US20150352680A1 - An apparatus and method for manufacturing a steel component - Google Patents

An apparatus and method for manufacturing a steel component Download PDF

Info

Publication number
US20150352680A1
US20150352680A1 US14/649,185 US201414649185A US2015352680A1 US 20150352680 A1 US20150352680 A1 US 20150352680A1 US 201414649185 A US201414649185 A US 201414649185A US 2015352680 A1 US2015352680 A1 US 2015352680A1
Authority
US
United States
Prior art keywords
slider
steel
housing
edger
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/649,185
Inventor
Richard POLIQUIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/649,185 priority Critical patent/US20150352680A1/en
Publication of US20150352680A1 publication Critical patent/US20150352680A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/01Making rigid structural elements or units, e.g. honeycomb structures beams or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/04Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of metal, e.g. skate blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/16Unwinding or uncoiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/005Edge deburring or smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/001Shaping combined with punching, e.g. stamping and perforating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0473U- or C-shaped

Definitions

  • This application relates generally to structural framing components, steel framing components, and an apparatus and method for making the same. More particularly, the application relates to an apparatus and method to manufacture edged or deburred steel steel studs, tracks, joints and edges.
  • Steel framing components and associated accessories are widely used in both the commercial and residential construction industries for many different structural framing applications.
  • Steel framing components have been increasingly used in the industry based their exceptional design flexibility. For example, due to the inherent strength of steel (e.g., high tensile strength), steel framing components can span a much greater distance than wood, while also being able to resist wind, most earthquake loads and have a high fire rating.
  • Steel framing components may comprise load bearing studs, non-load baring studs, framing accessories, and drywall finishing products. More specifically, a few examples of the above-described steel framing components include: ‘C’-shaped wall studs, floor joists, roof rafters, and tracks, each of which may be manufactured from mill-certified galvanized prime steel. These steel framing components are typically made alight steel, and are manufactured and formed according to various needs. For example, some load-bearing structural studs may require greater steel thickness than a dry-wall stud. According to the construction need, the steel components may be formed and manufactured with varying gauges and dimensions.
  • Steel studs and tracks are typically fabricated from a roll forming process using a sheet of oiled steel.
  • Roll forming is a continuous bending operation in which a long strip of sheet metal (typically coiled steel) is passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section profile is obtained.
  • Known methods of roll forming steel components, and the products these methods produce, suffer serious drawbacks, particularly with regard to various safety concerns during manufacture, and with the resulting final product.
  • the present apparatus and method is directed towards overcoming these aforementioned problems, while setting forth a steel component that obviates safety concerns, and a providing a method of manufacturing this steel component in an economical and expeditious manner.
  • an apparatus for edging a steel component comprises at least one edger roll mounted to a slider housing, and a feed housing connected to the slider housing, wherein the feed housing is configured to drive the steel component through the at least one edger rolls, and wherein the edger roll is adjustably mounted to the slider housing.
  • the apparatus operates manually or is fully automated.
  • Various embodiments of the subject invention provide a steel structural framing component that is safe to the touch, particularly in areas in which they are likely to be contacted by workers.
  • Other embodiments describe a method of manufacturing the steel component in a fast and economical manner.
  • FIG. 1 is a flow chart describing a step-wise method in accordance with an embodiment of the present invention
  • FIG. 2 a is a top view of system for fabricating a steel component in accordance with embodiments of the present invention
  • FIG. 2 b is a front view of system for fabricating a steel component in accordance with embodiments of the present invention.
  • FIG. 2 c is another front view of system for fabricating a steel component in accordance with another embodiment of the present invention.
  • FIG. 2 d is a front view of system for fabricating a steel component in accordance with further embodiments of the present invention.
  • FIG. 2 e is a front view of system for fabricating a steel component in accordance with further embodiments of the present invention.
  • FIG. 3 is a perspective view of the systems of FIGS. 2 a - 2 e.
  • FIG. 4 is side view of an apparatus for edging and deburring steel components in accordance with embodiments of the present invention.
  • FIG. 5 is a perspective view of the apparatus shown in FIG. 4 , in accordance with an embodiment of the present invention.
  • FIG. 6 is a front view of the apparatus shown in each of FIGS. 4 and 5 in accordance with exemplary embodiments of the present invention.
  • FIG. 7 is side view cut-out of the adjustable lower section of the apparatus shown in FIGS. 4-6 .
  • FIG. 8 is a front view of a steel component in accordance with embodiments of the present invention.
  • FIG. 9 is a flow chart describing a processor-based step-wise method in accordance with an embodiment of the present invention.
  • FIG. 10 is a microscopic photograph showing a cross-sectional view of a vertical edge of a steel sheet before and after the edging portion of the system.
  • FIG. 11 is a step-wise flow chart in accordance with embodiments of the present invention for deburring a steel sheet.
  • any of the foregoing steps and/or system modules may be suitably replaced, reordered, removed, and additional steps and/or system modules may be inserted depending upon the needs of the particular application, and that the systems of the foregoing embodiments may be implemented using any of a wide variety of suitable processes and system modules, and is not limited to any particular computer hardware, software, middleware, firmware, microcode and the like.
  • a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may he embodied.
  • FIG. 1 a method for manufacturing a structural component, in this embodiment a steel stud, is provided generally at 100 .
  • the flowchart is shown to better help illustrate this exemplary method. While the flowchart shows an exemplary step-by-step method, it is to be appreciated that a skilled artisan may rearrange, or reorder the steps while maintaining like results.
  • the method includes providing a steel coiled sheet proximate an uncoiler device, step 102 .
  • This step includes attaching a steel coiled sheet to an uncoiler device, such that the steel coiled sheet is supported by the uncoiler device.
  • the steel coiled sheet may comprise, in various embodiments of the present invention, galvanized hot-dipped steel coils, rolled on five-stand (or less), six-high cold mill and annealed and coated on a continuous galvanizing line.
  • the steel coils may be manufactured using a tension leveler to supply third standard flatness tolerances, a temper mill to provide superior surface quality, minimum spangle equipment and a galvannealed induction furnace.
  • the steel coils may be corrosion resistant with varying surface, gauge, and shape.
  • the shape may comprise 1 ⁇ 3 ASTM Flatness Standards, dimensions thickness 0.0150′′ MIN to 0.994′′ NOM, width typically up to 55.5′′ and higher, in gauges that range from 25 gauge (18 mils) up to 12 gauge (97 mils) to accommodate both load and non-bearing conditions.
  • the steel coiled sheets may comprise a base metal of Iron (Fe), Alloying, elements comprising Calcium Carbon, Copper, Phosphorus silicon, Sulfer, and metallic coatings comprising Aluminum, Antimony, Lead and Zinc.
  • Fe Iron
  • Alloying elements comprising Calcium Carbon, Copper, Phosphorus silicon, Sulfer
  • metallic coatings comprising Aluminum, Antimony, Lead and Zinc.
  • the steel coiled sheet may be manufacture using hot-rolling processes or cold-rolling annealing process.
  • hot-rolling processes or cold-rolling annealing process.
  • metals or metals alloys are applicable to embodiments of the present invention.
  • the coiled steel sheet may be disposed on an uncoiler.
  • the uncoiler may be comprise either a motorized or non-motorized uncoiler, having an predetermined width (60 inch), capacity (e.g., 12,000 lbs,), and spindle count.
  • the coiled steel sheet is fed from the uncoiler through a nip between a slitter comprising two circular cutting wheels where excess or predetermined materials are cut or sheered from the steel to a predetermined width, dependent upon the product to be formed.
  • the uncoiled flat steel sheet is fed through a deburring and edging apparatus.
  • the deburring edging apparatus (also referred to herein as “edger”) may be either attached to, or proximate the uncoiler, the arrangement to be discussed in greater detail with reference to FIGS. 2-8 . Further, the edger can also act as a guide configured to guide the steel sheet through the rollers. Also, the edger may be attached to and work concurrently with the slitter. The edger is configured to deburr and edge the vertical edges of the steel sheet as it is fed through the edger to create a smooth edge, which obviates a myriad of safety issues such as lacerations during handling of the steel component.
  • Deburring and edging the vertical edges of the steel sheet, step 106 may occur at any point during the forming process.
  • the deburred and edged vertical sides of the steel sheet forms what is commonly referred to as the “lip” of a steel stud, which is typically used as a “handle” to which engineers, operators and workers to carry the studs.
  • the uncoiler device may comprise an attached deburring/edging apparatus that machines the vertical edges of the steel sheet as it is being pulled through by the rotary punch. In this optional embodiment, no stand-alone equipment is necessary, nor is there additional pulling or stretching of the steel sheet than would have occurred without the deburring and edging step.
  • the deburring process may include mass-finishing, spindle finishing, media blasting, sanding, grinding, wire brushing, abrasive flow machining, electrochemical deburring, electropolishing, skiving, edge trimming, lasering, thermal energy method, machining, and/or manual deburring, each of which will be discussed with greater detail with reference to the accompanying FIGS. 2-8 .
  • the steel sheet may be fed, into the deburring and edging device prior to roll forming.
  • the deburring device may be arranged such that steel sheet is automatically fed from uncoiler to the deburring an edging apparatus so that the edging apparatus acts as a guide as well.
  • Punching a hole in the stud, step 108 comprises providing a rotary punch press or like component to form a hole of a predetermined size in the steel sheet.
  • the steel component may or may not be necessary.
  • the punching process may be performed by using a metal forming process that comprises a punch press to force a punch through the workpiece to create a hole via shearing. The scrap slug from the hole is deposited into a die in the process, and may be recycled, reused or discarded.
  • hot punching may be used as well.
  • Passing the steel sheet through a roll forming apparatus comprises feeding the steel strip from the rotary punch to the entry guide to align the sheet with a series of rollers, the number of which is predetermined and a function of a desired shape of the component. Indeed, the shaped steel sheets, now in the form of steel studs, can be cut ahead of the roll or behind it.
  • C-shaped drywall or structural studs are described as the exemplary embodiment with reference to FIG. 1 , the methods described herein are applicable to a myriad of steel components that are cold-formed, such as will studs, floor joists, roof rafters, and tracks interior non-load bearing studs and track designed for wall partitions in office buildings, apartments, houses, and other structures as the framework for gypsum drywall panels; exterior load bearing studs and tracks designed for use in curtain-wall and load bearing applications.
  • the present methods are applicable to framing accessories as well, drywall finishing products such as cornerbead, mini-beads, and J & L beads, and leg tracks used in interior and exterior wall framing, having weep holes punched at intervals to allow for the quick removal of any unintentional water build up in the track cavity.
  • lath and plaster accessories including expansion and control joint products, screeds, weeps, corners, and architectural profiles as a plaster base and reinforcement for all types of construction in walls, ceilings, and fireproofing of steel beams and columns, flat rib lath, hi rib lath, expansion joints, patches, tile products may undergo the method as described.
  • the present invention is applicable to hot formed steel processes as well.
  • FIGS. 2 a - e of a system for manufacturing a structural component, in this embodiment a steel stud, is shown generally at 200 .
  • the steel component formed by this system obviates many safety concerns, particularly with regard to handier lacerations.
  • the products formed by this system shown in FIG. 2 a - e have vertical lips and edges that are deburred, edged and smoothed for handling, while doing so in an economical and expeditious manner.
  • FIG. 2 a shows a top-view of the system 200 .
  • the system 200 comprises an uncoiler device 202 having a coiled sheet 204 attached thereto.
  • the steel coil sheet 204 is attached to the to the uncoiler device 202 , such that the steel coiled sheet 204 is supported by the uncoiler device 204 , and able to be uncoiled or fed though the plurality of rollers 208 a - d.
  • the steel coiled sheet 204 may comprise, in various embodiments of the present invention, galvanized hot-dipped steel coils with varying surface, gauge, and shape.
  • the uncoiler 202 may comprise either a motorized or non-motorized uncoiler.
  • the rollers provide the motive force to pull the coiled sheet so that it becomes a fiat steel sheet 212 .
  • An edging and deburring apparatus 206 is, in this exemplary embodiment, connected to the uncoiler 204 through arms 214 and 216 .
  • At an end of each arm is a head portion with a V or U-shaped flange 216 between which the steel sheet 212 is fed.
  • the flange 216 is fitted with a mechanical component 250 (See FIG. 2 b ) configured to deburr, edge, and/or chamfer the vertical edges 212 edges of the steel sheet 212 to create a smooth edge, which obviates a myriad of safety issues (e.g., lacerations) during handling of the steel component.
  • a slitter 290 is disposed between the uncoiler 203 and the roll-former 208 a - d.
  • the rolled steel sheet is fed from the uncoiler through a nip between a slitter comprising two circular cutting wheels where excess or predetermined materials are cut or sheered from the steel to a predetermined width, dependent upon the product to be formed.
  • the edger is connected to the slitter and performs the edging operations approximately simultaneously or directly after the slitter cuts the steel.
  • a hole punch 210 is disposed between the roll formers 208 a - d and the slitter 290 .
  • the hole punch 210 is configured to punch a hole of predetermined size in the steel sheet prior to the roll-forming and the formation of the end product, stud 294 .
  • FIG. 2 b is an enlarged front view of the steel sheet 212 being fed through the edger 206 .
  • the edger 206 is a mechanical-type edger that comprises a mechanical component, for example, flap wheels 250 (See FIG. 2 b ), which are attached at the flanges 216 and configured to rotate in opposing directions.
  • flaps 250 While only a single flap wheel 250 is shown at each flange, it is recognized that a plurality of flap wheels spinning in opposing directions may be disposed within flanges 214 and 216 , in operation, as the steel sheet is fed through the edger 206 , the flap wheels 250 deburr and edge the vertical edges 252 and 254 of the steel sheet 212 , in embodiments of the present invention, the flaps 250 are adjustable and replaceable as they wear. Of course, any predetermined grit flap wheels may be used, having different speeds and debarring modes (e.g., fine or standard) are applicable to embodiments of the present invention.
  • FIG. 2 c is an enlarged front view of another mechanical deburring embodiment in which the steel sheet 212 being fed through the edger 206 .
  • the edger 206 is a mechanical-type edger that comprises a mechanical component, for example, blades 280 .
  • the flanges are part of the edging component 206 .
  • the each of the flanges are laterally adjustable as shown by arrows 282 and 284 .
  • the edges are adjustable using, for example, air pressure, springs 286 , pneumatic controls, and may be adjustable by hand (via crank 286 or remotely via motorized equipment and software, as disused with relation FIG. 11 .
  • Other mechanical-type edging that is in the purview of the present system may comprises sandpaper (e.g., Silicone carbide), ceramics, aluminum oxide plates, in place of the fiat wheels 250 or blades 280 .
  • sandpaper e.g., Silicone carbide
  • ceramics e.g., silicone carbide
  • aluminum oxide plates e.g., aluminum oxide plates
  • ECM electrochemical edging and deburring
  • ECM electrochemical edging and deburring
  • ECM electrochemical edging and deburring
  • the edger 206 is an electrochemical-type edger that comprises a workpiece 266 , an electrolytic fluid supply 262 , and an electrode 264 .
  • the fluid supply 262 may comprise a salt or glycol solution, while the electrode 264 is used to dissolve burrs and edge the vertical edges of the sheet 212 .
  • a controller 268 may be employed to provide motive control to the workpiece 266 .
  • the controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the ECM procedures according to the component specifications.
  • CPU 272 may be comprised of a single processor or multiple processors.
  • CPU 272 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or CISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
  • micro-controllers e.g., with embedded RAM/ROM
  • microprocessors such as programmable devices (e.g., RISC or CISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
  • CPU 272 optionally may be coupled to network interface 274 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection which may be implemented as a hardwired or wireless communications link using suitable conventional technologies.
  • Communications via remote connectivity include, but are no limited to the Internet, Satellite networks, Cell Phone networks, other wireless networks and standards such as 802.11, 80211.b, 802.11g, or similar wireless LAN or WAN operating standards, or Bluetooth technologies, infrared connections, or any other similar technologies or other technologies such as those described above that permit the sending and/or receiving and/or processing of electronic information in either an encrypted or unencrypted format.
  • the operator may control all aspects of the processes for forming the steel component 212 .
  • the operator may choose between a pi milky of shapes for the component and areas to deburr and edge, together with types of deburring edging, and/or any needed control operations, which will be discussed in greater detail with respect to FIG. 11 .
  • thermal energy method also known as thermal deburring in ay be employed.
  • TEM may be used to remove burrs that are disposed in difficult to reach positions, or remove burrs from multiple surfaces.
  • TEM deburring may comprise the use of a gas mixture to provide thermal energy to deburr the vertical edges of the steel sheet 212 .
  • the edger 205 is a thermal-type edger that comprises a combustion chamber 276 , which houses a combustible gas mixture 278 .
  • a controller 268 may be employed to provide motive control to the TEM edger 206 .
  • the controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the TEM procedures according to the component specifications.
  • the steel sheet 212 may be loaded into an explosion-proof chamber (not shown), and an electrical igniter 280 then ignites the mixture to deburr the vertical edges 254 of the steel sheet 212 .
  • cryogenic deburring techniques may be employed as well with similar techniques as described with relation to FIG. 2 e.
  • the process employs abrasively blasting the workpieces at cryogenic temperature levels (i.e., approximately ⁇ 195° C. ( ⁇ 319.0° F.)) using liquid nitrogen, liquid carbon dioxide, or dry ice.
  • FIG. 3 a perspective view of the system 200 is shown.
  • the system comprises FIG. 2 a shows a top-view of the system 200 .
  • the system 200 comprises an uncoiled device 202 having a coiled sheet 204 attached thereto.
  • the steel coil sheet 204 is attached to the to the uncoiler device 202 , such that the steel coiled sheet 204 is supported by the uncoiler device 204 , and able to be uncoiled or fed though the plurality of rollers 208 a - d.
  • the edging and deburring apparatus 206 is a stand-alone device that may be placed at any position during the CFS processes.
  • the deburring apparatus 206 which, may comprise any of the mechanical, electrochemical, or thermal edgers 206 is positioned after the rollers 208 a - c form the steel component, in this case, stud 302 .
  • the edger 206 comprises flange 216 which is fitted with any of edging and deburring techniques described above to deburr, edge, and/or chamfer the vertical edges 212 edges of the steel sheet 254 to create a smooth edge, which obviates a myriad of safety issues (e.g., lacerations) during handling, of the steel component.
  • flange 216 which is fitted with any of edging and deburring techniques described above to deburr, edge, and/or chamfer the vertical edges 212 edges of the steel sheet 254 to create a smooth edge, which obviates a myriad of safety issues (e.g., lacerations) during handling, of the steel component.
  • a controller 268 may be employed to provide motive control to the workpiece 266 .
  • the controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the edging and debarring procedures according to the component specifications.
  • FIG. 4 a side view of an apparatus for manufacturing a structural component is shown.
  • the steel component formed by this system obviates many safety concerns, particularly with regard to handler lacerations.
  • the products formed by the apparatus shown in FIG. 4 have vertical lips and edges that are deburred, edged and smoothed for handling, while doing so in an economical and expeditious manner.
  • the apparatus is capable of high throughput to any desired speed.
  • the apparatus comprises four sets of edger rolls 402 , 404 , 406 , 408 , as shown in this embodiment. However, depending upon the application, and in particular, the gauge of the steel coiled sheet, many more sets of rollers may be incorporated to smooth the vertical edge of the steel sheet to specification.
  • the sets of edger rolls 402 , 404 , 406 and 408 are adjustably mounted to a slider housing 422 , which will be discussed in greater detail with reference to FIG. 6 .
  • Guide rolls 424 , 426 , and 428 (also referred to herein as “conveyer rolls”) are also mounted the slider housing 422 intermittently between each edger rolls 412 - 420 .
  • the number of guide rolls 424 , 426 and 428 incorporated into the apparatus, like the edger rolls 402 , 404 406 and 408 may vary depending upon application.
  • a mounting plate 440 is attached to the slider housing 422 on a vertical side of the slider housing 422 .
  • the mounting plate 440 is configured to connect a feed housing 442 to the slider housing 422 .
  • the feed housing 442 is configured to drive the steel sheet through the edger rolls 402 - 408 in either a “push” or “pull” mode, depending upon the application, and the number of feed housings mounted to the slider housing 422 .
  • a second feed housing may be mounted to the opposite vertical side of the slide housings 422 , which will be discussed in greater detail with reference to FIG. 6 .
  • the feed housing 442 in this exemplary embodiment comprises a first pulley wheel 428 , a thread rod 430 , and a pneumatic (air) cylinder 432 .
  • the air cylinder 432 is adapted to provide the pressure or force required to pull or push the steel sheet through the rollers while providing for an optimal and properly rated vertical sheet.
  • the air cylinder may be an air cylinder having an approximately 2 inch bore, and rated for 256 lbs. of pressure, equating to a force 512 lbs. of pulling or pushing three on the steel sheet.
  • the pneumatic cylinder is attached to a mounting bracket 424 , which has a corresponding bore configured for passage of a thread rod 430 into the iced housing 442 .
  • the thread rod 430 is attached to the first pulley wheel 428 , and is configured transfer the linear three from the piston to a reciprocal rotating force via the first pulley wheel 428 .
  • a hydraulic pump may be used, and as a result, an additional housing to hold the hydraulic fluid may be added to the apparatus.
  • a feed top plate 436 is attached to the feed housing 442 , and is configured to support a motor 438 and gear box 440 .
  • the motor 438 is an A/C motor (e.g., induction or synchronous) configured to provide motive force and power to a second pulley wheel 442 , which is coupled to the gearbox 440 .
  • the gearbox is 440 is provided to control the application of power from the motor to the second pulley wheel 442 , and through the second pulley wheel 442 , the first pulley wheel 428 .
  • the gear box may include speed-changing gears and shafts by which power is transmitted from the motor 438 to the rollers.
  • FIG. 5 a perspective view of the apparatus shown in FIG. 4 is shown generally at 500 , and more fully shows the functionality of elements described with reference to FIG. 4 .
  • the apparatus comprises three sets of edger rolls 402 , 404 , 406 , 408 , as shown in this embodiment.
  • the sets of edger rolls 402 , 404 , 406 and 408 are adjustably mounted to a slider housing 422 , which will be discussed in greater detail with reference to FIG. 6 .
  • the slider housing 422 comprises a first side plate 502 , a second side plate 504 and an adjustable slider blocks 506 and 508 .
  • the edger rolls 402 - 406 are mounted on a top portion of the adjustable slider hocks 506 using bolts or the like.
  • the slide rolls 506 and 508 are configured to adjust laterally as shown by arrow 510 , the mechanisms of which will be discussed in greater detail with reference to both FIGS. 6 and 7 .
  • Conveyer rolls 424 . 426 , and 428 are also mounted the slider housing 422 intermittently between edger rolls 404 , 406 , and 408 .
  • the conveyer rolls 424 - 428 function to pull or push the steel sheet 204 through the edger rolls 402 - 408 with a predetermined force, as controlled by the motor 438 , such that the steel sheet 204 is edged to predetermined specification.
  • the steel sheet 204 is pulled though the inlet 512 of the first conveyer roll 422 .
  • At least one fluid sprayer may be attached to lubricate and cool the sheets, along with removing excess materials, as the progress through the rolls
  • the steel sheet, as it is pulled through, is edged by each edger 402 , 406 , to 408 .
  • the steel sheet is edged to produce a progressively smoother edge with each pass through an adjacent edger roll.
  • the number of edger rolls may be dictated by the gauge or thickness of the steel sheet.
  • edger rolls are preferable, specifically when the steel sheet is a “thicker” gauge. At each pass through the edger, the more “smooth” the edge will become. In this way, the edgers rolls may be set at progressively thinner diameters between the teeth, if necessary.
  • pinch pull 514 provides the motive force needed to direct the steel sheet through roll formers 208 , as shown in FIG. 2 .
  • the pinch pull 514 is connected to the feed housing 442 .
  • An axle 516 which is disposed in a center bore of the pinch pull 514 , is attached to the first pulley 428 .
  • the pinch pull 514 may be configured for guiding and pulling sheet through the formers 208 .
  • the feed housing 442 is configured to drive the steel sheet through the edger rids 402 - 408 in either a “push” or “pull” mode, depending upon the application, and the number of feed housings mounted to the slider housing 422 .
  • the second pulley wheel 442 through band 518 , drives the first pulley wheel 428 , and thus the pinch pulls 514 .
  • mounting bars 520 and 522 are connected to the side plates of the slider housing 422 .
  • the mounting bars 520 are configured for attachment to an adjustable frame (shown in FIG. 8 ), so that a single apparatus can service a multiple products and components, and attached to or be proximate to multiple machines, which will be discussed in greater detail with reference to FIG. 8 .
  • the mounting bars may comprise apertures 524 and 526 for connection to the adjustable frame.
  • FIG. 6 a front view of the apparatus is shown in which the components of slider housing 422 are visible.
  • the mounting plate 440 is shown attached to the feed housing 442
  • the feed housing 442 is coupled to the first pulley wheel 428 , and the pneumatic (air) cylinder 432 .
  • a second air cylinder 602 is provided.
  • the feed top plate 436 is attached to the feed housing, 442 , and is configured to support the motor 438 and gear box 440 , and to provide motive force and power to a second pulley wheel 442 , which is coupled to the gearbox 440 .
  • the first side plate 502 , the second side plate 504 and the adjustable slider blocks 506 and 508 are shown.
  • the edger tolls (not shown) are mounted on a top portion of the adjustable slider blocks 506 .
  • the steel sheet (not shown) is pulled though the inlet 512 of the pinch pull 514 .
  • the edging apparatus is adjustable on its x-axis (laterally adjustable) so that a single apparatus may be easily configurable to edge a variety of products.
  • a thread 604 is attached to the slider housing 422 , via beatings 608 and 610 .
  • An adjustable slide 606 is attached to the thread 604 and is configured to rotate either manually, or using a fully automated control system, to be discussed in greater detail with reference to FIG. 7 .
  • the adjustable slider 606 is attached to the slider block 506 (see FIG. 5 ), which is further attached to the edge rollers 402 - 408 (see FIG. 4 ).
  • edge rollers While in some embodiments only one side of rollers may require adjustability, all of the edge rollers may be adjustable in optional embodiments.
  • the slider block 506 In the embodiment show in in FIG. 6 , the slider block 506 is stationary, but a left-handed nut is shown in case adjustability is required. In this way, the slider housing 426 allows for later movement of the edging rollers 402 - 408 such that steel sheets of varying width can be edged quickly and effectively.
  • a front-side cut out view of the slider housing 422 and the adjustable slide 606 is shown generally at 700 .
  • the first side plate 502 is shown, which is attached the slider housing.
  • a shaft 702 is coupled to the adjustable slide 606 .
  • the shaft 702 is connected at its other end to the edging rollers 402 - 408 (not shown in. FIG. 7 ).
  • the shaft 702 passes vertically through the slider housing 422 , such that it is sandwiched on each of its sides to form a casing 704 .
  • a plate 706 is attached to the adjustable slide 606 an configured to receive an end the shaft 702 .
  • the plate 706 has a cut out, in which a lock nut 708 is provided for attachment of the shaft 702 .
  • bearings 710 , 712 , 714 , and 716 are provided to constrains relative motion between the slider housing and the shaft 702 , while providing a cushion between the parts revert wear and degradation.
  • the design of the bearing may, for example, provide for free linear movement of the moving part.
  • the adjustable slider 606 is further configured to mitigate wear, tear, and general breakdown due to vibrations and thus increase the life of the machine. As such a plurality of springs 718 are disposed within the adjustable slider 606 and are sandwiched between adjustment hex nut 720 and a side panel of the adjustable slider 606 .
  • FIG. 8 a front view of the apparatus is shown attached to an adjustable stand 802 is shown generally at 800 .
  • the stand may comprise a table plate in which mating holes or, alternatively, mating screws, which correspond to apertures 524 and 526 of the mounting bars 520 and 522 (see FIG. 5 ).
  • the adjustable stand may be further configured for the attachment of an inverter 804 , and other electromechanical elements together with the software controllers described with relation FIGS. 2 a - e.
  • the CPU 272 may be further configured to control all of the adjustable aspects of the apparatus, including the lateral adjustability of each of the rollers and the height of the apparatus through adjusting the legs 808 of the stand 802 (using, for example, pistons).
  • a front view of a U-shaped stud is shown generally at 900 .
  • the U-shaped stud has been formed using the method as described with reference to FIGS. 1 and 2 and comprises a deburred and/or edged lip.
  • the rough edge of the steel sheet of which the stud is formed has been through a smoothing process, such as debarring or edging.
  • the lip 904 is smoothed to avoid injury to the engineers and workers.
  • the debarring and edging process of the recited method can produce asymmetrical sides such that lip 904 and outer edge 906 are smoothed and precise as to specification.
  • FIG. 10 a microscopic view of the vertical sheet 204 prior the edging and debarring step is shown at view 1002 . As can be seen, there are burrs and sharp edges at 1006 . As shown after the debarring step, view 1004 , the vertical edges of the steel sheets are smoothed out 1008 .
  • CPU 272 may be supplied with multiple processors, micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
  • micro-controllers e.g., with embedded RAM/ROM
  • microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
  • the CPU 272 may further be supplied with appropriate hard discs for storage and memory, which may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted.
  • Mass memory storage may also be coupled bi-directionally to CPU 272 provide additional data storage capacity and may include any of the computer-readable media described above.
  • the CPU 272 is further connected to a Graphical User Interface (GUI) 278 to enable a user to view the operation of the system 300 .
  • GUI Graphical User Interface
  • the CPU 272 is also connected to a network interface, which may communicate in either a unidirectional manner or a bi-directional manner with the system 200 , via wireless or hard-lined communication in any known manner of communication such as a cellular phone or personal digital assistant (PDA). While as shown, the CPU 272 is connected to the edger, it should be appreciated that the communications exchange may be attached or in communication with all elements of the system.
  • the CPU 272 may be loaded with manufacturing workflow software.
  • the workflow software comprises instructions for the automation of a process, in which a steel component is to be manufactured edged according to methods described herein.
  • the workflow software provides a system for digitizing a production flowchart over a network 274 .
  • the workflow software may further include digitizing the flowchart for automated tasks such as edging a steel component.
  • FIG. 11 a flow-chart to better help illustrate a method for workflow application of an industrial system is shown generally at reference numeral 1100 . While the flowchart shows an exemplary step-by-step method, it is to be appreciated that a skilled artisan may rearrange or reorder the steps while maintaining like results.
  • the process may include those processes discussed with manufacturing a drywall stud in relation to FIG. 1 of the present invention. Initiating this process may comprise starting a motorized uncoiler to feed a steel coiled sheet through a edging apparatus.
  • the operator may select a type of edging operation using the GUI 278 .
  • the operator may choose between mechanical, electrochemical, or thermal edging operations.
  • the operator may further be able to drill down to any of the following operations: Mass-finishing, spindle finishing, media blasting, sanding, grinding, wire brushing, abrasive flow machining, electrochemical deburring, electropolishing, thermal energy method, machining, and/or manual deburring. These processes are exemplary only and not meant to limit the operations to any of the aforementioned edging operation.
  • the system is configured to verify that the edges are smoothed to predetermined standards. To do so, the system may be fit with a plurality of sensors proximate the edger or disposed thereon, such that the sensors together with the workflow software ensure proper edging. If the system approves the edges, the steel sheet moves to the next fabrication step 1108 . If the edges are not approved, then the steel component may be re-edged or used as scrap.
  • the system is configured to establish whether the edger performed the edging correctly. If the edger worked to specification, the workflow software will queue the next (Step 1108 ) component. If the system finds that the edging was not performed sufficiently, the workflow software will reset the step.

Abstract

An apparatus for edging a steel component, the apparatus having at least one edger roll (402, 404, 406) mounted to a slider housing (422) and a feed housing connected to the slider housing, wherein the feed housing is configured to drive the steel component through the at least one edger roll, and wherein the edger roll is adjustably mounted to the slider housing.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation in part of Application No. PCT/US2013/038529 filed Apr. 29, 2013.
  • Application No. PCT/US2013/038529 claimed the priority benefit of the U.S. provisional application for patent Ser. No. 61/753,157 filed on Jan. 16, 2013, entitled A Steel Component and Method of Making the Same. The contents of this related provisional application are incorporated herein by reference for all purposes.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISK APPENDIX
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • This application relates generally to structural framing components, steel framing components, and an apparatus and method for making the same. More particularly, the application relates to an apparatus and method to manufacture edged or deburred steel steel studs, tracks, joints and edges.
  • Steel framing components and associated accessories are widely used in both the commercial and residential construction industries for many different structural framing applications. Steel framing components have been increasingly used in the industry based their exceptional design flexibility. For example, due to the inherent strength of steel (e.g., high tensile strength), steel framing components can span a much greater distance than wood, while also being able to resist wind, most earthquake loads and have a high fire rating.
  • Steel framing components may comprise load bearing studs, non-load baring studs, framing accessories, and drywall finishing products. More specifically, a few examples of the above-described steel framing components include: ‘C’-shaped wall studs, floor joists, roof rafters, and tracks, each of which may be manufactured from mill-certified galvanized prime steel. These steel framing components are typically made alight steel, and are manufactured and formed according to various needs. For example, some load-bearing structural studs may require greater steel thickness than a dry-wall stud. According to the construction need, the steel components may be formed and manufactured with varying gauges and dimensions.
  • Steel studs and tracks are typically fabricated from a roll forming process using a sheet of oiled steel. Roll forming is a continuous bending operation in which a long strip of sheet metal (typically coiled steel) is passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section profile is obtained. Known methods of roll forming steel components, and the products these methods produce, suffer serious drawbacks, particularly with regard to various safety concerns during manufacture, and with the resulting final product.
  • Indeed, construction related injuries have consistently plagued the construction industry, and while significant improvements have been to mitigate the risk of injury, further mitigation is a major focus for not only the companies involved, but for numerous governmental labor departments, such as OSHA lit the United States. In the steel structural component forming industry, known methods of forming steel components leave the lips and edges dangerously sharp, with numerous burs and/or surfaces that are capable of injuring not only the manufacturing engineers that handle them, but also the on-site construction workers who are responsible for constructing the components for which they were ultimately formed.
  • Furthermore, particularly in relation to steel studs, current safeguards are unduly expensive, and are also wasteful of raw materials. For example, some manufactures have introduced hemmed edges, in which the steel is rolled over at the edge a smooth “grip” surface. However to hem, the manufactures must use additional raw materials, which is expensive and wasteful, since the hem does not contribute to structural integrity.
  • Accordingly, the present apparatus and method is directed towards overcoming these aforementioned problems, while setting forth a steel component that obviates safety concerns, and a providing a method of manufacturing this steel component in an economical and expeditious manner.
  • SUMMARY OF THE INVENTION
  • The following summary of the invention is provided in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
  • In exemplary embodiments, an apparatus for edging a steel component is provided. The apparatus comprises at least one edger roll mounted to a slider housing, and a feed housing connected to the slider housing, wherein the feed housing is configured to drive the steel component through the at least one edger rolls, and wherein the edger roll is adjustably mounted to the slider housing.
  • In exemplary embodiments, the apparatus operates manually or is fully automated.
  • Various embodiments of the subject invention provide a steel structural framing component that is safe to the touch, particularly in areas in which they are likely to be contacted by workers. Other embodiments describe a method of manufacturing the steel component in a fast and economical manner.
  • Other features, advantages, and aspects of the present invention will become more apparent and be more readily understood from the following detailed description, which should he read in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart describing a step-wise method in accordance with an embodiment of the present invention;
  • FIG. 2 a is a top view of system for fabricating a steel component in accordance with embodiments of the present invention;
  • FIG. 2 b is a front view of system for fabricating a steel component in accordance with embodiments of the present invention;
  • FIG. 2 c is another front view of system for fabricating a steel component in accordance with another embodiment of the present invention;
  • FIG. 2 d is a front view of system for fabricating a steel component in accordance with further embodiments of the present invention;
  • FIG. 2 e is a front view of system for fabricating a steel component in accordance with further embodiments of the present invention;
  • FIG. 3 is a perspective view of the systems of FIGS. 2 a-2 e.
  • FIG. 4 is side view of an apparatus for edging and deburring steel components in accordance with embodiments of the present invention.
  • FIG. 5 is a perspective view of the apparatus shown in FIG. 4, in accordance with an embodiment of the present invention.
  • FIG. 6 is a front view of the apparatus shown in each of FIGS. 4 and 5 in accordance with exemplary embodiments of the present invention.
  • FIG. 7 is side view cut-out of the adjustable lower section of the apparatus shown in FIGS. 4-6.
  • FIG. 8 is a front view of a steel component in accordance with embodiments of the present invention.
  • FIG. 9 is a flow chart describing a processor-based step-wise method in accordance with an embodiment of the present invention.
  • FIG. 10 is a microscopic photograph showing a cross-sectional view of a vertical edge of a steel sheet before and after the edging portion of the system.
  • FIG. 11 is a step-wise flow chart in accordance with embodiments of the present invention for deburring a steel sheet.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is best understood by reference to the detailed figures and description set forth herein.
  • Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity at alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. For example, while steel studs are primarily referred to herein, it will be appreciated that other steel components such as floor joists, roof rafters, and tracks are applicable to embodiments of the present invention. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
  • Those skilled in the art will readily recognize, in accordance with the teachings of the present invention that any of the foregoing steps and/or system modules may be suitably replaced, reordered, removed, and additional steps and/or system modules may be inserted depending upon the needs of the particular application, and that the systems of the foregoing embodiments may be implemented using any of a wide variety of suitable processes and system modules, and is not limited to any particular computer hardware, software, middleware, firmware, microcode and the like. For any method steps described in the present application that an be carried out on a computing machine, a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may he embodied.
  • Referring now to FIG. 1, a method for manufacturing a structural component, in this embodiment a steel stud, is provided generally at 100. The flowchart is shown to better help illustrate this exemplary method. While the flowchart shows an exemplary step-by-step method, it is to be appreciated that a skilled artisan may rearrange, or reorder the steps while maintaining like results.
  • The method includes providing a steel coiled sheet proximate an uncoiler device, step 102. This step includes attaching a steel coiled sheet to an uncoiler device, such that the steel coiled sheet is supported by the uncoiler device. The steel coiled sheet may comprise, in various embodiments of the present invention, galvanized hot-dipped steel coils, rolled on five-stand (or less), six-high cold mill and annealed and coated on a continuous galvanizing line. The steel coils may be manufactured using a tension leveler to supply third standard flatness tolerances, a temper mill to provide superior surface quality, minimum spangle equipment and a galvannealed induction furnace. The steel coils may be corrosion resistant with varying surface, gauge, and shape. In exemplary embodiments, the shape may comprise ⅓ ASTM Flatness Standards, dimensions thickness 0.0150″ MIN to 0.994″ NOM, width typically up to 55.5″ and higher, in gauges that range from 25 gauge (18 mils) up to 12 gauge (97 mils) to accommodate both load and non-bearing conditions.
  • The steel coiled sheets may comprise a base metal of Iron (Fe), Alloying, elements comprising Calcium Carbon, Copper, Phosphorus silicon, Sulfer, and metallic coatings comprising Aluminum, Antimony, Lead and Zinc.
  • In optional embodiments of the invention, the steel coiled sheet may be manufacture using hot-rolling processes or cold-rolling annealing process. A skilled artisan will recognize that any type of metals or metals alloys are applicable to embodiments of the present invention.
  • Still with reference to FIG. 1, the coiled steel sheet may be disposed on an uncoiler. The uncoiler may be comprise either a motorized or non-motorized uncoiler, having an predetermined width (60 inch), capacity (e.g., 12,000 lbs,), and spindle count. In operation, the coiled steel sheet is fed from the uncoiler through a nip between a slitter comprising two circular cutting wheels where excess or predetermined materials are cut or sheered from the steel to a predetermined width, dependent upon the product to be formed.
  • At step 104, the uncoiled flat steel sheet is fed through a deburring and edging apparatus. The deburring edging apparatus (also referred to herein as “edger”) may be either attached to, or proximate the uncoiler, the arrangement to be discussed in greater detail with reference to FIGS. 2-8. Further, the edger can also act as a guide configured to guide the steel sheet through the rollers. Also, the edger may be attached to and work concurrently with the slitter. The edger is configured to deburr and edge the vertical edges of the steel sheet as it is fed through the edger to create a smooth edge, which obviates a myriad of safety issues such as lacerations during handling of the steel component.
  • Deburring and edging the vertical edges of the steel sheet, step 106, may occur at any point during the forming process. In this exemplary embodiment of the present invention. the deburred and edged vertical sides of the steel sheet forms what is commonly referred to as the “lip” of a steel stud, which is typically used as a “handle” to which engineers, operators and workers to carry the studs. In this embodiment, the uncoiler device may comprise an attached deburring/edging apparatus that machines the vertical edges of the steel sheet as it is being pulled through by the rotary punch. In this optional embodiment, no stand-alone equipment is necessary, nor is there additional pulling or stretching of the steel sheet than would have occurred without the deburring and edging step. In optional embodiments of the present invention, the deburring process may include mass-finishing, spindle finishing, media blasting, sanding, grinding, wire brushing, abrasive flow machining, electrochemical deburring, electropolishing, skiving, edge trimming, lasering, thermal energy method, machining, and/or manual deburring, each of which will be discussed with greater detail with reference to the accompanying FIGS. 2-8.
  • In optional embodiments of the present invention, the steel sheet may be fed, into the deburring and edging device prior to roll forming. In this way, the deburring device may be arranged such that steel sheet is automatically fed from uncoiler to the deburring an edging apparatus so that the edging apparatus acts as a guide as well.
  • Punching a hole in the stud, step 108, comprises providing a rotary punch press or like component to form a hole of a predetermined size in the steel sheet. In exemplary embodiments of the present invention, the steel component may or may not be necessary. Where needed, the punching process may be performed by using a metal forming process that comprises a punch press to force a punch through the workpiece to create a hole via shearing. The scrap slug from the hole is deposited into a die in the process, and may be recycled, reused or discarded. In optional embodiments of the present invention, hot punching may be used as well.
  • Passing the steel sheet through a roll forming apparatus, step 110, comprises feeding the steel strip from the rotary punch to the entry guide to align the sheet with a series of rollers, the number of which is predetermined and a function of a desired shape of the component. Indeed, the shaped steel sheets, now in the form of steel studs, can be cut ahead of the roll or behind it.
  • While C-shaped drywall or structural studs are described as the exemplary embodiment with reference to FIG. 1, the methods described herein are applicable to a myriad of steel components that are cold-formed, such as will studs, floor joists, roof rafters, and tracks interior non-load bearing studs and track designed for wall partitions in office buildings, apartments, houses, and other structures as the framework for gypsum drywall panels; exterior load bearing studs and tracks designed for use in curtain-wall and load bearing applications. Furthermore, the present methods are applicable to framing accessories as well, drywall finishing products such as cornerbead, mini-beads, and J & L beads, and leg tracks used in interior and exterior wall framing, having weep holes punched at intervals to allow for the quick removal of any unintentional water build up in the track cavity.
  • Moreover, in exemplary embodiments of the present invention, lath and plaster accessories including expansion and control joint products, screeds, weeps, corners, and architectural profiles as a plaster base and reinforcement for all types of construction in walls, ceilings, and fireproofing of steel beams and columns, flat rib lath, hi rib lath, expansion joints, patches, tile products may undergo the method as described. The present invention is applicable to hot formed steel processes as well.
  • Referring now to FIGS. 2 a-e, of a system for manufacturing a structural component, in this embodiment a steel stud, is shown generally at 200. The steel component formed by this system obviates many safety concerns, particularly with regard to handier lacerations. The products formed by this system shown in FIG. 2 a-e have vertical lips and edges that are deburred, edged and smoothed for handling, while doing so in an economical and expeditious manner.
  • FIG. 2 a shows a top-view of the system 200. The system 200 comprises an uncoiler device 202 having a coiled sheet 204 attached thereto. The steel coil sheet 204 is attached to the to the uncoiler device 202, such that the steel coiled sheet 204 is supported by the uncoiler device 204, and able to be uncoiled or fed though the plurality of rollers 208 a-d. As in FIG. 1, the steel coiled sheet 204 may comprise, in various embodiments of the present invention, galvanized hot-dipped steel coils with varying surface, gauge, and shape. The uncoiler 202 may comprise either a motorized or non-motorized uncoiler. In exemplary embodiments of the present invention, the rollers provide the motive force to pull the coiled sheet so that it becomes a fiat steel sheet 212.
  • An edging and deburring apparatus 206 is, in this exemplary embodiment, connected to the uncoiler 204 through arms 214 and 216. At an end of each arm is a head portion with a V or U-shaped flange 216 between which the steel sheet 212 is fed. The flange 216 is fitted with a mechanical component 250 (See FIG. 2 b) configured to deburr, edge, and/or chamfer the vertical edges 212 edges of the steel sheet 212 to create a smooth edge, which obviates a myriad of safety issues (e.g., lacerations) during handling of the steel component.
  • A slitter 290 is disposed between the uncoiler 203 and the roll-former 208 a-d. In operation, the rolled steel sheet is fed from the uncoiler through a nip between a slitter comprising two circular cutting wheels where excess or predetermined materials are cut or sheered from the steel to a predetermined width, dependent upon the product to be formed. In optional embodiments of the present invention the edger is connected to the slitter and performs the edging operations approximately simultaneously or directly after the slitter cuts the steel.
  • A hole punch 210 is disposed between the roll formers 208 a-d and the slitter 290. The hole punch 210 is configured to punch a hole of predetermined size in the steel sheet prior to the roll-forming and the formation of the end product, stud 294.
  • FIG. 2 b is an enlarged front view of the steel sheet 212 being fed through the edger 206. In this exemplary embodiment, the edger 206 is a mechanical-type edger that comprises a mechanical component, for example, flap wheels 250 (See FIG. 2 b), which are attached at the flanges 216 and configured to rotate in opposing directions. While only a single flap wheel 250 is shown at each flange, it is recognized that a plurality of flap wheels spinning in opposing directions may be disposed within flanges 214 and 216, in operation, as the steel sheet is fed through the edger 206, the flap wheels 250 deburr and edge the vertical edges 252 and 254 of the steel sheet 212, in embodiments of the present invention, the flaps 250 are adjustable and replaceable as they wear. Of course, any predetermined grit flap wheels may be used, having different speeds and debarring modes (e.g., fine or standard) are applicable to embodiments of the present invention.
  • FIG. 2 c is an enlarged front view of another mechanical deburring embodiment in which the steel sheet 212 being fed through the edger 206. In this exemplary embodiment, the edger 206 is a mechanical-type edger that comprises a mechanical component, for example, blades 280. In this embodiment, the flanges are part of the edging component 206. Further, the each of the flanges are laterally adjustable as shown by arrows 282 and 284. The edges are adjustable using, for example, air pressure, springs 286, pneumatic controls, and may be adjustable by hand (via crank 286 or remotely via motorized equipment and software, as disused with relation FIG. 11.
  • Other mechanical-type edging that is in the purview of the present system may comprises sandpaper (e.g., Silicone carbide), ceramics, aluminum oxide plates, in place of the fiat wheels 250 or blades 280.
  • In optional embodiments of the present invention, electrochemical (ECM) edging and deburring, may be employed. In optional embodiments of the present invention, ECM may be used for working extremely hard materials/components or materials that are difficult to machine due to their atypical size and shape, where relatively small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, make mechanical deburring problematic.
  • With reference to FIG. 2 d, an enlarged front view of the steel sheet 212 being, fed through the edger 206 is shown generally at 260. In this exemplary embodiment, the edger 206 is an electrochemical-type edger that comprises a workpiece 266, an electrolytic fluid supply 262, and an electrode 264.
  • The fluid supply 262 may comprise a salt or glycol solution, while the electrode 264 is used to dissolve burrs and edge the vertical edges of the sheet 212. A controller 268 may be employed to provide motive control to the workpiece 266. The controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the ECM procedures according to the component specifications.
  • CPU 272 may be comprised of a single processor or multiple processors. CPU 272 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or CISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
  • In optional embodiments, CPU 272 optionally may be coupled to network interface 274 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. Communications via remote connectivity include, but are no limited to the Internet, Satellite networks, Cell Phone networks, other wireless networks and standards such as 802.11, 80211.b, 802.11g, or similar wireless LAN or WAN operating standards, or Bluetooth technologies, infrared connections, or any other similar technologies or other technologies such as those described above that permit the sending and/or receiving and/or processing of electronic information in either an encrypted or unencrypted format.
  • At the CPU 270 (e.g., operator workstation) the operator may control all aspects of the processes for forming the steel component 212. The operator may choose between a pi milky of shapes for the component and areas to deburr and edge, together with types of deburring edging, and/or any needed control operations, which will be discussed in greater detail with respect to FIG. 11.
  • In optional embodiments of the present invention, thermal energy method (TEM), also known as thermal deburring in ay be employed. Like ECM deburring, TEM may be used to remove burrs that are disposed in difficult to reach positions, or remove burrs from multiple surfaces. TEM deburring may comprise the use of a gas mixture to provide thermal energy to deburr the vertical edges of the steel sheet 212.
  • With reference to FIG. 2 e, an enlarged front view of the steel sheet 212 being fed through the TEM edger 206 is shown generally at 260. In this exemplary embodiment, the edger 205 is a thermal-type edger that comprises a combustion chamber 276, which houses a combustible gas mixture 278.
  • Like in other optional embodiments of the present invention, a controller 268 may be employed to provide motive control to the TEM edger 206. The controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the TEM procedures according to the component specifications. In operations, the steel sheet 212, may be loaded into an explosion-proof chamber (not shown), and an electrical igniter 280 then ignites the mixture to deburr the vertical edges 254 of the steel sheet 212.
  • In other optional embodiments, cryogenic deburring techniques may be employed as well with similar techniques as described with relation to FIG. 2 e. In this embodiment, the process employs abrasively blasting the workpieces at cryogenic temperature levels (i.e., approximately −195° C. (−319.0° F.)) using liquid nitrogen, liquid carbon dioxide, or dry ice.
  • Referring now to FIG. 3, a perspective view of the system 200 is shown. Like the system shown in FIG. 2, the system comprises FIG. 2 a shows a top-view of the system 200. The system 200 comprises an uncoiled device 202 having a coiled sheet 204 attached thereto. The steel coil sheet 204 is attached to the to the uncoiler device 202, such that the steel coiled sheet 204 is supported by the uncoiler device 204, and able to be uncoiled or fed though the plurality of rollers 208 a-d.
  • However, in this embodiment, the edging and deburring apparatus 206 is a stand-alone device that may be placed at any position during the CFS processes. In this exemplary embodiment, the deburring apparatus 206, which, may comprise any of the mechanical, electrochemical, or thermal edgers 206 is positioned after the rollers 208 a-c form the steel component, in this case, stud 302. As shown, the edger 206 comprises flange 216 which is fitted with any of edging and deburring techniques described above to deburr, edge, and/or chamfer the vertical edges 212 edges of the steel sheet 254 to create a smooth edge, which obviates a myriad of safety issues (e.g., lacerations) during handling, of the steel component.
  • A controller 268 may be employed to provide motive control to the workpiece 266. The controller 268 may be in communication with a computer processor 272 at a main workstation 270 such that an operator may adjust the edging and debarring procedures according to the component specifications.
  • With reference now to FIG. 4, a side view of an apparatus for manufacturing a structural component is shown. Like the system shown in FIGS. 2 a-e, the steel component formed by this system obviates many safety concerns, particularly with regard to handler lacerations. The products formed by the apparatus shown in FIG. 4 have vertical lips and edges that are deburred, edged and smoothed for handling, while doing so in an economical and expeditious manner. Moreover, in this embodiment, the apparatus is capable of high throughput to any desired speed.
  • The apparatus comprises four sets of edger rolls 402, 404, 406, 408, as shown in this embodiment. However, depending upon the application, and in particular, the gauge of the steel coiled sheet, many more sets of rollers may be incorporated to smooth the vertical edge of the steel sheet to specification. The sets of edger rolls 402, 404, 406 and 408 are adjustably mounted to a slider housing 422, which will be discussed in greater detail with reference to FIG. 6. Guide rolls 424, 426, and 428 (also referred to herein as “conveyer rolls”) are also mounted the slider housing 422 intermittently between each edger rolls 412-420. The number of guide rolls 424, 426 and 428 incorporated into the apparatus, like the edger rolls 402, 404 406 and 408, may vary depending upon application.
  • A mounting plate 440 is attached to the slider housing 422 on a vertical side of the slider housing 422. The mounting plate 440 is configured to connect a feed housing 442 to the slider housing 422. The feed housing 442 is configured to drive the steel sheet through the edger rolls 402-408 in either a “push” or “pull” mode, depending upon the application, and the number of feed housings mounted to the slider housing 422. For example, in optional embodiments of the present invention, a second feed housing may be mounted to the opposite vertical side of the slide housings 422, which will be discussed in greater detail with reference to FIG. 6.
  • The feed housing 442 in this exemplary embodiment, comprises a first pulley wheel 428, a thread rod 430, and a pneumatic (air) cylinder 432. The air cylinder 432 is adapted to provide the pressure or force required to pull or push the steel sheet through the rollers while providing for an optimal and properly rated vertical sheet. In exemplary embodiments, the air cylinder may be an air cylinder having an approximately 2 inch bore, and rated for 256 lbs. of pressure, equating to a force 512 lbs. of pulling or pushing three on the steel sheet.
  • The pneumatic cylinder is attached to a mounting bracket 424, which has a corresponding bore configured for passage of a thread rod 430 into the iced housing 442. The thread rod 430 is attached to the first pulley wheel 428, and is configured transfer the linear three from the piston to a reciprocal rotating force via the first pulley wheel 428. In optional embodiments of the present invention, a hydraulic pump may be used, and as a result, an additional housing to hold the hydraulic fluid may be added to the apparatus.
  • Still referring to FIG. 4, a feed top plate 436 is attached to the feed housing 442, and is configured to support a motor 438 and gear box 440. The motor 438 is an A/C motor (e.g., induction or synchronous) configured to provide motive force and power to a second pulley wheel 442, which is coupled to the gearbox 440.
  • Optionally, the gearbox is 440 is provided to control the application of power from the motor to the second pulley wheel 442, and through the second pulley wheel 442, the first pulley wheel 428. The gear box may include speed-changing gears and shafts by which power is transmitted from the motor 438 to the rollers.
  • Referring now to FIG. 5, a perspective view of the apparatus shown in FIG. 4 is shown generally at 500, and more fully shows the functionality of elements described with reference to FIG. 4.
  • In this exemplary embodiment, the apparatus comprises three sets of edger rolls 402, 404, 406, 408, as shown in this embodiment. The sets of edger rolls 402, 404, 406 and 408 are adjustably mounted to a slider housing 422, which will be discussed in greater detail with reference to FIG. 6. The slider housing 422 comprises a first side plate 502, a second side plate 504 and an adjustable slider blocks 506 and 508. The edger rolls 402-406 are mounted on a top portion of the adjustable slider hocks 506 using bolts or the like. In operations, the slide rolls 506 and 508 are configured to adjust laterally as shown by arrow 510, the mechanisms of which will be discussed in greater detail with reference to both FIGS. 6 and 7.
  • Conveyer rolls 424. 426, and 428 are also mounted the slider housing 422 intermittently between edger rolls 404, 406, and 408. In operation, the conveyer rolls 424-428 function to pull or push the steel sheet 204 through the edger rolls 402-408 with a predetermined force, as controlled by the motor 438, such that the steel sheet 204 is edged to predetermined specification. In an exemplary embodiment, the steel sheet 204 is pulled though the inlet 512 of the first conveyer roll 422. At least one fluid sprayer (not shown) may be attached to lubricate and cool the sheets, along with removing excess materials, as the progress through the rolls The steel sheet, as it is pulled through, is edged by each edger 402, 406, to 408. As the sheet is pulled down the line, the steel sheet is edged to produce a progressively smoother edge with each pass through an adjacent edger roll. In this exemplary embodiment, the number of edger rolls may be dictated by the gauge or thickness of the steel sheet.
  • To deburr or edge the steel sheet such that it is approximately free from burrs, or smooth the touch, multiple staging of edger rolls is preferable, specifically when the steel sheet is a “thicker” gauge. At each pass through the edger, the more “smooth” the edge will become. In this way, the edgers rolls may be set at progressively thinner diameters between the teeth, if necessary.
  • After edging has occurred, pinch pull 514 provides the motive force needed to direct the steel sheet through roll formers 208, as shown in FIG. 2. The pinch pull 514 is connected to the feed housing 442. An axle 516, which is disposed in a center bore of the pinch pull 514, is attached to the first pulley 428. The pinch pull 514 may be configured for guiding and pulling sheet through the formers 208.
  • In operation, when the motor 438 is actuated, the feed housing 442 is configured to drive the steel sheet through the edger rids 402-408 in either a “push” or “pull” mode, depending upon the application, and the number of feed housings mounted to the slider housing 422. The second pulley wheel 442, through band 518, drives the first pulley wheel 428, and thus the pinch pulls 514.
  • Still referring to FIG. 5, mounting bars 520 and 522 are connected to the side plates of the slider housing 422. The mounting bars 520 are configured for attachment to an adjustable frame (shown in FIG. 8), so that a single apparatus can service a multiple products and components, and attached to or be proximate to multiple machines, which will be discussed in greater detail with reference to FIG. 8. The mounting bars, may comprise apertures 524 and 526 for connection to the adjustable frame.
  • Referring now to FIG. 6, a front view of the apparatus is shown in which the components of slider housing 422 are visible. For reference, the mounting plate 440 is shown attached to the feed housing 442 The feed housing 442 is coupled to the first pulley wheel 428, and the pneumatic (air) cylinder 432. Optionally, a second air cylinder 602 is provided. The feed top plate 436 is attached to the feed housing, 442, and is configured to support the motor 438 and gear box 440, and to provide motive force and power to a second pulley wheel 442, which is coupled to the gearbox 440.
  • The first side plate 502, the second side plate 504 and the adjustable slider blocks 506 and 508 are shown. The edger tolls (not shown) are mounted on a top portion of the adjustable slider blocks 506. The steel sheet (not shown) is pulled though the inlet 512 of the pinch pull 514.
  • Due to varying sizes of products, and thus, varying widths or sheet metal, the edging apparatus is adjustable on its x-axis (laterally adjustable) so that a single apparatus may be easily configurable to edge a variety of products. As can be seen in FIG. 6, a thread 604 is attached to the slider housing 422, via beatings 608 and 610. An adjustable slide 606 is attached to the thread 604 and is configured to rotate either manually, or using a fully automated control system, to be discussed in greater detail with reference to FIG. 7. The adjustable slider 606 is attached to the slider block 506 (see FIG. 5), which is further attached to the edge rollers 402-408 (see FIG. 4). While in some embodiments only one side of rollers may require adjustability, all of the edge rollers may be adjustable in optional embodiments. In the embodiment show in in FIG. 6, the slider block 506 is stationary, but a left-handed nut is shown in case adjustability is required. In this way, the slider housing 426 allows for later movement of the edging rollers 402-408 such that steel sheets of varying width can be edged quickly and effectively.
  • Referring no to FIG. 7, a front-side cut out view of the slider housing 422 and the adjustable slide 606 is shown generally at 700. For reference, the first side plate 502 is shown, which is attached the slider housing. A shaft 702 is coupled to the adjustable slide 606. The shaft 702 is connected at its other end to the edging rollers 402-408 (not shown in. FIG. 7). The shaft 702 passes vertically through the slider housing 422, such that it is sandwiched on each of its sides to form a casing 704. A plate 706 is attached to the adjustable slide 606 an configured to receive an end the shaft 702. The plate 706 has a cut out, in which a lock nut 708 is provided for attachment of the shaft 702.
  • On either side of the shaft portion that resides in the cavity 704, bearings 710, 712, 714, and 716 are provided to constrains relative motion between the slider housing and the shaft 702, while providing a cushion between the parts revert wear and degradation. The design of the bearing may, for example, provide for free linear movement of the moving part.
  • The adjustable slider 606 is further configured to mitigate wear, tear, and general breakdown due to vibrations and thus increase the life of the machine. As such a plurality of springs 718 are disposed within the adjustable slider 606 and are sandwiched between adjustment hex nut 720 and a side panel of the adjustable slider 606.
  • Referring now to FIG. 8, a front view of the apparatus is shown attached to an adjustable stand 802 is shown generally at 800. The stand may comprise a table plate in which mating holes or, alternatively, mating screws, which correspond to apertures 524 and 526 of the mounting bars 520 and 522 (see FIG. 5). In this way, a single apparatus can service a multiple products and components, and attached to or be proximate to multiple machines. The adjustable stand may be further configured for the attachment of an inverter 804, and other electromechanical elements together with the software controllers described with relation FIGS. 2 a-e.
  • In this way, referring back to FIG. 2, the CPU 272 may be further configured to control all of the adjustable aspects of the apparatus, including the lateral adjustability of each of the rollers and the height of the apparatus through adjusting the legs 808 of the stand 802 (using, for example, pistons).
  • With reference now to FIG. 9, a front view of a U-shaped stud is shown generally at 900. The U-shaped stud has been formed using the method as described with reference to FIGS. 1 and 2 and comprises a deburred and/or edged lip. As can be seen in the blown up view 902 the rough edge of the steel sheet of which the stud is formed has been through a smoothing process, such as debarring or edging. As can be seen, the lip 904 is smoothed to avoid injury to the engineers and workers. The debarring and edging process of the recited method can produce asymmetrical sides such that lip 904 and outer edge 906 are smoothed and precise as to specification.
  • For example, referring now to FIG. 10, a microscopic view of the vertical sheet 204 prior the edging and debarring step is shown at view 1002. As can be seen, there are burrs and sharp edges at 1006. As shown after the debarring step, view 1004, the vertical edges of the steel sheets are smoothed out 1008.
  • Each of the methods, and the steel components produced by the methods, may be systematically controlled by the CPU 272 together with an engineer or operator. Referring hack to FIG. 3, in embodiments of the present invention, CPU 272 may be supplied with multiple processors, micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors. The CPU 272 may further be supplied with appropriate hard discs for storage and memory, which may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted. Mass memory storage may also be coupled bi-directionally to CPU 272 provide additional data storage capacity and may include any of the computer-readable media described above.
  • The CPU 272 is further connected to a Graphical User Interface (GUI) 278 to enable a user to view the operation of the system 300. The CPU 272 is also connected to a network interface, which may communicate in either a unidirectional manner or a bi-directional manner with the system 200, via wireless or hard-lined communication in any known manner of communication such as a cellular phone or personal digital assistant (PDA). While as shown, the CPU 272 is connected to the edger, it should be appreciated that the communications exchange may be attached or in communication with all elements of the system.
  • In optional embodiments of the present invention, the CPU 272 may be loaded with manufacturing workflow software. In an exemplary embodiment, the workflow software comprises instructions for the automation of a process, in which a steel component is to be manufactured edged according to methods described herein. The workflow software provides a system for digitizing a production flowchart over a network 274. The workflow software may further include digitizing the flowchart for automated tasks such as edging a steel component.
  • Referring now to FIG. 11, a flow-chart to better help illustrate a method for workflow application of an industrial system is shown generally at reference numeral 1100. While the flowchart shows an exemplary step-by-step method, it is to be appreciated that a skilled artisan may rearrange or reorder the steps while maintaining like results.
  • At step 1102, the process many execute or initiate production of a steel component. In this exemplary embodiment, the processes may include those processes discussed with manufacturing a drywall stud in relation to FIG. 1 of the present invention. Initiating this process may comprise starting a motorized uncoiler to feed a steel coiled sheet through a edging apparatus.
  • At step 1104, the operator may select a type of edging operation using the GUI 278. For example, depending upon the type of the component being fabricated, the operator may choose between mechanical, electrochemical, or thermal edging operations. The operator may further be able to drill down to any of the following operations: Mass-finishing, spindle finishing, media blasting, sanding, grinding, wire brushing, abrasive flow machining, electrochemical deburring, electropolishing, thermal energy method, machining, and/or manual deburring. These processes are exemplary only and not meant to limit the operations to any of the aforementioned edging operation.
  • At step 1106, the system is configured to verify that the edges are smoothed to predetermined standards. To do so, the system may be fit with a plurality of sensors proximate the edger or disposed thereon, such that the sensors together with the workflow software ensure proper edging. If the system approves the edges, the steel sheet moves to the next fabrication step 1108. If the edges are not approved, then the steel component may be re-edged or used as scrap.
  • In optional embodiments of the present invention, the system is configured to establish whether the edger performed the edging correctly. If the edger worked to specification, the workflow software will queue the next (Step 1108) component. If the system finds that the edging was not performed sufficiently, the workflow software will reset the step.
  • Specific configurations and arrangements of the invention, discussed above with reference to the accompanying drawing, are for illustrative purposes only. Other configurations and arrangements that are within the purview of a skilled artisan can be made, used, or sold without departing from the spirit and scope of the invention. For example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
  • The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the spirit and scope of the methods and systems described herein.

Claims (20)

What is claimed is:
1. An apparatus for edging a steel component, the apparatus comprising:
at least one edger roll mounted to a slider housing;
a feed housing connected to the slider housing, wherein the feed housing is configured to drive the steel component through the at least one edger rolls, and wherein the edger roll is adjustably mounted to the slider housing.
2. The apparatus of claim 1, further comprising at least a one guide roll mounted to the slider housing, wherein the at least one edger roll comprises a plurality of sets of edger rolls positioned in parallel, and the least one guide roll comprises a plurality of set of guide rolls, wherein the sets of guide rolls are mounted the slider housing intermittently between can set of edger rolls.
3. The apparatus of claim 1, further comprising a mounting plate configured to connect the feed housing to the slider housing.
4. The apparatus of claim 1, wherein the feed housing comprises:
a first pulley wheel;
a thread rod connected to the first pulley wheel; and
a pneumatic cylinder attached to a mounting bracket, and mechanical communication with the thread rod wherein the pneumatic cylinder attached to a mounting bracket which has a corresponding bore configured for passage of the thread rod into the feed housing.
5. The apparatus of claim 4, wherein the thread rod is configured transfer a linear force from the pneumatic cylinder in to a reciprocal rotating force via a first pulley wheel.
6. The apparatus of claim 1, further comprising a feed top plate attached to the feed housing, the feed top plate configured to support a motor and gear box.
7. The apparatus of claim 6, wherein the wherein the motor is an A/C motor configured to provide motive force and power to a second pulley wheel, which is coupled to the gearbox.
8. The apparatus of claim 1, wherein the slider housing comprises:
a first side plate;
a second side plate connected to the first side plate; and
at least one adjustable slider block, wherein the edger rolls are mounted on a top portion of the adjustable slider block, and wherein slide blocks re configured to adjust laterally.
9. The apparatus of claim 1, further comprising a pinch pull disposed between the mounting plates and configured to direct the steel component away from the edger rolls.
10. The apparatus of claim 1, further comprising at least one mounting bar connected to the side plates of the slider housing and configured for attachment to an adjustable frame.
11. The apparatus of claim 1, wherein the slider housing further comprises:
a thread attached to the slider housing using at least two bearings.
an adjustable slide attached to the thread and configured to rotate manually or via a fully automated system, wherein the adjustable slider is attached to the slider block;
wherein the slider housing is further coupled to the adjustable slide at one end, and is connected at its other end to the edger rolls.
12. The apparatus of claim 1, wherein the slider housing further comprises a f a plate attached to the adjustable slide and configured to receive an end of a shaft, wherein the shaft passes vertically through the slider housing, such that the shaft is sandwiched on each of its sides.
13. The apparatus of claim 1, wherein the adjustable slider further comprises a plurality of springs are disposed within the adjustable slider and are sandwiched between an adjustment hex nut and a side panel of the slider block.
14. The apparatus of claim 1, further comprising a processor-based controller configured to provide motive control to the pinch pull and the motor and the slider blocks.
15. The apparatus of claim 1, wherein the controller is configured to adjust the power of the pinch pull and the motor, and also configured to laterally adjust the slider blocks to correspond to a dimension of the steel component, and wherein the controller is further configured to alter a type of edge the steel sheet requires.
16. The apparatus of claim 1, wherein the steel component comprises a galvanized hot-dipped steel coil, and wherein the steel component comprises a steel stud.
17. The apparatus of claim 1, wherein the roll edgers are configured to form the steel component having deburred vertical edges.
18. The apparatus of claim 1, further comprising:
a hole punch disposed immediately prior to roll former configured to punch a hole of predetermined size in the steel component; and.
a slitter configured to split the steel component prior to punching the hole in the steel sheet, splitting the steel sheet prior to the roll forming step;
wherein the edger rolls are connected to the slitter such that us step and the splitting step occur approximately simultaneously.
19. The apparatus of claim 1, further comprising at least one fluid sprayer attached to the side panels, wherein the fluid sprayer is configured to lubricate and cool the component.
20. The apparatus of claim 19, wherein the fluid sprayer is attached to the mounting bar.
US14/649,185 2013-01-16 2014-01-28 An apparatus and method for manufacturing a steel component Abandoned US20150352680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/649,185 US20150352680A1 (en) 2013-01-16 2014-01-28 An apparatus and method for manufacturing a steel component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361753157P 2013-01-16 2013-01-16
US14/649,185 US20150352680A1 (en) 2013-01-16 2014-01-28 An apparatus and method for manufacturing a steel component
PCT/US2014/013462 WO2014113823A1 (en) 2013-01-16 2014-01-28 An apparatus and method for manufacturing a steel component

Publications (1)

Publication Number Publication Date
US20150352680A1 true US20150352680A1 (en) 2015-12-10

Family

ID=51209987

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/649,184 Abandoned US20150306655A1 (en) 2013-01-16 2013-04-29 A Steel Component and Method of Making the Same
US14/649,185 Abandoned US20150352680A1 (en) 2013-01-16 2014-01-28 An apparatus and method for manufacturing a steel component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/649,184 Abandoned US20150306655A1 (en) 2013-01-16 2013-04-29 A Steel Component and Method of Making the Same

Country Status (2)

Country Link
US (2) US20150306655A1 (en)
WO (2) WO2014113050A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105881139A (en) * 2016-06-01 2016-08-24 中信戴卡股份有限公司 Deburring device for back cavities of vehicle wheels
CN109015180A (en) * 2018-08-18 2018-12-18 章梦月 The automatic polishing chamfering device of building iron material ends

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908167B1 (en) 2015-03-02 2018-03-06 Western Digital Technologies, Inc. Disk drive tolerance ring with edge rounding from opposite major faces
US10022760B2 (en) 2015-10-02 2018-07-17 The Material Works, Ltd. Cut-to-length steel coil processing line with stretcher leveler and temper mill
US10024059B2 (en) * 2016-12-15 2018-07-17 Bs Concepts, Llc Amplified metal stud framing
CN106863053B (en) * 2017-02-21 2023-01-17 北京科技大学 Grinding method and grinding equipment for thin plate strip steel edge
DE102017111320A1 (en) 2017-05-24 2018-11-29 Mkm Mansfelder Kupfer Und Messing Gmbh Winding device for winding a power transformer
CN111940563A (en) * 2020-07-27 2020-11-17 河南鼎力杆塔股份有限公司 Q460C extra-high voltage steel tube tower steel member machining device and method
CN111975574A (en) * 2020-08-06 2020-11-24 柳州市恒丰利刀具有限公司 Ceramic scraper grinding tool
CN112828706B (en) * 2020-12-28 2021-12-17 芜湖森普铁芯有限公司 Iron core semi-manufactured goods crosscut is with roll adjustment burr prevention mechanism
CN112828540B (en) * 2021-01-02 2022-10-25 青岛北洋建筑设计有限公司 Method for machining arc-shaped top beam for building steel structure
CN117484324B (en) * 2023-12-29 2024-03-22 湘潭市新峰金属科技有限公司 Spring steel wire cross-section grinding device

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1829599A (en) * 1927-12-15 1931-10-27 Blaw Knox Co Method and apparatus for cleaning sheet metal
US2120473A (en) * 1936-03-02 1938-06-14 Morgan Construction Co Manufacture of beveled edge strip
US2195102A (en) * 1936-11-28 1940-03-26 Western Electric Co Apparatus for treating strands
US2218674A (en) * 1938-09-16 1940-10-22 Pneumatic Scale Corp Apparatus for perforating sheet material
US2306620A (en) * 1941-05-27 1942-12-29 American Steel & Wire Co Burr remover for multiple strip forming devices
US2578337A (en) * 1947-04-01 1951-12-11 Samuel H Coddington Edging machine
US2960064A (en) * 1957-04-18 1960-11-15 Davy & United Eng Co Ltd Nozzles
US3006401A (en) * 1957-10-23 1961-10-31 Acme Steel Co Apparatus for conditioning metal strip having non-uniform stresses therein
US3024679A (en) * 1957-07-01 1962-03-13 Thomas A Fox Skin pass mills and methods of rolling
US3103138A (en) * 1960-06-09 1963-09-10 Westinghouse Electric Corp Foil thickness control apparatus
US3192834A (en) * 1963-04-05 1965-07-06 Allegheny Ludlum Steel Device for deburring metal strip
US3206965A (en) * 1963-06-19 1965-09-21 Gauer Walter Sheet metal edging apparatus
US3210977A (en) * 1962-12-31 1965-10-12 Republic Steel Corp Rolling steel plate
US3242711A (en) * 1961-06-28 1966-03-29 Fox Ind Inc Rolling mill structures
US3267252A (en) * 1964-12-23 1966-08-16 American Mach & Foundry Edge conditioning of metal strips by high frequency resistance heating
US3270541A (en) * 1963-11-04 1966-09-06 Tishken Paul Rolling, cutting, and notching machine
US3336778A (en) * 1964-06-08 1967-08-22 Anaconda Wire & Cable Co Edge-forming apparatus and method
US3348393A (en) * 1962-08-21 1967-10-24 British Iron Steel Research Rolling
US3387471A (en) * 1966-02-04 1968-06-11 Gen Dynamics Corp System to automatically control gage and the like
US3400566A (en) * 1966-12-13 1968-09-10 Gauer Walter Sheet metal edging apparatus
US3461703A (en) * 1964-10-30 1969-08-19 Production Machinery Corp Apparatus for uncoiling and processing metal strip
US3479852A (en) * 1967-04-21 1969-11-25 Archer Products Inc Rolling apparatus for rounding the edges of strip metal
US3492918A (en) * 1967-11-06 1970-02-03 Bliss Co Method and apparatus for conditioning the corners of cast billets
DE2027052A1 (en) * 1969-06-03 1971-02-25 Mitsubishi Aluminium Co Ltd , Tokio Device for the production of bandformi ger aluminum conductors
FR2063264A5 (en) * 1969-09-03 1971-07-09 Anaconda American Brass Co Rounding the slit edges of metal strip
US3602022A (en) * 1969-08-28 1971-08-31 Archer Products Inc Removable roll apparatus for rolling the edges of strip metal
US3635059A (en) * 1969-09-18 1972-01-18 Westinghouse Electric Corp Calibration of rolling mill screwdown position regulator
US3792619A (en) * 1972-08-31 1974-02-19 R Cannon Constant tension ball screw feed design
US3996780A (en) * 1975-07-02 1976-12-14 Dravo Corporation Method and apparatus for making an improved serrated grating bar
US4048831A (en) * 1974-08-13 1977-09-20 Hoesch Werke Aktiengesellschaft Two-roller driving device
US4083213A (en) * 1976-11-24 1978-04-11 Vladimir Nikolaevich Vydrin Device for automatic adjustment of the roll gap in a mill stand
US4373297A (en) * 1980-12-10 1983-02-15 Alexandria Extrusion Company Deburring machine
US4406029A (en) * 1981-08-19 1983-09-27 Kunz Maschinen - Und Apparatebau Gmbh Machine for removing burrs from sheet metal or the like
US4468944A (en) * 1981-07-16 1984-09-04 Davy-Loewy Limited Gap indicating means for a rolling mill
US4481800A (en) * 1982-10-22 1984-11-13 Kennecott Corporation Cold rolling mill for metal strip
EP0294807A2 (en) * 1987-06-11 1988-12-14 Hitachi, Ltd. Rolling installation for and rolling method of continuous cast Strip
US4803862A (en) * 1986-07-23 1989-02-14 Mannesmann Ag Positioning of edge rolls
US4887502A (en) * 1986-12-08 1989-12-19 Red Bud Industries, Inc. Machine for slitting metal sheet
US5501053A (en) * 1990-09-28 1996-03-26 Tube Technology Pty., Ltd. Interengageable structural members
US5746081A (en) * 1993-03-27 1998-05-05 Sms Schloemann-Siegmag Aktiengesellschaft Reversing compact installation for cold rolling strip-shaped rolling material
US6010089A (en) * 1998-09-11 2000-01-04 Rjs Corporation Tension control device
US6725751B1 (en) * 1999-11-05 2004-04-27 Formtek, Inc. Rotary punching apparatus
US6962033B2 (en) * 2000-12-28 2005-11-08 Belco Packaging Systems, Inc. Automatic high speed wrapping machine
US6997026B2 (en) * 2002-12-12 2006-02-14 Engel Industries, Inc. Quick change metal stud to hemmed track roll forming system
US20060150570A1 (en) * 2005-01-13 2006-07-13 Dietrich Industries, Inc. Wallboard trim and building components and methods for making same
US7310984B2 (en) * 2003-03-27 2007-12-25 Bluescope Steel Limited Forming apparatus for precambered metal sections
US20100005844A1 (en) * 2007-01-23 2010-01-14 Hans-Joachim Felkl Controlling arrangement for a rolling stand and items corresponding thereto
US7677071B2 (en) * 2006-06-02 2010-03-16 Bh Legacy, Llc Apparatus for the fabrication of metal wall frame members and assembly of wall frames therefrom, and foldable wall frame structures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065856B1 (en) * 1954-07-28 2006-06-27 Lemelson Jerome H Machine tool method
US3143749A (en) * 1962-04-04 1964-08-11 Outboard Marine Corp Retractable wheel installation and actuating mechanism therefor
FR1456488A (en) * 1965-05-07 1966-07-08 Corpet Louvet & Cie Sheet material cutting facility
US4144379A (en) * 1977-09-02 1979-03-13 Inland Steel Company Drawing quality hot-dip coated steel strip
SE450695B (en) * 1983-07-01 1987-07-20 Sture Hall APPARATUS FOR SURFACE PREPARATION OF PLATES INTENDED TO WELD
FR2674466B1 (en) * 1991-03-25 1995-03-17 Lorraine Laminage PROCESS AND DEVICE FOR DEBURRING, PARTICULARLY OF A STRIP CUT INTO SLAB.
WO2010054028A2 (en) * 2008-11-05 2010-05-14 Gary Jensen Method of making structural members with a thermal break
US8056303B2 (en) * 2009-05-06 2011-11-15 Frobosilo Raymond C Non load-bearing metal wall stud having increased strength

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1829599A (en) * 1927-12-15 1931-10-27 Blaw Knox Co Method and apparatus for cleaning sheet metal
US2120473A (en) * 1936-03-02 1938-06-14 Morgan Construction Co Manufacture of beveled edge strip
US2195102A (en) * 1936-11-28 1940-03-26 Western Electric Co Apparatus for treating strands
US2218674A (en) * 1938-09-16 1940-10-22 Pneumatic Scale Corp Apparatus for perforating sheet material
US2306620A (en) * 1941-05-27 1942-12-29 American Steel & Wire Co Burr remover for multiple strip forming devices
US2578337A (en) * 1947-04-01 1951-12-11 Samuel H Coddington Edging machine
US2960064A (en) * 1957-04-18 1960-11-15 Davy & United Eng Co Ltd Nozzles
US3024679A (en) * 1957-07-01 1962-03-13 Thomas A Fox Skin pass mills and methods of rolling
US3006401A (en) * 1957-10-23 1961-10-31 Acme Steel Co Apparatus for conditioning metal strip having non-uniform stresses therein
US3103138A (en) * 1960-06-09 1963-09-10 Westinghouse Electric Corp Foil thickness control apparatus
US3242711A (en) * 1961-06-28 1966-03-29 Fox Ind Inc Rolling mill structures
US3348393A (en) * 1962-08-21 1967-10-24 British Iron Steel Research Rolling
US3210977A (en) * 1962-12-31 1965-10-12 Republic Steel Corp Rolling steel plate
US3192834A (en) * 1963-04-05 1965-07-06 Allegheny Ludlum Steel Device for deburring metal strip
US3206965A (en) * 1963-06-19 1965-09-21 Gauer Walter Sheet metal edging apparatus
US3270541A (en) * 1963-11-04 1966-09-06 Tishken Paul Rolling, cutting, and notching machine
US3336778A (en) * 1964-06-08 1967-08-22 Anaconda Wire & Cable Co Edge-forming apparatus and method
US3461703A (en) * 1964-10-30 1969-08-19 Production Machinery Corp Apparatus for uncoiling and processing metal strip
US3267252A (en) * 1964-12-23 1966-08-16 American Mach & Foundry Edge conditioning of metal strips by high frequency resistance heating
US3387471A (en) * 1966-02-04 1968-06-11 Gen Dynamics Corp System to automatically control gage and the like
US3400566A (en) * 1966-12-13 1968-09-10 Gauer Walter Sheet metal edging apparatus
US3479852A (en) * 1967-04-21 1969-11-25 Archer Products Inc Rolling apparatus for rounding the edges of strip metal
US3492918A (en) * 1967-11-06 1970-02-03 Bliss Co Method and apparatus for conditioning the corners of cast billets
DE2027052A1 (en) * 1969-06-03 1971-02-25 Mitsubishi Aluminium Co Ltd , Tokio Device for the production of bandformi ger aluminum conductors
US3602022A (en) * 1969-08-28 1971-08-31 Archer Products Inc Removable roll apparatus for rolling the edges of strip metal
FR2063264A5 (en) * 1969-09-03 1971-07-09 Anaconda American Brass Co Rounding the slit edges of metal strip
US3635059A (en) * 1969-09-18 1972-01-18 Westinghouse Electric Corp Calibration of rolling mill screwdown position regulator
US3792619A (en) * 1972-08-31 1974-02-19 R Cannon Constant tension ball screw feed design
US4048831A (en) * 1974-08-13 1977-09-20 Hoesch Werke Aktiengesellschaft Two-roller driving device
US3996780A (en) * 1975-07-02 1976-12-14 Dravo Corporation Method and apparatus for making an improved serrated grating bar
US4083213A (en) * 1976-11-24 1978-04-11 Vladimir Nikolaevich Vydrin Device for automatic adjustment of the roll gap in a mill stand
US4373297A (en) * 1980-12-10 1983-02-15 Alexandria Extrusion Company Deburring machine
US4468944A (en) * 1981-07-16 1984-09-04 Davy-Loewy Limited Gap indicating means for a rolling mill
US4406029A (en) * 1981-08-19 1983-09-27 Kunz Maschinen - Und Apparatebau Gmbh Machine for removing burrs from sheet metal or the like
US4481800A (en) * 1982-10-22 1984-11-13 Kennecott Corporation Cold rolling mill for metal strip
US4803862A (en) * 1986-07-23 1989-02-14 Mannesmann Ag Positioning of edge rolls
US4887502A (en) * 1986-12-08 1989-12-19 Red Bud Industries, Inc. Machine for slitting metal sheet
EP0294807A2 (en) * 1987-06-11 1988-12-14 Hitachi, Ltd. Rolling installation for and rolling method of continuous cast Strip
US5501053A (en) * 1990-09-28 1996-03-26 Tube Technology Pty., Ltd. Interengageable structural members
US5746081A (en) * 1993-03-27 1998-05-05 Sms Schloemann-Siegmag Aktiengesellschaft Reversing compact installation for cold rolling strip-shaped rolling material
US6010089A (en) * 1998-09-11 2000-01-04 Rjs Corporation Tension control device
US6725751B1 (en) * 1999-11-05 2004-04-27 Formtek, Inc. Rotary punching apparatus
US6962033B2 (en) * 2000-12-28 2005-11-08 Belco Packaging Systems, Inc. Automatic high speed wrapping machine
US6997026B2 (en) * 2002-12-12 2006-02-14 Engel Industries, Inc. Quick change metal stud to hemmed track roll forming system
US7310984B2 (en) * 2003-03-27 2007-12-25 Bluescope Steel Limited Forming apparatus for precambered metal sections
US20060150570A1 (en) * 2005-01-13 2006-07-13 Dietrich Industries, Inc. Wallboard trim and building components and methods for making same
US7677071B2 (en) * 2006-06-02 2010-03-16 Bh Legacy, Llc Apparatus for the fabrication of metal wall frame members and assembly of wall frames therefrom, and foldable wall frame structures
US20100005844A1 (en) * 2007-01-23 2010-01-14 Hans-Joachim Felkl Controlling arrangement for a rolling stand and items corresponding thereto

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105881139A (en) * 2016-06-01 2016-08-24 中信戴卡股份有限公司 Deburring device for back cavities of vehicle wheels
US10213890B2 (en) 2016-06-01 2019-02-26 Citic Dicastal Co., Ltd. Deburring device for back cavity of wheel
CN109015180A (en) * 2018-08-18 2018-12-18 章梦月 The automatic polishing chamfering device of building iron material ends

Also Published As

Publication number Publication date
WO2014113823A1 (en) 2014-07-24
US20150306655A1 (en) 2015-10-29
WO2014113050A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US20150352680A1 (en) An apparatus and method for manufacturing a steel component
WO2018041222A1 (en) C-shaped steel forming and punching production line and processing technique therefor
CA2841838C (en) Method and apparatus for producing tailored sheet-metal strips
EP3231527B1 (en) Blank, die assembly and method for producing a blank
CN104785618A (en) Automatic single-sided metal composite wallboard producing method
CN105817840A (en) Machining and producing process of seamless steel pipe
CN104801867A (en) Manufacturing method for blank for producing steel-titanium composite board
CN102699020A (en) Production method of precise stainless steel belt for high-strength spring
EP3205414A1 (en) Method for producing metal plate with protruding ridge, metal plate with protruding ridge, and structural component
RU2587701C2 (en) Roll-forming line for manufacture of elements of c-shaped profile for assembly of carcass structure from rolled steel
CN109286281A (en) High-flatness riveted silicon steel slice assembly line and its technique
KR20020030046A (en) Manufacturing method of steel pallet for molding cement products such as blocks and bricks
JP5195586B2 (en) Steel cutting method and cutting apparatus
RU156248U1 (en) MULTI-CURVE PROFILING MACHINE
CN104801926A (en) Preparation method for blank for producing stainless steel-carbon steel composite sheet
CN103341759B (en) Doorframe mould roller molding procedure integrating device
CN104801858A (en) Manufacturing method for blank for producing copper-aluminum composite board
CN209419426U (en) High-flatness riveted silicon steel slice assembly line
RU2586367C1 (en) Automatic line for production of profile
KR200346994Y1 (en) roll forming machine for rib panal forming of gang form
US238105A (en) Mill for rolling hoop-iron
CN219853144U (en) Tool for punching machine
KR102003228B1 (en) Flying shear apparatus
CN115178977B (en) Taper sleeve locking reinforcing bar joint production process and production line thereof
RU2483860C2 (en) Method of chamfering

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION