US20160007319A1 - Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery - Google Patents

Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery Download PDF

Info

Publication number
US20160007319A1
US20160007319A1 US14/766,858 US201314766858A US2016007319A1 US 20160007319 A1 US20160007319 A1 US 20160007319A1 US 201314766858 A US201314766858 A US 201314766858A US 2016007319 A1 US2016007319 A1 US 2016007319A1
Authority
US
United States
Prior art keywords
mbms
cell
ue
notification
carrier type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/766,858
Inventor
Hong He
Yujian Zhang
Seunghee Han
Jong-Kae Fwu
Mo-Han Fong
Kamran Etemad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel IP Corp
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361771698P priority Critical
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to US14/766,858 priority patent/US20160007319A1/en
Priority to PCT/US2013/075768 priority patent/WO2014133652A1/en
Publication of US20160007319A1 publication Critical patent/US20160007319A1/en
Assigned to Intel IP Corporation reassignment Intel IP Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, YUJIAN, FONG, MO-HAN, HE, HONG, HAN, SEUNGHEE, ETEMAD, KAMRAN, FWU, JONG-KAE
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/005Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/12Arrangements providing for calling or supervisory signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1836Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with heterogeneous network architecture
    • H04L12/184Arrangements for providing special services to substations for broadcast or conference, e.g. multicast with heterogeneous network architecture with heterogeneous receivers, e.g. layered multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements or protocols for real-time communications
    • H04L65/40Services or applications
    • H04L65/403Arrangements for multiparty communication, e.g. conference
    • H04L65/4038Arrangements for multiparty communication, e.g. conference with central floor control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements or protocols for real-time communications
    • H04L65/60Media handling, encoding, streaming or conversion
    • H04L65/608Streaming protocols, e.g. RTP or RTCP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements or protocols for real-time communications
    • H04L65/80QoS aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/02Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/80Rating or billing plans; Tariff determination aspects
    • H04M15/8044Least cost routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity ; Protecting confidentiality; Key management; Integrity; Mobile application security; Using identity modules; Secure pairing of devices; Context aware security; Lawful interception
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity ; Protecting confidentiality; Key management; Integrity; Mobile application security; Using identity modules; Secure pairing of devices; Context aware security; Lawful interception
    • H04W12/04Key management, e.g. by generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for improving the overall network performance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters used to improve the performance of a single terminal
    • H04W36/30Reselection being triggered by specific parameters used to improve the performance of a single terminal by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/10Push-to-Talk [PTT] or Push-On-Call services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/085Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/087Wireless resource allocation where an allocation plan is defined based on quality criteria using requested quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/10Wireless resource allocation where an allocation plan is defined based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/32End-user application control systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/122Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks
    • Y02D70/1224Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks in General Packet Radio Service [GPRS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1242Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in Universal Mobile Telecommunications Systems [UMTS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1244Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in High-Speed Downlink Packet Access [HSDPA] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1246Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in High-Speed Uplink Packet Access [HSUPA] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1262Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution [LTE] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1264Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution Advanced [LTE-A] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/142Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Wireless Local Area Networks [WLAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/144Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Bluetooth and Wireless Personal Area Networks [WPAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/146Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Worldwide Interoperability for Microwave Access [WiMAX] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/162Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Zigbee networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/164Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Satellite Navigation receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/166Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Radio Frequency Identification [RF-ID] transceivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/168Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Digital Video Broadcasting [DVB] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/21Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in machine-to-machine [M2M] and device-to-device [D2D] communications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/22Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in peer-to-peer [P2P], ad hoc and mesh networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/23Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Voice over IP [VoIP] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/26Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in wearable devices, e.g. watches, glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/40According to the transmission technology
    • Y02D70/44Radio transmission systems, i.e. using radiation field
    • Y02D70/442Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • Y02D70/444Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Abstract

Apparatuses and methods for providing multimedia broadcast multicast service (MBMS) on carriers of a new carrier type (NCT) are described herein. A user equipment (UE) may transmit a message to indicate an interest in receiving MBMS transmissions on a target cell that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink frame. The UE may receive, in response to transmitting the message, identification information of a notification cell on which to receive MBMS control information change notification for the target cell. The UE may receive MBMS traffic from the target cell using the MBMS control information received from the notification cell. The UE may receive the MBMS control information on a second carrier of a second carrier type different from the first carrier type.

Description

    PRIORITY CLAIM
  • This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/771,698, filed on Mar. 1, 2013, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • Embodiments described herein pertain generally to wireless communications. More particularly, the present disclosure relates to provisioning of multimedia broadcast multicast service (MBMS) on carriers of a new carrier type (NCT).
  • BACKGROUND
  • Current 3rd Generation Partnership Project (3GPP) long term evolution (LTE) specifications allow operators to provide broadcast and multicast services. Technologies such as Multimedia Broadcast Multicast Service (MBMS) can provide sought-after services such as live streaming in public areas, pushed content via user equipment caching, and machine-to-machine services. There is an ongoing need to provide these services in an efficient manner.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram illustrating a system in which some embodiments may be implemented.
  • FIG. 2 illustrates change notification in accordance with a first embodiment.
  • FIG. 3 illustrates change notification in accordance with a second embodiment.
  • FIG. 4 is a block diagram of the basic components of a user equipment (UE) in accordance with some embodiments.
  • FIG. 5 is a block diagram showing details of an eNodeB according to some embodiments.
  • FIG. 6 is a flow chart of a method, performed by a UE, for communicating in a wireless network.
  • FIG. 7 is a flow chart of a method, performed by an eNodeB, for communicating in a wireless network.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic diagram illustrating a system 100 in which some embodiments may be implemented. The system 100 includes a user equipment (UE) 102, which can communicate wirelessly with a PCell 104 over a wireless communication link 108. Communication link 108 includes one or more communication channels. These channels can include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) with downlink control information (DCI) transmitted on the downlink (or DCI not transmitted on the downlink), and any other channel for transmitting control (e.g. scheduling or power) information or data on the uplink or downlink. Because system 100 may support carrier aggregation (e.g. may be an LTE-A system) these channels may include one or more aggregated component carriers.
  • PCell 104 may be a cell associated with a macro network, such as, but not limited to, a radio access network or cellular network. For example, in some examples, PCell 104 can include a PCell in LTE-Advanced communication environments. In various embodiments, PCell 104 may be associated with a PCell network entity 106. PCell network entity 106 can include one or more of any type of network module, such as an access point, a macro cell, including a base station (BS), node B, eNodeB, a relay, a peer-to-peer device, an authentication, authorization and accounting (AAA) server, a mobile switching center (MSC), a radio network controller (RNC). Additionally, the network entity associated with PCell 104 may communicate with one or more other network entities of wireless and/or core networks, such as, but not limited to, wide-area networks (WAN), wireless networks (e.g. 802.11 or cellular network), the Public Switched Telephone Network (PSTN) network, ad hoc networks, personal area networks (e.g. Bluetooth®) or other combinations or permutations of network protocols and network types. Such network(s) may include a single local area network (LAN) or wide-area network (WAN), or combinations of LANs or WANs, such as the Internet.
  • In a various embodiments, UE 102 may communicate with one or more SCells 110 via one or more communication links 112. In some examples, the one or more SCells 110 may include SCells in LTE-Advanced communication environments. UE 102 may be configured to communicate simultaneously with PCell 104 and the one or more SCells 110, for example, via a plurality of antennas of UE 102. Communication link 112 may include one or more communication channels, which may include a PUCCH, a PUSCH with DCI transmitted on the downlink (or DCI not transmitted on the downlink), and any other channel for transmitting control (e.g. scheduling or power) information or data on the uplink or downlink.
  • SCells 110 may be small cells or low power cells, controlled by or otherwise associated with one or more network entities 114 or modules, such as, but not limited to a low-power access point, such as a picocell, femtocell, microcell, WiFi hotspot, etc. Additionally, SCells 110 may communicate with one or more other network entities of wireless and/or core networks, such as, but not limited to, wide-area networks (WAN), wireless networks (e.g. 802.11 or cellular network), the Public Switched Telephone Network (PSTN) network, ad hoc networks, personal area networks (e.g. Bluetooth®) or other combinations or permutations of network protocols and network types. Such network(s) may include a single local area network (LAN) or wide-area network (WAN), or combinations of LANs or WANs, such as the Internet.
  • Additionally, system 100, which may include PCell 104 and one or more SCells 110, may comprise a Wideband Code Division Multiple Access (W-CDMA) system, and PCell 104 and one or more SCells 110 may communicate with one or more UEs 102 according to this standard. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system. The various devices coupled to the network(s) (e.g. UE 102 and/or network entities serving PCell 104 and/or SCells 110) may be coupled to the network(s) via one or more wired or wireless connections.
  • The system 100 can use MBMS or evolved MBMS (eMBMS) to provide broadcast and multicast services over LTE. Using eMBMS, the system 100 can provide services such as live streaming in a stadium, pushed content via user equipment caching or machine-to-machine services, etc. New carrier types (NCTs), introduced with 3GPP Rel. 12, can provide more efficient usage of radio resources and backhaul resources. Operators may therefore wish to provide eMBMS on the NCT.
  • Network entities 106, 114, can provide MBMS over logical channels that can include a Multicast Traffic Channel (MTCH) and Multicast Control CHannel (MCCH). Network entities 106, 114, transmit MBMS control information to the UE 102, for one or more MTCHs, on the MCCH. Moreover, network entities 106, 114 can provide some MBMS control information, including scheduling information and MCCH information change notifications, in a MBMS-specific System Information Block (SIB), for example SIB13 defined in a standard of the 3GPP family of standards.
  • In some current systems, when a network entity 106, 114 changes certain MCCH information, the corresponding network entity 106, 114 notifies the UE 102 about which of the MCCHs will change by transmitting DCI using a cyclic redundancy check (CRC) scrambled with a MBMS radio network temporary identifier (M-RNTI) on the common search space (CSS) of a physical downlink control channel (PDCCH). However, NCT, introduced in 3GPP for LTE Rel. 12, may not support these methods of MBMS change notification. For example, because NCT may remove CRS on downlink subframes, and UE 102 uses CRS to decode control channels, a UE 102 cannot demodulate legacy control channels such as PDCCH, transmitted on NCT carriers. Further, current implementations of NCT do not support CSS on PDCCH. In some embodiments, NCT may suppress CRS on four out of five subframes, although the scope of the embodiments is not limited in this respect.
  • Example embodiments provide methods to address these and other challenges to deliver MBMS related system information and control information on NCT, thereby enabling MBMS on NCT in 3GPP Rel. 12 and later. In various embodiments, a network entity, for example network entity 106, provides MCCH configuration information acquisition and MCCH information change notification over carriers of other carrier types (e.g., legacy carrier types (LCTs)) other than NCT.
  • In some embodiments, an LCT network entity, for example a network entity 106 associated with a PCell 104, can transmit MCCH configuration information pertaining to an NCT SCell 110 associated with the network entity 114. The network entity 106 can transmit the MCCH configuration information to a UE 102 when the NCT SCell 110 is added if the UE 102 first informs the network entity 106 that the UE 102 wishes to receive MBMS traffic from the NCT SCell 110. Then other network entities associated with other LCT serving cells, for example network entity 106 associated with the PCell 104, can transmit notifications of MCCH information changes pertaining to the NCT SCell 110. While the description of example embodiments provided below refers to serving PCells transmitting MCCH information changes pertaining to an NCT SCell, embodiments are not limited thereto and serving LCT SCells can transmit MCCH information changes pertaining to an NCT SCell 110.
  • Acquisition of MCCH Configuration Information
  • In various embodiments, a network entity 106 can perform radio resource control (RRC) signaling to provide MCCH configuration information, pertaining to an NCT SCell 110, to the UE 102. An example RRC message expressed in Abstract Syntax Notation .1 (ASN.1) for providing MCCH configuration information is as follows:
  • --ASN1 START RadioResourceConfigCommonSCell-r10 ::= SEQUENCE { ...  [[mbsfn-AreaInfoList-r9 MBSFN-AreaInfoList-r9   OPTIONAL, --Need OR  notificationConfig-r9 MBMS-NotificationConfig-r9  OPTIONAL, -- Need OR  ]] ... } ... MBMS-NotificationConfig-r9 ::= SEQUENCE { notificationRepetitionCoeff-r9 ENUMERATED {n2, n4}, notificationOffset-r9 INTEGER (0...10), notificationSF-Index-r9 INTEGER (1...6), [[  NotificationCellId-r12 ServCellIndex-r10,  OPTIONAL, --Need ON ]] } --ASN1 STOP
  • In the above code fragment, mbsfn-AreaInfoList and notificationConfig are MCCH-related parameters for the pertinent NCT SCell defined in the information element (IE) RadioResourceConfigCommonSCell. These parameters are cell-specific and applicable to an NCT SCell. NotificationCellId indicates which cell, for example network entity 106 associated with a PCell, shall signal the MCCH information change notification for the pertinent NCT SCell.
  • In various other embodiments, the notification cell can be specified, for example the notification cell can be defined as a UE-specific PCell, rather than being configurable. In at least these embodiments, NotificationCellId-r12 will not be included in the MBMS-NotificationConfig-r9 IE described above. A range of values for notificationOffset may be set or extended so that multiple notifications for multiple information change notifications can be transmitted on a common carrier (CC) in a Time Domain Multiplexing (TDM) or Time Domain Duplexing (TDD) manner based on different notificationOffset values, as discussed in more detail below.
  • NCT MCCH Information Change Notification
  • The UE 102 can receive NCT MCCH information change notifications using one or more methods described below with respect to various embodiments.
  • In some embodiments, the UE 102 monitors the PDCCH of a PCell or SCell, for example the PCell associated with the network entity 106, for DCI format 1C identified by a M-RNTI in each CC-specific modification period for notification of MCCH changes on the intended NCT SCell. The MCCH(s) repetition period and modification period on NCT are independently configurable by parameters included in MBMS-NotificationConfig-r9 as described above.
  • FIG. 2 illustrates change notification in accordance with these and other embodiments. In FIG. 2, MBMS is deployed on an LCT PCell 205, an LCT SCell 210, and an NCT SCell (not shown in FIG. 2). MCCH is configured on each cell with a repetition period 215. A UE 102 (FIG. 1), which is CA and MBMS capable, receives MBMS services on LCT PCell 205, LCT SCell 210, and the NCT SCell. In the illustrative example of FIG. 2, PCell 205 has been configured as the notification cell for MCCH information changes on the NCT SCell. Accordingly, PCell 205 transmits notifications for MCCH information changes 220, 222 on the PCell and the NCT SCell respectively, on the CSS on a PDCCH in a TDM manner. The notifications 220, 222 can be transmitted periodically in repetition periods 215 with modifications occurring no more than once in any modification period 224. SCell 210 transmits notifications 226 of MCCH information changes on SCell 210, also in a TDM manner with the notifications transmitted on PCell 205. Therefore, some embodiments allow the UE 102 to receive notifications about changes of MCCH on an NCT SCell, even if CSS is unavailable on the NCT SCell. The UE 102 uses only one M-RNTI value for multiple target SCells, and the UE 102 determines which cell pertains to the detected PDCCH based on configured periodicity and offset parameters described above.
  • In other embodiments, a network entity, for example network entity 106 associated with a PCell 104, can transmit a MAC Control Element (CE) dedicated for MCCH information change notification. The notification-specific MAC CE is scheduled using the cell radio network temporary identifier (C-RNTI) of the UE 102. The C-RNTI can be identified by a MAC protocol data unit (PDU) subheader with a logical channel identifier (LCID) specified. In at least these embodiments, the network entity 106 can provide RRC signaling at least somewhat similar to that described above, except that MBMS-NotificationConfig-r9 may not be included. The MCCH information change notification MAC CE may include a field to indicate an index of an SCell to which the MCCH information change notification applies. The MCCH information change notification MAC CE may also include a field to indicate which of the MCCHs will change.
  • In other embodiments, notifications 320, 322 for several MBMS cells can be transmitted in the same subframe in one LCT serving cell 205, as shown in FIG. 3. The notifications 320, 322 can be transmitted periodically in repetition periods 315 with modifications occurring no more than once in any modification period 324. Different M-RNTIs can differentiate the MBMS cells to which a notification is applicable. In at least these embodiments, a field, for example mbsfnAreaInfoList, can be added into the RadioResourceConfigCommonSCell IE described above, as a non-critical extension. A network entity 106 can transmit this IE to a UE 102 when an NCT SCell is added. The IE can include at least two other fields, for example NotificationCellId and m-RNTI, to indicate which cell signals the MCCH information change notification, if applicable, and the exclusive m-RNTI used by DCI format 1C for notification. In at least these embodiments, the network entity 106 may not transmit the MBMS-NotificationConfig IE, described above, because the UE 102 can obtain the pertinent information from the serving cell indicated by NotificationCellId. An example RRC message expressed in ASN.1 for providing this information is as follows:
  • --ASN1 START RadioResourceConfigCommonSCell-r10 ::= SEQUENCE { ...  [[mbsfn-AreaInfoList-r9 MBSFN-AreaInfoList-r9 OPTIONAL, -- Need OR  NotificationCellId-r12 ServCellIndex-r10,  OPTIONAL, --Need OR  m-RNTI M-RNTI OPTIONAL, -- Need OR  ]] ... } ... --ASN1 STOP
  • The above method implies that the range of M-RNTI values needs to be further extended so that multiple MBMS-specific M-RNTI values are available for configuration. M-RNTI can be indicated as below:
  • --ASN1 START M-RNTI ::= BIT STRING (SIZE(16)) --ASN1 STOP
  • In other embodiments, M-RNTI is defined by reserving to reserve a set of RNTIs, and the IE signals an index into the set:
  • --ASN1 START M-RNTI ::= INTEGER (0...3) --ASN1 STOP
  • Embodiments for Multicast Search Space and Embodiments for Single-Frequency Network Operation
  • In some embodiments, control channel elements (CCEs) can be reserved on the PDCCH of an LCT PCell or SCell for NCT SCell MCCH information change notifications, thereby construction an MBMS-specific search space (MSS). A network entity 106 or 114 can transmit DCI format IC including a Carrier Indicator Field (CIF) on the MSS for blind detection by the UE 102 on predefined subframe(s).
  • Some embodiments can also be used for single-frequency network (SFN) services. In some current systems a value, for example non-MBSFNregionLength defined in 3GPP TS 36.211 Table 6.7-1, indicates how many symbols from the beginning of a subframe constitute the non-MBSFN region. This value can be defined as “0” for systems in which all cells operate on carriers of NCT, because NCT does not need a non-MBSFN region as this region is only used for legacy PDCCH transmission. A non-MBSFN region length can be defined according to below:
  • MBSFN-AreaInfoList-r9 ::= SEQUENCE (SIZE(1...maxMBSFN-Area)) OF MBSFN-AreaInfo-r9 MBSFN-AreaInfo-r12 ::= SEQUENCE {   ...   Non-MBSFNregionLength-r12  ENUMERATED {s0, s1, s2}, ... }
  • In some embodiments, the starting symbol of an MBSFN subframe can follow, for example the EPDCCH starting symbol, defined by, e.g., epdcch-StartSymbol-r11. In some embodiments, epdcch-StartSymbol-r12 is defined to include a possible value of “0.” In other embodiments, the starting symbol of an MBSFN subframe can follow, for example, a PDSCH starting symbol for cross-carrier scheduling, defined by, e.g., pdsch-Start-r10. In some embodiments, pdsch-Start-r12 is defined to include a possible value of “0.” The specified value for a starting symbol can be interpreted in at least two ways. For example, the value of the starting symbol minus 1 can correspond to orthogonal frequency division multiplexing (OFDM) symbols for a non-MBSFN region. As another example, the value of the starting symbol can correspond to the starting symbol for MBSFN region.
  • Example Device for Implementing Embodiments
  • FIG. 4 is a block diagram of the basic components of a UE 400 in accordance with some embodiments. The UE 400 may be suitable as a UE 102 (FIG. 1). The UE 400 may support methods for receiving MBMS from NCT SCells, in accordance with embodiments described above with respect to FIG. 1-3.
  • The UE 400 includes one or more antennas 410 arranged to communicate with a base station (BS), a network entity 106 or 114 (FIG. 1), or other types of wireless local area network (WLAN) access points. The UE 400 further includes a processor 420, instructions 425, and a memory 430. The UE 400 may further include a communications interface 440. In one embodiment, the memory 430 includes, but is not limited to, random access memory (RAM), dynamic RAM (DRAM), static RAM (SRAM), synchronous DRAM (SDRAM), double data rate (DDR) SDRAM (DDR-SDRAM), or any device capable of supporting high-speed buffering of data.
  • Example embodiments allow a UE 400 to transmit, using the communications interface 440, a message to indicate an interest in receiving MBMS transmissions on a target cell that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame. The target cell can include, for example, SCell 110 (FIG. 1). In at least one embodiment, the communications interface 440 is, for example, a wireless physical layer which operates according to a multiple input/multiple output (MIMO) operation.
  • The communications interface 440 may receive, in response to transmitting the message, identification information of a notification cell on which to receive MBMS control information change notification for the target cell. As described above with respect to FIG. 2-3, the communication interface 440 can receive an identity of the notification cell in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3GPP family of standards. The notification cell can include, for example, PCell 104 (FIG. 1).
  • The communications interface 440 can receive MBMS traffic from the target cell using the MBMS control information received from the notification cell. The communications interface 440 can receive the MBMS traffic on the first carrier and the MBMS control information on a second carrier of a second carrier type different from the first carrier type. The first carrier type can be a new carrier type (NCT) implemented in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards and the second carrier type can be a legacy carrier type on which CRSs are not suppressed.
  • The communications interface 440 can receive a change notification to notify of a change of the MBMS control information associated with MBMS traffic transmitted on NCT. The change notification can be received according to any of the embodiments described above with respect to FIG. 1-3. For example, the communications interface 440 can receive the change notification by decoding a physical downlink control channel (PDCCH) of the notification cell, using a cyclic redundancy check (CRC) scrambled with an MBMS radio network temporary identifier (M-RNTI) of the target cell. The PDCCH can be configurable by a parameter indicating a radio frame offset for a change notification transmitted on the PDCCH. As a further example, the communications interface 440 can receive the change notification in a media access control (MAC) control element (CE). The communications interface 440 can receive a plurality of change notifications for a plurality of MBMS serving cells, at least two of the plurality of change notifications being received in a same subframe of a change notification period and each of the at least two change notifications being scrambled based on a M-RNTI of the respective MBMS serving cell. As described above, the communications interface 440 can receive the plurality of notifications in different subframes in a TDD or TDM manner.
  • The UE 400 can store, for example in memory 430, resource assignment information representative of multicast search space (MSS) information on a PDCCH of the second carrier type. The communications interface 440 can then receive change notifications using the MSS.
  • The processor 420 may include logic or code to enable the UE 400 to process signals received from the network through the antenna 410. The processor 420 may include code or other instructions 425 to allow the UE 400 to transmit a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame, as described above with respect to FIG. 1-3. The instructions 425 may further allow the UE 400 to receive, in response to transmitting the message, identification information of a notification cell on which to receive MBMS control information change notification for the target cell. The instructions 425 may further allow the UE 400 to receive MBMS traffic from the target cell using the MBMS control information received from the notification cell, the MBMS traffic being received on the first carrier and the MBMS control information being received on a second carrier of a second carrier type different from the first carrier type.
  • The UE 400 may be a mobile device, such as, but not limited to, a smartphone, cellular telephone, mobile phone, laptop computer, tablet computer, or other portable networked device. The UE 400 may be referred to by those of ordinary skill in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. In general, the UE 400 may be small and light enough to be considered portable.
  • Example eNodeB for Implementing Embodiments
  • FIG. 5 is a block diagram showing details of an eNodeB 500 according to some embodiments. The eNodeB 500 may be suitable as a network entity 106 or 114 (FIG. 1). The eNodeB 500 includes a processor 510, a memory 520, a transceiver 530, and instructions 535. The eNodeB 500 may include other elements (not shown).
  • The processor 510 comprises one or more central processing units (CPUs), graphics processing units (GPUs), or both. The processor 510 provides processing and control functionalities for the eNodeB 500. Memory 520 comprises one or more transient and static memory units configured to store instructions 535 and data for the eNodeB 500.
  • The transceiver 530 comprises one or more transceivers including a multiple-input and multiple-output (MIMO) antenna to support MIMO communications. The transceiver 530 receives UL transmissions and transmits DL transmissions, among other things, from and to UE 102 (FIG. 1).
  • The transceiver 530 can receive an indication that UE 102 desires to receive MBMS transmissions from an SCell (for example SCell 110 (FIG. 1)) that operates on a first carrier of a first carrier type on which CRSs are suppressed at one or more downlink subframes of a downlink radio frame. The transceiver 530 can provide notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
  • The transceiver 530 can receive notification cell information in a transmission of a second carrier of a second carrier type different from the first carrier type. The first carrier type can be an NCT implemented in accordance with a standard of the 3GPP family of standards and the second carrier type can be a legacy carrier type on which CRSs are not suppressed.
  • The transceiver 530 can transmit, on a physical downlink control channel (PDCCH), change notifications to notify of a change of the MBMS control information for the MBMS traffic transmitted on the SCell. The transceiver 530 can transmit a plurality of MBMS control information change notifications according to a TDD scheme.
  • The instructions 535 comprise one or more sets of instructions or software executed on a computing device (or machine) to cause such computing device (or machine) to perform any of the methodologies discussed herein. The instructions 535 (also referred to as computer- or machine-executable instructions) may reside, completely or at least partially, within the processor 510 and/or the memory 520 during execution thereof by the eNodeB 500. The processor 510 and memory 520 also comprise machine-readable media.
  • As those of ordinary skill in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards. By way of non-limiting example, various aspects may be extended to other Universal Mobile Telecommunications System (UMTS) systems. Various aspects can be used in systems employing Long Term Evolution (LTE) (in FDD, TDD, or both modes), and LTE-Advanced (LTE-A) (in FDD, TDD, or both modes).
  • Examples, as described herein, may include, or may operate on, logic or a number of components, components, or mechanisms. Components are tangible entities capable of performing specified operations and may be configured or arranged in a certain manner. In an example, circuits may be arranged (e.g. internally or with respect to external entities such as other circuits) in a specified manner as a component. In an example, the whole or part of one or more computer systems (e.g. a standalone, client or server computer system) or one or more hardware processors may be configured by firmware or software (e.g. instructions, an application portion, or an application) as a component that operates to perform specified operations. In an example, the software may reside (1) on a non-transitory machine-readable medium or (2) in a transmission signal. In an example, the software, when executed by the underlying hardware of the component, causes the hardware to perform the specified operations.
  • Accordingly, the terms “component” and “component” are understood to encompass a tangible entity, be that an entity that is physically constructed, specifically configured (e.g. hardwired), or temporarily (e.g. transitorily) configured (e.g. programmed) to operate in a specified manner or to perform part or all of any operation described herein. Considering examples in which components are temporarily configured, one instantiation of a component may not exist simultaneously with another instantiation of the same or different component. For example, where the components comprise a general-purpose hardware processor configured using software, the general-purpose hardware processor may be configured as respective different components at different times. Accordingly, software may configure a hardware processor, for example, to constitute a particular component at one instance of time and to constitute a different component at a different instance of time.
  • Additional examples of the presently described method, system, and device embodiments include the following, non-limiting configurations. Each of the following non-limiting examples may stand on its own, or may be combined in any permutation or combination with any one or more of the other examples provided below or throughout the present disclosure. The preceding description and the drawings sufficiently illustrate specific embodiments to enable those of ordinary skill in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments.
  • FIG. 6 is a flow chart of a method 600, performed by a UE, for communicating in a wireless network. The method can be performed by, for example, UE 102 (FIG. 1).
  • In operation 610, the UE 102 transmits a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell, the target cell transmitting on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame.
  • In operation 620, the UE 102 receives, responsive to the message and in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards, an identity of a notification cell, different from the target cell, on which to receive MBMS control information and MBMS control information change notifications of the target cell.
  • In operation 630, the UE 102 receives MBMS traffic from the target cell using the MBMS control information received from the notification cell. The MBMS traffic can be received on the first carrier and the MBMS control information being received on a second carrier of a legacy carrier type different from the NCT on which CRSs are not suppressed.
  • As described above with respect to FIG. 2-3 and FIG. 4, the UE 102 can receive, in a physical downlink control channel (PDCCH) of the notification cell or in a media access control (MAC) control element, a change notification to notify of a change of the MBMS control information corresponding to the target cell. The UE 102 can receive a plurality of change notifications for a plurality of MBMS serving cells. By way of nonlimiting example, at least two of the plurality of change notifications can be received in a same subframe of a change notification period. In at least this illustrative example, each of the at least two change notifications are scrambled based on a MBMS radio network temporary identifier (M-RNTI) of the respective MBMS serving cell.
  • The UE 102 can also receive MBMS traffic in a multicast-broadcast single-frequency network (MBSFN) from a plurality of cells that use NCT. The UE 102 can receive a message on a physical control format indicator channel (PCFICH) that indicates that a non-MBSFN region shall not be included in at least one MBSFN subframe of the MBMS traffic.
  • FIG. 7 illustrates a method 700, performed by an eNodeB such as network entity 106 (FIG. 1), for operating in a network. The eNodeB can be, for example, network entity 106 (FIG. 1). In operation 710, the network entity 106 receives an indication that a user equipment (UE) desires to receive multimedia broadcast multicast service (MBMS) transmissions from a secondary cell (SCell) that operates on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame.
  • In operation 720, the network entity 106 receives notification cell information in a transmission of a second carrier of a second carrier type different from the NCT and on which CRSs are not suppressed.
  • In operation 730, the network entity 106 provides notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
  • Example embodiments described above may allow a UE to receive MBMS traffic on NCT carriers. Because NCT carriers can be more efficient than some legacy carriers, operators can provide in-demand MBMS services in a more cost-effective fashion.
  • The embodiments as described above may be implemented in various hardware configurations that may include a processor for executing instructions that perform the techniques described. Such instructions may be contained in a suitable storage medium from which they are transferred to a memory or other processor-executable medium.
  • It will be appreciated that, for clarity purposes, the above description describes some embodiments with reference to different functional units or processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processors or domains may be used without detracting from embodiments. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processor or controller. Hence, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
  • Although the present inventive subject matter has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. One of ordinary skill in the art would recognize that various features of the described embodiments may be combined in accordance with the disclosure. Moreover, it will be appreciated that various modifications and alterations may be made by those of ordinary skill in the art without departing from the scope of the disclosure.
  • The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.
  • Additional Notes & Examples
  • Example 1 can include the subject matter embodied by a wireless communication device such as a user equipment (UE), comprising circuitry to transmit a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame; receive in response to transmitting the message, identification information of a notification cell on which to receive MBMS control information change notification for the target cell; and receive MBMS traffic from the target cell using the MBMS control information received from the notification cell, the MBMS traffic being received on the first carrier and the MBMS control information being received on a second carrier of a second carrier type different from the first carrier type.
  • Example 2 may include, or may optionally be combined with the subject matter of Example 1 to optionally include an aspect wherein the first carrier type is a new carrier type (NCT) implemented in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards and wherein the second carrier type is a legacy carrier type on which CRSs are not suppressed.
  • Example 3 may include, or may optionally be combined with the subject matter of Examples 1 and/or 2 to optionally include an aspect wherein an identity of the notification cell is received in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3GPP family of standards.
  • Example 4 may include, or may optionally be combined with the subject matter of any of Examples 1-3, to optionally include an aspect wherein the physical layer circuitry is further arranged to receive a change notification to notify of a change of the MBMS control information associated with MBMS traffic transmitted on NCT.
  • Example 5 may include, or may optionally be combined with the subject matter of any of Examples 1-4, to optionally include an aspect wherein the physical layer circuitry is further arranged receive the change notification by decoding a physical downlink control channel (PDCCH) of the notification cell, using a cyclic redundancy check (CRC) scrambled with an MBMS radio network temporary identifier (M-RNTI) of the target cell.
  • Example 6 may include, or may optionally be combined with the subject matter of any of Examples 1-5, to optionally include an aspect wherein the PDCCH is configurable by a parameter indicating a radio frame offset for a change notification transmitted on the PDCCH.
  • Example 7 may include, or may optionally be combined with the subject matter of any of Examples 1-6, to optionally include an aspect wherein the physical layer circuitry is further arranged to receive the change notification in a media access control (MAC) control element (CE).
  • Example 8 may include, or may optionally be combined with the subject matter of any of Examples 1-7, to optionally include an aspect wherein the physical layer circuitry is further arranged to receive a plurality of change notifications for a plurality of MBMS serving cells, at least two of the plurality of change notifications being received in a same subframe of a change notification period and each of the at least two change notifications being scrambled based on a M-RNTI of the respective MBMS serving cell.
  • Example 9 may include, or may optionally be combined with the subject matter of any of Examples 1-8, to optionally include a memory to store resource assignment information representative of multicast search space (MSS) information on a PDCCH of the second carrier type, and wherein the physical layer circuitry is further arranged to receive change notifications using the MSS.
  • Example 10 may include, or may optionally be combined with the subject matter of any of Examples 1-9 to optionally include an aspect wherein the UE is further configured to receive MBMS traffic from the target cell according to a higher-layer configured parameter that indicates a number of symbols, from a start of a subframe, shall constitute a non-multicast broadcast single frequency network (MBSFN) region.
  • Example 11 may include subject matter (such as an apparatus, mobile apparatus, MTC device, user equipment, network device, eNodeB, communication apparatus or device, hardware, component, or component), including a transceiver arranged to receive an indication that a user equipment (UE) desires to receive multimedia broadcast multicast service (MBMS) transmissions from a secondary cell (SCell) that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink frame; and provide notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
  • Example 12 may include subject matter (such as an apparatus, mobile apparatus, MTC device, user equipment, network device, eNodeB, communication apparatus or device, hardware, component, or component), which may optionally be in addition to any one or combination of Examples 1-11, to optionally include an aspect wherein the transceiver is arranged to receive notification cell information in a transmission of a second carrier of a second carrier type different from the first carrier type.
  • Example 13 may include subject matter (such as an apparatus, mobile apparatus, MTC device, user equipment, network device, eNodeB, communication apparatus or device, hardware, component, or component), which may optionally be in addition to any one or combination of Examples 1-12, to optionally include an aspect wherein the first carrier type is a new carrier type (NCT) implemented in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards and the second carrier type is a legacy carrier type and wherein the second carrier type is a legacy carrier type on which CRSs are not suppressed.
  • Example 14 may include subject matter (such as an apparatus, mobile apparatus, MTC device, user equipment, network device, eNodeB, communication apparatus or device, hardware, component, or component), which may optionally be in addition to any one or combination of Examples 1-13, to optionally include an aspect wherein the transceiver is further arranged to transmit, on a physical downlink control channel (PDCCH), change notifications to notify of a change of the MBMS control information for the MBMS traffic transmitted on the SCell.
  • Example 15 may include subject matter (such as an apparatus, mobile apparatus, MTC device, user equipment, network device, eNodeB, communication apparatus or device, hardware, component, or component), which may optionally be in addition to any one or combination of Examples 1-14, to optionally include an aspect wherein the transceiver is further arranged to transmit a plurality of MBMS control information change notifications according to a time division duplex (TDD) scheme.
  • Example 16 may include subject matter (such as a method or means for performing actions), including transmitting a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell, the target cell transmitting on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame; receiving, responsive to the message and in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards, an identity of a notification cell, different from the target cell, on which to receive MBMS control information and MBMS control information change notifications of the target cell; and receiving MBMS traffic from the target cell using the MBMS control information received from the notification cell, the MBMS traffic being received on the first carrier and the MBMS control information being received on a second carrier of a legacy carrier type different from the NCT on which CRSs are not suppressed.
  • In Example 17, the subject matter of Example 16 can optionally include receiving, in a physical downlink control channel (PDCCH) of the notification cell or in a media access control (MAC) control element, a change notification to notify of a change of the MBMS control information corresponding to the target cell.
  • In Example 18 the subject matter of examples 16-17 can optionally include receiving a plurality of change notifications for a plurality of MBMS serving cells, wherein at least two of the plurality of change notifications are received in a same subframe of a change notification period and each of the at least two change notifications are scrambled based on a MBMS radio network temporary identifier (M-RNTI) of the respective MBMS serving cell.
  • In Example 19, the subject matter of examples 16-18 can optionally include an aspect wherein the MBMS traffic is received in a multicast-broadcast single-frequency network (MBSFN) from a plurality of cells that use NCT, and the method further comprises receiving a message on a physical control format indicator channel (PCFICH) that indicates that a non-MBSFN region shall not be included in at least one MBSFN subframe of the MBMS traffic.
  • Example 20 may include subject matter (such as a method or means for performing actions), including receiving an indication that a user equipment (UE) desires to receive multimedia broadcast multicast service (MBMS) transmissions from a secondary cell (SCell) that operates on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink frame; receiving notification cell information in a transmission of a second carrier of a second carrier type different from the NCT and on which CRSs are not suppressed; and providing notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
  • In Example 21, the subject matter of Example 20 can optionally include transmitting, on a physical downlink control channel (PDCCH), change notifications to notify of a change of the MBMS control information for the MBMS traffic transmitted on the SCell.
  • In Example 22, the subject matter of Example 20-21 can optionally include optionally include an aspect wherein the eNodeB transmits change notifications for the SCell and at least one other cell according to a time division duplex (TDD) scheme.

Claims (23)

1.-22. (canceled)
23. A user equipment (UE) for operating in a network, the UE comprising physical layer circuitry to:
transmit a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame;
receive, in response to transmitting the message, identification information of a notification cell on which to receive MBMS control information change notification for the target cell; and
receive MBMS traffic from the target cell using the MBMS control information received from the notification cell, the MBMS traffic being received on the first carrier and the MBMS control information being received on a second carrier of a second carrier type different from the first carrier type.
24. The UE of claim 23, wherein the first carrier type is a new carrier type (NCT) implemented in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards and wherein the second carrier type is a legacy carrier type on which CRSs are not suppressed.
25. The UE of claim 24, wherein an identity of the notification cell is received in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3GPP family of standards.
26. The UE of claim 25, wherein the physical layer circuitry is further arranged to receive a change notification to notify of a change of the MBMS control information associated with MBMS traffic transmitted on NCT.
27. The UE of claim 26, wherein the physical layer circuitry is further arranged receive the change notification by decoding a physical downlink control channel (PDCCH) of the notification cell, using a cyclic redundancy check (CRC) scrambled with an MBMS radio network temporary identifier (M-RNTI) of the target cell, the M-RNTI and notification cell being configured using RRC signaling from an evolved NodeB.
28. The UE of claim 27, wherein the PDCCH is configurable by a parameter indicating a radio frame offset, a repetition coefficient, and a subframe index for a change notification transmitted on the PDCCH.
29. The UE of claim 26, wherein the physical layer circuitry is further arranged to receive the change notification in a media access control (MAC) control element (CE).
30. The UE of claim 26, wherein the physical layer circuitry is further arranged to: receive a plurality of change notifications for a plurality of MBMS serving cells, at least two of the plurality of change notifications being received in a same subframe of a change notification period and each of the at least two change notifications being scrambled based on a corresponding M-RNTI of the respective MBMS serving cell, a number of M-RNTIs used by the UE being equal to a number of serving cells of a first carrier type configured by a higher layer for MBMS.
31. The UE of claim 26, further comprising:
a memory to store resource assignment information representative of multicast search space (MSS) information on a PDCCH of the second carrier type, and wherein the physical layer circuitry is further arranged to receive change notifications using the MSS.
32. The UE of claim 23, wherein the UE is further configured to receive MBMS traffic from the target cell according to a higher-layer configured parameter that indicates a number of symbols, from a start of a subframe, shall constitute a non-multicast broadcast single frequency network (MBSFN) region.
33. An evolved NodeB (eNodeB) for operating in a network, the eNodeB comprising:
a transceiver arranged to
receive an indication that a user equipment (UE) desires to receive multimedia broadcast multicast service (MBMS) transmissions from a secondary cell (SCell) that operates on a first carrier of a first carrier type on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink frame; and
provide notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
34. The eNodeB of claim 33, wherein the transceiver is arranged to receive notification cell information in a transmission of a second carrier of a second carrier type different from the first carrier type.
35. The eNodeB of claim 34, wherein the first carrier type is a new carrier type (NCT) implemented in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards and the second carrier type is a legacy carrier type and wherein the second carrier type is a legacy carrier type on which CRSs are not suppressed.
36. The eNodeB of claim 34, wherein the transceiver is further arranged to:
transmit, on a physical downlink control channel (PDCCH), change notifications to notify of a change of the MBMS control information for the MBMS traffic transmitted on the SCell.
37. The eNodeB of claim 36, wherein the transceiver is further arranged to transmit a plurality of MBMS control information change notifications according to a time division duplex (TDD) scheme.
38. A method performed by a user equipment (UE), the method comprising:
transmitting a message to indicate an interest in receiving multimedia broadcast multicast service (MBMS) transmissions on a target cell, the target cell transmitting on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink radio frame;
receiving, responsive to the message and in a Radio Resource Control (RRC) message transmitted in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards, an identity of a notification cell, different from the target cell, on which to receive MBMS control information and MBMS control information change notifications of the target cell; and
receiving MBMS traffic from the target cell using the MBMS control information received from the notification cell, the MBMS traffic being received on the first carrier and the MBMS control information being received on a second carrier of a legacy carrier type different from the NCT on which CRSs are not suppressed.
39. The method of claim 38, further comprising:
receiving, in a physical downlink control channel (PDCCH) of the notification cell or in a media access control (MAC) control element, a change notification to notify of a change of the MBMS control information corresponding to the target cell.
40. The method of claim 39, further comprising:
receiving a plurality of change notifications for a plurality of MBMS serving cells, wherein at least two of the plurality of change notifications are received in a same subframe of a change notification period and each of the at least two change notifications are scrambled based on a MBMS radio network temporary identifier (M-RNTI) of the respective MBMS serving cell.
41. The method of claim 38, wherein the MBMS traffic is received in a multicast-broadcast single-frequency network (MBSFN) from a plurality of cells that use NCT, and the method further comprises receiving a message on a physical control format indicator channel (PCFICH) that indicates that a non-MBSFN region shall not be included in at least one MBSFN subframe of the MBMS traffic.
42. A method performed by an evolved NodeB (eNodeB) for operating in a network, the method comprising:
receiving an indication that a user equipment (UE) desires to receive multimedia broadcast multicast service (MBMS) transmissions from a secondary cell (SCell) that operates on a first carrier of a new carrier type (NCT) on which cell-specific reference signals (CRSs) are suppressed at one or more downlink subframes of a downlink frame;
receiving notification cell information in a transmission of a second carrier of a second carrier type different from the NCT and on which CRSs are not suppressed; and
providing notification cell information, responsive to receiving the indication, which indicates an identity of a notification cell in the network, other than the SCell, that has been configured to provide MBMS control information of the SCell.
43. The method of claim 42, further comprising:
transmitting, on a physical downlink control channel (PDCCH), change notifications to notify of a change of the MBMS control information for the MBMS traffic transmitted on the SCell.
44. The method of claim 43, wherein the eNodeB transmits change notifications for the SCell and at least one other cell according to a time division duplex (TDD) scheme.
US14/766,858 2013-03-01 2013-12-17 Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery Abandoned US20160007319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201361771698P true 2013-03-01 2013-03-01
US14/766,858 US20160007319A1 (en) 2013-03-01 2013-12-17 Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery
PCT/US2013/075768 WO2014133652A1 (en) 2013-03-01 2013-12-17 Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/766,858 US20160007319A1 (en) 2013-03-01 2013-12-17 Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery

Publications (1)

Publication Number Publication Date
US20160007319A1 true US20160007319A1 (en) 2016-01-07

Family

ID=51420937

Family Applications (15)

Application Number Title Priority Date Filing Date
US14/125,610 Active 2034-04-13 US9706522B2 (en) 2013-03-01 2013-09-25 Wireless local area network (WLAN) traffic offloading
US14/129,951 Active US9693336B2 (en) 2013-03-01 2013-11-07 Techniques for connectionless small data transmission
US14/765,285 Active 2034-04-22 US9788303B2 (en) 2013-03-01 2013-12-12 Multicast-based group communications in ad hoc arrangements of wireless devices
US14/766,873 Active 2034-01-07 US9820260B2 (en) 2013-03-01 2013-12-13 Spectrum sharing based on self-organizing networks
US14/764,547 Active 2034-08-06 US10271304B2 (en) 2013-03-01 2013-12-13 Physical resource block (PRB)-restricted interference averaging in a wireless communication system
US14/766,858 Abandoned US20160007319A1 (en) 2013-03-01 2013-12-17 Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery
US14/766,850 Active 2034-08-13 US9967858B2 (en) 2013-03-01 2013-12-17 Method and apparatus for configuring and using small data radio bearers
US14/765,524 Active 2034-06-14 US9999023B2 (en) 2013-03-01 2013-12-26 Coordination of capacity and coverage optimization of self-organizing networks
US14/763,123 Pending US20150373077A1 (en) 2013-03-01 2014-02-27 Link-aware streaming adaptation
US14/193,509 Abandoned US20140247860A1 (en) 2013-03-01 2014-02-28 Codebook and codebook search
US14/769,187 Active 2034-07-22 US9814021B2 (en) 2013-03-01 2014-02-28 Radio access technology selection in a heterogeneous network
US14/766,728 Active 2034-12-03 US10104641B2 (en) 2013-03-01 2014-02-28 Network selection in a heterogeneous network
US15/691,723 Pending US20170367072A1 (en) 2013-03-01 2017-08-30 Multicast-based group communications in ad hoc arrangements of wireless devices
US15/810,832 Active 2033-12-18 US10420073B2 (en) 2013-03-01 2017-11-13 Spectrum sharing based on self-organizing networks
US15/977,780 Pending US20180263016A1 (en) 2013-03-01 2018-05-11 Coordination of capacity and coverage optimization of self-organizing networks

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US14/125,610 Active 2034-04-13 US9706522B2 (en) 2013-03-01 2013-09-25 Wireless local area network (WLAN) traffic offloading
US14/129,951 Active US9693336B2 (en) 2013-03-01 2013-11-07 Techniques for connectionless small data transmission
US14/765,285 Active 2034-04-22 US9788303B2 (en) 2013-03-01 2013-12-12 Multicast-based group communications in ad hoc arrangements of wireless devices
US14/766,873 Active 2034-01-07 US9820260B2 (en) 2013-03-01 2013-12-13 Spectrum sharing based on self-organizing networks
US14/764,547 Active 2034-08-06 US10271304B2 (en) 2013-03-01 2013-12-13 Physical resource block (PRB)-restricted interference averaging in a wireless communication system

Family Applications After (9)

Application Number Title Priority Date Filing Date
US14/766,850 Active 2034-08-13 US9967858B2 (en) 2013-03-01 2013-12-17 Method and apparatus for configuring and using small data radio bearers
US14/765,524 Active 2034-06-14 US9999023B2 (en) 2013-03-01 2013-12-26 Coordination of capacity and coverage optimization of self-organizing networks
US14/763,123 Pending US20150373077A1 (en) 2013-03-01 2014-02-27 Link-aware streaming adaptation
US14/193,509 Abandoned US20140247860A1 (en) 2013-03-01 2014-02-28 Codebook and codebook search
US14/769,187 Active 2034-07-22 US9814021B2 (en) 2013-03-01 2014-02-28 Radio access technology selection in a heterogeneous network
US14/766,728 Active 2034-12-03 US10104641B2 (en) 2013-03-01 2014-02-28 Network selection in a heterogeneous network
US15/691,723 Pending US20170367072A1 (en) 2013-03-01 2017-08-30 Multicast-based group communications in ad hoc arrangements of wireless devices
US15/810,832 Active 2033-12-18 US10420073B2 (en) 2013-03-01 2017-11-13 Spectrum sharing based on self-organizing networks
US15/977,780 Pending US20180263016A1 (en) 2013-03-01 2018-05-11 Coordination of capacity and coverage optimization of self-organizing networks

Country Status (9)

Country Link
US (15) US9706522B2 (en)
EP (8) EP2962485B1 (en)
JP (1) JP2016512400A (en)
KR (1) KR20150105963A (en)
CN (10) CN104995852B (en)
ES (3) ES2730688T3 (en)
HK (1) HK1216964A1 (en)
HU (2) HUE043855T2 (en)
WO (11) WO2014133589A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150381378A1 (en) * 2013-04-04 2015-12-31 Qualcomm Incorporated Service continuity with embms support on non-self-standing carrier frequency
US20160013977A1 (en) * 2013-03-25 2016-01-14 Huawei Technologies Co., Ltd. Service Processing Method for New Carrier Type Cell, Apparatus, and Communications System
US20160020916A1 (en) * 2013-04-03 2016-01-21 Huawei Technologies Co., Ltd. Service indication processing method and apparatus
US20160338011A1 (en) * 2014-01-28 2016-11-17 Sony Corporation Apparatus
US20170094569A1 (en) * 2014-03-20 2017-03-30 Kyocera Corporation Communication control method and user terminal
US20170164407A1 (en) * 2014-06-26 2017-06-08 Lg Electronics Inc. Method for transmitting and receiving control information for broadcast multicast service, and device therefor
US9820260B2 (en) 2013-03-01 2017-11-14 Intel IP Corporation Spectrum sharing based on self-organizing networks
US10171195B2 (en) * 2014-06-18 2019-01-01 Qualcomm Incorporated NAICS signaling for advanced LTE features

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048401A1 (en) * 2011-09-29 2013-04-04 Intel Corporation Higher order mu-mimo for lte-a
KR20150073165A (en) * 2012-10-16 2015-06-30 엘지전자 주식회사 Method and apparatus for accessing channel in wireless lan
EP2945306B1 (en) * 2013-03-08 2018-11-07 Huawei Technologies Co., Ltd. Precoding matrix indication feedback method, and receiving end and transmitting end
CN104066093B (en) * 2013-03-18 2018-03-23 财团法人工业技术研究院 Interference management method, anchor point device, base station and its system of wireless communication system
WO2014148860A1 (en) * 2013-03-22 2014-09-25 Lg Electronics Inc. Method and apparatus for performing handover procedure in wireless communication system
CN104247499B (en) * 2013-03-26 2018-09-21 华为技术有限公司 Data pack transmission method, system and terminal device and the network equipment
EP2995111A4 (en) * 2013-03-29 2017-02-22 Intel IP Corporation Hybrid beamforming for data transmission
WO2014166884A1 (en) * 2013-04-08 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Congestion aware throughput targets
US9992704B2 (en) * 2013-04-12 2018-06-05 Provenance Asset Group Llc Radio access network based traffic steering to non-cellular access
US20140307551A1 (en) * 2013-04-12 2014-10-16 Nokia Siemens Networks Oy Automatic learning of wi-fi neighbors and network characteristics
US20160080958A1 (en) * 2013-04-24 2016-03-17 Nokia Technologies Oy Logged measurements
WO2014182233A2 (en) * 2013-05-08 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Packet data transfer re-establishment
WO2014182339A1 (en) * 2013-05-09 2014-11-13 Intel IP Corporation Small data communications
US8903373B1 (en) 2013-05-27 2014-12-02 Cisco Technology, Inc. Method and system for coordinating cellular networks operation
WO2014203434A1 (en) * 2013-06-17 2014-12-24 日本電気株式会社 Device, method and non-temporary computer-readable medium, for self-organizing network
US20140376517A1 (en) * 2013-06-25 2014-12-25 Qualcomm Incorporated Opportunistic activation of relays in cloud radio access networks
EP3018912B1 (en) * 2013-07-02 2018-09-12 Sony Corporation Content provision device, content provision method, program, terminal device, and content provision system
WO2015010082A1 (en) * 2013-07-18 2015-01-22 Marvell World Trade Ltd. Channel quality indication with filtered interference
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
EP3031146B1 (en) * 2013-08-08 2019-02-20 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9705693B1 (en) * 2013-12-10 2017-07-11 Marvell International Ltd. Provisioning using multicast traffic
US10341890B2 (en) * 2013-12-13 2019-07-02 Qualcomm Incorporated CSI feedback in LTE/LTE-advanced systems with unlicensed spectrum
EP3079384A4 (en) * 2013-12-30 2016-11-23 Huawei Tech Co Ltd Method for transmitting small data packet, base station, and user equipment
KR101418698B1 (en) * 2014-02-03 2014-07-10 박상래 System, method and computer readable recording medium for controlling of wireless emergency bell
US20150230122A1 (en) * 2014-02-07 2015-08-13 Telefonaktiebolaget L M Ericsson (Publ) Mtc device, serving node, and various methods for implementing an uplink stack reduction feature
US20150230121A1 (en) * 2014-02-07 2015-08-13 Telefonaktiebolaget L M Ericsson (Publ) Mtc device, serving node, and various methods for implementing a downlink stack reduction feature
KR102010323B1 (en) * 2014-02-21 2019-08-13 콘비다 와이어리스, 엘엘씨 Handover in integrated small cell and wifi networks
EP3117530A1 (en) * 2014-03-14 2017-01-18 Telefonaktiebolaget LM Ericsson (publ) Technique for precoder determination
IN2014MU01113A (en) * 2014-03-28 2015-10-02 Tech Mahindra Limited Network centric decision engine for real-time traffic offload from cellular to wi-fi network
US9781006B2 (en) * 2014-06-24 2017-10-03 Ruckus Wireless, Inc. Group isolation in wireless networks
US9838948B2 (en) * 2014-07-29 2017-12-05 Aruba Networks, Inc. Deep packet inspection (DPI) aware client steering and load balancing in wireless local area network (WLAN) infrastructure
US20160057687A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Inter/intra radio access technology mobility and user-plane split measurement configuration
US9794896B2 (en) * 2014-08-19 2017-10-17 Xiaomi Inc. Method and device for adjusting state of wireless network
EP3188545A4 (en) * 2014-08-25 2018-02-28 Kyocera Corporation Base station and wireless-lan terminating equipment
JP2017535982A (en) * 2014-09-30 2017-11-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Terminal, base station, system, and notification method
US20170251516A1 (en) * 2014-10-23 2017-08-31 Intel IP Corporation Connection control for machine type communication (mtc) devices
US9578530B2 (en) * 2014-12-09 2017-02-21 Futurewei Technologies, Inc. Method and apparatus for determining cell states to adjust antenna configuration parameters
US9769689B2 (en) 2014-12-09 2017-09-19 Futurewei Technologies, Inc. Method and apparatus for optimizing cell specific antenna configuration parameters
CN107210993A (en) * 2014-12-23 2017-09-26 意大利电信股份公司 The method and system of the dynamic rate shaping of multimedia content flows in cordless communication network
US20160191585A1 (en) * 2014-12-24 2016-06-30 Intel Corporation Link-aware streaming adaptation
US9924406B2 (en) * 2015-03-02 2018-03-20 Verizon Patent And Licensing Inc. Blended data transmission network for machine type communications
CN104768122B (en) * 2015-03-16 2018-08-24 深圳酷派技术有限公司 Data sharing method, device based on the direct-connected communication of terminal and terminal
US9781736B2 (en) 2015-03-25 2017-10-03 Huawei Technologies Co., Ltd. Offloading of controlling across access nodes
US20160295638A1 (en) * 2015-04-06 2016-10-06 Cable Television Laboratories, Inc. Self-organizing network (son) with fast initial link setup (fils)
US9998921B2 (en) 2015-04-06 2018-06-12 Cable Television Laboratories, Inc. Self-organizing network (SON) with fast initial link setup (FILS)
WO2016164909A1 (en) * 2015-04-10 2016-10-13 Kyocera Corporation Methods and systems for exchanging information over a user plane between wlan and 3gpp ran for traffic steering threshold determination
US10038609B2 (en) 2015-06-19 2018-07-31 Cisco Technology, Inc. Network traffic analysis
WO2017005316A1 (en) * 2015-07-08 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Performance improvement in wireless communications networks
US10484441B2 (en) * 2015-09-08 2019-11-19 Verizon Patent And Licensing Inc. Switching between unicast streams and a multicast stream based on content demand
EP3154281A1 (en) * 2015-10-05 2017-04-12 Nokia Technologies Oy Wireless local area network (wlan) radio link failure (rlf) triggering
CN105407494B (en) * 2015-10-23 2018-10-30 中国联合网络通信集团有限公司 Network capacity extension method and device
FR3043522A1 (en) * 2015-11-10 2017-05-12 Orange Transmitting variable volume data in a mobile communication network
EP3248099B1 (en) * 2015-11-20 2018-06-13 Nec Corporation Seamless sdn-supported ran-app migration
US10111235B2 (en) * 2016-02-15 2018-10-23 Spidercloud Wireless, Inc. Methods for centralized channel selection across different cells in a radio access network
US10341994B2 (en) * 2016-03-25 2019-07-02 Nokia Of America Corporation Autonomous wireless transmissions
CN109155904A (en) * 2016-03-31 2019-01-04 诺基亚通信公司 The device and method for supporting local multicast broadcast multimedia service (MBMS) to distribute
WO2017177076A1 (en) 2016-04-08 2017-10-12 Cloud Knox, Inc. Activity based access control in heterogeneous environments
US10389785B2 (en) * 2016-07-17 2019-08-20 Wei-Chung Chang Method for adaptively streaming an audio/visual material
CN107734465A (en) * 2016-08-12 2018-02-23 电信科学技术研究院 Transmit method, the method and device of receiving multicast traffic of multicast service
CN106789252A (en) * 2016-12-23 2017-05-31 盛科网络(苏州)有限公司 The chip method that APS is switched fast is realized in a kind of OAM linkages
CN106658733A (en) * 2016-12-28 2017-05-10 南京邮电大学 Handling capacity optimization method based on user fairness and QoS in multi-user MIMO-OFDM
KR102012264B1 (en) * 2017-02-07 2019-08-22 한국전자통신연구원 Method and apparatus for compensating outage cell in small cell network
WO2018174756A1 (en) * 2017-03-21 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) A network node and a method performed thereby for providing a recommendation associated with a service to a wireless device
CN106982454B (en) * 2017-05-10 2019-11-05 重庆邮电大学 A kind of user access method based on load
CN107396384A (en) * 2017-08-15 2017-11-24 北京小米移动软件有限公司 Wireless connecting establishment method and device
US10448261B2 (en) * 2018-01-09 2019-10-15 P.I. Works U.S., Inc. Method for capacity and coverage optimization of a multi-RAT network
US10419077B1 (en) * 2018-03-28 2019-09-17 Google Llc Wireless communication via a mobile relay

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269108A1 (en) * 2009-08-18 2012-10-25 Zte Corporation Configuration Method, Device and System for Resource Occupied by Multicast Control Channel
US20120329400A1 (en) * 2010-03-24 2012-12-27 Hanbyul Seo Method and apparatus for reducing inter-cell interference in radio communication system
US20130250882A1 (en) * 2012-03-25 2013-09-26 Esmael Hejazi Dinan Information Exchange between Base Stations
US20130272215A1 (en) * 2012-04-13 2013-10-17 Alexey Vladimirovich Khoryaev Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
US20130308504A1 (en) * 2012-05-19 2013-11-21 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system
US20140044072A1 (en) * 2011-02-18 2014-02-13 Sca Ipla Holdings Inc Communication units and methods for control change notification in broadcast communication
US20140119265A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated Multiband embms enhancement using carrier aggregation
US20140247766A1 (en) * 2013-03-01 2014-09-04 Qualcomm Incorporated Small cell evolved multimedia broadcast multicast service

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346008B1 (en) * 1999-10-15 2008-03-18 Alcatel Canada Inc. Method and apparatus for data driven network management
US6987770B1 (en) * 2000-08-04 2006-01-17 Intellon Corporation Frame forwarding in an adaptive network
US7068683B1 (en) * 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
KR100396030B1 (en) * 2000-12-27 2003-08-27 주식회사 하이닉스반도체 Method for shrink/unshrink using power bank in base station system
US20020101632A1 (en) * 2001-01-30 2002-08-01 Milton Meckler Wireless laser beam communications system for stationary and mobile users
JP2002300181A (en) * 2001-03-30 2002-10-11 Nec Corp INTEGRATED NETWORK QoS CONTROL SYSTEM
CN100464532C (en) * 2001-10-29 2009-02-25 媒体网国际公司 Method and system for multimedia communications
US6856604B2 (en) 2001-12-19 2005-02-15 Qualcomm Incorporated Efficient multi-cast broadcasting for packet data systems
US6765891B2 (en) * 2002-04-03 2004-07-20 Nokia Corporation Method and apparatus providing for the immediate start of 3G measurements in dedicated mode on a cell with a packet broadcast control channel
US7948951B2 (en) * 2002-06-12 2011-05-24 Xocyst Transfer Ag L.L.C. Automatic peer discovery
KR100950663B1 (en) 2002-12-26 2010-04-02 삼성전자주식회사 Method for inter-radio access technology cell reselection in multi-radio access technology mobile
US20040131078A1 (en) * 2003-01-03 2004-07-08 Gupta Vivek G. Apparatus and method for supporting multiple wireless technologies within a device
US20030108030A1 (en) 2003-01-21 2003-06-12 Henry Gao System, method, and data structure for multimedia communications
US20050043026A1 (en) 2003-01-22 2005-02-24 Jacco Brok System and method for establishing and/or maintaining a data session across packet data networks
US7362742B1 (en) * 2003-01-28 2008-04-22 Cisco Technology, Inc. Methods and apparatus for synchronizing subnet mapping tables
US7295549B2 (en) * 2003-02-14 2007-11-13 Ntt Docomo, Inc. Source and channel rate adaptation for VoIP
SE0300555D0 (en) * 2003-02-24 2003-02-24 Ericsson Telefon Ab L M Improvements in or relating to push-to-talk services
KR100547876B1 (en) * 2003-03-25 2006-01-31 삼성전자주식회사 Access network selection method and apparatus in a multi-wireless communication network,
US7397805B2 (en) * 2003-04-02 2008-07-08 Ntt Docomo Inc. Systems and methods for goodput guarantee through adaptive fair queuing
CN1326409C (en) 2003-12-05 2007-07-11 北方电讯网络有限公司 Communicating application control and data information using a traffic flow over a wireless link
KR20050063652A (en) * 2003-12-22 2005-06-28 한국전자통신연구원 A method for constituting a layered cell in ofdma system
TWI277351B (en) 2004-08-06 2007-03-21 Ind Tech Res Inst Method and system for selecting an access network in a heterogeneous network environment
US20060092890A1 (en) * 2004-11-01 2006-05-04 Gupta Vivek G Global network neighborhood: scheme for providing information about available networks in a geographical location
US7577438B2 (en) * 2005-04-25 2009-08-18 Interdigital Technology Corporation Method and system for efficient addressing and power savings in wireless systems
US20060268711A1 (en) * 2005-05-27 2006-11-30 Doradla Anil K Network selection terminal
US7856001B2 (en) * 2005-06-15 2010-12-21 U4Ea Wireless, Inc. Wireless mesh routing protocol utilizing hybrid link state algorithms
KR20070016507A (en) * 2005-08-04 2007-02-08 삼성전자주식회사 Apparatus and method for sensor network using broadband wireless access communication system
US20070274233A1 (en) 2006-05-25 2007-11-29 Amnon Ptashek Method, apparatus and system for multi peer to peer services
US9049651B2 (en) 2006-08-25 2015-06-02 Qualcomm Incorporated Selection of an access point in a communications system
WO2008035905A1 (en) 2006-09-19 2008-03-27 Samsung Electronics Co., Ltd. Method and apparatus for performing discontinuous reception operation by connected mode user equipment in a mobile communication system
US8064342B2 (en) * 2006-10-27 2011-11-22 Verizon Patent And Licensing Inc. Load balancing session initiation protocol (SIP) servers
JP4977762B2 (en) * 2006-10-31 2012-07-18 テルコーディア ライセンシング カンパニー, リミテッド ライアビリティ カンパニーTelcordia Licensing Company, Llc Dynamic network selection using the kernel
US8130917B2 (en) * 2006-12-21 2012-03-06 Verizon Data Services Llc Method and apparatus for group messaging
US7873010B2 (en) * 2007-03-07 2011-01-18 Motorola Mobility, Inc. Control signaling resource assignment in wireless communication networks
US20080240030A1 (en) * 2007-03-20 2008-10-02 Nokia Corporation Transmission adaptation in a wireless network
US20080279147A1 (en) * 2007-05-08 2008-11-13 Microsoft Corporation Spectrum auction and sharing on wireless clients
EP2179528B1 (en) * 2007-08-17 2013-02-13 Nokia Corporation System and method employing frequency band flipping for the retransmission of data
US20090059831A1 (en) * 2007-08-28 2009-03-05 Gang Li Method of communicating a multi-user packet to a group of users
EP2213046B1 (en) * 2007-09-14 2018-07-04 NEC Corporation Method and system for optimizing network performances
US8270972B2 (en) 2007-10-23 2012-09-18 Motorola Mobility Llc Method and apparatus for detecting an alternate wireless communication network
KR101559320B1 (en) * 2008-02-18 2015-10-13 삼성전자주식회사 Mobile system and base station system for effectively using licensed spectrum and shared spectrum
US20090268624A1 (en) 2008-04-28 2009-10-29 Sharp Laboratories Of America, Inc. Systems and methods for measurement and feedback of channel quality indicator information
US8948030B2 (en) * 2008-04-30 2015-02-03 Nokia Siemens Networks Oy Transmitting node B load status information in a self organising network
EP2283693B1 (en) * 2008-05-09 2018-07-11 Marvell World Trade Ltd. Systems and methods for providing location-aware wi-fi access for a portable device
WO2009149761A1 (en) * 2008-06-13 2009-12-17 Nokia Siemens Networks Oy Target access point selection policies based on access point category tags
JP5328908B2 (en) 2008-07-02 2013-10-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Automatic configuration of neighbor relations between access technology domains
US20100061346A1 (en) * 2008-09-05 2010-03-11 Nokia Siemens Networks Oy Channel quality feedback signal for wireless networks
US8391882B2 (en) * 2008-10-22 2013-03-05 Qualcomm Incorporated Method and system for interference management in a spectrum shared by WAN and femto cells
KR101667826B1 (en) 2008-11-04 2016-10-19 애플 인크. Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
WO2010060483A1 (en) * 2008-11-27 2010-06-03 Nokia Siemens Networks Oy Method for controlling self-optimization within a network
WO2010065280A2 (en) 2008-12-03 2010-06-10 Motorola, Inc. Method for efficient reporting of channel quality information from user equipment to the network
US9247532B2 (en) 2009-01-02 2016-01-26 Lg Electronics Inc. Effective method for transmitting control information during the combination of multiple carriers for wideband support
WO2010087643A2 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Control signaling for transmissions over contiguous and non-contiguous frequency bands
US8218553B2 (en) * 2009-02-25 2012-07-10 Juniper Networks, Inc. Load balancing network traffic on a label switched path using resource reservation protocol with traffic engineering
US8762511B2 (en) * 2009-03-06 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Managing network elements
US8489108B2 (en) 2009-03-10 2013-07-16 Verizon Patent And Licensing Inc. Method and system for load-balancing across multiple access networks
US9001745B2 (en) * 2009-03-13 2015-04-07 Blackberry Limited HARQ process number management for downlink carrier
WO2010123304A2 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
WO2010126298A2 (en) 2009-04-28 2010-11-04 한국전자통신연구원 Carrier management apparatus for a base station, carrier management method, mobile station, and carrier management method for mobile station
US8830920B2 (en) * 2009-06-17 2014-09-09 Qualcomm Incorporated Resource block reuse for coordinated multi-point transmission
US8175005B2 (en) 2009-07-22 2012-05-08 Cisco Technology, Inc. Coordinated neighbor discovery of radio access point devices and macro base stations
EP2288091A1 (en) * 2009-08-13 2011-02-23 Institut Eurecom G.I.E. Process for controlling the attachment of one mobile terminal to one particular attachment point belonging to one particular wireless access network technology
US8300587B2 (en) * 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
BR112012003288A2 (en) * 2009-08-18 2016-03-01 Ericsson Telefon Ab L M method for adding and / or removing a cell from operation in a heterogeneous radiocommunication network, method for operating a base station, and, base station
KR20110049622A (en) 2009-11-04 2011-05-12 삼성전자주식회사 Method and apparatus for transmission data in wireless communication network system
KR101777347B1 (en) * 2009-11-13 2017-09-11 삼성전자주식회사 Method and apparatus for adaptive streaming based on segmentation
CN105846876B (en) * 2009-11-24 2018-10-30 韩国电子通信研究院 The method and apparatus for transmitting data frame in a wireless communication system
US8280417B2 (en) * 2009-12-23 2012-10-02 Intel Corporation Short user messages in system control signaling
CN102118789B (en) * 2009-12-31 2013-02-27 华为技术有限公司 Traffic offload method, traffic offload function entities and traffic offload system
WO2011082545A1 (en) 2010-01-08 2011-07-14 富士通株式会社 Method and device for carrier management in carrier aggregation system
KR101733489B1 (en) * 2010-01-17 2017-05-24 엘지전자 주식회사 Apparatus and method of transmitting control information in wireless communication system
US8868091B2 (en) * 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
KR101875607B1 (en) 2010-02-11 2018-07-06 엘지전자 주식회사 Method for efficiently transmitting small data of machine type communication in mobile communications system
FI20100057A0 (en) 2010-02-12 2010-02-12 Notava Oy A method and system for creating a virtual device for redirecting data traffic
US9112933B2 (en) * 2010-02-19 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adaption in HTTP streaming
US9066238B2 (en) * 2010-02-22 2015-06-23 Spectrum Bridge. Inc. System and method for spectrum sharing among plural wireless radio networks
WO2011121580A2 (en) 2010-04-01 2011-10-06 Nokia Corporation Apparatus and method for optimization of access stratum bearer signaling in radio resource control connection establishment
CN101835029A (en) * 2010-04-21 2010-09-15 深圳市紫云鑫软件技术有限公司 Control method, system and client for playing streaming media
EP2383999A1 (en) * 2010-04-29 2011-11-02 Irdeto B.V. Controlling an adaptive streaming of digital content
CN103338473B (en) * 2010-04-30 2016-04-06 华为技术有限公司 The treatment facility of cell outage
WO2011151684A1 (en) * 2010-05-13 2011-12-08 Alcatel Lucent Dynamic reorganization of cell structures in wireless networks
BR112012029719A2 (en) 2010-05-25 2017-09-26 Headwater Partners I Llc method, server system, and end user device
WO2011160250A1 (en) * 2010-06-21 2011-12-29 Nokia Siemens Networks Oy Method and apparatus for reducing interference
GB201010821D0 (en) * 2010-06-28 2011-03-30 Nokia Oyj Mehtod and apparatus for communicating via a gateway
US9088989B2 (en) * 2010-07-15 2015-07-21 Rivada Networks, Llc Methods and systems for managing dynamic spectrum arbitrage based on usage of network resources
US20120030331A1 (en) * 2010-07-30 2012-02-02 Interdigital Patent Holdings, Inc. Method and apparatus for managing and processing policy profile restrictions
EP2606629B1 (en) 2010-08-17 2017-11-22 Nec Corporation Method for group change issues in mtc
WO2012037236A2 (en) * 2010-09-15 2012-03-22 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
JP4878651B1 (en) * 2010-09-17 2012-02-15 シャープ株式会社 Mobile station apparatus, communication system, communication method, and integrated circuit
US9014025B2 (en) 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
TWI524799B (en) * 2010-10-12 2016-03-01 Interdigital Patent Holdings TV channel selection and idle band network configuration method to serve as the basis of
CN102457871B (en) 2010-10-26 2014-06-11 电信科学技术研究院 Method and system for saving network resource
TWI569654B (en) * 2010-11-01 2017-02-01 內數位專利控股公司 Wireless transmit/receive unit and method implemented in dynamic spectrum management engine
KR101154336B1 (en) * 2010-11-04 2012-06-13 강원대학교산학협력단 Mobile terminal for performing vertical handover in heterogeneous networks and handover method using the same
US8593952B2 (en) * 2010-11-09 2013-11-26 At&T Intellectual Property I, L.P. Method and apparatus for locating a Wi-Fi hotspot for offloading wireless traffic
CN102104538B (en) * 2010-12-08 2012-07-25 浙江工业大学 Mapping parameter dynamic adaptive wireless streaming media transmission control method
KR20120070297A (en) * 2010-12-21 2012-06-29 한국전자통신연구원 System and method for searching femto cell access points
KR20120071229A (en) 2010-12-22 2012-07-02 한국전자통신연구원 Method for transmitting data for mobile communication systems
KR101868626B1 (en) * 2011-01-14 2018-06-18 엘지전자 주식회사 Method and device for setting channel status information measuring resource in a wireless communication system
US9107184B2 (en) * 2011-02-14 2015-08-11 Alcatel Lucent Method for reduced-overhead short message transmission
US9559820B2 (en) * 2011-02-18 2017-01-31 Qualcomm Incorporated Feedback reporting based on channel state information reference signal (CSI-RS) groups
KR101820678B1 (en) * 2011-02-22 2018-01-22 삼성전자주식회사 Apparatus and method for hierarchical rate splitting in hierarchical cell communication system
US8976657B2 (en) * 2011-03-08 2015-03-10 Medium Access Systems Private Ltd. Method and system for data offloading in mobile communications
WO2012135275A2 (en) * 2011-04-01 2012-10-04 Intel Corporation Techniques to control paging for fixed devices
US20120254890A1 (en) 2011-04-01 2012-10-04 Renesas Mobile Corporation Small Data Transmission For Detached Mobile Devices
CN107580376A (en) * 2011-04-01 2018-01-12 交互数字专利控股公司 Mobility management entity and the method for providing connectivity information
US9363805B2 (en) * 2011-04-03 2016-06-07 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink control channel in wireless communication system
EP2509345A1 (en) 2011-04-05 2012-10-10 Panasonic Corporation Improved small data transmissions for machine-type-communication (MTC) devices
US8750358B2 (en) * 2011-04-06 2014-06-10 Nec Laboratories America, Inc. Method for improving multiuser MIMO downlink transmissions
US20120275315A1 (en) * 2011-04-27 2012-11-01 Motorola Solutions, Inc. Physical-layer cell identity (pci) conflict detection
US8516144B2 (en) * 2011-04-29 2013-08-20 Cbs Interactive Inc. Startup bitrate in adaptive bitrate streaming
US8289917B1 (en) * 2011-05-02 2012-10-16 Renesas Mobile Corporation Method and apparatus for defining resource elements for the provision of channel state information reference signals
US9401791B2 (en) * 2011-05-10 2016-07-26 Lg Electronics Inc. Method for transmitting signal using plurality of antenna ports and transmission end apparatus for same
CN103597871A (en) * 2011-06-14 2014-02-19 诺基亚公司 Managing resource licenses
US8611823B2 (en) * 2011-06-16 2013-12-17 Blackberry Limited Mobile guided uplink interference management
US8774811B2 (en) 2011-06-17 2014-07-08 Mediatek Inc. Method for selecting optimal radio access technology and communication apparatuses utilizing the same
WO2013002563A2 (en) * 2011-06-29 2013-01-03 엘지전자 주식회사 Channel state information transmitting method and user equipment, and channel state information receiving method and base station
WO2013006194A1 (en) 2011-07-01 2013-01-10 Intel Corporation Structured codebook for uniform circular array (uca)
US8804649B1 (en) * 2011-07-14 2014-08-12 Airhop Communications, Inc. Self-optimization in heterogeneous networks
US8965415B2 (en) 2011-07-15 2015-02-24 Qualcomm Incorporated Short packet data service
US8995385B2 (en) * 2011-08-05 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for UE-specific demodulation reference signal scrambling
KR20140099917A (en) 2011-08-12 2014-08-13 인터디지탈 패튼 홀딩스, 인크 Interference measurement in wireless networks
RU2014110364A (en) 2011-08-19 2015-09-27 Ска Ипла Холдингз Инк Mobile communication system, infrastructure equipment, mobile communication terminal and method for transfer of user data on the arrival channel of accessible access
US9008582B2 (en) * 2011-08-25 2015-04-14 Qualcomm Incorporated User equipment enhancements for cooperative multi-point communication
US10205569B2 (en) * 2011-08-26 2019-02-12 Lg Electronics Inc. Method and user equipment for receiving downlink signals, and method and base station for transmitting downlink signals
US9144076B2 (en) * 2011-09-18 2015-09-22 Nec Laboratories America, Inc. User pairing and resource allocation for downlink multiuser multi-input-multi-output in long term evolution advanced systems
US9973877B2 (en) 2011-09-23 2018-05-15 Htc Corporation Method of handling small data transmission
CN103891166A (en) * 2011-09-30 2014-06-25 交互数字专利控股公司 Multipoint transmission in wireless communication
WO2013062355A1 (en) * 2011-10-26 2013-05-02 엘지전자 주식회사 Method and apparatus for controlling inter-cell interference in wireless communication system
US9461721B2 (en) * 2011-10-27 2016-10-04 Lg Electronics Inc. Method for reporting channel state information on a coordinated multi-point transmission and reception aggregation, and apparatus therefor
US8862176B2 (en) * 2011-11-04 2014-10-14 Intel Corporation Techniques for mitigating interference associated with downlink transmissions from a base station
US9363809B2 (en) * 2011-11-23 2016-06-07 Lg Electronics Inc. Method and wireless device for monitoring control channel
KR101967298B1 (en) * 2011-12-16 2019-08-13 엘지전자 주식회사 Method and apparatus for resource mapping for physical channel in multiple cell system
EP2798880A4 (en) 2011-12-29 2015-10-21 Intel Corp Cell association in multi-radio access technology networks
CN104025673B (en) * 2012-01-03 2018-06-19 Lg电子株式会社 For setting the method and its equipment of down transmitting power in wireless access system
JP5908607B2 (en) * 2012-01-18 2016-04-26 エルジー エレクトロニクス インコーポレイティド Method and apparatus for improved control channel based operation in a wireless communication system
EP2807860A4 (en) 2012-01-23 2016-04-13 Intel Corp Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
US9241327B2 (en) * 2012-01-23 2016-01-19 Intel Corporation LTE enhancements for small packet transmissions
EP2807886A1 (en) * 2012-01-27 2014-12-03 Interdigital Patent Holdings, Inc. Managing or improving interference between cells
US9794913B2 (en) * 2012-01-27 2017-10-17 Interdigital Patent Holdings, Inc. Systems and/or methods for providing EPDCCH in a multiple carrier based and/or quasi-collated network
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9088876B2 (en) * 2012-02-01 2015-07-21 Kodiak Networks, Inc. WiFi interworking solutions for push-to-talk-over-cellular (PoC)
US8660078B2 (en) 2012-02-07 2014-02-25 Qualcomm Incorporated Data radio bearer (DRB) enhancements for small data transmissions apparatus, systems, and methods
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
US20130227158A1 (en) * 2012-02-24 2013-08-29 Stmicroelectronics S.R.L. Media-quality adaptation mechanisms for dynamic adaptive streaming
US10064221B2 (en) 2012-03-14 2018-08-28 Telefonaktiebolaget Lm Ericsson (Publ) Determining a transition of a terminal between its idle state and its connected state
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9445409B2 (en) * 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
KR20140142693A (en) * 2012-03-28 2014-12-12 엘지전자 주식회사 Method for allocating resources for downlink control channel in wireless communication system and device for same
EP2832176B1 (en) 2012-03-30 2016-03-16 Telefonaktiebolaget LM Ericsson (publ) Technique for data-over-nas signalling
US9603124B2 (en) * 2012-04-24 2017-03-21 Apple Inc. Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
WO2013168958A1 (en) * 2012-05-07 2013-11-14 엘지전자 주식회사 Method and user device for receiving downlink data, and method and base station for transmitting downlink data
MX344730B (en) * 2012-05-24 2017-01-04 Hughes Network Systems Llc System and method for efficient use of radio resources for push-to-talk services in mobile wireless communications systems.
US8930559B2 (en) * 2012-06-01 2015-01-06 Verizon Patent And Licensing Inc. Adaptive hypertext transfer protocol (“HTTP”) media streaming systems and methods
US20150181568A1 (en) * 2012-06-05 2015-06-25 Lg Electronics Inc. Method and apparatus for receiving control information in wireless communication system
JP2015527774A (en) * 2012-06-12 2015-09-17 クアルコム,インコーポレイテッド dynamic multi-operator selection in multi-SIM user equipment
US20140019635A1 (en) * 2012-07-13 2014-01-16 Vid Scale, Inc. Operation and architecture for dash streaming clients
EP2880885B1 (en) 2012-08-03 2019-10-30 Nokia Solutions and Networks Oy Data transmission
HUE040578T2 (en) * 2012-08-03 2019-03-28 Ericsson Telefon Ab L M ePDCCH SEARCH SPACE DESIGN
US20140040496A1 (en) * 2012-08-06 2014-02-06 General Instrument Corporation On-demand http stream generation
EP2884677A4 (en) * 2012-08-10 2016-03-23 Lg Electronics Inc Method and apparatus for receiving control information in wireless communication system
WO2014054901A1 (en) * 2012-10-04 2014-04-10 엘지전자 주식회사 Method and apparatus for transreceiving downlink signal by considering antenna port relationship in wireless communication system
US20140101312A1 (en) * 2012-10-09 2014-04-10 Transpacific Ip Management Group Ltd. Access allocation in heterogeneous networks
US9332051B2 (en) * 2012-10-11 2016-05-03 Verizon Patent And Licensing Inc. Media manifest file generation for adaptive streaming cost management
US9553709B2 (en) * 2012-10-16 2017-01-24 Alcatel Lucent Method and apparatus for wireless communication using a short-range base station with multiple radio interfaces of different technologies
EP2921015A2 (en) * 2012-11-15 2015-09-23 Interdigital Patent Holdings, Inc. Channel evacuation procedures for wireless networks deployed in dynamic shared spectrum
US9119157B2 (en) * 2012-11-30 2015-08-25 Qualcomm Incorporated Power saving modes in wireless devices
US20140160937A1 (en) * 2012-12-06 2014-06-12 Telefonaktiebolaget L M Ericsson (Publ) Common radio resource control for cellular radio and wifi
US9609575B2 (en) * 2012-12-31 2017-03-28 T-Mobile Usa, Inc. Intelligent routing of network packets on telecommunication devices
WO2014106692A1 (en) * 2013-01-07 2014-07-10 Nokia Corporation Method and apparatus for video coding and decoding
EP2949141A2 (en) * 2013-01-28 2015-12-02 Interdigital Patent Holdings, Inc. Methods and apparatus for spectrum coordination
US9986577B2 (en) * 2013-02-19 2018-05-29 Vanu, Inc. Spectrum access system
US9049588B2 (en) 2013-02-28 2015-06-02 Blackberry Limited Communicating data in a predefined transmission mode
WO2014133589A1 (en) 2013-03-01 2014-09-04 Intel Corporation Wireless local area network (wlan) traffic offloading
US20140357218A1 (en) * 2013-05-31 2014-12-04 Nokia Siemens Networks Oy Method and apparatus for moderated access to shared radio spectrum resources
US9819471B2 (en) * 2013-11-04 2017-11-14 Texas Instruments Incorporated Method and apparatus for configuration, measurement and reporting of channel state information for LTE TDD with dynamic UL/DL configuration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269108A1 (en) * 2009-08-18 2012-10-25 Zte Corporation Configuration Method, Device and System for Resource Occupied by Multicast Control Channel
US20120329400A1 (en) * 2010-03-24 2012-12-27 Hanbyul Seo Method and apparatus for reducing inter-cell interference in radio communication system
US20140044072A1 (en) * 2011-02-18 2014-02-13 Sca Ipla Holdings Inc Communication units and methods for control change notification in broadcast communication
US20130250882A1 (en) * 2012-03-25 2013-09-26 Esmael Hejazi Dinan Information Exchange between Base Stations
US20130272215A1 (en) * 2012-04-13 2013-10-17 Alexey Vladimirovich Khoryaev Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
US20130308504A1 (en) * 2012-05-19 2013-11-21 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system
US20140119265A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated Multiband embms enhancement using carrier aggregation
US20140247766A1 (en) * 2013-03-01 2014-09-04 Qualcomm Incorporated Small cell evolved multimedia broadcast multicast service

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420073B2 (en) 2013-03-01 2019-09-17 Intel IP Corporation Spectrum sharing based on self-organizing networks
US9967858B2 (en) 2013-03-01 2018-05-08 Intel IP Corporation Method and apparatus for configuring and using small data radio bearers
US9820260B2 (en) 2013-03-01 2017-11-14 Intel IP Corporation Spectrum sharing based on self-organizing networks
US20160013977A1 (en) * 2013-03-25 2016-01-14 Huawei Technologies Co., Ltd. Service Processing Method for New Carrier Type Cell, Apparatus, and Communications System
US20160020916A1 (en) * 2013-04-03 2016-01-21 Huawei Technologies Co., Ltd. Service indication processing method and apparatus
US9806898B2 (en) * 2013-04-04 2017-10-31 Qualcomm Incorporated Service continuity with eMBMS support on non-self-standing carrier frequency
US20150381378A1 (en) * 2013-04-04 2015-12-31 Qualcomm Incorporated Service continuity with embms support on non-self-standing carrier frequency
US20160338011A1 (en) * 2014-01-28 2016-11-17 Sony Corporation Apparatus
US10045328B2 (en) * 2014-01-28 2018-08-07 Sony Corporation Apparatus enabling multicast to a specific terminal group
US20170094569A1 (en) * 2014-03-20 2017-03-30 Kyocera Corporation Communication control method and user terminal
US10172054B2 (en) * 2014-03-20 2019-01-01 Kyocera Corporation Communication control method and user terminal
US10171195B2 (en) * 2014-06-18 2019-01-01 Qualcomm Incorporated NAICS signaling for advanced LTE features
US20170164407A1 (en) * 2014-06-26 2017-06-08 Lg Electronics Inc. Method for transmitting and receiving control information for broadcast multicast service, and device therefor

Also Published As

Publication number Publication date
EP2962406A4 (en) 2016-10-26
EP2962521A1 (en) 2016-01-06
CN104956766A (en) 2015-09-30
EP2962435A4 (en) 2016-08-03
EP2962407A1 (en) 2016-01-06
US20150365960A1 (en) 2015-12-17
WO2014134407A1 (en) 2014-09-04
US20150373733A1 (en) 2015-12-24
US20140334380A1 (en) 2014-11-13
EP2962497B1 (en) 2018-11-14
EP2962521B1 (en) 2019-05-01
US20180098305A1 (en) 2018-04-05
US9706522B2 (en) 2017-07-11
US20150373510A1 (en) 2015-12-24
EP2962435A1 (en) 2016-01-06
US9967858B2 (en) 2018-05-08
EP2962497A1 (en) 2016-01-06
US10420073B2 (en) 2019-09-17
CN104956631B (en) 2018-06-15
US20150373604A1 (en) 2015-12-24
CN104956631A (en) 2015-09-30
US9693336B2 (en) 2017-06-27
KR20150105963A (en) 2015-09-18
HK1216964A1 (en) 2016-12-09
EP2962406A1 (en) 2016-01-06
EP2962485B1 (en) 2019-08-21
US20140247860A1 (en) 2014-09-04
EP2962485A4 (en) 2016-11-30
US20150373563A1 (en) 2015-12-24
US10271304B2 (en) 2019-04-23
WO2014134409A1 (en) 2014-09-04
WO2014133662A1 (en) 2014-09-04
CN104956710A (en) 2015-09-30
EP2962496A1 (en) 2016-01-06
US9814021B2 (en) 2017-11-07
US9788303B2 (en) 2017-10-10
US9999023B2 (en) 2018-06-12
CN104995963A (en) 2015-10-21
CN104982074A (en) 2015-10-14
WO2014133603A1 (en) 2014-09-04
EP2962496A4 (en) 2016-08-31
US20150373077A1 (en) 2015-12-24
CN104995852A (en) 2015-10-21
HUE043855T2 (en) 2019-09-30
US20150382224A1 (en) 2015-12-31
WO2014133652A1 (en) 2014-09-04
JP2016512400A (en) 2016-04-25
EP2962485A1 (en) 2016-01-06
ES2710559T3 (en) 2019-04-25
HUE040073T2 (en) 2019-02-28
EP2962497A4 (en) 2016-11-23
CN105009664A (en) 2015-10-28
ES2730688T3 (en) 2019-11-12
ES2701858T3 (en) 2019-02-26
WO2014134309A1 (en) 2014-09-04
CN104995852B (en) 2018-11-16
WO2014133651A1 (en) 2014-09-04
CN108322914A (en) 2018-07-24
CN104982074B (en) 2018-10-02
US20170367072A1 (en) 2017-12-21
WO2014133641A1 (en) 2014-09-04
WO2014133631A1 (en) 2014-09-04
EP2962407A4 (en) 2016-10-26
WO2014133642A1 (en) 2014-09-04
EP2962521A4 (en) 2016-12-14
EP2962487A4 (en) 2016-08-17
US20150382201A1 (en) 2015-12-31
US10104641B2 (en) 2018-10-16
EP2962487A1 (en) 2016-01-06
CN104956721B (en) 2019-10-25
US20180263016A1 (en) 2018-09-13
CN108494454A (en) 2018-09-04
CN104956721A (en) 2015-09-30
EP2962435B1 (en) 2018-09-05
US20140286159A1 (en) 2014-09-25
WO2014133589A1 (en) 2014-09-04
CN105009664B (en) 2019-04-12
US9820260B2 (en) 2017-11-14
CN104956766B (en) 2019-05-10

Similar Documents

Publication Publication Date Title
US10349410B2 (en) Methods of UL TDM for inter-eNodeB carrier aggregation
US20170006659A1 (en) Enhanced node b and methods for providing system information updates to user equipment with extended paging cycles
US9380442B2 (en) Device-to-device discovery resource allocation
JP2019054554A (en) Methods and apparatus for enhanced coverage transmission for lte advanced
US9166718B2 (en) Downlink control indication for a stand-alone new carrier type (NCT)
KR20160070115A (en) Downlink control management in an unlicensed or shared spectrum
US9717071B2 (en) Uplink procedures for LTE/LTE-A communication systems with unlicensed spectrum
US9794033B2 (en) Systems, methods and devices for opportunistic networking
US9237434B2 (en) Network-assisted peer discovery with network coding
US20150146585A1 (en) Apparatuses and method using enhanced control channel information for tdd-fdd carrier aggregation
US9699710B2 (en) Method and apparatus for receiving system information in wireless communication system
WO2014105389A1 (en) Reference signal measurement for device-to-device communication
JP6138760B2 (en) Data receiving method and apparatus for MBMS support user apparatus
CN103503507B (en) The system and method for managing the inactive reference subframe for information feedback
JP2017510224A (en) Method and apparatus for system information block (SIB) acquisition for wireless transmit / receive unit (WTRU) in non-CE mode and coverage extension (CE) mode
CN103493516A (en) Carrier aggregation for evolved multimedia broadcast multicast service enhancement
US10009882B2 (en) Method for receiving system information by MTC device located in cell coverage-expanded area
US9763172B2 (en) Idle-mode enhancements for extended idle discontinuous reception (EI-DRX)
JP2014533910A (en) Downlink control information for low cost devices
US9420576B2 (en) PDSCH transmission schemes with compact downlink control information (DCI) format in new carrier type (NCT) in LTE
US20150334744A1 (en) Load based lte/lte-a with unlicensed spectrum
KR20160009534A (en) Method and apparatus for transmitting/receiving signal related to device-todevice communication in wireless communication system
US20120213141A1 (en) Enhanced multimedia broadcast multicast service carriers in carrier aggregation
US20160007319A1 (en) Method and apparatus for multimedia broadcast multicast service (mbms) control information delivery
CN103907325A (en) Method for allowing terminal to perform random access step in wireless communication system and device therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL IP CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HE, HONG;ZHANG, YUJIAN;HAN, SEUNGHEE;AND OTHERS;SIGNING DATES FROM 20160303 TO 20160315;REEL/FRAME:038306/0685

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE