US20160077315A1 - Compact panoramic camera: optical system, apparatus, image forming method - Google Patents
Compact panoramic camera: optical system, apparatus, image forming method Download PDFInfo
- Publication number
- US20160077315A1 US20160077315A1 US14/854,687 US201514854687A US2016077315A1 US 20160077315 A1 US20160077315 A1 US 20160077315A1 US 201514854687 A US201514854687 A US 201514854687A US 2016077315 A1 US2016077315 A1 US 2016077315A1
- Authority
- US
- United States
- Prior art keywords
- image
- decompression
- lens element
- lens
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 148
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000006837 decompression Effects 0.000 claims abstract description 83
- 238000007906 compression Methods 0.000 claims abstract description 45
- 230000006835 compression Effects 0.000 claims abstract description 44
- 230000004075 alteration Effects 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 10
- 229920003023 plastic Polymers 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 238000009501 film coating Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 230000004313 glare Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010137 moulding (plastic) Methods 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/09—Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/12—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/06—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe involving anamorphosis
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/19626—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses
- G08B13/19628—Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses of wide angled cameras and camera groups, e.g. omni-directional cameras, fish eye, single units having multiple cameras achieving a wide angle view
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- H04N5/23238—
Definitions
- the decompression lens is positioned to receive the virtual curved and compressed image filtered by the hardware aperture.
- the decompression lens is configured to decompress the virtual curved and compressed image into a real image with a high optical resolution and a desirable image decompression, and project the real image onto an image sensor.
- the image sensor is positioned to receive the real image projected by the decompression lens of the 360-degree panoramic scene.
- FIG. 5 is a convex hyperbolic mirror with an ideal lens of the ideal catadioptric optics.
- FIG. 13 is shows an image spot diagram for twelve vertical view points for the arrangement of FIG. 1 , according to an example embodiment.
- FIG. 27 is a graph of polychromatic diffraction MTF for twelve vertical view points for the arrangement of FIG. 26 , according to an eleventh example embodiment.
- FIG. 33 is a graph of diffraction ensquared energy for the arrangement of FIG. 31 , according to a twelfth example embodiment.
- FIG. 34 shows an image of spot diagram for twelve vertical view points for the arrangement of FIG. 31 , according to a twelfth example embodiment.
- FIG. 39 is a depiction of field curvature and distortion graphs for the arrangement of FIG. 31 with a flat image sensor, according to a thirteenth example embodiment.
- the compact panoramic camera optics includes two main optical components.
- the first optical component is a catadioptric optical element (COE).
- COE catadioptric optical element
- the COE includes a convex reflector incorporated into a refractive lens between a first and a second refractive surface.
- the COE as a result, has three optical surfaces: two refractive (dioptric) surfaces and one reflective (catoptric) surface.
- the second optical component is a decompression lens.
- the decompression lens is made of at least one lens element (e.g., one lens element, three single lens elements (singlets), etc.), each having aspheric optical surfaces.
- the decompression lens 23 includes three lens elements: a first lens element, shown as first negative lens element 24 , a second lens element, shown as positive lens element 26 , and a third lens element, shown as second negative lens element 28 .
- the decompression lens 23 includes at least one lens element (e.g., one, two, etc.).
- the first negative lens element 24 has at least one high order aspheric surface.
- the high order aspheric surface(s) of the first negative lens element 24 may be structured to have a negative optical power, expand bundles of rays, and partially correct field aberrations.
- the focal length of the first negative lens element 24 is minus 5.6 mm.
- a virtual curved and compressed image 19 with a specific compression is created.
- the virtual curved and compressed image 19 of the object space points of the scene is created behind the convex reflector 18 (e.g., due to the negative focal length as mentioned above, etc.).
- the virtual curved and compressed image 19 takes on the aspheric compression (e.g., hyperbolic compression, etc.) of the high order convex aspheric surface of the convex reflector 18 (e.g., hyperbolic mirror, etc.).
- FIG. 4 a graph of the panoramic field curvature 400 and a graph of the f-theta distortion/image compression 402 with the convex reflector 18 structured as a parabolic mirror, an ideal telecentric lens 27 , and an ideal camera lens 29 for the system of FIG. 3 are shown.
- the field curvature becomes a significant issue (see, e.g., FIG. 6 ) that needs to be corrected to achieve the flat field shown in the graph of the panoramic field curvature 400 .
- the system has the benefit of 20.7% decompression from the center to the edge of the mirror.
- the parabolic mirror systems are capable of providing even higher decompression ranging from 23% up to 25%. This may be desirable as the edge of the mirror covers the most pixels and hence results in higher digital resolution of the resultant image.
- FIG. 11 a graph of polychromatic Huygens MTF for twelve vertical viewpoints of the compact panoramic camera system 10 is shown according to an example embodiment.
- the range of the image contrast here is slightly higher than the MTF data in FIG. 8 , which may be calculated with some approximation by using the fast Fourier transform.
- FIG. 17 shows an alternative optical system layout according to a second example embodiment.
- the second embodiment is a modification of the first embodiment in that the convex reflector 18 is mounted using a cylindrical window 39 . Interior to the cylindrical window 39 is the convex reflector 18 , a spike 35 , and a baffle 36 .
- the convex reflector 18 may be of hyperbolic structure with a diameter of 20.1 mm and the image sensor 32 may have a diameter of 4.6 mm. Thus the convex reflector to image sensor ratio may be 4.4:1.
- the spike 35 may be disposed along the vertical optical axis 12 and extend at least partially into the interior of the baffle 36 . The spike 35 provides improved stability of the overall optic and reduces unwanted glare in images reflected to the camera.
- the baffle 36 is a mechanical system, whose function is to shield the light coming from sources outside the field of view (FOV) of the compact panoramic camera.
- FOV field of view
- the acrylic cone window 40 acts as a refractive surface as the light travels through it, as well as adds support to the mounting of the convex reflector 18 .
- the housing 41 is used to contain the light trap diaphragm 42 .
- the light trap diaphragm 42 is a tapered annular diaphragm (i.e., contains a conical cutout) which stops the passage of light, except for the light passing through the hardware aperture 22 .
- FIG. 21 shows an alternative compact panoramic camera according to a sixth example embodiment.
- the sixth embodiment is a modification of the first embodiment in that the embodiment includes an optical system with EVFOV of 80 degrees: 30 degrees up and 50 degrees down from the horizon.
- the convex reflector 18 has a diameter of 24.2 mm and the image sensor 32 has a diameter of 4.6 mm.
- the convex reflector to image sensor ratio is 5.3:1.
- the overall length of the optical system of FIG. 21 is 51.2 mm. In other embodiments, the overall length of the optical system of FIG. 21 is greater or lesser than 51.2 mm.
- the two refractive surfaces may be a variety of shapes (e.g., linear, parabolic, hyperbolic, aspheric, etc.).
- the spike 35 may be disposed along the vertical optical axis 12 and extend at least partially into the interior of the housing 41 .
- the spike 35 provides improved stability of the overall optic and reduces unwanted glare in images reflected to the camera.
- the housing 41 is used to contain the light trap diaphragm 42 .
- the light trap diaphragm 42 is a tapered annular diaphragm (i.e., contains a conical cutout) which stops the passage of light, except for the light passing through the hardware aperture 22 .
- the convex reflector 18 has a diameter of 27.8 mm and the image sensor 32 has a diameter of 4.5 mm. Thus the convex reflector to image sensor ratio is 6.2:1.
- FIG. 25 shows an alternative compact panoramic camera according to a tenth example embodiment.
- the tenth embodiment is a modification of the first embodiment in that this embodiment includes an optical system with EVFOV of 80 degrees: 40 degrees up and 40 degrees down from the horizon, a spike 35 , an acrylic cone window 40 , a housing 41 , and a light trap diaphragm 42 .
- the spike 35 may be disposed along the vertical optical axis 12 and extend at least partially into the interior of the housing 41 .
- the spike 35 provides improved stability of the overall optic and reduces unwanted glare in images reflected to the camera.
- the acrylic cone window 40 acts as a refractive surface as the light travels through it, as well as adds support to the mounting of the convex reflector 18 .
- the first surface 46 and the second surface 47 of the decompression lens 23 of FIG. 31 have different aspheric shapes.
- the first surface 46 may include a diffractive optical structure on a top of its aspheric surface.
- the first surface 46 and the second surface 47 are capable of effectively correcting chromatic aberrations and all field aberrations except field curvature, as well as decompress the virtual image compression created by the convex reflector 18 .
- the first surface 46 of the single lens element of the decompression lens 23 may be coated by a thin film IR cut-off filter, which blocks the light wavelengths starting approximately from 680 nm and up.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lenses (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/854,687 US20160077315A1 (en) | 2014-09-15 | 2015-09-15 | Compact panoramic camera: optical system, apparatus, image forming method |
US16/116,597 US11061208B2 (en) | 2014-09-15 | 2018-08-29 | Compact panoramic camera: optical system, apparatus, image forming method |
US17/371,983 US20210341714A1 (en) | 2014-09-15 | 2021-07-09 | Compact panoramic camera: optical system, apparatus, image forming method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462050725P | 2014-09-15 | 2014-09-15 | |
US14/854,687 US20160077315A1 (en) | 2014-09-15 | 2015-09-15 | Compact panoramic camera: optical system, apparatus, image forming method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/116,597 Continuation US11061208B2 (en) | 2014-09-15 | 2018-08-29 | Compact panoramic camera: optical system, apparatus, image forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160077315A1 true US20160077315A1 (en) | 2016-03-17 |
Family
ID=55454598
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/854,687 Abandoned US20160077315A1 (en) | 2014-09-15 | 2015-09-15 | Compact panoramic camera: optical system, apparatus, image forming method |
US16/116,597 Active 2036-05-16 US11061208B2 (en) | 2014-09-15 | 2018-08-29 | Compact panoramic camera: optical system, apparatus, image forming method |
US17/371,983 Abandoned US20210341714A1 (en) | 2014-09-15 | 2021-07-09 | Compact panoramic camera: optical system, apparatus, image forming method |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/116,597 Active 2036-05-16 US11061208B2 (en) | 2014-09-15 | 2018-08-29 | Compact panoramic camera: optical system, apparatus, image forming method |
US17/371,983 Abandoned US20210341714A1 (en) | 2014-09-15 | 2021-07-09 | Compact panoramic camera: optical system, apparatus, image forming method |
Country Status (7)
Country | Link |
---|---|
US (3) | US20160077315A1 (ko) |
EP (1) | EP3195040B1 (ko) |
JP (1) | JP6598314B2 (ko) |
KR (2) | KR20230014854A (ko) |
CN (2) | CN111999861A (ko) |
IL (1) | IL250963B (ko) |
WO (1) | WO2016044264A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018006938A1 (en) * | 2016-07-05 | 2018-01-11 | Zero Parallax Technologies Ab | Spherical camera lens system, camera system and lens assembly |
US20180115689A1 (en) * | 2016-10-26 | 2018-04-26 | Lite-On Electronics (Guangzhou) Limited | Camera module and assembly method thereof |
CN107995388A (zh) * | 2016-10-26 | 2018-05-04 | 光宝科技股份有限公司 | 相机模块及其组装方法 |
CN112313947A (zh) * | 2018-06-20 | 2021-02-02 | 三星电子株式会社 | 用于处理360度图像的方法及设备 |
EP3940444A1 (en) * | 2020-07-14 | 2022-01-19 | Opto Engineering S.R.L. | Borescope probe |
CN114486939A (zh) * | 2022-04-08 | 2022-05-13 | 欧普康视科技股份有限公司 | 一种镜片划痕检测系统及方法 |
US11588992B2 (en) * | 2019-06-04 | 2023-02-21 | Jabil Optics Germany GmbH | Surround-view imaging system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111971605B (zh) * | 2018-04-09 | 2023-09-12 | 索尼公司 | 光学系统和投影仪 |
CN108734681A (zh) * | 2018-05-31 | 2018-11-02 | 天津煋鸟科技有限公司 | 一种基于嵌入式的片上径向失真校正方法 |
CN114174791A (zh) * | 2019-08-07 | 2022-03-11 | 安捷伦科技有限公司 | 光学成像性能测试系统和方法 |
CN111751964A (zh) * | 2020-06-30 | 2020-10-09 | 浙江大学 | 基于非球面镜的双视场全景环带成像装置 |
CN112363308B (zh) * | 2020-12-15 | 2022-07-19 | 长春理工大学 | 紧凑型双通道折反射全景成像光学系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2244235A (en) * | 1938-09-03 | 1941-06-03 | Ibm | Cycloramic optical system |
US5710661A (en) * | 1996-06-27 | 1998-01-20 | Hughes Electronics | Integrated panoramic and high resolution sensor optics |
US5956178A (en) * | 1996-09-02 | 1999-09-21 | Nikon Corporation | Keplerian variable magnification viewfinder |
US6175454B1 (en) * | 1999-01-13 | 2001-01-16 | Behere Corporation | Panoramic imaging arrangement |
US6373642B1 (en) * | 1996-06-24 | 2002-04-16 | Be Here Corporation | Panoramic imaging arrangement |
US6426774B1 (en) * | 1996-06-24 | 2002-07-30 | Be Here Corporation | Panoramic camera |
US6464362B1 (en) * | 1998-10-29 | 2002-10-15 | Canon Kabushiki Kaisha | Illuminating apparatus |
US20040264013A1 (en) * | 2001-11-13 | 2004-12-30 | Daizaburo Matsuki | Wide-angle imaging optical system and wide-angle imaging apparatus surveillance imaging apparatus vehicle-mounted imaging apparatus and projection apparatus using the wide-angle imaging optical system |
US7362517B2 (en) * | 2005-04-25 | 2008-04-22 | Olympus Corporation | Rotationally asymmetric optical system |
US20100322059A1 (en) * | 2009-06-18 | 2010-12-23 | Sony Corporation | Objective lens, optical pickup, and optical disc apparatus |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3229576A (en) * | 1962-11-21 | 1966-01-18 | Donald W Rees | Hyperbolic ellipsoidal real time display panoramic viewing installation for vehicles |
EP0365406B1 (fr) * | 1988-10-21 | 1993-09-29 | Thomson-Csf | Système optique de collimation notamment pour visuel de casque |
US6449103B1 (en) * | 1997-04-16 | 2002-09-10 | Jeffrey R. Charles | Solid catadioptric omnidirectional optical system having central coverage means which is associated with a camera, projector, medical instrument, or similar article |
US5982549A (en) * | 1998-05-15 | 1999-11-09 | University Technology Corporation | Ultra-wide field viewing system |
ATE278202T1 (de) * | 1999-01-04 | 2004-10-15 | Cyclovision Technologies Inc | Vorrichtung zur aufnahme von panoramabildern |
JP3804916B2 (ja) * | 2001-02-09 | 2006-08-02 | シャープ株式会社 | 撮像システムとその画像データ制御に用いられるプログラムおよびその撮像システムにおける撮像画像の歪み補正方法とその手順を記憶させた記憶媒体 |
US6744569B2 (en) * | 2001-06-19 | 2004-06-01 | Genex Technologies, Inc | Method and apparatus for omnidirectional three dimensional imaging |
US7336299B2 (en) * | 2003-07-03 | 2008-02-26 | Physical Optics Corporation | Panoramic video system with real-time distortion-free imaging |
US8124929B2 (en) * | 2004-08-25 | 2012-02-28 | Protarius Filo Ag, L.L.C. | Imager module optical focus and assembly method |
US7609381B2 (en) * | 2008-03-20 | 2009-10-27 | The Aerospace Corporation | Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing |
CN102177468A (zh) * | 2008-08-14 | 2011-09-07 | 远程保真公司 | 三反射镜全景相机 |
CN102495460B (zh) * | 2011-12-13 | 2014-01-22 | 复旦大学 | 一种全景成像镜头 |
US9229200B2 (en) * | 2012-01-09 | 2016-01-05 | Eyesee360, Inc. | Panoramic optical systems |
-
2015
- 2015-09-15 EP EP15841497.9A patent/EP3195040B1/en active Active
- 2015-09-15 KR KR1020237001380A patent/KR20230014854A/ko not_active Application Discontinuation
- 2015-09-15 CN CN202010928373.0A patent/CN111999861A/zh active Pending
- 2015-09-15 JP JP2017533738A patent/JP6598314B2/ja active Active
- 2015-09-15 WO PCT/US2015/050169 patent/WO2016044264A1/en active Application Filing
- 2015-09-15 CN CN201580059029.XA patent/CN107111113A/zh active Pending
- 2015-09-15 KR KR1020177009688A patent/KR102489794B1/ko active IP Right Grant
- 2015-09-15 US US14/854,687 patent/US20160077315A1/en not_active Abandoned
-
2017
- 2017-03-06 IL IL250963A patent/IL250963B/en unknown
-
2018
- 2018-08-29 US US16/116,597 patent/US11061208B2/en active Active
-
2021
- 2021-07-09 US US17/371,983 patent/US20210341714A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2244235A (en) * | 1938-09-03 | 1941-06-03 | Ibm | Cycloramic optical system |
US6373642B1 (en) * | 1996-06-24 | 2002-04-16 | Be Here Corporation | Panoramic imaging arrangement |
US6426774B1 (en) * | 1996-06-24 | 2002-07-30 | Be Here Corporation | Panoramic camera |
US5710661A (en) * | 1996-06-27 | 1998-01-20 | Hughes Electronics | Integrated panoramic and high resolution sensor optics |
US5956178A (en) * | 1996-09-02 | 1999-09-21 | Nikon Corporation | Keplerian variable magnification viewfinder |
US6464362B1 (en) * | 1998-10-29 | 2002-10-15 | Canon Kabushiki Kaisha | Illuminating apparatus |
US6175454B1 (en) * | 1999-01-13 | 2001-01-16 | Behere Corporation | Panoramic imaging arrangement |
US20040264013A1 (en) * | 2001-11-13 | 2004-12-30 | Daizaburo Matsuki | Wide-angle imaging optical system and wide-angle imaging apparatus surveillance imaging apparatus vehicle-mounted imaging apparatus and projection apparatus using the wide-angle imaging optical system |
US7362517B2 (en) * | 2005-04-25 | 2008-04-22 | Olympus Corporation | Rotationally asymmetric optical system |
US20100322059A1 (en) * | 2009-06-18 | 2010-12-23 | Sony Corporation | Objective lens, optical pickup, and optical disc apparatus |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018006938A1 (en) * | 2016-07-05 | 2018-01-11 | Zero Parallax Technologies Ab | Spherical camera lens system, camera system and lens assembly |
CN109478006A (zh) * | 2016-07-05 | 2019-03-15 | 零视差技术有限公司 | 球形相机透镜系统、相机系统和透镜组件 |
US20190235214A1 (en) * | 2016-07-05 | 2019-08-01 | Zero Parallax Technologies Ab | Spherical camera lens system, camera system and lens assembly |
US20180115689A1 (en) * | 2016-10-26 | 2018-04-26 | Lite-On Electronics (Guangzhou) Limited | Camera module and assembly method thereof |
CN107995388A (zh) * | 2016-10-26 | 2018-05-04 | 光宝科技股份有限公司 | 相机模块及其组装方法 |
CN112313947A (zh) * | 2018-06-20 | 2021-02-02 | 三星电子株式会社 | 用于处理360度图像的方法及设备 |
US11989849B2 (en) | 2018-06-20 | 2024-05-21 | Samsung Electronics Co., Ltd. | Method and device for processing 360-degree image |
US11588992B2 (en) * | 2019-06-04 | 2023-02-21 | Jabil Optics Germany GmbH | Surround-view imaging system |
US11838663B2 (en) | 2019-06-04 | 2023-12-05 | Jabil Optics Germany GmbH | Surround-view imaging system |
EP3940444A1 (en) * | 2020-07-14 | 2022-01-19 | Opto Engineering S.R.L. | Borescope probe |
US11474340B2 (en) | 2020-07-14 | 2022-10-18 | Opto Engineering S.P.A. | Borescope probe |
CN114486939A (zh) * | 2022-04-08 | 2022-05-13 | 欧普康视科技股份有限公司 | 一种镜片划痕检测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
IL250963B (en) | 2022-04-01 |
CN107111113A (zh) | 2017-08-29 |
JP2017532612A (ja) | 2017-11-02 |
EP3195040B1 (en) | 2023-05-24 |
US20190011678A1 (en) | 2019-01-10 |
KR102489794B1 (ko) | 2023-01-18 |
CN111999861A (zh) | 2020-11-27 |
KR20170067767A (ko) | 2017-06-16 |
JP6598314B2 (ja) | 2019-10-30 |
US20210341714A1 (en) | 2021-11-04 |
EP3195040A1 (en) | 2017-07-26 |
KR20230014854A (ko) | 2023-01-30 |
US11061208B2 (en) | 2021-07-13 |
EP3195040A4 (en) | 2018-02-28 |
IL250963A0 (en) | 2017-04-30 |
WO2016044264A1 (en) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210341714A1 (en) | Compact panoramic camera: optical system, apparatus, image forming method | |
CN109669258B (zh) | 成像用光学镜头、取像装置及电子装置 | |
CN110187469B (zh) | 成像光学镜头、取像装置及电子装置 | |
CN108267833B (zh) | 影像撷取系统、取像装置及电子装置 | |
CN211506003U (zh) | 摄像镜头 | |
CN110119020B (zh) | 取像用光学镜头组、取像装置及电子装置 | |
CN108089279B (zh) | 摄像镜头系统、摄像装置和投影仪 | |
EP1141760B1 (en) | Panoramic imaging apparatus | |
US8451318B2 (en) | Three-mirror panoramic camera | |
CN113703136A (zh) | 摄影透镜组 | |
CN110716284B (zh) | 成像光学镜组、取像装置及电子装置 | |
CN110888221B (zh) | 电子装置 | |
CN113238340A (zh) | 摄像透镜组及取像装置 | |
JP6664853B2 (ja) | 撮像レンズ | |
JP2007155976A (ja) | 魚眼レンズ及び撮像装置 | |
KR20150146058A (ko) | 줌렌즈계 | |
CN110471165B (zh) | 一种消畸变小型化高分辨率鱼眼镜头光学系统 | |
JP5850191B1 (ja) | 光学系および撮像システム | |
JP7225047B2 (ja) | 撮像レンズおよび撮像装置 | |
CN116794805A (zh) | 光学影像镜片系统组及电子装置 | |
JPH0682699A (ja) | レンズシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REMOTEREALITY CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRUBKO, SERGEY;MENON, RAGHU;ZHU, YANGIU (JULIA);AND OTHERS;SIGNING DATES FROM 20160617 TO 20160805;REEL/FRAME:039405/0537 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |