof. More particularly, the present invention relates to a high luminance LED including a transparent graphene electrode layer.
  • LED or a laser diode (hereinafter referred to as “ID”) using groups III-V nitride semiconductor materials has been extensively used in a light-emitting device to obtain light having a blue or green wavelength band.
  • Gallium nitride (GaN) among Group III-V nitride semiconductors is gaining the spotlight as a core material of light emitting devices such as an LED, an LD, etc. due to its excellent physical and chemical properties.
  • the light emitting device includes a substrate for growing a semiconductor material with GaN, an n-type nitride semiconductor layer, a chemical layer, and a p-type nitride semiconductor layer sequentially laminated on the substrate, and electrodes formed on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, respectively.
  • a transparent electrode is formed by a material such as indium tin oxide (ITO) on a p-type nitride semiconductor layer and then an electrode is formed to increase a current injection area and to form an ohmic contact.
  • ITO indium tin oxide
  • the present invention has been made in an effort to provide an LED and a to manufacturing method thereof having advantages of improving transmission efficiency through the entire region of an ultraviolet ray region and an infrared ray region as compared with an oxide semiconductor transparent electrode of the related art.
  • the transparent electrode such as ITO
  • transmission efficiency is significantly deteriorated to 40% or less.
  • the transmission efficiency is also degraded in a green region (500-550 nm).
  • An exemplary embodiment of the present invention provides a light emitting diode including: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a work function of the second electrode.
  • the first electrode may have a net structure.
  • the first electrode may include: a plurality of first conductive patterns having a circle shape or a polygon shape and arranged in a matrix; a plurality of second conductive patterns protruding from the first conductive patterns to connect adjacent first conductive patterns to each other; and a plurality of third conductive patterns protruding in a direction perpendicular to the second conductive patterns from the first conductive patterns to connect adjacent first conductive patterns to each other, wherein the second conductive patterns and the third conductive patterns are linear.
  • the first electrode may have a line width in a range of 10 nm to 100 nm.
  • the first electrode may include at least one of ITO, ZnO, SnO 2 , TiO 2 , SbO 2 , NiO, CrO, and CuO.
  • Another embodiment of the present invention provides, a method of manufacturing a light emitting diode, including: forming an n-type semiconductor layer on a substrate; forming an active layer on the n-type semiconductor layer; forming a p-type semiconductor layer on the active layer; forming a first electrode by electrospinning after disposing a mask on the p-type semiconductor layer;
  • a second electrode made of graphene on the first electrode after moving the mask forming a p-type electrode on the second electrode; and forming an n-type electrode on the n-type semiconductor layer.
  • the forming of the first electrode may include: disposing a first mask having a first linear opening pattern; forming a first conductive pattern of the first electrode by injecting a spinning solution into the first opening pattern; disposing a second mask having a second linear opening pattern above the first opening pattern; and forming a second conductive pattern of the first electrode by injecting the spinning solution into the second opening pattern, wherein the second opening pattern and the first opening pattern are disposed to cross each other.
  • the spinning solution may have a viscosity in a range of 10 cps to 50 cps.
  • the spinning solution may include a metal salt such as copper acetate monohydrate ((CH 3 COO) 2 Cu), titanium tetraisopropoxide (Ti(OCH(CH 3 ) 2 ) 4 ), tin isopropoxide (Sn(OCH(CH 3 ) 2 ) 4 ), and antimony isopropoxide (C 9 H 21 O 3 Sb) including metal particles such as zinc (Zn), phosphorus (P), titanium (Ti), tin (Sn), copper (Cu) and antimony (Sb); and a solvent having a viscosity in a range of 10 cps to 50 cps.
  • a metal salt such as copper acetate monohydrate ((CH 3 COO) 2 Cu), titanium tetraisopropoxide (Ti(OCH(CH 3 ) 2 ) 4 ), tin isopropoxide (Sn(OCH(CH 3 ) 2 ) 4 ), and antimony isopropoxide (C 9 H 21 O
  • the solvent may include at least one of diethylene glycol, terpineol, ethylene glycol, diethylene glycol monobenzyl ether, propylene glycol monophenyl ether, glycerol, propylene glycol, and triethylene glycol.
  • Yet another embodiment of the present invention provides a method of manufacturing a light emitting diode, including: forming an n-type semiconductor layer on a substrate; forming an active layer on the n-type semiconductor layer; forming a p-type semiconductor layer on the active layer; disposing an electric field induced pattern under the substrate; forming a first electrode made of a metal oxide on the p-type semiconductor layer by electrospinning; removing the electric field induced pattern and forming a second electrode made of graphene on the first electrode; forming a p-type electrode on the second electrode; and forming an n-type electrode on the n-type semiconductor layer.
  • the electric field induced pattern and the first electrode may include a net structure.
  • the first electrode may be formed by a spinning solution having a viscosity in a range of 10 cPs to 50 cPs.
  • FIG. 1 is a top plan view illustrating an LED according to an exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1 .
  • FIG. 3 is a top plan view illustrating a first electrode of the LED shown in FIG. 1 .
  • FIGS. 4 and 5 are top plan views illustrating a first electrode according to another exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIG. 7 is a top plan view illustrating an electrode in a middle step of a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIG. 8 is a view schematically illustrating an electrospinning device according to an exemplary embodiment of the present invention.
  • FIG. 9 is a top plan view illustrating a first mask for manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIGS. 10, 13, and 15 are cross-sectional views illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIGS. 11 and 12 are cross-sectional views taken along line XI-XI of FIG. 10 .
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG. 13 .
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI of FIG. 15 .
  • FIG. 17 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to another exemplary embodiment of the present invention.
  • FIG. 1 is a top plan view illustrating an LED according to an exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. 3 is a top plan view illustrating a first electrode of the LED shown in FIG. 1
  • FIGS. 4 and 5 are top plan views illustrating a first electrode according to another exemplary embodiment of the present invention.
  • the LED includes a substrate 100 , a buffer layer 102 formed on the substrate 100 , an n-type semiconductor layer 104 disposed on the buffer layer 102 , an active layer 106 disposed on the n-type semiconductor layer 104 , a p-type semiconductor layer 108 disposed on the active layer 106 , a transparent electrode 110 disposed on the p-type semiconductor layer 108 , an n-type electrode 112 disposed on the n-type semiconductor layer 104 , and a p-type electrode 114 disposed on the transparent electrode 110 .
  • the substrate 100 may include a sapphire substrate on which a GaN semiconductor is easily grown.
  • the buffer layer 102 is made of GaN which is undoped with conductive impurities, and is formed to reduce the differences in lattice constants and thermal expansion coefficients between the substrate 100 and a semiconductor layer.
  • the n-type semiconductor layer 104 , the active layer 106 , and the p-type semiconductor layer 108 may include a semiconductor material having a compositional formula of In x Al y Ga (1 ⁇ x ⁇ y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x+y ⁇ 1).
  • the n-type semiconductor layer may include a GaN layer or a GaN/AlGaN layer doped with an n-type conductive impurity
  • the p-type semiconductor layer may include a GaN layer or a GaN/AlGaN layer doped with a p-type conductive impurity.
  • the active layer 106 may include a GaN/InGaN layer having a multi quantum well (MQW) structure.
  • MQW multi quantum well
  • the transparent electrode 110 includes a first electrode 12 and a second electrode 14 disposed on the first electrode 12 .
  • Sheet resistance of the transparent electrode 110 is 100 ⁇ /cm 2 or less, and the transparent electrode 110 has light transmittance of 80% or greater.
  • the transparent electrode 110 may have a thickness in the range of 100 nm to 500 nm, and may represent resistivity of 1 ⁇ 10 ⁇ 3 ⁇ cm.
  • the first electrode 12 may be made of a metal oxide which has a lower work function than that of the p-type semiconductor 108 and has a greater work function than that of a graphene electrode, and may be made of at least one of ITO, ZnO, SnO 2 , TiO 2 , SbO 2 , NiO, CrO, and CuO.
  • the first electrode 12 reduces to contact resistance between the p-type semiconductor 108 and the second electrode 14 by lowering a Shottky barrier height (SBH).
  • SBH Shottky barrier height
  • the first electrode 12 may have a net structure with a line width D in the range of 10 nm to 100 nm as shown in FIG. 3 .
  • a plurality of first conductive patterns 51 may cross a plurality of second conductive patterns 53 , and both of the first conductive patterns 51 and the second conductive patterns 53 are linear.
  • the first electrode 12 includes a plurality of third conductive patterns 55 having a circle shape or a polygon shape, a plurality of fourth conductive patterns 57 protruding from the third conductive patterns 55 to connect adjacent third conductive patterns 55 to each other, and a plurality of fifth conductive patterns 59 protruding in a direction perpendicular to the fourth conductive patterns 57 from the third conductive patterns 55 to connect adjacent third conductive patterns 55 to each other.
  • the fourth conductive patterns 57 and the fifth conductive patterns 59 may be linear.
  • the second electrode 14 may be made of graphene.
  • the graphene may include a single layer or a plurality of layers of covalently bonded carbon atoms.
  • the covalently bonded carbon atoms of each layer may form a six-member ring as a repeating unit, and may further include a five-member ring or a seven-member ring.
  • the p-type electrode 114 and the n-type electrode 112 may be made of nickel (Ni) or copper (Cu).
  • FIG. 6 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention
  • FIG. 7 is a top plan view illustrating an electrode in a middle step of a method of manufacturing the LED according to an exemplary embodiment of the present invention
  • FIG. 8 is a view schematically illustrating an electrospinning device according to an exemplary embodiment of the present invention
  • FIG. 9 is a top plan view illustrating a first mask for manufacturing the LED according to an exemplary embodiment of the present invention
  • FIGS. 10, 13, and 15 are cross-sectional views illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention
  • FIGS. 10 are cross-sectional views illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention
  • FIG. 11 and 12 are cross-sectional views taken along line XI-XI of FIG. 10
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG. 13
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI of FIG. 15 .
  • the buffer layer 102 , the n-type semiconductor layer 104 , the active layer 106 , and the p-type semiconductor layer 108 are sequentially formed on the substrate 100 .
  • the n-type semiconductor layer 104 , the p-type semiconductor layer 108 , and the active layer 106 may be formed by a process such as metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy, hydride vapor phase epitaxy, and molecular beam epitaxy.
  • MOCVD metal organic chemical vapor deposition
  • liquid phase epitaxy hydride vapor phase epitaxy
  • molecular beam epitaxy molecular beam epitaxy
  • the first conductive pattern 51 is formed by electrospinning, and then a heat treatment is performed in a vacuum chamber at 500° C. for 90 minutes so that remaining solvent is removed.
  • the first mask 300 includes a plurality of linear openings 35 which are spaced apart from each other in one direction as shown in FIG. 9 .
  • a polymer solution or a polymer melt stored in a reservoir 60 located above a ground corrector is dispensed through a nozzle 65 by an electrostatic force due to a high voltage of greater than several hundred to several thousand volts, and is moved onto a p-type semiconductor (not shown) of the substrate 100 in a ground state so that a pattern is formed.
  • the nozzle 65 is made of metal, and has a diameter in the range of 5 ⁇ m to 200 ⁇ m.
  • a spinning solution has a viscosity in the range of 10 cps to 50 cps, and the spinning solution may be exhausted at a speed of nl/min to ul/min.
  • the spinning solution may be prepared by mixing a metal salt such as copper acetate monohydrate ((CH 3 COO) 2 Cu), titanium tetraisopropoxide (Ti(OCH(CH 3 ) 2 ) 4 ), tin isopropoxide (Sn(OCH(CH 3 ) 2 ) 4 ), and antimony isopropoxide (C 9 H 21 O 3 Sb) including metal particles such as zinc (Zn), phosphorus (P), titanium (Ti), tin (Sn), copper (Cu) and antimony (Sb) with a solvent having a viscosity in the range of 10 cps to 50 cps.
  • a metal salt such as copper acetate monohydrate ((CH 3 COO) 2 Cu), titanium tetraisopropoxide (Ti(OCH(CH 3 ) 2 ) 4 ), tin isopropoxide (Sn(OCH(CH 3 ) 2 ) 4 ), and antimony isopropoxide (C 9 H
  • the solvent may include at least one of diethylene glycol, terpineol, ethylene glycol, diethylene glycol monobenzyl ether, propylene glycol monophenyl ether, glycerol, propylene glycol, and triethylene glycol.
  • a second mask 302 is disposed above the first conductive pattern 51 and then the second conductive pattern 53 is formed.
  • the second conductive pattern 53 is formed in a direction crossing the first conductive pattern 51 .
  • the second mask 302 includes a plurality of linear openings 37 , and the linear openings 37 are formed in a direction crossing the first conductive pattern 51 .
  • the second conductive pattern 53 may be formed in the same manner as in the first conductive pattern 51 .
  • the first electrode 12 with the first conductive pattern 51 and the second conductive pattern 53 is formed by the electro-spinning, a photolithography process for forming the first electrode 12 is not performed so that process time can be reduced.
  • the second electrode 14 is formed on the first electrode 12 .
  • the second electrode 14 may be formed by transferring using a transfer substrate including the graphene.
  • a catalyst layer is formed on a silicon on insulator (SOI) substrate on which a silicon oxide layer is formed using an electron beam irradiation device.
  • the catalyst layer may be made of a transition metal such as nickel (Ni), copper (Cu), and platinum (Pt) capable of easily absorbing carbon.
  • the catalyst layer has a thickness of approximately 200 nm.
  • a carbon layer is formed by performing heat treatment with respect to the substrate 100 on which the catalyst layer is formed.
  • the heat treatment is performed by putting the substrate 100 in a thermal chemical vapor deposition (T-CVD) device or a rapid thermal chemical vapor deposition (RT-CVD) device to maintain a high temperature of greater than 1000° C., and by injecting a mixed gas of CH 4 , H 2 , and Ar into the deposition device.
  • T-CVD thermal chemical vapor deposition
  • RT-CVD rapid thermal chemical vapor deposition
  • the graphene is grown on a surface of the catalyst layer by separating carbon combined with the catalyst layer through rapid cooling, and a transfer substrate made of polydimethylsiloxane (PDMS) or poly(methylmethacrylate) (PMMA) is formed on the graphene. Thereafter, the catalyst layer is removed.
  • PDMS polydimethylsiloxane
  • PMMA poly(methylmethacrylate)
  • the graphene is transferred onto the first electrode 12 using the transfer substrate, and then the second electrode made of the graphene is formed by removing the transfer substrate using acetone.
  • a first opening 95 exposing the n-type semiconductor is formed by dry etching, and then an n-type electrode 112 making contact with the n-type semiconductor is formed in the first opening 95 .
  • the n-type electrode 112 may be formed by depositing one of copper (Cu), nickel (Ni), chromium (Cr), gold (Au), and TiAu in the vacuum chamber.
  • the p-type electrode 114 is formed by depositing one of Cr, Au, and TiAu in the second opening 97 .
  • FIG. 17 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to another exemplary embodiment of the to present invention.
  • the buffer layer 102 , the n-type semiconductor layer 104 , the active layer 106 , and the p-type semiconductor layer 108 are sequentially formed on the substrate 100 .
  • the first electrode 12 is formed by the electro-spinning.
  • the electric field induced pattern 700 has the same plane pattern as that of the first electrode 12 to be formed, and forms an electric field together with a nozzle.
  • the second electrode 14 the n-type electrode 112 , and the p-type electrode 114 are formed.
  • a transparent electrode is formed by a graphene, an LED where transmission efficiency is improved through the entire region of the ultraviolet ray region and the infrared ray region can be provided.
  • first electrode 14 second electrode 35, 37: opening 51: first electrode pattern 53: second electrode pattern 55: third electrode pattern 57: fourth electrode pattern 59: fifth electrode pattern 65: nozzle 95, 97: opening 100: substrate 102: buffer layer 104: n-type semiconductor layer 106: active layer 108: p-type semiconductor layer 110: transparent electrode 112: n-type electrode 114: p-type electrode 110: transparent electrode 300: first mask 302: second mask 700: electric field induced pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A light emitting diode includes: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a to work function of the second electrode.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of U.S. patent application Ser. No. 14/290,192, filed on May 29, 2014 (currently pending), the disclosure of which is herein incorporated by reference in its entirety. The U.S. patent application Ser. No. 14/290,192 claims priority to Korean Application No. 10-2013-0069249 filed on Jun. 17, 2013, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • (a) Field of the Invention
  • The present invention relates to a light emitting diode (hereinafter, referred to as “LED”) and a manufacturing method thereof. More particularly, the present invention relates to a high luminance LED including a transparent graphene electrode layer.
  • (b) Description of the Related Art
  • An LED or a laser diode (hereinafter referred to as “ID”) using groups III-V nitride semiconductor materials has been extensively used in a light-emitting device to obtain light having a blue or green wavelength band.
  • Gallium nitride (GaN) among Group III-V nitride semiconductors is gaining the spotlight as a core material of light emitting devices such as an LED, an LD, etc. due to its excellent physical and chemical properties.
  • The light emitting device includes a substrate for growing a semiconductor material with GaN, an n-type nitride semiconductor layer, a chemical layer, and a p-type nitride semiconductor layer sequentially laminated on the substrate, and electrodes formed on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, respectively.
  • In this case, a transparent electrode is formed by a material such as indium tin oxide (ITO) on a p-type nitride semiconductor layer and then an electrode is formed to increase a current injection area and to form an ohmic contact.
  • SUMMARY OF THE INVENTION
  • The present invention has been made in an effort to provide an LED and a to manufacturing method thereof having advantages of improving transmission efficiency through the entire region of an ultraviolet ray region and an infrared ray region as compared with an oxide semiconductor transparent electrode of the related art.
  • However, in a case of the transparent electrode such as ITO, when the wavelength of the LED is in the UV band (300-400 nm), transmission efficiency is significantly deteriorated to 40% or less. In a case of a visible light region (450-750 nm), the transmission efficiency is also degraded in a green region (500-550 nm).
  • An exemplary embodiment of the present invention provides a light emitting diode including: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a work function of the second electrode.
  • The first electrode may have a net structure.
  • The first electrode may include: a plurality of first conductive patterns having a circle shape or a polygon shape and arranged in a matrix; a plurality of second conductive patterns protruding from the first conductive patterns to connect adjacent first conductive patterns to each other; and a plurality of third conductive patterns protruding in a direction perpendicular to the second conductive patterns from the first conductive patterns to connect adjacent first conductive patterns to each other, wherein the second conductive patterns and the third conductive patterns are linear. DeletedTexts
  • The first electrode may have a line width in a range of 10 nm to 100 nm.
  • The first electrode may include at least one of ITO, ZnO, SnO2, TiO2, SbO2, NiO, CrO, and CuO.
  • Another embodiment of the present invention provides, a method of manufacturing a light emitting diode, including: forming an n-type semiconductor layer on a substrate; forming an active layer on the n-type semiconductor layer; forming a p-type semiconductor layer on the active layer; forming a first electrode by electrospinning after disposing a mask on the p-type semiconductor layer;
  • forming a second electrode made of graphene on the first electrode after moving the mask; forming a p-type electrode on the second electrode; and forming an n-type electrode on the n-type semiconductor layer.
  • The forming of the first electrode may include: disposing a first mask having a first linear opening pattern; forming a first conductive pattern of the first electrode by injecting a spinning solution into the first opening pattern; disposing a second mask having a second linear opening pattern above the first opening pattern; and forming a second conductive pattern of the first electrode by injecting the spinning solution into the second opening pattern, wherein the second opening pattern and the first opening pattern are disposed to cross each other.
  • The spinning solution may have a viscosity in a range of 10 cps to 50 cps.
  • The spinning solution may include a metal salt such as copper acetate monohydrate ((CH3COO)2Cu), titanium tetraisopropoxide (Ti(OCH(CH3)2)4), tin isopropoxide (Sn(OCH(CH3)2)4), and antimony isopropoxide (C9H21O3Sb) including metal particles such as zinc (Zn), phosphorus (P), titanium (Ti), tin (Sn), copper (Cu) and antimony (Sb); and a solvent having a viscosity in a range of 10 cps to 50 cps.
  • The solvent may include at least one of diethylene glycol, terpineol, ethylene glycol, diethylene glycol monobenzyl ether, propylene glycol monophenyl ether, glycerol, propylene glycol, and triethylene glycol.
  • Yet another embodiment of the present invention provides a method of manufacturing a light emitting diode, including: forming an n-type semiconductor layer on a substrate; forming an active layer on the n-type semiconductor layer; forming a p-type semiconductor layer on the active layer; disposing an electric field induced pattern under the substrate; forming a first electrode made of a metal oxide on the p-type semiconductor layer by electrospinning; removing the electric field induced pattern and forming a second electrode made of graphene on the first electrode; forming a p-type electrode on the second electrode; and forming an n-type electrode on the n-type semiconductor layer.
  • The electric field induced pattern and the first electrode may include a net structure.
  • The first electrode may be formed by a spinning solution having a viscosity in a range of 10 cPs to 50 cPs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top plan view illustrating an LED according to an exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1.
  • FIG. 3 is a top plan view illustrating a first electrode of the LED shown in FIG. 1.
  • FIGS. 4 and 5 are top plan views illustrating a first electrode according to another exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIG. 7 is a top plan view illustrating an electrode in a middle step of a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIG. 8 is a view schematically illustrating an electrospinning device according to an exemplary embodiment of the present invention.
  • FIG. 9 is a top plan view illustrating a first mask for manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIGS. 10, 13, and 15 are cross-sectional views illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention.
  • FIGS. 11 and 12 are cross-sectional views taken along line XI-XI of FIG. 10.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG. 13.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI of FIG. 15.
  • FIG. 17 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to another exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
  • In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
  • Hereinafter, the LED according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a top plan view illustrating an LED according to an exemplary embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1, FIG. 3 is a top plan view illustrating a first electrode of the LED shown in FIG. 1, and FIGS. 4 and 5 are top plan views illustrating a first electrode according to another exemplary embodiment of the present invention.
  • As shown in FIGS. 1 and 2, the LED according to an exemplary embodiment of the present invention includes a substrate 100, a buffer layer 102 formed on the substrate 100, an n-type semiconductor layer 104 disposed on the buffer layer 102, an active layer 106 disposed on the n-type semiconductor layer 104, a p-type semiconductor layer 108 disposed on the active layer 106, a transparent electrode 110 disposed on the p-type semiconductor layer 108, an n-type electrode 112 disposed on the n-type semiconductor layer 104, and a p-type electrode 114 disposed on the transparent electrode 110.
  • The substrate 100 may include a sapphire substrate on which a GaN semiconductor is easily grown.
  • The buffer layer 102 is made of GaN which is undoped with conductive impurities, and is formed to reduce the differences in lattice constants and thermal expansion coefficients between the substrate 100 and a semiconductor layer.
  • The n-type semiconductor layer 104, the active layer 106, and the p-type semiconductor layer 108 may include a semiconductor material having a compositional formula of InxAlyGa(1−x−y)N (0≦x≦1, 0≦y≦1, and 0≦x+y≦1). The n-type semiconductor layer may include a GaN layer or a GaN/AlGaN layer doped with an n-type conductive impurity, and the p-type semiconductor layer may include a GaN layer or a GaN/AlGaN layer doped with a p-type conductive impurity.
  • Further, the active layer 106 may include a GaN/InGaN layer having a multi quantum well (MQW) structure.
  • The transparent electrode 110 includes a first electrode 12 and a second electrode 14 disposed on the first electrode 12.
  • Sheet resistance of the transparent electrode 110 is 100 Ω/cm2 or less, and the transparent electrode 110 has light transmittance of 80% or greater. The transparent electrode 110 may have a thickness in the range of 100 nm to 500 nm, and may represent resistivity of 1×10−3 Ω·cm.
  • The first electrode 12 may be made of a metal oxide which has a lower work function than that of the p-type semiconductor 108 and has a greater work function than that of a graphene electrode, and may be made of at least one of ITO, ZnO, SnO2, TiO2, SbO2, NiO, CrO, and CuO. The first electrode 12 reduces to contact resistance between the p-type semiconductor 108 and the second electrode 14 by lowering a Shottky barrier height (SBH).
  • In this case, the first electrode 12 may have a net structure with a line width D in the range of 10 nm to 100 nm as shown in FIG. 3. In the net structure, a plurality of first conductive patterns 51 may cross a plurality of second conductive patterns 53, and both of the first conductive patterns 51 and the second conductive patterns 53 are linear.
  • Further, as shown in FIGS. 4 and 5, the first electrode 12 includes a plurality of third conductive patterns 55 having a circle shape or a polygon shape, a plurality of fourth conductive patterns 57 protruding from the third conductive patterns 55 to connect adjacent third conductive patterns 55 to each other, and a plurality of fifth conductive patterns 59 protruding in a direction perpendicular to the fourth conductive patterns 57 from the third conductive patterns 55 to connect adjacent third conductive patterns 55 to each other.
  • In this case, the fourth conductive patterns 57 and the fifth conductive patterns 59 may be linear.
  • Referring back to FIGS. 1 and 2, the second electrode 14 may be made of graphene. The graphene may include a single layer or a plurality of layers of covalently bonded carbon atoms. In this case, the covalently bonded carbon atoms of each layer may form a six-member ring as a repeating unit, and may further include a five-member ring or a seven-member ring.
  • The p-type electrode 114 and the n-type electrode 112 may be made of nickel (Ni) or copper (Cu).
  • Hereinafter, a method of manufacturing the LED according to an exemplary embodiment of the present invention will be described with reference to FIGS. 6 to 9 and FIG. 2 described above.
  • FIG. 6 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention, FIG. 7 is a top plan view illustrating an electrode in a middle step of a method of manufacturing the LED according to an exemplary embodiment of the present invention, FIG. 8 is a view schematically illustrating an electrospinning device according to an exemplary embodiment of the present invention, FIG. 9 is a top plan view illustrating a first mask for manufacturing the LED according to an exemplary embodiment of the present invention, FIGS. 10, 13, and 15 are cross-sectional views illustrating a middle step in a method of manufacturing the LED according to an exemplary embodiment of the present invention, FIGS. 11 and 12 are cross-sectional views taken along line XI-XI of FIG. 10, FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG. 13, and FIG. 16 is a cross-sectional view taken along line XVI-XVI of FIG. 15.
  • First, as shown in FIG. 6, the buffer layer 102, the n-type semiconductor layer 104, the active layer 106, and the p-type semiconductor layer 108 are sequentially formed on the substrate 100.
  • The n-type semiconductor layer 104, the p-type semiconductor layer 108, and the active layer 106 may be formed by a process such as metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy, hydride vapor phase epitaxy, and molecular beam epitaxy.
  • As shown in FIG. 7, after a first mask 300 is disposed on the p-type semiconductor layer 108, the first conductive pattern 51 is formed by electrospinning, and then a heat treatment is performed in a vacuum chamber at 500° C. for 90 minutes so that remaining solvent is removed. The first mask 300 includes a plurality of linear openings 35 which are spaced apart from each other in one direction as shown in FIG. 9.
  • In the electrospinning, as shown in FIG. 8, a polymer solution or a polymer melt stored in a reservoir 60 located above a ground corrector is dispensed through a nozzle 65 by an electrostatic force due to a high voltage of greater than several hundred to several thousand volts, and is moved onto a p-type semiconductor (not shown) of the substrate 100 in a ground state so that a pattern is formed.
  • In this case, the nozzle 65 is made of metal, and has a diameter in the range of 5 μm to 200 μm. A spinning solution has a viscosity in the range of 10 cps to 50 cps, and the spinning solution may be exhausted at a speed of nl/min to ul/min.
  • The spinning solution may be prepared by mixing a metal salt such as copper acetate monohydrate ((CH3COO)2Cu), titanium tetraisopropoxide (Ti(OCH(CH3)2)4), tin isopropoxide (Sn(OCH(CH3)2)4), and antimony isopropoxide (C9H21O3Sb) including metal particles such as zinc (Zn), phosphorus (P), titanium (Ti), tin (Sn), copper (Cu) and antimony (Sb) with a solvent having a viscosity in the range of 10 cps to 50 cps.
  • The solvent may include at least one of diethylene glycol, terpineol, ethylene glycol, diethylene glycol monobenzyl ether, propylene glycol monophenyl ether, glycerol, propylene glycol, and triethylene glycol.
  • Next, as shown in FIGS. 10 and 11, after the first mask 300 is removed, a second mask 302 is disposed above the first conductive pattern 51 and then the second conductive pattern 53 is formed. The second conductive pattern 53 is formed in a direction crossing the first conductive pattern 51.
  • The second mask 302 includes a plurality of linear openings 37, and the linear openings 37 are formed in a direction crossing the first conductive pattern 51. The second conductive pattern 53 may be formed in the same manner as in the first conductive pattern 51.
  • In this manner, if the first electrode 12 with the first conductive pattern 51 and the second conductive pattern 53 is formed by the electro-spinning, a photolithography process for forming the first electrode 12 is not performed so that process time can be reduced.
  • Next, as shown in FIG. 12, after removal of the second mask 302, the second electrode 14 is formed on the first electrode 12.
  • The second electrode 14 may be formed by transferring using a transfer substrate including the graphene. In detail, a catalyst layer is formed on a silicon on insulator (SOI) substrate on which a silicon oxide layer is formed using an electron beam irradiation device. In this case, the catalyst layer may be made of a transition metal such as nickel (Ni), copper (Cu), and platinum (Pt) capable of easily absorbing carbon. The catalyst layer has a thickness of approximately 200 nm.
  • Further, a carbon layer is formed by performing heat treatment with respect to the substrate 100 on which the catalyst layer is formed. In this case, the heat treatment is performed by putting the substrate 100 in a thermal chemical vapor deposition (T-CVD) device or a rapid thermal chemical vapor deposition (RT-CVD) device to maintain a high temperature of greater than 1000° C., and by injecting a mixed gas of CH4, H2, and Ar into the deposition device.
  • After that, the graphene is grown on a surface of the catalyst layer by separating carbon combined with the catalyst layer through rapid cooling, and a transfer substrate made of polydimethylsiloxane (PDMS) or poly(methylmethacrylate) (PMMA) is formed on the graphene. Thereafter, the catalyst layer is removed.
  • Next, the graphene is transferred onto the first electrode 12 using the transfer substrate, and then the second electrode made of the graphene is formed by removing the transfer substrate using acetone.
  • Next, as shown in FIGS. 13 and 14, after a first shadow mask (not shown) is disposed, a first opening 95 exposing the n-type semiconductor is formed by dry etching, and then an n-type electrode 112 making contact with the n-type semiconductor is formed in the first opening 95. The n-type electrode 112 may be formed by depositing one of copper (Cu), nickel (Ni), chromium (Cr), gold (Au), and TiAu in the vacuum chamber.
  • Next, as shown in FIGS. 15 and 16, after the second shadow mask (not shown) is disposed, and an upper graphene layer is etched using inductively coupled plasma (ICP) equipment by injecting chlorine (Cl2) gas into the vacuum chamber. After that, a gallium nitride (GaN) layer disposed under the graphene is etched by injecting oxygen (O2) gas so that a second opening 97 exposing the p-type semiconductor layer 108 is formed.
  • Next, as shown in FIGS. 1 and 2, the p-type electrode 114 is formed by depositing one of Cr, Au, and TiAu in the second opening 97.
  • Hereinafter, the method of manufacturing the LED according to another exemplary embodiment of the present invention will be described with reference to FIG. 17, FIG. 6, and FIGS. 13 to 16.
  • FIG. 17 is a cross-sectional view illustrating a middle step in a method of manufacturing the LED according to another exemplary embodiment of the to present invention.
  • First, as shown in FIG. 6, the buffer layer 102, the n-type semiconductor layer 104, the active layer 106, and the p-type semiconductor layer 108 are sequentially formed on the substrate 100.
  • Next, as shown in FIG. 17, after an electric field induced pattern 700 is disposed under the substrate 100, the first electrode 12 is formed by the electro-spinning.
  • The electric field induced pattern 700 has the same plane pattern as that of the first electrode 12 to be formed, and forms an electric field together with a nozzle.
  • In this manner, if the electric field induced pattern 700 is formed, a spinning solution exhausted from the nozzle is deposited on the substrate 100 along the electric field induced pattern 700 so that the first electrode 12 is formed.
  • Next, as shown in FIGS. 13 to 16, the second electrode 14, the n-type electrode 112, and the p-type electrode 114 are formed.
  • In the present invention, if a transparent electrode is formed by a graphene, an LED where transmission efficiency is improved through the entire region of the ultraviolet ray region and the infrared ray region can be provided.
  • Further, even if crack occurs in an electrode made of the graphene by forming a net electrode, an electric current can be prevented from being blocked due to the net electrode.
  • While this invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
  • <Description of Symbols>
    12: first electrode 14: second electrode
    35, 37: opening 51: first electrode pattern
    53: second electrode pattern  55: third electrode pattern
    57: fourth electrode pattern  59: fifth electrode pattern
    65: nozzle  95, 97: opening
    100: substrate  102: buffer layer
    104: n-type semiconductor layer  106: active layer
    108: p-type semiconductor layer  110: transparent electrode
    112: n-type electrode 114: p-type electrode
    110: transparent electrode  300: first mask
    302: second mask  700: electric field induced pattern

Claims (5)

What is claimed is:
1. A light emitting diode comprising:
a substrate;
an n-type semiconductor layer disposed on the substrate;
an active layer disposed on the n-type semiconductor layer;
a p-type semiconductor layer disposed on the active layer;
a first electrode disposed on the p-type semiconductor layer and made of a metal oxide;
a second electrode disposed on the first electrode and made of graphene;
a p-type electrode disposed on the second electrode; and
an n-type electrode disposed on the n-type semiconductor layer,
wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a work function of the second electrode.
2. The light emitting diode of claim 1, wherein the first electrode has a net structure.
3. The light emitting diode of claim 2, wherein the first electrode comprises:
a plurality of first conductive patterns having a circle shape or a polygon shape and arranged in a matrix;
a plurality of second conductive patterns protruding from the first conductive patterns to connect adjacent first conductive patterns to each other; and
a plurality of third conductive patterns protruding in a direction perpendicular to the second conductive patterns from the first conductive patterns to connect adjacent first conductive patterns to each other,
wherein the second conductive patterns and the third conductive patterns are linear.
4. The light emitting diode of claim 2, wherein the first electrode has a line width in a range of 10 nm to 100 nm.
5. The light emitting diode of claim 1, wherein the first electrode comprises at least one of ITO, ZnO, SnO2, TiO2, SbO2, NiO, CrO, and CuO.
US14/969,568 2013-06-17 2015-12-15 Light emitting diode and manufacturing method thereof Abandoned US20160099386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/969,568 US20160099386A1 (en) 2013-06-17 2015-12-15 Light emitting diode and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0069249 2013-06-17
KR1020130069249A KR20140146467A (en) 2013-06-17 2013-06-17 Light emitting diode and manufacturing method thereof
US14/290,192 US9257610B2 (en) 2013-06-17 2014-05-29 Light emitting diode and manufacturing method thereof
US14/969,568 US20160099386A1 (en) 2013-06-17 2015-12-15 Light emitting diode and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/290,192 Division US9257610B2 (en) 2013-06-17 2014-05-29 Light emitting diode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
US20160099386A1 true US20160099386A1 (en) 2016-04-07

Family

ID=52018477

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/290,192 Expired - Fee Related US9257610B2 (en) 2013-06-17 2014-05-29 Light emitting diode and manufacturing method thereof
US14/969,568 Abandoned US20160099386A1 (en) 2013-06-17 2015-12-15 Light emitting diode and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/290,192 Expired - Fee Related US9257610B2 (en) 2013-06-17 2014-05-29 Light emitting diode and manufacturing method thereof

Country Status (2)

Country Link
US (2) US9257610B2 (en)
KR (1) KR20140146467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062043A1 (en) * 2016-08-25 2018-03-01 Epistar Corporation Light-emitting device
CN107785467A (en) * 2016-08-25 2018-03-09 晶元光电股份有限公司 Light emitting element
US11894489B2 (en) 2021-03-16 2024-02-06 Epistar Corporation Semiconductor device, semiconductor component and display panel including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947827B2 (en) * 2014-02-21 2018-04-17 Terahertz Device Corporation Front-side emitting mid-infrared light emitting diode
US9812604B2 (en) * 2014-05-30 2017-11-07 Klaus Y. J. Hsu Photosensing device with graphene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175662A1 (en) * 2011-01-11 2012-07-12 Samsung Electronics Co., Ltd. Vertical light emitting device
US20150171262A1 (en) * 2012-07-11 2015-06-18 Korea University Research And Business Foundation Light emitting device having transparent electrode and method of manufacturing light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025571B1 (en) 2008-08-21 2011-03-30 한국과학기술연구원 Electrode for supercapacitor and the fabrication method thereof, and supercapacitor using the same
KR101074027B1 (en) 2009-03-03 2011-10-17 한국과학기술연구원 Graphene composite nanofiber and the preparation method thereof
US8211352B2 (en) 2009-07-22 2012-07-03 Corning Incorporated Electrospinning process for aligned fiber production
KR101610782B1 (en) 2009-11-20 2016-04-08 한국전자통신연구원 Method for Fabricating Metal Wire Using Electrospinning Process
KR20120091792A (en) 2011-02-10 2012-08-20 인하대학교 산학협력단 Method of manufacturing metal oxide nanofiber network and chemical sensor including metal oxide nanofiber network by the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175662A1 (en) * 2011-01-11 2012-07-12 Samsung Electronics Co., Ltd. Vertical light emitting device
US20150171262A1 (en) * 2012-07-11 2015-06-18 Korea University Research And Business Foundation Light emitting device having transparent electrode and method of manufacturing light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062043A1 (en) * 2016-08-25 2018-03-01 Epistar Corporation Light-emitting device
CN107785467A (en) * 2016-08-25 2018-03-09 晶元光电股份有限公司 Light emitting element
US10804435B2 (en) * 2016-08-25 2020-10-13 Epistar Corporation Light-emitting device
CN107785467B (en) * 2016-08-25 2021-09-07 晶元光电股份有限公司 Light emitting element
TWI746596B (en) * 2016-08-25 2021-11-21 晶元光電股份有限公司 Light-emitting device
US11894489B2 (en) 2021-03-16 2024-02-06 Epistar Corporation Semiconductor device, semiconductor component and display panel including the same

Also Published As

Publication number Publication date
US9257610B2 (en) 2016-02-09
KR20140146467A (en) 2014-12-26
US20140367731A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US20160099386A1 (en) Light emitting diode and manufacturing method thereof
CN100550446C (en) With the light-emitting device of conductive nano rod as transparency electrode
KR100999739B1 (en) Light emitting device and method for fabricating the same
US8643044B2 (en) Semiconductor light emitting device
KR100670928B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
EP2731150B1 (en) Light emitting device
US10535803B2 (en) Light-emitting diode and method for manufacturing same
CN101084583A (en) Gan compound semiconductor light emitting element and method of manufacturing the same
KR101010023B1 (en) Manufacturing method for flexible element using laser beam
CN103325913A (en) Light emitting diode (LED) with composite transparent conducting layer and preparation method thereof
US8779411B2 (en) Light emitting diode having metal nanoparticle layered graphene
US20150236194A1 (en) Method of manufacturing microarray type nitride light emitting device
KR101662037B1 (en) Light Emitting Device and method for manufacturing the same
US20070152207A1 (en) Semiconductor light-emitting device and manufacturing method thereof
KR100616591B1 (en) Nitride semiconductor light emitting diode and fabrication method thereof
US20230215978A1 (en) Light-emitting diode comprising a hybrid structure formed of layers and nanowire
KR20130068448A (en) Light emitting diode
KR100621918B1 (en) Light emitting device comprising conductive nanorod as transparent electrode
KR101174573B1 (en) Hybrid organic―inorganic semiconductor light emitting device and Method of manufacturing the same
US7192794B2 (en) Fabrication method of transparent electrode on visible light-emitting diode
KR101824322B1 (en) HIGH-EFFICIENCY GaN-BASED LIGHT-EMITTING DIODES AND METHOD OF MANUFACTURING THE SAME
KR102337983B1 (en) Light Emitting Device having Tunnel Junction and Method of Manufacturing the Same, Multi Color Device using Light Emitting Device having Tunnel Junction and Method of Manufacturing the Same
KR101267437B1 (en) Light emitting diodes and method for fabricating the same
KR20230059314A (en) LED structure, ink for ink-jet and light source comprising the same
KR101202733B1 (en) Light emitting diode and method for manufacturing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION