US20150353177A1 - Outboard drive device with power coupling system - Google Patents

Outboard drive device with power coupling system Download PDF

Info

Publication number
US20150353177A1
US20150353177A1 US14/299,246 US201414299246A US2015353177A1 US 20150353177 A1 US20150353177 A1 US 20150353177A1 US 201414299246 A US201414299246 A US 201414299246A US 2015353177 A1 US2015353177 A1 US 2015353177A1
Authority
US
United States
Prior art keywords
drive device
power transfer
transmission
transfer means
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/299,246
Other versions
US9856005B2 (en
Inventor
Christer Flodman
Andreas Blomdahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxe Marine AB
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/299,246 priority Critical patent/US9856005B2/en
Assigned to CIMCO MARINE DIESEL AB reassignment CIMCO MARINE DIESEL AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLOMDAHL, ANDREAS, FLODMAN, CHRISTER
Publication of US20150353177A1 publication Critical patent/US20150353177A1/en
Assigned to Cimco Marine AB reassignment Cimco Marine AB CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CIMCO MARINE DIESEL AB
Application granted granted Critical
Publication of US9856005B2 publication Critical patent/US9856005B2/en
Assigned to OXE MARINE AB reassignment OXE MARINE AB CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Cimco Marine AB
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element
    • B63H20/20Transmission between propulsion power unit and propulsion element with provision for reverse drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/14Gearings for reversal only

Definitions

  • the present invention relates to an outboard drive device for a boat. More specifically, the present invention relates to an outboard drive device comprising a motor with crankshaft, a propeller situated below the motor when said outboard drive device is operated with a boat, and a power coupling system for transferring power from the motor to the propeller.
  • outboard drive devices include a motor housed in an upper portion of the drive device.
  • a crank shaft of the motor extends substantially vertically downward to a propeller shaft arranged in a lower portion of the outboard drive device.
  • the propeller shaft unlike the crank shaft, is often oriented to be substantially horizontal when said outboard drive device is operated.
  • the vertical crankshaft is connected to the horizontal propeller shaft by means of bevel gears for transferring torque from the vertical crankshaft to the horizontal propeller shaft.
  • crankshaft extending substantially horizontally.
  • the crankshaft is connected to a horizontal propeller shaft through a vertically extending drive shaft and bevel gears.
  • a forward/reverse/neutral transmission can be arranged between the crankshaft and the vertical drive shaft.
  • a further known type of outboard drive device involves an outboard propulsion system comprising a motor having a horizontal crankshaft connected to a water jet through a belt.
  • the present invention relates to an outboard drive device including a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft with a propeller, and a power coupling system for transferring power from the motor to the propeller shaft.
  • the power coupling system involves a transmission including side-by-side positioning of forward and reverse gears of the device, which are rotatably engaged with a drive shaft. Particular variables of the system enable increased power output to be transmitted through the transmission, while also providing quick and efficient power distribution among different rotations of the propeller shaft of the device.
  • an outboard drive device for a boat comprises a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft.
  • the power coupling system comprises a transmission.
  • the transmission comprises a transmission drive shaft, first and second power transfer means with corresponding forward and reverse gears, and a drive shaft.
  • the first and second power transfer means are selectively engageable with the corresponding forward and reverse gears.
  • the power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft.
  • the first and second power transfer means are rotatably connected with the transmission drive shaft.
  • the forward and reverse gears are situated on separate gear shafts of the transmission.
  • the forward and reverse gears are rotatably engaged with the drive shaft and transfer power to said drive shaft when the forward or reverse gears are engaged by corresponding of the first and second power transfer means.
  • an outboard drive device for a boat comprises a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft.
  • the power coupling system comprises a transmission.
  • the transmission comprises a transmission drive shaft, first and second power transfer means with corresponding forward and reverse gears, and a drive shaft.
  • the first and second power transfer means are selectively engageable with the corresponding forward and reverse gears.
  • the power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft.
  • the first and second power transfer means are rotatably connected with the transmission drive shaft.
  • the forward and reverse gears are gear wheels. Each of the forward and reverse gear wheels are rotatably connected with a gear wheel of the drive shaft.
  • the forward gear when engaged by the first power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a first direction.
  • the reverse gear when engaged by the second power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a second direction.
  • FIG. 1 is a perspective side view of an outboard drive device in accordance with certain embodiments of the invention, wherein functioning of a power coupling system of the device is depicted with regard to rotation of a propeller shaft of the device in a clockwise direction;
  • FIG. 2 is the same view of the outboard drive device of FIG. 1 , but depicting function of the power coupling system with regard to rotation of the propeller shaft of the device in a counter-clockwise direction in accordance with certain embodiments of the invention.
  • FIGS. 1 and 2 show same view of an outboard drive device 10 in accordance with certain embodiments of the invention.
  • the outboard drive device 10 includes a motor 12 , a propeller shaft 14 for driving a propeller (not shown) and a power coupling system 16 for transferring power from the motor 12 to the propeller shaft 14 .
  • the motor 12 is schematically illustrated as a block within the drawings, and is merely done to keep the drawings simplified.
  • the motor 12 includes a crankshaft 18 that protrudes and extends from the motor 12 , and which rotates when the motor 12 is run.
  • the outboard drive device 10 is configured with one or more housings to contain these assemblies. However, in order to detail the operation of the device 10 with sufficient illustration, these one or more housings are not shown.
  • the outboard drive device 10 is generally configured for being mounted to a hull of a boat, whereby the device 10 can be fastened/removed from the boat as necessary. To that end, when fastened to a boat, the outboard drive device 10 would generally extend downward from the boat hull.
  • the outboard drive device 10 would generally include fastening means (typically, on an upper front side of a housing containing the motor 12 ) for fastening the device 10 to a stern of the boat hull.
  • such fastening means can also include a trim/tilt system, such as a hydraulic or electric trim/tilt system, for raising or lowering the propeller shaft 14 (and propeller thereon) from or into the water.
  • a trim/tilt system such as a hydraulic or electric trim/tilt system
  • the propeller shaft 14 and the propeller are lowered below the water line (and thus, also below the boat hull).
  • the outboard drive device 10 is arranged to project a distance into the water when operated, such that the propeller shaft 14 and a lower portion of the device 10 are immersed in the water, with the propeller shaft 14 (and propeller) being well below the water line.
  • the motor 12 includes the crankshaft 18 , which is rotated by the motor 12 so as to provide output power.
  • the crankshaft 18 extends substantially horizontally from the motor 12 when the outboard drive device 10 is operated.
  • the crankshaft 18 can be somewhat angled.
  • the crankshaft 18 can deviate from being substantially horizontally as it extends from the motor 12 .
  • the crankshaft 18 can deviate from the horizontal plane, for example, by no more than 10°, perhaps more preferably by no more than 5°, and perhaps even more preferably by no more than 2°.
  • crankshaft 18 can be arranged with an angle of no more than 10° from horizontal, and preferably no more than 5° from horizontal, or alternately, the crankshaft 18 can simply extend in the horizontal plane (so as to be generally parallel to the longitudinal axis of the boat).
  • the crankshaft 18 is arranged substantially parallel to the propeller shaft 14 .
  • the crankshaft 18 and propeller shaft 14 can deviate from being substantially parallel to one another.
  • the angle between an axis of the crankshaft 18 and an axis of the propeller shaft 14 can be no more than 20°, perhaps more preferably no more than 10° and perhaps even more preferably no more than 5°.
  • the crankshaft 18 can be arranged lengthwise with the boat, wherein the crankshaft 18 extends along the longitudinal axis of the boat.
  • the propeller shaft 14 is also situated to extend substantially parallel to the longitudinal axis of the boat.
  • the motor 12 of the outboard drive device 10 can be an outboard motor.
  • the design of the outboard drive device 10 enables more powerful motors (that are non-typical for outboard drive devices) to be configured with the device 10 .
  • the motor 12 is an automotive engine or an industrial base engine.
  • the motor 12 can be a diesel V8 engine.
  • the motor 12 in certain embodiments, can provide power output up to and greater than 1000 hp, e.g., with the power output of the motor 12 generally ranging from 100 kW (approximately 134 hp) to 1000 kW (approximately 1341 hp).
  • the system 16 features a plurality of engaging gear wheels, the configuration of which has been found to provide stable and efficient operation (particularly for outboard drive device applications), even when driven by significant power input, e.g., such as from an automotive engine or industrial base engine.
  • the power coupling system 16 at its input includes a power transfer device 20 used to connect the crankshaft 18 of the motor 12
  • the system 16 at its output further includes an endless loop flexible drive coupling 30 used to connect the propeller shaft 14
  • one or both of the power transfer device 20 and the endless loop flexible drive coupling 30 can take the form of a belt (e.g., toothed belt); however, the invention should not be limited to such.
  • one or both of the power transfer device 20 and the endless loop flexible drive coupling 30 can alternatively involve a chain or interlocking gear wheels which connect to corresponding portions of the power coupling system 16 .
  • the transmission 22 includes a transmission drive shaft 24 with corresponding drive shaft gear wheel 24 a , first and second power transfer means 26 a and 26 b , and a drive shaft 28 with corresponding drive shaft gear wheel 28 a .
  • the crankshaft 18 can be connected to the transmission drive shaft 24 via the power transfer device 20 .
  • the power transfer device 20 connects corresponding gear wheels 18 a and 24 a situated on the shafts 18 and 24 , respectively.
  • the power transfer device 20 extends substantially vertically between the crankshaft 18 and the transmission drive shaft 24 .
  • the first and second power transfer means 26 a , 26 b involve clutch plates which are rotatably connected to the transmission drive shaft 24 .
  • the first power transfer means 26 a is situated on the transmission drive shaft 24 so as to correspondingly rotate with such shaft 24 .
  • the first power transfer means 26 a is rotatably engaged with the second power transfer means 26 b .
  • the second power transfer means 26 b rotates opposite to the transmission drive shaft's rotation. While such configuration of the first and second power transfer means 26 a , 26 b is further detailed herein, it should be appreciated that the system 16 could be modified with the locations of the means 26 a , 26 b being exchanged.
  • the transmission 22 further includes a forward gear 32 a and a reverse gear 32 b that function in selectively rotating the drive shaft 28 of the endless loop flexible drive coupling 30 , e.g., via rotatable engagement with the corresponding gear wheel 28 a of the drive shaft 28 .
  • forward and reverse designations, with reference to the gears 32 a and 32 b , are merely used to indicate the corresponding opposing directions by which the drive shaft 28 can be rotated, and not for indicating traveling direction of a boat on which the outboard drive device 10 is fastened.
  • the forward and reverse gears 32 a , 32 b are gear wheels. Depending on whether the outboard drive device 10 is set to rotate the propeller shaft in clockwise or counter-clockwise direction, the forward gear 32 a or reverse gear 32 b is selectively engaged with the corresponding first power transfer means 26 a or second power transfer means 26 b , respectively (while the other of the forward or reverse gears 32 a , 32 b is left unengaged). With continued reference to FIGS. 1 and 2 , the forward gear 32 a is positioned on the transmission drive shaft 24 and, in certain embodiments as shown, is situated internal to the first power transfer means 26 a .
  • the transmission drive shaft 24 functions as a gear shaft for rotating the propeller shaft 14 in one direction (e.g., clockwise direction).
  • the reverse gear 32 b is positioned on a separate gear shaft 34 and, in certain embodiments as shown, is situated internal to the second power transfer means 26 a so as to function for rotating the propeller shaft 14 in opposite direction (e.g., counter-clockwise direction).
  • the forward gear 32 a is lockingly engaged by the first power transfer means 26 a .
  • the first power transfer means 26 a and the forward gear 32 a are correspondingly rotated (e.g., in counter-clockwise direction A).
  • the forward gear 32 a is engaged with the drive shaft 28 via threaded engagement with a gear wheel 28 a of the shaft 28 .
  • the drive shaft 28 is correspondingly rotated, but in opposite direction (e.g., in clockwise direction B).
  • the rotation of the drive shaft 28 correspondingly rotates the propeller shaft 14 (e.g., in clockwise direction B) via their connection by the endless loop flexible drive coupling 30 .
  • the reverse gear 32 b is correspondingly not lockingly engaged with the second power transfer means 26 b .
  • the gear 32 b rotates freely with the gear wheel 28 a of the drive shaft 28 without any force applied therefrom to the shaft 28 .
  • the reverse gear 32 b is lockingly engaged by the second power transfer means 26 b .
  • the second power transfer means 26 b is correspondingly rotated, but in opposing direction (e.g., in clockwise direction B), via its connection with the first power transfer means 26 a .
  • the reverse gear 32 b is engaged with the drive shaft 28 via threaded engagement with the shaft's gear wheel 28 a .
  • the drive shaft 28 is correspondingly rotated, but in opposite direction (e.g., in counter-clockwise direction A).
  • the rotation of the drive shaft 28 correspondingly rotates the propeller shaft 14 (in counter-clockwise direction A) via their connection with the endless loop flexible drive coupling 30 .
  • the forward gear 32 a is correspondingly not lockingly engaged with the first power transfer means 26 a .
  • the gear 32 a rotates freely with the gear wheel 28 a of the drive shaft 28 without any force applied therefrom to the shaft 28 .
  • the outboard drive device 10 can be further configured to have a neutral mode. Particularly, such neutral mode would involve neither of the forward or reverse gears 32 a , 32 b being lockingly engaged with the corresponding first and second power transfer means 26 a , 26 b .
  • the transmission 22 can also include additional gears or similar structure to change ratio of rotational speed of the propeller with respect to rotational speed of the crankshaft 16 .
  • the outboard drive device 10 is arranged with a transmission 22 so that the output power is reversible via the power coupling system 16 , wherein the propeller shaft 14 (and propeller) can be driven (rotated) in a clockwise direction or a counter-clockwise direction via separate gear shafts 24 and 34 , respectively.
  • first and second power transfer means 26 a , 26 b can be correlated to separate clutch housings, while the corresponding forward and reverse gears 32 a , 32 b can be correlated to clutch discs corresponding to such housings.
  • the forward and reverse gears 32 a , 32 b can be lockingly engaged with the corresponding power transfer means 26 a , 26 b via application of hydraulic pressure provided via a hydraulic pump (not shown).
  • the power coupling system 16 has many aspects that distinguish it from conventional outboard drive devices.
  • the embodied transmission 22 is manual actuated, and through use of the separate, yet similar gear shafts 24 and 34 , the output power in rotating the propeller shaft 14 (and thus, a propeller connected thereto) in either clockwise or counter-clockwise directions can be provided to be substantially equal.
  • the output power in driving the propeller shaft 14 in either of clockwise or counter-clockwise directions can be rotated with similar speed and with considerable power.
  • the housing for the transmission 16 can be configured as more compact than has been conventionally known for outboard drive devices.
  • the separate shafts 24 , 34 afford the corresponding housing to have reduced depth.
  • rotatably connecting the forward and reverse gears 32 a 32 b to the drive shaft 28 via gear wheels affords the corresponding housing to have reduced height.
  • the gear shafts 24 and 34 are made substantially parallel to each other (e.g., in same horizontal plane).
  • crankshaft 18 and the transmission drive shaft 24 extend from a first side of the outboard drive device 10 .
  • the power transfer device 20 is arranged towards a hull or stern of the boat, wherein the crankshaft 18 and the transmission drive shaft 24 project away from such hull/stern.
  • the crankshaft 18 , the transmission shaft 24 , the further gear shaft 34 , the drive shaft 28 of the endless loop flexible drive coupling 22 , and the propeller shaft 14 extend in horizontal or substantially horizontal planes relative to vertical extent of the outboard drive device 10 .
  • the crankshaft 18 , the transmission shaft 24 , the further gear shaft 34 , the drive shaft 28 of the endless loop flexible drive coupling 22 , and the propeller shaft 14 are arranged in parallel or substantially in parallel.
  • various combinations of the shafts 24 , 34 , 28 , and 14 extend from the outboard drive device 10 in one or more common planes.
  • the transmission and further gear shafts (collectively, the gear shafts) 24 and 34 can be in a common, e.g., horizontal or substantially horizontal, plane.
  • the crankshaft 18 and propeller shaft 14 can be distributed along a common, e.g., vertical or substantially vertical, plane.
  • the crankshaft 18 and/or the propeller shaft 14 can be distributed along a common, e.g., vertical or substantially vertical, plane with one or more of the transmission shaft 24 , the further gear shaft 34 , and the drive shaft 28 of the endless loop flexible drive coupling 30 .
  • gears 32 a , 32 b could be supported/rotated using structure of the outboard drive device 10 (other than by shafts), while maintaining general positioning of the gears 32 a , 32 b in side-to-side manner within the transmission 16 .

Abstract

An outboard drive device comprising a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft with a propeller, and a power coupling system for transferring power from the motor to the propeller shaft. The power coupling system involves a transmission including side-by-side positioning of forward and reverse gears of the device, which are rotatably engaged with a drive shaft. Particular variables of the system enable increased power output to be transmitted through the transmission, while also providing quick and efficient power distribution among different rotations of the propeller shaft of the device.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an outboard drive device for a boat. More specifically, the present invention relates to an outboard drive device comprising a motor with crankshaft, a propeller situated below the motor when said outboard drive device is operated with a boat, and a power coupling system for transferring power from the motor to the propeller.
  • BACKGROUND
  • A variety of differing outboard drive devices are known from prior art. Generally, such outboard drive devices include a motor housed in an upper portion of the drive device. In some cases, a crank shaft of the motor extends substantially vertically downward to a propeller shaft arranged in a lower portion of the outboard drive device. The propeller shaft, unlike the crank shaft, is often oriented to be substantially horizontal when said outboard drive device is operated. For example, the vertical crankshaft is connected to the horizontal propeller shaft by means of bevel gears for transferring torque from the vertical crankshaft to the horizontal propeller shaft.
  • Another known type of outboard drive device involves a motor having a crankshaft extending substantially horizontally. To that end, the crankshaft is connected to a horizontal propeller shaft through a vertically extending drive shaft and bevel gears. In some cases, a forward/reverse/neutral transmission can be arranged between the crankshaft and the vertical drive shaft.
  • A further known type of outboard drive device involves an outboard propulsion system comprising a motor having a horizontal crankshaft connected to a water jet through a belt.
  • One problem with conventional outboard drive devices is that they are limited in terms of the motors (or engines) they are able to be configured with, which is often a consequence of their power transmission systems. To that end, even when the power transmission systems are modified to be more durable in functioning with larger, more powerful motors, they correspondingly are complex in design, and thus expensive to produce and maintain over time. Embodiments of the present invention are intended to the address the above-described challenges as well as others.
  • BRIEF SUMMARY OF SOME EMBODIMENTS OF THE INVENTION
  • The present invention relates to an outboard drive device including a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft with a propeller, and a power coupling system for transferring power from the motor to the propeller shaft. The power coupling system involves a transmission including side-by-side positioning of forward and reverse gears of the device, which are rotatably engaged with a drive shaft. Particular variables of the system enable increased power output to be transmitted through the transmission, while also providing quick and efficient power distribution among different rotations of the propeller shaft of the device.
  • In one embodiment of the invention, an outboard drive device for a boat is provided. The outboard drive device comprises a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft. The power coupling system comprises a transmission. The transmission comprises a transmission drive shaft, first and second power transfer means with corresponding forward and reverse gears, and a drive shaft. The first and second power transfer means are selectively engageable with the corresponding forward and reverse gears. The power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft. The first and second power transfer means are rotatably connected with the transmission drive shaft. The forward and reverse gears are situated on separate gear shafts of the transmission. The forward and reverse gears are rotatably engaged with the drive shaft and transfer power to said drive shaft when the forward or reverse gears are engaged by corresponding of the first and second power transfer means.
  • In another embodiment of the invention, an outboard drive device for a boat is provided. The outboard drive device comprises a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft. The power coupling system comprises a transmission. The transmission comprises a transmission drive shaft, first and second power transfer means with corresponding forward and reverse gears, and a drive shaft. The first and second power transfer means are selectively engageable with the corresponding forward and reverse gears. The power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft. The first and second power transfer means are rotatably connected with the transmission drive shaft. The forward and reverse gears are gear wheels. Each of the forward and reverse gear wheels are rotatably connected with a gear wheel of the drive shaft. The forward gear when engaged by the first power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a first direction. The reverse gear when engaged by the second power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a second direction.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not necessarily to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
  • FIG. 1 is a perspective side view of an outboard drive device in accordance with certain embodiments of the invention, wherein functioning of a power coupling system of the device is depicted with regard to rotation of a propeller shaft of the device in a clockwise direction; and
  • FIG. 2 is the same view of the outboard drive device of FIG. 1, but depicting function of the power coupling system with regard to rotation of the propeller shaft of the device in a counter-clockwise direction in accordance with certain embodiments of the invention.
  • DETAILED DESCRIPTION
  • The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements, and all other elements employ that which is known to those of ordinary skill in the field of the invention. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
  • As already noted above, FIGS. 1 and 2 show same view of an outboard drive device 10 in accordance with certain embodiments of the invention. The outboard drive device 10 includes a motor 12, a propeller shaft 14 for driving a propeller (not shown) and a power coupling system 16 for transferring power from the motor 12 to the propeller shaft 14. As should be appreciated (and as further detailed below), the motor 12 is schematically illustrated as a block within the drawings, and is merely done to keep the drawings simplified. As further shown, the motor 12 includes a crankshaft 18 that protrudes and extends from the motor 12, and which rotates when the motor 12 is run. With reference to the motor 12 with crankshaft 18, the power coupling system 16, and the propeller shaft 14, it should be appreciated that the outboard drive device 10 is configured with one or more housings to contain these assemblies. However, in order to detail the operation of the device 10 with sufficient illustration, these one or more housings are not shown.
  • Continuing with the above, while also not illustrated (but would be understood by the skilled artisan), the outboard drive device 10 is generally configured for being mounted to a hull of a boat, whereby the device 10 can be fastened/removed from the boat as necessary. To that end, when fastened to a boat, the outboard drive device 10 would generally extend downward from the boat hull. For example, while not shown, the outboard drive device 10 would generally include fastening means (typically, on an upper front side of a housing containing the motor 12) for fastening the device 10 to a stern of the boat hull. Commonly, such fastening means can also include a trim/tilt system, such as a hydraulic or electric trim/tilt system, for raising or lowering the propeller shaft 14 (and propeller thereon) from or into the water. For example, upon the outboard drive device 10 being fastened to the boat hull, to further situate the device 10 for operation, the propeller shaft 14 and the propeller are lowered below the water line (and thus, also below the boat hull). Hence, the outboard drive device 10 is arranged to project a distance into the water when operated, such that the propeller shaft 14 and a lower portion of the device 10 are immersed in the water, with the propeller shaft 14 (and propeller) being well below the water line.
  • As described above, the motor 12 includes the crankshaft 18, which is rotated by the motor 12 so as to provide output power. With reference to FIGS. 1 and 2, in certain embodiments, the crankshaft 18 extends substantially horizontally from the motor 12 when the outboard drive device 10 is operated. However, in the context of the embodiments described herein, a skilled artisan would recognize that the crankshaft 18 can be somewhat angled. As such, in certain embodiments, the crankshaft 18 can deviate from being substantially horizontally as it extends from the motor 12. In certain embodiments, the crankshaft 18 can deviate from the horizontal plane, for example, by no more than 10°, perhaps more preferably by no more than 5°, and perhaps even more preferably by no more than 2°. For example, the crankshaft 18 can be arranged with an angle of no more than 10° from horizontal, and preferably no more than 5° from horizontal, or alternately, the crankshaft 18 can simply extend in the horizontal plane (so as to be generally parallel to the longitudinal axis of the boat).
  • In certain embodiments, the crankshaft 18 is arranged substantially parallel to the propeller shaft 14. However, in certain embodiments, the crankshaft 18 and propeller shaft 14 can deviate from being substantially parallel to one another. In certain embodiments, the angle between an axis of the crankshaft 18 and an axis of the propeller shaft 14 can be no more than 20°, perhaps more preferably no more than 10° and perhaps even more preferably no more than 5°. In certain embodiments, the crankshaft 18 can be arranged lengthwise with the boat, wherein the crankshaft 18 extends along the longitudinal axis of the boat. Thus, in such cases, the propeller shaft 14 is also situated to extend substantially parallel to the longitudinal axis of the boat.
  • The motor 12 of the outboard drive device 10 can be an outboard motor. However, as will detailed herein, the design of the outboard drive device 10 enables more powerful motors (that are non-typical for outboard drive devices) to be configured with the device 10. To that end, in certain embodiments, the motor 12 is an automotive engine or an industrial base engine. For example, the motor 12 can be a diesel V8 engine. For further reference, the motor 12, in certain embodiments, can provide power output up to and greater than 1000 hp, e.g., with the power output of the motor 12 generally ranging from 100 kW (approximately 134 hp) to 1000 kW (approximately 1341 hp). As will be further detailed, the system 16 features a plurality of engaging gear wheels, the configuration of which has been found to provide stable and efficient operation (particularly for outboard drive device applications), even when driven by significant power input, e.g., such as from an automotive engine or industrial base engine.
  • In certain embodiments, as shown in FIGS. 1 and 2, the power coupling system 16 at its input includes a power transfer device 20 used to connect the crankshaft 18 of the motor 12, while the system 16 at its output further includes an endless loop flexible drive coupling 30 used to connect the propeller shaft 14. In certain embodiments, with reference to FIGS. 1 and 2, one or both of the power transfer device 20 and the endless loop flexible drive coupling 30 can take the form of a belt (e.g., toothed belt); however, the invention should not be limited to such. For example, one or both of the power transfer device 20 and the endless loop flexible drive coupling 30 can alternatively involve a chain or interlocking gear wheels which connect to corresponding portions of the power coupling system 16.
  • Turning back to the power coupling system 16, as shown in FIGS. 1 and 2, the system 16 involves a transmission 22. The transmission 22 includes a transmission drive shaft 24 with corresponding drive shaft gear wheel 24 a, first and second power transfer means 26 a and 26 b, and a drive shaft 28 with corresponding drive shaft gear wheel 28 a. As described above, for transfer of power from the motor 12, the crankshaft 18 can be connected to the transmission drive shaft 24 via the power transfer device 20. In certain embodiments as shown, the power transfer device 20 connects corresponding gear wheels 18 a and 24 a situated on the shafts 18 and 24, respectively. As illustrated, in certain embodiments, the power transfer device 20 extends substantially vertically between the crankshaft 18 and the transmission drive shaft 24.
  • As will be further detailed herein, in certain embodiments, the first and second power transfer means 26 a, 26 b involve clutch plates which are rotatably connected to the transmission drive shaft 24. For example, as shown, in certain embodiments, the first power transfer means 26 a is situated on the transmission drive shaft 24 so as to correspondingly rotate with such shaft 24. In such embodiment, the first power transfer means 26 a is rotatably engaged with the second power transfer means 26 b. Thus, via such indirect engagement with the transmission drive shaft 24, the second power transfer means 26 b rotates opposite to the transmission drive shaft's rotation. While such configuration of the first and second power transfer means 26 a, 26 b is further detailed herein, it should be appreciated that the system 16 could be modified with the locations of the means 26 a, 26 b being exchanged.
  • The transmission 22 further includes a forward gear 32 a and a reverse gear 32 b that function in selectively rotating the drive shaft 28 of the endless loop flexible drive coupling 30, e.g., via rotatable engagement with the corresponding gear wheel 28 a of the drive shaft 28. It should be appreciated that “forward” and “reverse” designations, with reference to the gears 32 a and 32 b, are merely used to indicate the corresponding opposing directions by which the drive shaft 28 can be rotated, and not for indicating traveling direction of a boat on which the outboard drive device 10 is fastened. To that end, while “forward” and “reverse” are used herein with reference to the gears 32 a and 32 b, other designations (such as “first” and “second”) could have just as well been used. Furthermore, similar to that described above with reference to the power transfer means 26 a and 26 b, the locations of the forward and reverse gears 32 a and 32 b could be correspondingly exchanged.
  • In certain embodiments, as shown, the forward and reverse gears 32 a, 32 b are gear wheels. Depending on whether the outboard drive device 10 is set to rotate the propeller shaft in clockwise or counter-clockwise direction, the forward gear 32 a or reverse gear 32 b is selectively engaged with the corresponding first power transfer means 26 a or second power transfer means 26 b, respectively (while the other of the forward or reverse gears 32 a, 32 b is left unengaged). With continued reference to FIGS. 1 and 2, the forward gear 32 a is positioned on the transmission drive shaft 24 and, in certain embodiments as shown, is situated internal to the first power transfer means 26 a. To that end, the transmission drive shaft 24 functions as a gear shaft for rotating the propeller shaft 14 in one direction (e.g., clockwise direction). By way of comparison, the reverse gear 32 b is positioned on a separate gear shaft 34 and, in certain embodiments as shown, is situated internal to the second power transfer means 26 a so as to function for rotating the propeller shaft 14 in opposite direction (e.g., counter-clockwise direction).
  • For example, with reference to FIG. 1, when the outboard drive device 10 is set for rotating the propeller shaft 14 in a first (e.g., clockwise) direction, the forward gear 32 a is lockingly engaged by the first power transfer means 26 a. Thus, upon rotation of the transmission drive shaft 24 (e.g., via rotation of the crankshaft 18 in counter-clockwise direction A), the first power transfer means 26 a and the forward gear 32 a are correspondingly rotated (e.g., in counter-clockwise direction A). The forward gear 32 a is engaged with the drive shaft 28 via threaded engagement with a gear wheel 28 a of the shaft 28. To that end, given rotation of the first power transfer means 26 a and its locking engagement with the forward gear 32 a, the drive shaft 28 is correspondingly rotated, but in opposite direction (e.g., in clockwise direction B). The rotation of the drive shaft 28 correspondingly rotates the propeller shaft 14 (e.g., in clockwise direction B) via their connection by the endless loop flexible drive coupling 30.
  • In the case of the outboard drive device 10 being set for rotating the propeller shaft 14 in the first (e.g., clockwise) direction, the reverse gear 32 b is correspondingly not lockingly engaged with the second power transfer means 26 b. Thus, even though such second power transfer means 26 b correspondingly rotates (in opposite direction) relative to rotation of the transmission drive shaft 24, due to the reverse gear 32 b not being lockingly engaged with the second power transfer means 26 b, the gear 32 b rotates freely with the gear wheel 28 a of the drive shaft 28 without any force applied therefrom to the shaft 28.
  • Conversely, with reference to FIG. 2, when the outboard drive device 10 is set for rotating the propeller shaft 14 in a second (e.g., counter-clockwise) direction, the reverse gear 32 b is lockingly engaged by the second power transfer means 26 b. Thus, upon rotation of the transmission drive shaft 24 (e.g., via rotation of the crankshaft 18 in counter-clockwise direction A and corresponding rotation of the first power transfer means 26 a in same direction), the second power transfer means 26 b is correspondingly rotated, but in opposing direction (e.g., in clockwise direction B), via its connection with the first power transfer means 26 a. The reverse gear 32 b is engaged with the drive shaft 28 via threaded engagement with the shaft's gear wheel 28 a. To that end, given rotation of the second power transfer means 26 b and its locking engagement with the reverse gear 32 b, the drive shaft 28 is correspondingly rotated, but in opposite direction (e.g., in counter-clockwise direction A). The rotation of the drive shaft 28 correspondingly rotates the propeller shaft 14 (in counter-clockwise direction A) via their connection with the endless loop flexible drive coupling 30.
  • In the case of the outboard drive device 10 being set for rotating the propeller shaft 14 in the second (e.g., counter-clockwise) direction, the forward gear 32 a is correspondingly not lockingly engaged with the first power transfer means 26 a. Thus, even though such first power transfer means 26 a correspondingly rotates relative to rotation of the transmission drive shaft 24, due to the forward gear 32 a not being lockingly engaged with the first power transfer means 26 a, the gear 32 a rotates freely with the gear wheel 28 a of the drive shaft 28 without any force applied therefrom to the shaft 28.
  • In view of the above, it should be appreciated that the outboard drive device 10 can be further configured to have a neutral mode. Particularly, such neutral mode would involve neither of the forward or reverse gears 32 a, 32 b being lockingly engaged with the corresponding first and second power transfer means 26 a, 26 b. In certain embodiments, the transmission 22 can also include additional gears or similar structure to change ratio of rotational speed of the propeller with respect to rotational speed of the crankshaft 16. Hence, the outboard drive device 10 is arranged with a transmission 22 so that the output power is reversible via the power coupling system 16, wherein the propeller shaft 14 (and propeller) can be driven (rotated) in a clockwise direction or a counter-clockwise direction via separate gear shafts 24 and 34, respectively.
  • While not previously referenced as such, it should be appreciated that the first and second power transfer means 26 a, 26 b can be correlated to separate clutch housings, while the corresponding forward and reverse gears 32 a, 32 b can be correlated to clutch discs corresponding to such housings. To that end, in certain embodiments, the forward and reverse gears 32 a, 32 b can be lockingly engaged with the corresponding power transfer means 26 a, 26 b via application of hydraulic pressure provided via a hydraulic pump (not shown).
  • In view of the above, it should be understood that the power coupling system 16 has many aspects that distinguish it from conventional outboard drive devices. For example, unlike known transmission types involving variable pulleys or automatic types, the embodied transmission 22 is manual actuated, and through use of the separate, yet similar gear shafts 24 and 34, the output power in rotating the propeller shaft 14 (and thus, a propeller connected thereto) in either clockwise or counter-clockwise directions can be provided to be substantially equal. In addition, via use of the interlocking gear wheels with the separate gear shafts 24 and 34 and drive shaft 28, the output power in driving the propeller shaft 14 in either of clockwise or counter-clockwise directions can be rotated with similar speed and with considerable power. Furthermore, with respect to the interconnection of the gear shafts 24 and 34 and further drive shaft 28 via gear wheels, the housing for the transmission 16 can be configured as more compact than has been conventionally known for outboard drive devices. For example, instead of a housing needing to accommodate a single horizontal shaft situating forward and reverse gears on opposing ends of the shaft, the separate shafts 24, 34 afford the corresponding housing to have reduced depth. Likewise, rotatably connecting the forward and reverse gears 32 a 32 b to the drive shaft 28 via gear wheels affords the corresponding housing to have reduced height. To that end, and with reference to FIGS. 1 and 2, in certain embodiments, the gear shafts 24 and 34 are made substantially parallel to each other (e.g., in same horizontal plane).
  • Regarding further aspects of the design, as shown in FIGS. 1 and 2, the crankshaft 18 and the transmission drive shaft 24 extend from a first side of the outboard drive device 10. To that end, in certain embodiments, the power transfer device 20 is arranged towards a hull or stern of the boat, wherein the crankshaft 18 and the transmission drive shaft 24 project away from such hull/stern.
  • Furthermore, in certain embodiments, the crankshaft 18, the transmission shaft 24, the further gear shaft 34, the drive shaft 28 of the endless loop flexible drive coupling 22, and the propeller shaft 14 extend in horizontal or substantially horizontal planes relative to vertical extent of the outboard drive device 10. For example, the crankshaft 18, the transmission shaft 24, the further gear shaft 34, the drive shaft 28 of the endless loop flexible drive coupling 22, and the propeller shaft 14 are arranged in parallel or substantially in parallel. Furthermore, in certain embodiments, various combinations of the shafts 24, 34, 28, and 14 extend from the outboard drive device 10 in one or more common planes. For example, the transmission and further gear shafts (collectively, the gear shafts) 24 and 34 can be in a common, e.g., horizontal or substantially horizontal, plane. As a further example, the crankshaft 18 and propeller shaft 14 can be distributed along a common, e.g., vertical or substantially vertical, plane. Alternatively, or in combination, the crankshaft 18 and/or the propeller shaft 14 can be distributed along a common, e.g., vertical or substantially vertical, plane with one or more of the transmission shaft 24, the further gear shaft 34, and the drive shaft 28 of the endless loop flexible drive coupling 30. Finally, while the forward and reverse gears 32 a, 32 b have been described as being situated on separate gear shafts 24, 34, the gears 32 a, 32 b could be supported/rotated using structure of the outboard drive device 10 (other than by shafts), while maintaining general positioning of the gears 32 a, 32 b in side-to-side manner within the transmission 16.
  • Thus, embodiments of the invention are disclosed. Although the present invention has been described in considerable detail with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments of the invention are possible. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention.

Claims (28)

What is claimed is:
1. An outboard drive device for a boat comprising a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft;
wherein the power coupling system comprises a transmission, the transmission comprising a transmission drive shaft, first and second power transfer means with corresponding forward and reverse gears, and a drive shaft, wherein the first and second power transfer means are selectively engageable with the corresponding forward and reverse gears;
wherein the power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft;
wherein the first and second power transfer means are rotatably connected with the transmission drive shaft; and
wherein the forward and reverse gears are situated on separate gear shafts of the transmission, the forward and reverse gears rotatably engaged with the drive shaft and transferring power to said drive shaft when the forward or reverse gears are engaged by corresponding of the first and second power transfer means.
2. The outboard drive device of claim 1 wherein the crankshaft extends substantially horizontally from the motor.
3. The outboard drive device of claim 2 wherein the crankshaft is substantially parallel to the propeller shaft.
4. The outboard drive device of claim 3 wherein the crankshaft and propeller shaft are distributed in a common substantially vertical plane.
5. The outboard drive device of claim 4 wherein the crankshaft, the propeller shaft, and drive shaft are distributed in a common substantially vertical plane.
6. The outboard drive device of claim 1 wherein the gear shafts of the transmission are distributed in a common substantially horizontal plane.
7. The outboard drive device of claim 1 wherein one or both of the power transfer device and the endless loop flexible drive coupling take the form of a belt connecting corresponding gear wheels.
8. The outboard drive device of claim 1 wherein the transmission drive shaft comprises one of the gear shafts for the forward and reverse gears.
9. The outboard drive device of claim 8 wherein other of the gear shafts for the forward and reverse gears is indirectly engaged with the transmission drive shaft.
10. The outboard drive device of claim 8 wherein the first power transfer means and forward gear are situated on the transmission drive shaft, wherein the first power transfer means rotates correspondingly with the transmission drive shaft.
11. The outboard drive device of claim 10 wherein the second power transfer means is rotatably engaged with the first power transfer means yet rotates opposite of the first power transfer means.
12. The outboard drive device of claim 1 wherein the forward and reverse gears are gear wheels, each rotatably connected with a gear wheel of the drive shaft.
13. The outboard drive device of claim 12 wherein the forward gear when engaged by the first power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a first direction.
14. The outboard drive device of claim 13 wherein the first direction is a clockwise direction.
15. The outboard drive device of claim 14 wherein the reverse gear when engaged by the second power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a second direction, the second direction being opposite of the first direction.
16. An outboard drive device for a boat comprising a motor having a crankshaft, wherein said outboard drive device further comprises a propeller shaft for rotating a propeller, and a power coupling system for transferring power from the motor to the propeller shaft;
wherein the power coupling system comprises a transmission, the transmission comprising a transmission drive shaft, first and second power transfer means with corresponding forward and power transfer means are selectively engageable with the corresponding forward and reverse gears;
wherein the power coupling system at its input includes a power transfer device connecting the crankshaft of the motor with the transmission drive shaft, and the system at its output includes an endless loop flexible drive coupling connecting the drive shaft with the propeller shaft;
wherein the first and second power transfer means are rotatably connected with the transmission drive shaft;
wherein the forward and reverse gears are gear wheels, each of the forward and reverse gear wheels rotatably connected with a gear wheel of the drive shaft;
wherein the forward gear when engaged by the first power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a first direction; and
wherein the reverse gear when engaged by the second power transfer means and rotated correspondingly rotates the gear wheel of the drive shaft, which results in corresponding rotation of the propeller shaft in a second direction.
17. The outboard drive device of claim 16 wherein the forward and reverse gear wheels are separately situated in the transmission in side-to-side manner.
18. The outboard drive device of claim 16 wherein the forward and reverse gear wheels are situated on separate gear shafts of the transmission.
19. The outboard drive device of claim 18 wherein the separate gear shafts of the transmission are distributed in a common substantially horizontal plane.
20. The outboard drive device of claim 18 wherein the transmission drive shaft comprises one of the gear shafts for the forward and reverse gear wheels.
21. The outboard drive device of claim 20 wherein other of the gear shafts for the forward and reverse gear wheels is indirectly engaged with the transmission drive shaft.
22. The outboard drive device of claim 20 wherein the first power transfer means and forward gear wheel are situated on the transmission drive shaft, wherein the first power transfer means rotates correspondingly with the transmission drive shaft.
23. The outboard drive device of claim 22 wherein the second power transfer means is rotatably engaged with the first power transfer means yet rotates opposite of the first power transfer means.
24. The outboard drive device of claim 16 wherein the motor is either an automotive engine or an industrial base engine.
25. The outboard drive device of claim 24 wherein the motor is a diesel V8 engine.
26. The outboard drive device of claim 24 wherein the motor is configured to provide output power to the power coupling system greater than 1000 hp.
27. The outboard drive device of claim 16 wherein the crankshaft is substantially parallel to the propeller shaft.
28. The outboard drive device of claim 27 wherein the crankshaft and propeller shaft are distributed in a common substantially vertical plane.
US14/299,246 2014-06-09 2014-06-09 Outboard drive device with power coupling system Active 2035-01-31 US9856005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/299,246 US9856005B2 (en) 2014-06-09 2014-06-09 Outboard drive device with power coupling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/299,246 US9856005B2 (en) 2014-06-09 2014-06-09 Outboard drive device with power coupling system

Publications (2)

Publication Number Publication Date
US20150353177A1 true US20150353177A1 (en) 2015-12-10
US9856005B2 US9856005B2 (en) 2018-01-02

Family

ID=54768956

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/299,246 Active 2035-01-31 US9856005B2 (en) 2014-06-09 2014-06-09 Outboard drive device with power coupling system

Country Status (1)

Country Link
US (1) US9856005B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802687B2 (en) 2010-02-11 2017-10-31 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US9957027B2 (en) 2007-12-12 2018-05-01 Cimco Marine AB Outboard drive device
US10023283B2 (en) 2010-02-11 2018-07-17 Seven Marine, Llc Large outboard motor including variable gear transfer case
CN109723533A (en) * 2017-10-27 2019-05-07 迪尔公司 Rotary drive unit for fan
CN110431073A (en) * 2017-03-07 2019-11-08 塞米可马林有限公司 Power transmission device and method for outboard motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268601B2 (en) * 2019-06-28 2022-03-08 Bombardier Recreational Products Inc. Gearbox for a vehicle
CA3068781A1 (en) 2019-06-28 2020-12-28 Bombardier Recreational Products Inc. Snowmobile having a gearbox

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662301A (en) * 1926-04-21 1928-03-13 Thomas C Coykendall System of marine propulsion
EP2229315B1 (en) * 2007-12-12 2013-07-03 Cimco Marine Diesel AB An outboard drive device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722193A (en) 1952-08-30 1955-11-01 Richard B Brindley Belt driven outboard marine motors
US4382797A (en) 1980-09-18 1983-05-10 Outboard Marine Corporation Transom mounted marine propulsion device with lateral crankshaft and power shaft
US4408994A (en) 1980-09-18 1983-10-11 Outboard Marine Corporation Transom mounted marine propulsion device with fore and aft crankshaft and power shaft
JPS596196A (en) 1982-07-05 1984-01-13 Sanshin Ind Co Ltd Outboard engine
US4887983A (en) 1988-09-09 1989-12-19 Brunswick Corporation Chain drive marine propulsion system with dual counterrotating propellers
US4925413A (en) 1988-09-15 1990-05-15 Brunswick Corporation Stern drive marine propulsion system including a chain drive mechanism
US4869692A (en) 1988-09-15 1989-09-26 Brunswick Corporation Outboard marine propulsion system including a chain drive mechanism
US4992066A (en) 1989-07-28 1991-02-12 Watson Robert K Marine motor transmission
US5178566A (en) 1990-06-12 1993-01-12 Ohio Associated Enterprises, Inc. Marine drive system with belt drive
US5435763A (en) 1994-08-01 1995-07-25 Pignata; Richard Outboard power unit having an internal propeller assembly for a boat
JPH09315389A (en) 1996-05-30 1997-12-09 Aisin Seiki Co Ltd Power transmission for inboard-outboard engine
US6206739B1 (en) 1997-12-08 2001-03-27 Ohio Associated Enterprises, Inc. Marine drive system with improved drive belt
US5938490A (en) 1998-01-07 1999-08-17 Rodler; Waldo E. Outboard marine propulsion system
US5961358A (en) 1998-03-16 1999-10-05 Volvo Penta Of The Americas, Inc. Reversible stern drive marine propulsion system
US6884131B2 (en) 2002-01-16 2005-04-26 Yamaha Marine Kabushiki Kaisha Shift mechanism for marine propulsion unit
US7048600B1 (en) 2002-09-17 2006-05-23 Kyle Broussard Method and apparatus for air cooled outboard motor for small marine craft
US6910987B2 (en) 2002-10-22 2005-06-28 Victor Richards Automatic transmission for light vehicles employing V-Twin engines
JP2006076406A (en) 2004-09-08 2006-03-23 Yamaha Marine Co Ltd Propulsion unit and vessel
JP4220970B2 (en) 2005-01-31 2009-02-04 有限会社アークシステム Ship propulsion structure and ship drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662301A (en) * 1926-04-21 1928-03-13 Thomas C Coykendall System of marine propulsion
EP2229315B1 (en) * 2007-12-12 2013-07-03 Cimco Marine Diesel AB An outboard drive device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957027B2 (en) 2007-12-12 2018-05-01 Cimco Marine AB Outboard drive device
US10384755B2 (en) 2010-02-11 2019-08-20 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US9834291B2 (en) 2010-02-11 2017-12-05 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US10358201B2 (en) 2010-02-11 2019-07-23 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US10384756B2 (en) 2010-02-11 2019-08-20 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US9815537B2 (en) 2010-02-11 2017-11-14 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US10023283B2 (en) 2010-02-11 2018-07-17 Seven Marine, Llc Large outboard motor including variable gear transfer case
US10239597B2 (en) 2010-02-11 2019-03-26 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US10358200B2 (en) 2010-02-11 2019-07-23 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US11059554B2 (en) 2010-02-11 2021-07-13 Ab Volvo Penta Large outboard motor for marine vessel application and related methods of making and operating same
US9815538B2 (en) 2010-02-11 2017-11-14 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US9862470B2 (en) 2010-02-11 2018-01-09 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US9802687B2 (en) 2010-02-11 2017-10-31 Seven Marine, Llc Large outboard motor for marine vessel application and related methods of making and operating same
US10933962B2 (en) 2010-02-11 2021-03-02 Ab Volvo Penta Large outboard motor for marine vessel application and related methods of making and operating same
US10647400B2 (en) 2010-02-11 2020-05-12 Ab Volvo Penta Large outboard motor including variable gear transfer case
CN110431073A (en) * 2017-03-07 2019-11-08 塞米可马林有限公司 Power transmission device and method for outboard motor
US11292569B2 (en) 2017-03-07 2022-04-05 Oxe Marine Ab Power transmission device and method for an outboard motor
US11111850B2 (en) * 2017-10-27 2021-09-07 Deere & Company Rotational drive unit for a fan
CN109723533A (en) * 2017-10-27 2019-05-07 迪尔公司 Rotary drive unit for fan

Also Published As

Publication number Publication date
US9856005B2 (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US9856005B2 (en) Outboard drive device with power coupling system
EP2653375B2 (en) An outboard drive device
CA2611392C (en) Ship propulsion unit and ship propulsion method
JP2008516836A5 (en)
US20100311291A1 (en) Marine power splitting gearbox
US8250841B1 (en) Single shaft driven multiple output vehicle
WO2015159931A1 (en) Outboard motor
US20030205426A1 (en) Skid steer vehicle with axle housing having a double gear reduction
EP3168135A1 (en) An outboard motor
US10822069B2 (en) Reverse gear and watercraft equipped with the same
JP7168545B2 (en) multipurpose vehicle
SE470285B (en) Power units for ships
US10161482B1 (en) Planetary transmission arrangements for marine propulsion devices
KR200427761Y1 (en) Power transmission apparatus for coaxial helicopters
KR102503645B1 (en) Multi-speed reducer for ship
JP2005145308A (en) Outboard motor
US11161584B2 (en) Outboard motor
US20230382509A1 (en) Outboard motor transmission with coaxial input and output shafts
JP5618759B2 (en) Ship speed reduction reverse rotation device
KR200407711Y1 (en) Hydraulic clutch for vessel
JP2011201537A (en) Ship propulsion machine
JP2015199373A (en) Marine gear device and vessel equipped with the same
JP2015199372A (en) Marine gear device and vessel equipped with the same
JP2009149204A (en) Power transmission of ship propulsion machine
TH137425A (en) Transmission system for long tail boats

Legal Events

Date Code Title Description
AS Assignment

Owner name: CIMCO MARINE DIESEL AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLODMAN, CHRISTER;BLOMDAHL, ANDREAS;REEL/FRAME:033409/0305

Effective date: 20140611

AS Assignment

Owner name: CIMCO MARINE AB, SWEDEN

Free format text: CHANGE OF NAME;ASSIGNOR:CIMCO MARINE DIESEL AB;REEL/FRAME:039375/0670

Effective date: 20150410

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: OXE MARINE AB, SWEDEN

Free format text: CHANGE OF NAME;ASSIGNOR:CIMCO MARINE AB;REEL/FRAME:052135/0695

Effective date: 20200121

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4