US20160064207A1 - Sequential etching treatment for solar cell fabrication - Google Patents
Sequential etching treatment for solar cell fabrication Download PDFInfo
- Publication number
- US20160064207A1 US20160064207A1 US14/473,857 US201414473857A US2016064207A1 US 20160064207 A1 US20160064207 A1 US 20160064207A1 US 201414473857 A US201414473857 A US 201414473857A US 2016064207 A1 US2016064207 A1 US 2016064207A1
- Authority
- US
- United States
- Prior art keywords
- silicon substrate
- etching
- etchant
- concentration
- koh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005530 etching Methods 0.000 title claims abstract description 129
- 238000004519 manufacturing process Methods 0.000 title description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 174
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 174
- 239000010703 silicon Substances 0.000 claims abstract description 174
- 239000000758 substrate Substances 0.000 claims abstract description 169
- 238000000034 method Methods 0.000 claims abstract description 115
- 238000004140 cleaning Methods 0.000 claims abstract description 57
- 239000000356 contaminant Substances 0.000 claims abstract description 40
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 82
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 57
- 229910017604 nitric acid Inorganic materials 0.000 claims description 57
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 42
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 36
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 24
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 9
- 239000000908 ammonium hydroxide Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000009499 grossing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- -1 (e.g. Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02019—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- PV cells Photovoltaic (PV) cells, commonly known as solar cells, are well known devices for conversion of solar radiation into electrical energy.
- solar radiation impinging on the surface of, and entering into, the substrate of a solar cell creates electron and hole pairs in the bulk of the substrate.
- the electron and hole pairs migrate to p-doped and n-doped regions in the substrate, thereby creating a voltage differential between the doped regions.
- the doped regions are connected to the conductive regions on the solar cell to direct an electrical current from the cell to an external circuit.
- PV cells are combined in an array such as a PV module, the electrical energy collect from all of the PV cells can be combined in series and parallel arrangements to provide power with a certain voltage and current.
- FIG. 1 illustrates a flow chart representation of a method of fabricating solar cell, according to some embodiments.
- FIGS. 2-4 illustrate a cross-sectional view of a silicon substrate, according to some embodiments.
- FIG. 5 illustrates a graph of different etching processes to minority carrier lifetime of a solar cell, according to some embodiments.
- FIG. 6 illustrates a graph of etched silicon with respect to etch rate, according to some embodiments.
- FIG. 7 illustrates an example etching tool, according to some embodiments.
- first “First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For example, reference to a “first” etching process does not necessarily imply that this etching process is the first etching process in a sequence; instead the term “first” is used to differentiate this etching process from another etching process (e.g., a “second” etching process).
- this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors.
- a determination may be solely based on those factors or based, at least in part, on those factors.
- Coupled means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically.
- solar cells can be fabricated from silicon substrates, (e.g., silicon wafers), which can be cut to from silicon ingots.
- silicon substrates e.g., silicon wafers
- a slurry cutting process can be used to form a silicon substrate from a silicon ingot.
- a diamond wire cutting process can be used to form a silicon substrate from the silicon ingot.
- Silicon substrates formed in this way can have defects, e.g., cracks or uneven (e.g., non-smooth or rough) surface, after forming the substrate. The defects or rough surface can serve as a recombination region for minority charger carriers in the solar cell, limiting solar cell conversion efficiency.
- an etching process can be performed on a surface region of the silicon substrate to etch away at the defects and/or the rough surface.
- Surface region is used herein to describe a portion of the silicon substrate with a depth.
- the surface region can be the top (as viewed as in FIGS. 2-4 ) 5-40 ⁇ m of the silicon substrate.
- the surface region can be the top (as viewed in FIGS. 2-4 ) 5-20% of the full depth of the silicon substrate.
- the etching process can smooth the surface region of silicon substrate, reducing the surface recombination of minority charge carriers and increasing the solar cell efficiency.
- This specification first describes an example method for processing a solar cell that can include sequential etching of a silicon substrate, followed by example results and an apparatus for etching a silicon substrate.
- Various examples are provided throughout.
- FIG. 1 a flow chart illustrating a method for processing a silicon substrate is shown, according to some embodiments.
- the method of FIG. 1 can include additional (or fewer) blocks than illustrated.
- a first cleaning process (block 100 ) need not be performed.
- a first cleaning process can be performed on the silicon substrate.
- the first cleaning process can include cleaning the silicon substrate with a first cleaning solution.
- the first cleaning process can remove contaminants, as described in more detail at FIG. 2 , from a surface of the silicon substrate.
- the silicon substrate can be cleaned with ozone (e.g., a solution of O 3 and deionized (DI) water), hydrogen peroxide (H 2 O 2 ), nitric acid (HNO 3 ) or sulfuric acid (H 2 SO 4 ), among other examples.
- ozone e.g., a solution of O 3 and deionized (DI) water
- H 2 O 2 hydrogen peroxide
- HNO 3 nitric acid
- sulfuric acid H 2 SO 4
- a rinsing process can be performed after the first cleaning process.
- the first rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the first cleaning process.
- DI deionized
- a rinsing process e.g., including the use of DI water, can be performed after every cleaning and/or etching step.
- rinsing can be performed after some or none of the cleaning and/or etching steps.
- an air blower e.g., forced air, vacuum process
- the first cleaning process at 100 need not be performed at all.
- the rinsing process may only be performed after etching or not at all.
- a first etching process can be performed on the silicon substrate.
- the first etching process can include etching the silicon substrate with a first etchant.
- the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH) and/or combinations thereof.
- KOH potassium hydroxide
- NaOH sodium hydroxide
- TMAH tetramethylammonium hydroxide
- HF hydrofluoric acid
- HNO 3 hydrofluoric acid
- HF hydrofluoric
- the first etchant can have a first concentration.
- the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of a surface region of the silicon substrate can be etched.
- FIG. 3 shows an example of performing a first etching process on a silicon substrate, where a surface region of the silicon substrate is etched away. In an embodiment, the first etching process can have an etch rate in the range of 4-12 ⁇ m/min.
- a second etching process can be performed on the silicon substrate.
- the second etching process can include etching with a second etchant.
- the second etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH) and/or combinations thereof.
- KOH potassium hydroxide
- NaOH sodium hydroxide
- TMAH tetramethylammonium hydroxide
- HF hydrofluoric acid
- HNO 3 hydrofluoric acid
- HF hydrofluoric acid with
- the second etchant can have a concentration greater than the concentration of the first etchant.
- the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%.
- the first etchant can be the same type of etchant as the second etchant (e.g., KOH) but with a lower concentration.
- the first etchant can be a different type of etchant than the second etchant.
- the second etchant need not be of a higher concentration than the first etchant.
- the first etchant can be potassium hydroxide (KOH) and/or sodium hydroxide (NaOH) at a lower, same, or higher concentration than the second etchant, which can be tetramethylammonium hydroxide (TMAH) or an HF/HNO3 based etching solution
- the second etching process can be performed at a longer etching rate, such as 1 ⁇ m/min, to etch away at a surface region, shown in FIGS. 2-4 , of the silicon substrate.
- a surface region of the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%.
- FIG. 3 shows an example of performing a first etching process on a silicon substrate.
- the second etching process can have an etch rate in the range of 1-6 ⁇ m/min
- the second etching process can also include smoothing and/or polishing a surface of the silicon substrate after etching, such that a finer removal of contaminants and/or defects is performed with the second etching process.
- a rinsing process can be performed on the silicon substrate.
- the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the second etching process.
- DI deionized
- a rinsing process can be performed after every cleaning and/or etching step, or after some cleaning and/or etching steps, or after none of the cleaning and/or etching steps.
- an air blower e.g., forced air, vacuum process
- a cleaning process (which can be the first one if no cleaning occurred at 100 ) can be performed on the silicon substrate.
- the second cleaning process can include cleaning the silicon substrate with a second cleaning solution.
- the second cleaning process can remove contaminants, as shown in FIG. 4 , from a surface of the silicon substrate.
- the second cleaning solution can be an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover.
- an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O 3 and deionized (DI) water), hydrogen peroxide (H 2 O 2 ), hydrofluoric acid (HF) or hydrogen chloride (HCl).
- ozone e.g., a solution of O 3 and deionized (DI) water
- H 2 O 2 hydrogen peroxide
- HF hydrofluoric acid
- HCl hydrogen chloride
- the silicon substrate can be dried.
- the drying process can be performed to remove any remaining moisture from the silicon substrate in preparation for a subsequent process.
- the drying process can include staging the silicon substrate in location to wait for any moisture to dry off.
- the drying process can be blowing air on the silicon substrate to remove any remaining moisture.
- FIGS. 2-4 illustrate cross-sectional representations of processing a silicon substrate, according to some embodiments.
- a surface region 202 of the silicon substrate 200 can be rough and/or unprocessed.
- the surface region 202 can have cracks 211 .
- the rough surface areas and/or cracks 211 of the surface region 202 can serve as a recombination region for minority charge carriers in the solar cell, limiting solar cell conversion efficiency.
- slurry cutting and/or diamond wire cutting processes can be abrasive, thus forming uneven/rough surfaces, cracks, etc., on a silicon substrate.
- the silicon substrate 200 can have contaminants 210 , such as metallic and/or organic contaminants, from a prior slurry cutting process, diamond wire cutting process or from handling the silicon substrate.
- a first cleaning process can be performed on the silicon substrate 200 with a first cleaning solution.
- the first cleaning solution can be ozone (e.g., a solution of O 3 and deionized (DI) water), hydrogen peroxide (H 2 O 2 ), nitric acid (HNO 3 ) or sulfuric acid (H 2 SO 4 ).
- the first cleaning process need not be performed.
- a rinsing process can be performed after the first cleaning process, for example, with deionized (DI) water.
- an etching process can be performed on the surface region 202 of the silicon substrate 200 to at least partially etch away surface defects (e.g., rough portions, cracks, etc.).
- the etching process can also smooth the surface region of silicon substrate in preparation for one or more subsequent solar cell fabrication processes.
- a silicon substrate after a first etching process is shown, according to some embodiments.
- a first etching process with a first etchant can be performed to etch away a portion 204 from the surface region 202 of the silicon substrate 200 .
- the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH), and/or combinations thereof.
- the first etchant can have a first concentration.
- the silicon substrate 200 can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of the surface region 202 of the silicon substrate 200 can be etched (e.g., 204 of FIG. 3 ). In an embodiment, the first etching process can have an etch rate in the range of 4-12 ⁇ m/min. In an embodiment, another portion 206 of the surface region 202 of the silicon substrate 200 is not etched after the first etching process and can either be left as is, or can be further etched by a second etching process, as described herein.
- KOH potassium hydroxide
- FIG. 4 illustrates the silicon substrate after a second etching process, according to some embodiments.
- a second etching process with a second etchant can be performed to etch away another portion 206 from the surface region 202 of the silicon substrate 200 .
- the second etchant can include potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH) and/or combinations thereof.
- the second etchant can have a second concentration greater than the first concentration.
- the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%.
- KOH potassium hydroxide
- the first etchant can be the same as the second etchant (e.g KOH).
- the first etchant can be different from the second etchant.
- approximately 10-50% of a surface region 202 of the silicon substrate 200 can be etched.
- the second etching process can have an etch rate in the range of 1-6 ⁇ m/min.
- the second etching process can also include smoothing a surface 208 of the silicon substrate 200 .
- a second cleaning process including a second cleaning solution can be performed on the silicon substrate 200 after the second etching process.
- the second cleaning process can remove contaminants 210 from a surface 208 of the silicon substrate 200 .
- the silicon substrate 200 can be cleaned with an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover.
- an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O 3 and deionized (DI) water), hydrogen peroxide (H 2 O 2 ), hydrofluoric acid (HF) or hydrogen chloride (HCl).
- ozone e.g., a solution of O 3 and deionized (DI) water
- H 2 O 2 hydrogen peroxide
- HF hydrofluoric acid
- HCl hydrogen chloride
- FIG. 5 a graph illustrating measured minority carrier lifetime of the solar cell after fabrication for different etching processes on a silicon substrate is shown.
- the minority carrier lifetime shown in FIG. 5 is normalized from 0 to 1.
- etching processes Five etching processes are compared, (A) etching the silicon substrate with a lower concentration potassium hydroxide (KOH), (B) performing a pre-clean (e.g., with ozone) followed by etching the silicon substrate with a lower concentration potassium hydroxide (KOH), (C) etching a surface region of the silicon substrate with a higher concentration potassium hydroxide (KOH), (D) etching 50% of a surface region of the silicon substrate (e.g., 204 of FIG. 3 ) with a lower concentration (e.g., 15-30%) potassium hydroxide (KOH) and etching the remaining 50% of a surface region of the silicon substrate (e.g., 206 of FIG.
- KOH potassium hydroxide
- the etching process (C) with the higher concentration potassium hydroxide (KOH) resulted in the second highest minority carrier lifetime to the sequential etching processes (D) and (E).
- etching with a higher concentration potassium hydroxide (KOH) alone can take longer, e.g., the higher concentration potassium hydroxide (KOH) alone can have a longer etch rate as compared to both the sequential processes (D) and (E).
- Etching with both the lower concentration potassium hydroxide (KOH), with (B) and without pre-clean (A) resulted in approximately the lowest minority charge carrier results.
- sequential etching processes for example the etching processes (D) and (E), have a benefit of improved minority carrier lifetime and/or increasing the overall solar cell conversion efficiency as compared to single etching processes (e.g., the single etching processes (A), (B) and (C)).
- FIG. 6 illustrates a graph of etched silicon with respect to etch rate for different etching processes on a silicon substrate.
- Lower etch rates allow for a higher unit per hour (UPH) processing for silicon substrates, thereby increasing the output that silicon substrates can be processed for solar cell fabrication and/or manufacture. Greater output can provide for more solar cells manufactured, and reduced manufacturing costs.
- FIG. 6 shows a normalized etch rate from 0 to 1 and approximates the total silicon etched of a surface region of the silicon substrate, e.g., etching 0-100% of 202 of FIG. 3 . Referring to FIG.
- etch rates are compared, including (a) the etch rate in a higher concentration etchant, (b) the etch rate in a lower concentration etchant and (c) the combined etch rate for etching with a lower concentration etchant followed by a higher concentration etchant.
- potassium hydroxide (KOH) is used as the etchant.
- the etch rate can initially start rapidly and slow steadily as more of the silicon is etched.
- the etch rate can be faster than the etch rate for (a) for all silicon etching depths.
- the combined etch rate can be faster than the etch rate for the higher concentration etchant (a) and approximately comparable (e.g., close-to) the etch rate of the lower concentration etchant (b).
- lifetime results for etching with a lower concentration etchant alone are lower, thus using a sequential etching process with an etch rate closer to that of the lower concentration etchant provides for the benefit of a faster etch rate with improved overall lifetime (e.g., closer to that of a higher concentration etchant alone), and therefore, improved solar cell efficiency.
- the example etching tool 300 can be a linear etching tool having multiple baths (e.g., an etching tool for batch processing). In another embodiment, an example etching tool with a single bath can be used.
- a silicon substrate can be loaded 302 into the etching tool 300 .
- the silicon substrate can be placed 304 in a first cleaning bath 306 to clean the silicon substrate with a first cleaning solution.
- the first cleaning solution can be an ozone solution, hydrogen peroxide (H 2 O 2 ), nitric acid (HNO 3 ) or sulfuric acid (H 2 SO 4 ).
- the first cleaning process including placing the silicon substrate in the first cleaning bath, need not be performed, and may not be part of tool 300 .
- the silicon substrate can be placed 308 in a first rinsing bath 310 .
- the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the first cleaning process.
- DI deionized
- the silicon substrate need not be rinsed and/or placed 308 in a first rinsing bath 310 .
- a rinse can follow every cleaning and etch step.
- the silicon substrate can be placed 312 in a first etchant bath 314 .
- the silicon substrate can be etched in the first etchant bath 314 with a first etchant having a first concentration.
- the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH) and/or combinations thereof.
- KOH potassium hydroxide
- NaOH sodium hydroxide
- TMAH tetramethylammonium hydroxide
- HF hydrofluoric acid
- the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of a surface region of the silicon substrate can be etched. In some embodiments, the etching removes contaminants from the silicon substrate, where the contaminants can be collected and/or removed from the first etchant bath 314 . In an embodiment, etching with the first etchant can at least partially smooth a surface of the silicon substrate. In some embodiments, etching with the first etchant in a first etchant bath 314 can remove more contaminants than subsequently etching the silicon substrate in a second etchant bath.
- KOH potassium hydroxide
- maintaining, e.g., refilling and/or replacing, a higher concentration etchant in a bath can be more expensive.
- collecting more contaminants in the first bath 314 can provide for significant cost savings, where only a first bath having a lower concentration etchant need be more closely maintained (e.g., refilled, replaced, etc.) as compared to maintaining a bath with a higher concentration etchant.
- the silicon substrate can be placed 316 in a second etchant bath 318 .
- the silicon substrate can be etched in the second etchant bath 318 with a second etchant having a second concentration.
- the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO 3 ), hydrofluoric acid (HF) with nitric acid (HNO 3 ) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO 3 ), acetic acid (C 2 H 4 O 2 ) and deionized (DI) water, ammonium hydroxide (NH 4 OH) and/or combinations thereof.
- KOH potassium hydroxide
- NaOH sodium hydroxide
- TMAH tetramethylammonium hydroxide
- HF hydrofluoric acid
- the concentration of the second etchant can be higher than the concentration of the first etchant.
- the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%. In an embodiment, approximately 10-50% of a surface region of the silicon substrate can be etched.
- the first etchant can be a different type of etchant than the second etchant.
- the etching removes contaminants from the silicon substrate, where the contaminants can be collected and/or removed from the second etchant bath 318 . In an embodiment, the etching can remove other contaminants from the silicon substrate and where the etching with the second etchant can at least partially smooth a surface of the silicon substrate.
- the silicon substrate can be placed 320 in a second cleaning bath 322 to clean the silicon substrate with a second cleaning solution.
- the solution such can be an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover.
- an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O 3 and deionized (DI) water), hydrogen peroxide (H 2 O 2 ), hydrofluoric acid (HF) or hydrogen chloride (HCl).
- the second cleaning process including placing the silicon substrate in the second cleaning bath, need not be performed.
- the silicon substrate can be placed 324 in a first rinsing bath 326 .
- the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the second cleaning process.
- DI deionized
- the silicon substrate need not be rinsed and/or placed 324 in a second rinsing bath 326 .
- an air blower e.g., forced air, vacuum process
- the silicon substrate can be dried to remove any remaining moisture from the silicon substrate in preparation for a subsequent process (e.g., another solar cell fabrication process).
- the silicon substrate can be unloaded 328 from the etching tool 300 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Weting (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
- Photovoltaic (PV) cells, commonly known as solar cells, are well known devices for conversion of solar radiation into electrical energy. Generally, solar radiation impinging on the surface of, and entering into, the substrate of a solar cell creates electron and hole pairs in the bulk of the substrate. The electron and hole pairs migrate to p-doped and n-doped regions in the substrate, thereby creating a voltage differential between the doped regions. The doped regions are connected to the conductive regions on the solar cell to direct an electrical current from the cell to an external circuit. When PV cells are combined in an array such as a PV module, the electrical energy collect from all of the PV cells can be combined in series and parallel arrangements to provide power with a certain voltage and current.
-
FIG. 1 illustrates a flow chart representation of a method of fabricating solar cell, according to some embodiments. -
FIGS. 2-4 illustrate a cross-sectional view of a silicon substrate, according to some embodiments. -
FIG. 5 illustrates a graph of different etching processes to minority carrier lifetime of a solar cell, according to some embodiments. -
FIG. 6 illustrates a graph of etched silicon with respect to etch rate, according to some embodiments. -
FIG. 7 illustrates an example etching tool, according to some embodiments. - The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter of the application or uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
- This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
- Terminology. The following paragraphs provide definitions and/or context for terms found in this disclosure (including the appended claims):
- “Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or steps.
- “Configured To.” Various units or components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units/components include structure that performs those task or tasks during operation. As such, the unit/component can be said to be configured to perform the task even when the specified unit/component is not currently operational (e.g., is not on/active). Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. §112, sixth paragraph, for that unit/component.
- “First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For example, reference to a “first” etching process does not necessarily imply that this etching process is the first etching process in a sequence; instead the term “first” is used to differentiate this etching process from another etching process (e.g., a “second” etching process).
- “Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
- “Coupled”—The following description refers to elements or nodes or features being “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically.
- In addition, certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
- In the following description, numerous specific details are set forth, such as specific operations, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known techniques are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure.
- In various embodiments, solar cells can be fabricated from silicon substrates, (e.g., silicon wafers), which can be cut to from silicon ingots. In an example, a slurry cutting process can be used to form a silicon substrate from a silicon ingot. In another example, a diamond wire cutting process can be used to form a silicon substrate from the silicon ingot. Silicon substrates formed in this way can have defects, e.g., cracks or uneven (e.g., non-smooth or rough) surface, after forming the substrate. The defects or rough surface can serve as a recombination region for minority charger carriers in the solar cell, limiting solar cell conversion efficiency.
- In some embodiments, an etching process can be performed on a surface region of the silicon substrate to etch away at the defects and/or the rough surface. Surface region is used herein to describe a portion of the silicon substrate with a depth. For example, the surface region can be the top (as viewed as in
FIGS. 2-4 ) 5-40 μm of the silicon substrate. As another non-limiting example, the surface region can be the top (as viewed inFIGS. 2-4 ) 5-20% of the full depth of the silicon substrate. The etching process can smooth the surface region of silicon substrate, reducing the surface recombination of minority charge carriers and increasing the solar cell efficiency. - This specification first describes an example method for processing a solar cell that can include sequential etching of a silicon substrate, followed by example results and an apparatus for etching a silicon substrate. Various examples are provided throughout.
- Turning now to
FIG. 1 , a flow chart illustrating a method for processing a silicon substrate is shown, according to some embodiments. In various embodiments, the method ofFIG. 1 can include additional (or fewer) blocks than illustrated. For example, in some embodiments, a first cleaning process (block 100) need not be performed. - As shown in 100, a first cleaning process can be performed on the silicon substrate. In an embodiment, the first cleaning process can include cleaning the silicon substrate with a first cleaning solution. For example, the first cleaning process can remove contaminants, as described in more detail at
FIG. 2 , from a surface of the silicon substrate. In an embodiment, the silicon substrate can be cleaned with ozone (e.g., a solution of O3 and deionized (DI) water), hydrogen peroxide (H2O2), nitric acid (HNO3) or sulfuric acid (H2SO4), among other examples. In some embodiments, the first cleaning process need not be performed. - In an embodiment, a rinsing process can be performed after the first cleaning process. For example, the first rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the first cleaning process. In an embodiment, a rinsing process, e.g., including the use of DI water, can be performed after every cleaning and/or etching step. In other embodiments, rinsing can be performed after some or none of the cleaning and/or etching steps. In an embodiment, an air blower (e.g., forced air, vacuum process) can be used to blow and/or remove contaminants from the silicon substrate.
- In some embodiments, the first cleaning process at 100 need not be performed at all. In such embodiments, the rinsing process may only be performed after etching or not at all.
- At 102, a first etching process can be performed on the silicon substrate. In an embodiment, the first etching process can include etching the silicon substrate with a first etchant. In some embodiments, the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH) and/or combinations thereof. In an embodiment, the first etchant can have a first concentration. For example, the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of a surface region of the silicon substrate can be etched.
FIG. 3 shows an example of performing a first etching process on a silicon substrate, where a surface region of the silicon substrate is etched away. In an embodiment, the first etching process can have an etch rate in the range of 4-12 μm/min. - At 104, a second etching process can be performed on the silicon substrate. In an embodiment, the second etching process can include etching with a second etchant. In some embodiments, the second etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH) and/or combinations thereof. In an embodiment, the second etchant can have a concentration greater than the concentration of the first etchant. For example, the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%. In some embodiments, the first etchant can be the same type of etchant as the second etchant (e.g., KOH) but with a lower concentration.
- In another embodiment, the first etchant can be a different type of etchant than the second etchant. In the embodiment where the second etchant is different from the first etchant, the second etchant need not be of a higher concentration than the first etchant. For example, the first etchant can be potassium hydroxide (KOH) and/or sodium hydroxide (NaOH) at a lower, same, or higher concentration than the second etchant, which can be tetramethylammonium hydroxide (TMAH) or an HF/HNO3 based etching solution
- In still another embodiment, only the second etching process is performed. In an example, the second etching process can be performed at a longer etching rate, such as 1 μm/min, to etch away at a surface region, shown in
FIGS. 2-4 , of the silicon substrate. In an example, a surface region of the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%. - In an embodiment, approximately 10-50% of a surface region of the silicon substrate can be etched.
FIG. 3 shows an example of performing a first etching process on a silicon substrate. In an embodiment, the second etching process can have an etch rate in the range of 1-6 μm/min In an embodiment, the second etching process can also include smoothing and/or polishing a surface of the silicon substrate after etching, such that a finer removal of contaminants and/or defects is performed with the second etching process. - At 106, a rinsing process can be performed on the silicon substrate. For example, the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the second etching process. In an embodiment, a rinsing process can be performed after every cleaning and/or etching step, or after some cleaning and/or etching steps, or after none of the cleaning and/or etching steps. In an embodiment, an air blower (e.g., forced air, vacuum process) can be used to blow and/or remove contaminants from the silicon substrate.
- At 108, a cleaning process (which can be the first one if no cleaning occurred at 100) can be performed on the silicon substrate. In an embodiment, the second cleaning process can include cleaning the silicon substrate with a second cleaning solution. For example, the second cleaning process can remove contaminants, as shown in
FIG. 4 , from a surface of the silicon substrate. In an embodiment, the second cleaning solution can be an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover. In an embodiment, an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O3 and deionized (DI) water), hydrogen peroxide (H2O2), hydrofluoric acid (HF) or hydrogen chloride (HCl). - At 110, the silicon substrate can be dried. For example, the drying process can be performed to remove any remaining moisture from the silicon substrate in preparation for a subsequent process. In an embodiment, the drying process can include staging the silicon substrate in location to wait for any moisture to dry off. In some embodiments, the drying process can be blowing air on the silicon substrate to remove any remaining moisture.
- Turning now to
FIGS. 2-4 ,FIGS. 2-4 illustrate cross-sectional representations of processing a silicon substrate, according to some embodiments. As shown inFIG. 2 , asurface region 202 of thesilicon substrate 200 can be rough and/or unprocessed. In addition to or instead of rough or unprocessed areas, thesurface region 202 can have cracks 211. The rough surface areas and/orcracks 211 of thesurface region 202 can serve as a recombination region for minority charge carriers in the solar cell, limiting solar cell conversion efficiency. For example, slurry cutting and/or diamond wire cutting processes can be abrasive, thus forming uneven/rough surfaces, cracks, etc., on a silicon substrate. In some embodiments, thesilicon substrate 200 can havecontaminants 210, such as metallic and/or organic contaminants, from a prior slurry cutting process, diamond wire cutting process or from handling the silicon substrate. - In an embodiment, a first cleaning process can be performed on the
silicon substrate 200 with a first cleaning solution. In some embodiments, the first cleaning solution can be ozone (e.g., a solution of O3 and deionized (DI) water), hydrogen peroxide (H2O2), nitric acid (HNO3) or sulfuric acid (H2SO4). In some embodiments, the first cleaning process need not be performed. In an embodiment, a rinsing process can be performed after the first cleaning process, for example, with deionized (DI) water. - As described herein, an etching process can be performed on the
surface region 202 of thesilicon substrate 200 to at least partially etch away surface defects (e.g., rough portions, cracks, etc.). The etching process can also smooth the surface region of silicon substrate in preparation for one or more subsequent solar cell fabrication processes. - With reference to
FIG. 3 , a silicon substrate after a first etching process is shown, according to some embodiments. In an embodiment, a first etching process with a first etchant can be performed to etch away aportion 204 from thesurface region 202 of thesilicon substrate 200. In some embodiments, the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH), and/or combinations thereof. In an embodiment, the first etchant can have a first concentration. In an example, thesilicon substrate 200 can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of thesurface region 202 of thesilicon substrate 200 can be etched (e.g., 204 ofFIG. 3 ). In an embodiment, the first etching process can have an etch rate in the range of 4-12 μm/min. In an embodiment, anotherportion 206 of thesurface region 202 of thesilicon substrate 200 is not etched after the first etching process and can either be left as is, or can be further etched by a second etching process, as described herein. -
FIG. 4 illustrates the silicon substrate after a second etching process, according to some embodiments. In an embodiment, a second etching process with a second etchant can be performed to etch away anotherportion 206 from thesurface region 202 of thesilicon substrate 200. In some embodiments, the second etchant can include potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH) and/or combinations thereof. In an embodiment, the second etchant can have a second concentration greater than the first concentration. For example, the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%. In some embodiments, the first etchant can be the same as the second etchant (e.g KOH). In another embodiment, the first etchant can be different from the second etchant. In an embodiment, approximately 10-50% of asurface region 202 of thesilicon substrate 200 can be etched. In an embodiment, the second etching process can have an etch rate in the range of 1-6 μm/min. In an embodiment, the second etching process can also include smoothing asurface 208 of thesilicon substrate 200. - In some embodiments, a second cleaning process including a second cleaning solution can be performed on the
silicon substrate 200 after the second etching process. For example, the second cleaning process can removecontaminants 210 from asurface 208 of thesilicon substrate 200. In an embodiment, thesilicon substrate 200 can be cleaned with an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover. In an embodiment, an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O3 and deionized (DI) water), hydrogen peroxide (H2O2), hydrofluoric acid (HF) or hydrogen chloride (HCl). Subsequently, thesilicon substrate 200 can be dried to remove any remaining moisture from the silicon substrate in preparation for a subsequent process. - With reference to
FIG. 5 , a graph illustrating measured minority carrier lifetime of the solar cell after fabrication for different etching processes on a silicon substrate is shown. In general higher minority carrier lifetime allows for a greater probability that electron and hole pairs migrate to p-doped and n-doped regions in the silicon substrate, thereby increasing the overall solar cell conversion efficiency. The minority carrier lifetime shown inFIG. 5 is normalized from 0 to 1. Five etching processes are compared, (A) etching the silicon substrate with a lower concentration potassium hydroxide (KOH), (B) performing a pre-clean (e.g., with ozone) followed by etching the silicon substrate with a lower concentration potassium hydroxide (KOH), (C) etching a surface region of the silicon substrate with a higher concentration potassium hydroxide (KOH), (D) etching 50% of a surface region of the silicon substrate (e.g., 204 ofFIG. 3 ) with a lower concentration (e.g., 15-30%) potassium hydroxide (KOH) and etching the remaining 50% of a surface region of the silicon substrate (e.g., 206 ofFIG. 3 ) with a higher concentration (e.g., 40-50%) potassium hydroxide (KOH), and (E) etching 75% of a surface region of the silicon substrate (e.g., 204 ofFIG. 3 ) with a lower concentration (e.g., 15-30%) potassium hydroxide (KOH) and etching the remaining 25% of a surface region of the silicon substrate (e.g., 206 ofFIG. 3 ) with a higher concentration (e.g., 40-50%) potassium hydroxide (KOH). The sequential etching processes of (D) and (E) have the highest minority carrier lifetime results as shown inFIG. 5 . The etching process (C) with the higher concentration potassium hydroxide (KOH) resulted in the second highest minority carrier lifetime to the sequential etching processes (D) and (E). In an example, etching with a higher concentration potassium hydroxide (KOH) alone can take longer, e.g., the higher concentration potassium hydroxide (KOH) alone can have a longer etch rate as compared to both the sequential processes (D) and (E). Etching with both the lower concentration potassium hydroxide (KOH), with (B) and without pre-clean (A) resulted in approximately the lowest minority charge carrier results. Therefore, sequential etching processes, for example the etching processes (D) and (E), have a benefit of improved minority carrier lifetime and/or increasing the overall solar cell conversion efficiency as compared to single etching processes (e.g., the single etching processes (A), (B) and (C)). -
FIG. 6 illustrates a graph of etched silicon with respect to etch rate for different etching processes on a silicon substrate. Lower etch rates allow for a higher unit per hour (UPH) processing for silicon substrates, thereby increasing the output that silicon substrates can be processed for solar cell fabrication and/or manufacture. Greater output can provide for more solar cells manufactured, and reduced manufacturing costs.FIG. 6 shows a normalized etch rate from 0 to 1 and approximates the total silicon etched of a surface region of the silicon substrate, e.g., etching 0-100% of 202 ofFIG. 3 . Referring toFIG. 6 three etch rates are compared, including (a) the etch rate in a higher concentration etchant, (b) the etch rate in a lower concentration etchant and (c) the combined etch rate for etching with a lower concentration etchant followed by a higher concentration etchant. In an example, forFIG. 6 potassium hydroxide (KOH) is used as the etchant. Referring toFIG. 6 , for the higher concentration etching process (a), the etch rate can initially start rapidly and slow steadily as more of the silicon is etched. For the lower concentration etching process (b), the etch rate can be faster than the etch rate for (a) for all silicon etching depths. For the sequential etching process (c), the combined etch rate can be faster than the etch rate for the higher concentration etchant (a) and approximately comparable (e.g., close-to) the etch rate of the lower concentration etchant (b). - As shown in
FIG. 5 , lifetime results for etching with a lower concentration etchant alone are lower, thus using a sequential etching process with an etch rate closer to that of the lower concentration etchant provides for the benefit of a faster etch rate with improved overall lifetime (e.g., closer to that of a higher concentration etchant alone), and therefore, improved solar cell efficiency. - With reference to
FIG. 7 , there is shown an example etching tool, according to some embodiments. In an embodiment, theexample etching tool 300 can be a linear etching tool having multiple baths (e.g., an etching tool for batch processing). In another embodiment, an example etching tool with a single bath can be used. - Referring to
FIG. 7 , a silicon substrate can be loaded 302 into theetching tool 300. - In one embodiment, the silicon substrate can be placed 304 in a
first cleaning bath 306 to clean the silicon substrate with a first cleaning solution. In an embodiment, the first cleaning solution can be an ozone solution, hydrogen peroxide (H2O2), nitric acid (HNO3) or sulfuric acid (H2SO4). In some embodiments, the first cleaning process, including placing the silicon substrate in the first cleaning bath, need not be performed, and may not be part oftool 300. - In some embodiments, the silicon substrate can be placed 308 in a
first rinsing bath 310. For example, the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the first cleaning process. In some embodiments, the silicon substrate need not be rinsed and/or placed 308 in afirst rinsing bath 310. In some embodiments, a rinse can follow every cleaning and etch step. - In some embodiments, the silicon substrate can be placed 312 in a
first etchant bath 314. In an embodiment, the silicon substrate can be etched in thefirst etchant bath 314 with a first etchant having a first concentration. In some embodiments, the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH) and/or combinations thereof. In an example, the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 15-30%. In an embodiment, approximately 50-90% of a surface region of the silicon substrate can be etched. In some embodiments, the etching removes contaminants from the silicon substrate, where the contaminants can be collected and/or removed from thefirst etchant bath 314. In an embodiment, etching with the first etchant can at least partially smooth a surface of the silicon substrate. In some embodiments, etching with the first etchant in afirst etchant bath 314 can remove more contaminants than subsequently etching the silicon substrate in a second etchant bath. - In general, maintaining, e.g., refilling and/or replacing, a higher concentration etchant in a bath, can be more expensive. In an embodiment, collecting more contaminants in the
first bath 314 can provide for significant cost savings, where only a first bath having a lower concentration etchant need be more closely maintained (e.g., refilled, replaced, etc.) as compared to maintaining a bath with a higher concentration etchant. - The silicon substrate can be placed 316 in a
second etchant bath 318. In an embodiment, the silicon substrate can be etched in thesecond etchant bath 318 with a second etchant having a second concentration. In some embodiments, the first etchant can be potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), hydrofluoric acid (HF) and nitric acid (HNO3), hydrofluoric acid (HF) with nitric acid (HNO3) and deionized (DI) water, hydrofluoric acid (HF) with nitric acid (HNO3), acetic acid (C2H4O2) and deionized (DI) water, ammonium hydroxide (NH4OH) and/or combinations thereof. In an embodiment, the concentration of the second etchant can be higher than the concentration of the first etchant. For example, the silicon substrate can be etched with potassium hydroxide (KOH) having a concentration in the range of approximately 40-50%. In an embodiment, approximately 10-50% of a surface region of the silicon substrate can be etched. In another embodiment, the first etchant can be a different type of etchant than the second etchant. In some embodiments, the etching removes contaminants from the silicon substrate, where the contaminants can be collected and/or removed from thesecond etchant bath 318. In an embodiment, the etching can remove other contaminants from the silicon substrate and where the etching with the second etchant can at least partially smooth a surface of the silicon substrate. - The silicon substrate can be placed 320 in a
second cleaning bath 322 to clean the silicon substrate with a second cleaning solution. In an embodiment, the solution such can be an organic contaminant remover, a metal contaminant remover, or both an organic and a metal contaminant remover. In an embodiment, an organic and/or metallic contaminant remover can include ozone (e.g., a solution of O3 and deionized (DI) water), hydrogen peroxide (H2O2), hydrofluoric acid (HF) or hydrogen chloride (HCl). In some embodiments, the second cleaning process, including placing the silicon substrate in the second cleaning bath, need not be performed. - The silicon substrate can be placed 324 in a
first rinsing bath 326. For example, the rinsing process can include rinsing the silicon substrate with deionized (DI) water to wash away contaminants and any remaining solution from the second cleaning process. In some embodiments, the silicon substrate need not be rinsed and/or placed 324 in asecond rinsing bath 326. In an embodiment, an air blower (e.g., forced air, vacuum process) can be used to blow and/or remove contaminants from the silicon substrate. - The silicon substrate can be dried to remove any remaining moisture from the silicon substrate in preparation for a subsequent process (e.g., another solar cell fabrication process).
- The silicon substrate can be unloaded 328 from the
etching tool 300. - Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
- The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/473,857 US9837259B2 (en) | 2014-08-29 | 2014-08-29 | Sequential etching treatment for solar cell fabrication |
PCT/US2015/046175 WO2016032856A2 (en) | 2014-08-29 | 2015-08-20 | Sequential etching treatment for solar cell fabrication |
TW104128269A TWI690089B (en) | 2014-08-29 | 2015-08-28 | Sequential etching treatment for solar cell fabrication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/473,857 US9837259B2 (en) | 2014-08-29 | 2014-08-29 | Sequential etching treatment for solar cell fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160064207A1 true US20160064207A1 (en) | 2016-03-03 |
US9837259B2 US9837259B2 (en) | 2017-12-05 |
Family
ID=55400801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/473,857 Active US9837259B2 (en) | 2014-08-29 | 2014-08-29 | Sequential etching treatment for solar cell fabrication |
Country Status (3)
Country | Link |
---|---|
US (1) | US9837259B2 (en) |
TW (1) | TWI690089B (en) |
WO (1) | WO2016032856A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853496A (en) * | 2019-11-12 | 2021-05-28 | 洛阳阿特斯光伏科技有限公司 | Surface treatment method of silicon rod and diamond wire silicon wafer cutting method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113451444B (en) * | 2021-06-30 | 2024-03-01 | 安徽华晟新能源科技股份有限公司 | Method for manufacturing solar cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137123A (en) * | 1975-12-31 | 1979-01-30 | Motorola, Inc. | Texture etching of silicon: method |
JP2004063744A (en) * | 2002-07-29 | 2004-02-26 | Shinryo Corp | Etching method of silicon substrate |
US20110151671A1 (en) * | 2009-12-17 | 2011-06-23 | Rohm And Haas Electronic Materials Llc | method of texturing semiconductor substrates |
US20130130508A1 (en) * | 2011-09-02 | 2013-05-23 | Air Products And Chemicals, Inc. | Compositions and Methods for Texturing of Silicon Wafers |
US20140080246A1 (en) * | 2011-06-03 | 2014-03-20 | Sanyo Electric Co., Ltd. | Manufacturing method for solar cell |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090726A (en) * | 1996-07-05 | 2000-07-18 | National Science Council | Pretreatment method of a silicon wafer using nitric acid |
US6544655B1 (en) | 2000-08-08 | 2003-04-08 | Honeywell International Inc. | Methods for reducing the curvature in boron-doped silicon micromachined structures |
US7468485B1 (en) | 2005-08-11 | 2008-12-23 | Sunpower Corporation | Back side contact solar cell with doped polysilicon regions |
CN101379599B (en) | 2006-01-31 | 2011-05-04 | 胜高股份有限公司 | Single wafer etching method |
JP5226255B2 (en) | 2007-07-13 | 2013-07-03 | シャープ株式会社 | Manufacturing method of solar cell |
US8987039B2 (en) | 2007-10-12 | 2015-03-24 | Air Products And Chemicals, Inc. | Antireflective coatings for photovoltaic applications |
DE102008014166B3 (en) | 2008-03-14 | 2009-11-26 | Rena Gmbh | Process for producing a silicon surface with a pyramidal texture |
TW201001508A (en) | 2008-03-25 | 2010-01-01 | Applied Materials Inc | Surface cleaning and texturing process for crystalline solar cells |
US7851698B2 (en) | 2008-06-12 | 2010-12-14 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
EP2324509A2 (en) | 2008-08-27 | 2011-05-25 | Applied Materials, Inc. | Back contact solar cells using printed dielectric barrier |
CN102203962A (en) | 2008-10-29 | 2011-09-28 | 株式会社爱发科 | Method for manufacturing solar cell, etching device, and cvd device |
EP2409313A1 (en) | 2009-03-17 | 2012-01-25 | Roth & Rau AG | Substrate processing system and substrate processing method |
US8084280B2 (en) | 2009-10-05 | 2011-12-27 | Akrion Systems, Llc | Method of manufacturing a solar cell using a pre-cleaning step that contributes to homogeneous texture morphology |
US8962380B2 (en) | 2009-12-09 | 2015-02-24 | Solexel, Inc. | High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using thin planar semiconductor absorbers |
US8759231B2 (en) | 2009-12-29 | 2014-06-24 | Intermolecular, Inc. | Silicon texture formulations with diol additives and methods of using the formulations |
FR2955707B1 (en) | 2010-01-27 | 2012-03-23 | Commissariat Energie Atomique | METHOD FOR PRODUCING A PHOTOVOLTAIC CELL WITH SURFACE PREPARATION OF A CRYSTALLINE SILICON SUBSTRATE |
US8790957B2 (en) | 2010-03-04 | 2014-07-29 | Sunpower Corporation | Method of fabricating a back-contact solar cell and device thereof |
US8492253B2 (en) | 2010-12-02 | 2013-07-23 | Sunpower Corporation | Method of forming contacts for a back-contact solar cell |
DE102010054370A1 (en) * | 2010-12-13 | 2012-06-14 | Centrotherm Photovoltaics Ag | Process for the preparation of silicon solar cells with front-sided texture and smooth back surface |
US20130247967A1 (en) | 2012-03-23 | 2013-09-26 | Scott Harrington | Gaseous ozone (o3) treatment for solar cell fabrication |
-
2014
- 2014-08-29 US US14/473,857 patent/US9837259B2/en active Active
-
2015
- 2015-08-20 WO PCT/US2015/046175 patent/WO2016032856A2/en active Application Filing
- 2015-08-28 TW TW104128269A patent/TWI690089B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137123A (en) * | 1975-12-31 | 1979-01-30 | Motorola, Inc. | Texture etching of silicon: method |
JP2004063744A (en) * | 2002-07-29 | 2004-02-26 | Shinryo Corp | Etching method of silicon substrate |
US20110151671A1 (en) * | 2009-12-17 | 2011-06-23 | Rohm And Haas Electronic Materials Llc | method of texturing semiconductor substrates |
US20140080246A1 (en) * | 2011-06-03 | 2014-03-20 | Sanyo Electric Co., Ltd. | Manufacturing method for solar cell |
US20130130508A1 (en) * | 2011-09-02 | 2013-05-23 | Air Products And Chemicals, Inc. | Compositions and Methods for Texturing of Silicon Wafers |
Non-Patent Citations (1)
Title |
---|
"Anisotropic Etching of Crystalline Silicon in Alkaline Solutions" J. Electrochem. Soc., Vol. 137, No. 11, November 1990 by Seidel * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853496A (en) * | 2019-11-12 | 2021-05-28 | 洛阳阿特斯光伏科技有限公司 | Surface treatment method of silicon rod and diamond wire silicon wafer cutting method |
Also Published As
Publication number | Publication date |
---|---|
WO2016032856A3 (en) | 2016-04-21 |
US9837259B2 (en) | 2017-12-05 |
TWI690089B (en) | 2020-04-01 |
TW201626596A (en) | 2016-07-16 |
WO2016032856A2 (en) | 2016-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101962469B1 (en) | A method for producing a textured structure of a crystalline silicon solar cell | |
JP6636961B2 (en) | Improved etching process for solar cell manufacturing | |
WO2012150627A1 (en) | Method for cleaning silicon substrate, and method for producing solar cell | |
EP2466650A2 (en) | Method for fabricating silicon wafer solar cell | |
TWI435452B (en) | Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell | |
CN103441182B (en) | The matte processing method of solar cell and solar cell | |
EP3190633A1 (en) | Wet-etching method for n-type double-sided battery | |
KR20160062004A (en) | Electro-polishing and porosification | |
CN102959717A (en) | Solar cell and method for manufacturing same | |
JP2014511038A (en) | Manufacturing method of solar cell | |
JP2014096459A (en) | Surface processing method of semiconductor substrate for solar cell, process of manufacturing semiconductor substrate for solar cell, process of manufacturing solar cell, and manufacturing apparatus of solar cell | |
JP5509410B2 (en) | Method for manufacturing silicon substrate for solar cell | |
US20130252427A1 (en) | Method for cleaning textured silicon wafers | |
ES2946702T3 (en) | Recycling procedure for the silver present in a photovoltaic cell | |
US9837259B2 (en) | Sequential etching treatment for solar cell fabrication | |
AU2020275833A1 (en) | Method for producing textured solar wafers | |
TWI438918B (en) | Method for manufacturing solar cell and solar cell manufactured by the same method | |
CN110444637B (en) | Solar cell and manufacturing method thereof | |
JP2005129714A (en) | Manufacturing method of solar cell | |
CN110993740A (en) | Method for producing a solar cell and solar cell | |
JP2016032073A (en) | Method and device for manufacturing solar cell | |
CN102427020A (en) | Wafer cleaning method capable of effectively reducing water mark defect | |
CN113451115A (en) | Cleaning method of solar cell | |
WO2014208353A1 (en) | Method for producing substrate for solar photovoltaic power generators and apparatus for producing substrate for solar photovoltaic power generators | |
KR100732775B1 (en) | Cleaning bath for regenerating a dummy wafer and method of cleaning the dummy wafer using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOTAL MARKETING SERVICES, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONTESDEOCA SANTANA, AMADA LORENA;REEL/FRAME:034498/0958 Effective date: 20141205 Owner name: SUNPOWER CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRINGTON, SCOTT;BALU, VENKATASUBRAMANI;REEL/FRAME:034498/0901 Effective date: 20141113 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MAXEON SOLAR PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNPOWER CORPORATION;REEL/FRAME:062699/0875 Effective date: 20221214 |
|
AS | Assignment |
Owner name: DB TRUSTEES (HONG KONG) LIMITED, HONG KONG Free format text: SECURITY INTEREST;ASSIGNOR:MAXEON SOLAR PTE. LTD.;REEL/FRAME:067637/0598 Effective date: 20240531 |
|
AS | Assignment |
Owner name: DB TRUSTEES (HONG KONG) LIMITED, HONG KONG Free format text: SECURITY INTEREST;ASSIGNOR:MAXEON SOLAR PTE. LTD.;REEL/FRAME:067924/0062 Effective date: 20240620 |