US20150321736A1 - Flotation device for use in water recreation - Google Patents

Flotation device for use in water recreation Download PDF

Info

Publication number
US20150321736A1
US20150321736A1 US14/556,943 US201414556943A US2015321736A1 US 20150321736 A1 US20150321736 A1 US 20150321736A1 US 201414556943 A US201414556943 A US 201414556943A US 2015321736 A1 US2015321736 A1 US 2015321736A1
Authority
US
United States
Prior art keywords
central body
flotation device
defining
lateral element
canted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/556,943
Inventor
Gameli E. Cruz Ricardez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waterblade LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/556,943 priority Critical patent/US20150321736A1/en
Priority to EP15173244.3A priority patent/EP3028938A1/en
Priority to US14/749,444 priority patent/US9399502B1/en
Publication of US20150321736A1 publication Critical patent/US20150321736A1/en
Assigned to WATERBLADE, LLC reassignment WATERBLADE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUZ RICARDEZ, GAMELI E.
Assigned to WATERBLADE L.L.C. reassignment WATERBLADE L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUZ RICARDEZ, GAMELI E.
Priority to US15/176,125 priority patent/US9714070B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • B63B35/731
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B32/00Water sports boards; Accessories therefor
    • B63B32/10Motor-propelled water sports boards

Definitions

  • the present invention relates to a personalized recreational watercraft and method of use, and more particularly, to a watercraft offering stability and balance in both hydrostatic and hydrodynamic conditions.
  • the present invention overcomes the deficiencies of the known art and the problems that remain unsolved by providing a watercraft that features stability and balance in both hydrostatic and hydrodynamic conditions, and supports the capability of a user to self-propel the watercraft even in hydrostatic conditions.
  • the present disclosure is generally directed to a recreational water flotation device includes a central body defining an upper surface and a bottom surface and having a front and a rear.
  • a left lateral element extends from a left end of the central body and defines a left canted surface canted toward the central body and further defines a left end of said flotation device.
  • a right lateral element extends from a right end of the central body and defines a right canted surface canted toward the central body and further defining a right end of the flotation device.
  • a propulsion unit is mounted to the bottom surface of the central body.
  • the device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a material buoyant in water.
  • the central body, the left lateral element, and the right lateral element are formed of a single homogenous body.
  • a left side of the left lateral element and a right side of the right lateral element define a width of the flotation device, and the front end and rear end of the central body define a length of the flotation device wherein the width is greater than the length.
  • the left lateral side and the right lateral side have an arcuately convex peripheral shape
  • the front end and the rear end have an arcuately convex peripheral shape
  • the peripheral areas connecting in adjacent ones of the left lateral side, front and, right lateral side, and rear end are arcuately concave.
  • the flotation device further includes a left rear fin and a right rear fin where in each fin is arcuately concave and protrudes from the bottom surface of the central body at a rear periphery thereof
  • the flotation device further includes a front fin extending along a front edge of the central body and further extending between the left lateral element and the right lateral element.
  • the front fin and the front edge defining surface angled toward the rear for providing a smooth flow of water thereover.
  • the propulsion unit is at least partially rotatable with respect to the central body.
  • the flotation device further includes a bottom mount affixed to the bottom surface of the central body and includes an outer tube in fixed relation to the central body and an inner tube within the fixed outer tube that is at least partially rotatable with respect to the outer tube.
  • the propulsion unit is attached to the inner tube.
  • the outer tube at least partially defines a forwardly oriented opening therethrough and the inner tube has attached thereto a transverse tube extending forwardly from the inner tube through the opening.
  • a horizontal cross tube is attached to a distal forward end of the transverse tube.
  • a bottom bracket is affixed to the cross tube.
  • the propulsion unit includes a propeller mounted in a propeller mount, wherein the bottom bracket retains the propeller mount thereto.
  • the flotation device further includes vertical stop bars affixed to the fixed outer tube.
  • the vertical stop bars define the left and right boundaries of the opening for limiting the rotation of the inner tube with respect to the outer tube.
  • the device further includes a weight, wherein the weight and the propulsion unit are interchangeably mountable to the central body.
  • a recreational water flotation device in yet another aspect, includes a central body having an upper surface and a bottom surface and having a front and a rear.
  • a left lateral element extends from a left end of the central body and defines a left canted surface which is canted toward the central body.
  • the left lateral element defining a left end of the flotation device.
  • a right lateral element extends from a right end of the central body and defines a right canted surface which is canted toward the central body.
  • the right lateral element defines a right end of the flotation device.
  • a propulsion unit is mounted to the bottom surface of the central body and is at least partially rotatable with respect to the central body.
  • the device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a single homogenous body of material buoyant in water.
  • the left lateral side and the right lateral side have an arcuately convex peripheral shape and the front end and rear and have an arcuately convex peripheral shape.
  • the peripheral areas connecting adjacent ones of the left lateral side the front end the right lateral side and the rear end are arcuately concave.
  • the flotation device includes a left rear fin and a right rear fin, where in each fin is arcuately concave and protrudes from the bottom surface of the central body at a rear periphery thereof.
  • the flotation device further includes a front fin extending along a front edge of the central body and further extending between the left lateral element and the right lateral element wherein the front fin and the front edge defining a surface angled toward the rear for providing a smooth flow of water thereover.
  • the flotation device further includes a bottom mount affixed to the bottom surface of the central body.
  • the bottom mount includes an outer tube in fixed relation to the central body and an inner tube within the fixed outer tube which is at least partially rotatable with respect to the outer tube.
  • the propulsion unit is attached to the inner tube.
  • a recreational water flotation device in another aspect, includes a central body defining an upper surface and a bottom surface and has an arcuately convex front end and an arcuately convex rear end.
  • a left lateral element has a convexly arcuate left lateral side and extends from a left end of the central body. The left lateral element defines a left canted surface which is canted toward the central body.
  • a right lateral element has a convexly arcuate right lateral side and extends from a right end of the central body. The right lateral element defines a right canted surface which is canted toward the central body and further defines a right end of the flotation device.
  • the peripheral areas connecting adjacent ones of the left lateral side, front end, right lateral side, and rear end are arcuately concave.
  • a front fin extends along at least a front edge of the central body. The front fin and the front edge define a surface which is angled toward the rear for providing a smooth flow of water thereover.
  • a left rear fin and a right rear fin are arcuately concave and protrude from the bottom surface of the central body at a rear periphery thereof.
  • a propulsion unit is mounted to the bottom surface of the central body and is at least partially rotatable with respect to the central body.
  • the device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a single homogenous body of material buoyant in water.
  • the flotation device further includes a bottom mount affixed to the bottom surface of the central body and includes an outer tube in fixed relation to the central body and inner tube within the fixed outer tube.
  • the inner tube is at least partially rotatable with respect to the outer tube and the propulsion unit is attached to the inner tube.
  • the outer tube at least partially defines a forwardly oriented opening therethrough.
  • the inner tube has attached thereto a transverse tube extending forwardly therefrom and through the opening.
  • a horizontal cross tube is attached to a distal forward end of the transverse tube and a bottom bracket is affixed to the cross tube.
  • the propulsion unit includes a propeller mounted in a propeller mount wherein the bottom bracket retains the propeller mount thereto.
  • the device further includes left and right stops affixed to the fixed outer tube and defining the left and right boundaries of the opening for limiting the rotation of the inner tube with respect to the outer tube.
  • FIG. 1 presents an isometric rear view of an exemplary water board, according to one implementation of the present invention
  • FIG. 2 presents an isometric bottom view of the water board originally introduced in FIG. 1 ;
  • FIG. 3 presents an exploded view of the water board originally introduced in FIG. 1 , demonstrating the individual layers that are stacked to form the composite assembly of the water board;
  • FIG. 4 presents a top view of the water board originally introduced in FIG. 1 ;
  • FIG. 5 presents a side view of the water board originally introduced in FIG. 1 , demonstrating a mode of operating the water board by a user;
  • FIG. 6 presents an isometric front view of the operation of the water board as originally introduced in FIG. 5 ;
  • FIG. 7 presents a top front isometric view of a water board, according to an alternate embodiment of the present invention.
  • FIG. 8 presents a top rear isometric view of the water board of FIG. 7 ;
  • FIG. 9 presents a bottom rear isometric view of the water board of FIG. 7 ;
  • FIG. 10 presents an exploded bottom front isometric view of the water board of FIG. 7 ;
  • FIG. 11 presents a right side elevation view of the water board of FIG. 7 ;
  • FIG. 12 presents a rear elevation view of the water board of FIG. 7 ;
  • FIG. 13 presents a front elevation view of the water board of FIG. 7 in use and floating in a body of water and a user standing on the water board;
  • FIG. 14 presents a front elevation view of the water board of FIG. 7 wherein the user has shifted his weight to his left foot;
  • FIG. 15 presents a top plan view of the water board of FIG. 7 with a user's feet placed atop thereof;
  • FIG. 16 presents a top plan view of the water board of FIG. 7 wherein the user is urging a left side of the water board forward and rotating the water board to the right;
  • FIG. 17 presents a right side elevation view of the water board of FIG. 7 with a user standing on top thereof;
  • FIG. 18 presents a side elevation view of a bottom connector assembly attachable to the bottom of the water board showing the mounting of a weight thereto;
  • FIG. 19 presents a top plan view of the bottom connector assembly and weight of FIG. 18 ;
  • FIG. 20 presents an isometric view of a portion of the bottom connector assembly of FIG. 18 partially rotated.
  • FIG. 21 presents an isometric view of the portion of the bottom connector assembly of FIG. 20 in a non-rotated position.
  • the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims.
  • a water board 100 is presented in various configurations in the illustrations of FIGS. 1 through 4 .
  • the operation of the water board 100 by a user in a stand-up position is presented in FIGS. 5 and 6 .
  • the water board 100 includes an assembly of individual layers that are attached together in a stacking arrangement to form a composite structure.
  • the water board 100 includes an upper or top layer 102 , a main body layer 104 disposed below the upper layer 102 , a mid or intermediate layer 106 disposed below the main body layer 104 , and a lower or bottom layer 108 disposed below the mid layer 106 .
  • the assembled form of water board 100 is depicted in the various views of FIGS. 1 , 2 and 4 .
  • the water board 100 can generally be considered a watercraft or water vessel suitable for recreational purposes.
  • water board 100 in its assembled form, water board 100 includes a dorsal or upper side 110 at upper layer 102 , a ventral or lower side 112 at lower layer 108 , a left lateral side 118 , and a right lateral side 120 .
  • the dorsal side 110 defines a location where a user is situated in an operating position, such as a stand-up position while navigating the water board 100 through water.
  • the user mounts and rides the water board 100 at the dorsal side 110 .
  • the ventral side 112 defines a location where the water board 100 is placed on or contacts the water.
  • Water board 100 further includes a front, forward or anterior end 114 and a back, rearward or posterior end 116 .
  • the front end 114 serves as the nose section that defines the leading edge of water board 100 as the water board 100 travels through water.
  • the rear end 116 serves as the tail section that defines the trailing edge of water board 100 as the water board 100 travels through the water.
  • the user faces in the direction of the front end 114 .
  • the front end 114 and the rear end 116 define a longitudinal axis of the water board 100
  • the left lateral side 118 and the right lateral side 120 define a lateral axis of the water board 100 .
  • the assembled form of water board 100 has a generally diamond-shaped construction in plan view, preferably modified to include rounded vertices and curved sides.
  • the water board 100 includes generally convex corners and generally concave sides.
  • the water board 100 is preferably asymmetric along its longitudinal and lateral axes, such that the water board 100 is wider along its lateral (side-to-side) axis than along its longitudinal (front-to-back) axis.
  • This asymmetry produces a generally oblong shape to the water board 100 .
  • One benefit of this axial asymmetry is that it produces a low turning moment about the longitudinal axis, resulting in a high resistance to rotation about the longitudinal axis.
  • This asymmetry likewise produces a more stable platform or deck for the user to stand on and maneuver the water board 100 .
  • the geometry of the water board 100 is suitably chosen to present an underside surface area contacting the water that is sufficient to sustain the weight of an individual in water, while also inhibiting any rotation about the longitudinal axis to provide stability, especially in a resting (non-moving) state.
  • the water board 100 of the present embodiment has both hydrostatic and hydrodynamic flotation properties. At rest or in hydrostatic conditions, the water board 100 is very stable and permits the user to stand in an upright position without the risk of capsizing the water board 100 .
  • the asymmetry of water board 100 creates a very small turning moment about the longitudinal (front-to-back) axis, making it very difficult for the water board 100 to rotate about the longitudinal axis and capsize the water board 100 .
  • the water board 100 can readily move through water in a surfing-style travel that rides along the water surface.
  • the exemplary shape and geometry of the water board 100 is implemented by a suitable construction of the individual layers 102 , 104 , 106 , and 108 .
  • the exemplary upper layer 102 includes a front corner 130 disposed at the front end 114 of assembled water board 100 , a rear corner 132 disposed at the rear end 116 of assembled water board 100 , a left side corner 134 disposed at the left lateral side 118 of assembled water board 100 , and a right side corner 136 disposed at the right lateral side 120 of assembled water board 100 .
  • the corners 130 , 132 , 134 , and 136 are preferably rounded or curved in a convex shape.
  • This convex geometry promotes flotation of the water board 100 and offers favorable resistance properties to facilitate ease of movement of the water board 100 through water.
  • the convex corners 130 , 132 , 134 , and 136 present reduced resistance and allow smooth water flow across the contours of the corners 130 , 132 , 134 , and 136 as the water board 100 advances through the water.
  • the upper layer 102 further includes a front right edge or side 140 connecting the front corner 130 and the right side corner 136 ; a front left edge or side 142 connecting the front corner 130 and the left side corner 134 ; a right rear edge or side 144 connecting the rear corner 132 and the right side corner 136 ; and a left rear edge or side 146 connecting the rear corner 132 and the left side corner 134 .
  • the sides 140 , 142 , 144 , and 146 are preferably curved in a concave shape. This concave geometry promotes smooth water flow along the periphery or boundary of water board 100 as the water board 100 travels through water.
  • the geometry and shape of the main body layer 104 , the mid layer 106 , and the lower layer 108 are similar to that of upper layer 102 . Accordingly, once the upper layer 102 , the main body layer 104 , the mid layer 106 , and the lower layer 108 are integrated together into a stacked configuration to produce the final assembled form of water board 100 , the overall geometry of water board 100 is generally uniform throughout the layers 102 , 104 , 106 , and 108 . Various modifications to the geometry of the water board 100 can be made, however.
  • the layers 102 , 104 , 106 , and 108 can be formed with progressively smaller sizes, while each still retains the same general shape.
  • the upper layer 102 would have the largest size and the subsequent layers 104 , 106 , and 108 underneath it would be progressively smaller.
  • the result would be a terraced-type profile.
  • the scale factor used to create the different-sized layers 102 , 104 , 106 , and 108 can be suitably selected to promote desired hydrodynamic flow patterns along and around the water board 100 .
  • the lateral dimension extending between the left side corner 134 and the right side corner 136 is longer than the longitudinal dimension extending between the front corner 130 and the rear corner 132 , producing an axial asymmetry that results in a generally oblong shape.
  • the lateral and longitudinal dimensions can be adjusted to produce any type of oblong shape depending upon the hydrostatic and hydrodynamic properties that are desired.
  • the combination of the front corner 130 , rear corner 132 , left side corner 134 , and right side corner 136 can be collectively regarded as a set of vertices that define a generally diamond-shaped configuration, modified to produce a selected type of axial asymmetry, if desired.
  • Each of the layers 102 , 104 , 106 , and 108 is preferably formed of a rigid foam or heavy duty foam material conducive to flotation.
  • An advantageous embodiment will have at least one layer manufactured using Expanded polystyrene (EPS) foam or Polyurethane foam. It should be apparent to those skilled in the art that any type of material can be used to construct layers 102 , 104 , 106 , and 108 that is compatible with maintaining a flotation capability for water board 100 .
  • EPS Expanded polystyrene
  • the water board 100 is constructed so that the upper layer 102 is made of a 1′′ (one inch) thick heavy duty EPS or Polyurethane foam layer; the main body layer 104 is made of a 2′′ (two inch) thick heavy duty EPS or Polyurethane foam layer; the mid layer 106 is made of a 2′′ (two inch) thick heavy duty EPS or Polyurethane foam layer; and the lower layer 108 is made of a 2′′ (two inch) thick heavy duty EPS or Polyurethane foam layer.
  • These specific dimensions should not be considered in limitation of the invention but merely illustrative, as other dimensional values can be used to practice the invention.
  • the assembled structure of water board 100 is preferably processed with a finishing exterior coat of waterproofing to protect the foam material from cracking or moisture.
  • This exterior coat can be a water-resistant epoxy resin material or fiberglass, for example.
  • the water board 100 further includes a fin 122 attached to the bottom layer 108 at the front end 114 of water board 100 , as best depicted in FIGS. 2 and 3 .
  • the fin 122 promotes guidance and maneuverability of the water board 100 through water.
  • the fin 122 also provides an “oar” effect when moving the water board 100 backwards. This “oar” effect is enhanced by having the bottom layer 108 include two cut-outs 128 on its outer surface area, contiguous to the fin 122 .
  • the cut-outs 128 provide an increased total height of the rear wall of the fin 122 facing the cut-outs 128 , contributing to the “oar” effect.
  • the upper layer 102 includes a trim or border 124 installed at the front or leading end 114 of water board 100 , in order to add rigidity and to improve the ability of the water board 100 to cut through water.
  • the trim 124 extends along the forward or anterior half of the perimeter of upper layer 102 .
  • the upper layer 102 includes a carved left footprint hole 150 and a carved right footprint hole 152 .
  • the carved left footprint hole 150 and the carved right footprint hole 152 are appropriately sized to receive the left foot and the right foot, respectively, of a user situated in a standing position on water board 100 , as best depicted in FIG. 6 .
  • the user places the left foot and the right foot in holes 150 and 152 respectively, resting the feet on the surface of main body layer 104 (underneath upper layer 102 ) that is exposed by the holes 150 and 152 .
  • the combination of the upper layer 102 and the main body layer 104 serves as the deck or platform on which the user is positioned via the left footprint hole 150 and the right footprint hole 152 .
  • the footprint holes 150 and 152 enhance the traction of the user during operation of the water board 100 .
  • the water board 100 further includes a cable support tubing or conduit 160 as best depicted in FIG. 3 , in order to secure and locate a cable accessible to the user.
  • a cable is threaded through the conduit 160 and made accessible to the user.
  • the cable conduit 160 has a generally U-shaped structure including a horizontal section 162 , a first vertical section 164 disposed at one end of horizontal section 162 and having a top opening 165 , and a second vertical section 166 disposed at another end of horizontal section 162 and having a top opening 167 .
  • the water board 100 is equipped such that the upper layer 102 includes a left cable hole 154 and a right cable hole 156 , and the main body layer 104 includes a left cable hole 155 aligned with the left cable hole 154 in upper layer 102 and a right cable hole 157 aligned with the right cable hole 156 in upper layer 102 .
  • the first vertical section 164 of cable conduit 160 is inserted through the pair of aligned holes 156 and 157 formed in the upper layer 102 and the main body layer 104 , respectively, and the second vertical section 166 of cable conduit 160 is inserted through the pair of aligned holes 154 and 155 formed in the upper layer 102 and the main body layer 104 , respectively.
  • the cable conduit 160 is positioned such that its horizontal section 162 lies between the main body layer 104 and the mid layer 106 .
  • the top opening 165 of the first vertical conduit section 164 and the top opening 167 of the second vertical conduit section 166 lie above the upper surface of upper layer 102 , as best depicted in FIG. 1 .
  • the cable holes 154 , 155 , 156 , and 157 can be placed at any selected locations depending upon the desired location of the cable.
  • the water board 100 further includes a cable 170 that is threaded through cable conduit 160 and forms a loop accessible to the user 200 , as best depicted in FIGS. 5 and 6 .
  • the cable 170 includes a left side 172 , a right side 174 , an upper end 176 , a lower end 178 threading through the cable conduit 160 , and a bridge, rung or connecting section 180 that spans between the left cable side 172 and the right cable side 174 .
  • the cable 170 has a suitable length to permit the user or operator 200 to grasp the upper cable end 176 at a body height favorable to steering the water board 100 and maintaining balance, such as waist height when the user 200 is in a fully upright position.
  • the water board 100 optionally includes a tether 182 having a connecting end attached to a fixture 184 located on the rear corner 132 of upper layer 102 , and a free end available for releasable attachment to the user ankle, as best depicted in FIGS. 1 , 3 and 6 .
  • the tether 182 functions to keep the user safely attached to the water board 100 in the event of a fall.
  • the operation of water board 100 is best presented in FIGS. 5 and 6 .
  • the user 200 must first board or mount the water board 100 before engaging in water travel (i.e., riding water board 100 ). Initially, in order to mount or climb aboard the water board 100 , the user 200 will likely need to swim to waters at least deep enough to have half of the user body underwater in a standing position. To mount the water board 100 at upper layer 102 from a swimming position, the user 200 first approaches the water board 100 from its rear end 116 . The user 200 should then pull the lower cable rung 180 of cable 170 in order to slide the water board 100 under the user body, which enables the user to subsequently mount the water board 100 at upper layer 102 .
  • the user 200 can then attempt to stand up by grasping the upper end 176 of cable 170 and pulling on it until it becomes taut, providing stability and balance. At this time the user 200 can also insert his/her feet into the recesses formed by the left footprint hole 150 and the right footprint hole 152 , which readies the user for water travel.
  • the user 200 uses a side-to-side rocking motion in which the user 200 shifts his/her weight in an alternating sequence between the lateral sides of water board 100 .
  • This rocking motion effectuates rapid turns in the water board 100 that act to propel the water board 100 in the forward direction.
  • the water board 100 can thus be self-propelling if used in calm waters, or can use the assistance of wave motion to supplement the motion activity performed by the user.
  • the user 200 shifts his/her weight onto one foot (e.g., the foot in recess 150 of FIG. 4 ), which loads or weighs down that side 118 of the water board 100 receiving the shifted weight, causing the loaded side to sink.
  • the other (opposite) side 120 of the water board 100 from which the weight has been lifted correspondingly rises because it is now unloaded.
  • the user While the water board 100 is in this rotated or pivoted position due to the weight shifting, with the unloaded side 120 higher than the loaded side 118 , the user initiates a forward kicking motion with the unloaded foot (i.e., the foot in recess 152 ), which causes the water board 100 to turn in the direction 300 .
  • the user 200 then immediately switches the body weight to the other side, i.e., the weight shifts back to side 120 so that the now loaded foot in recess 152 sinks down and the now unloaded foot in recess 150 rises up with the unloaded side 118 .
  • the user initiates a forward kicking motion with the unloaded foot in recess 150 , which causes the water board 100 to turn in the direction 302 opposite the previous turning direction 300 .
  • the user continues this cycle of alternating weight shifts and alternating foot kicks.
  • the user repeats this sequence of alternately shifting weight from one side to the next while simultaneously performing a forward kicking motion with the elevated foot at the currently unloaded side of the water board 100 .
  • the net effect of this alternating shift in body weight, accompanied by the alternating kicking motions at the alternately unloaded sides, is to create a rapid sequence of small turns in water board 100 that collectively propel the water board 100 in the forward direction.
  • the user can steer the water board 100 by appropriately changing the relative intensity of the forward kicking motions at the opposite sides of the water board 100 , creating more turning momentum in one direction than the other.
  • the user can travel in a generally straight line by employing forward kicking motions of comparatively equal strength at the opposite sides of the water board 100 . Observed from above ( FIG.
  • the water board 100 sits downward in the water in the forward direction, creating a forward tilted orientation 310 as depicted in FIG. 5 .
  • An exemplary angle of tilt is 10 degrees relative to the horizontal plane.
  • the water board 100 provides several advantages over the current art.
  • Conventional types of personalized watercraft like surf boards require the presence of moving water to balance the surf board while standing.
  • the surf board has a high tendency to rotate when a user stands on it in calm waters.
  • Typical surf boards are designed to be moved by waves, so in calm waters the surf board will rotate when standing on it, leading to a loss of balance and an overturn of the surf board.
  • the design of the water board 100 inhibits this side-to-side rotation, allowing a user to readily stand on the water board 100 in a fully balanced position in calm waters.
  • the water board 100 is also effective in hydrodynamic conditions, i.e., wavy waters.
  • the design of the water board 100 facilitates a side-to-side rocking motion that alternately loads and unloads opposite sides of the water board 100 , which in combination with alternating kicking motions at the unloaded sides enable the user to self-propel the water board 100 .
  • the water board 100 features stability and balance in both hydrostatic (e.g., lake or pool) and hydrodynamic (e.g., river or ocean) conditions, and supports the capability of a user to self-propel the watercraft even in hydrostatic conditions.
  • FIGS. 7 through 21 An alternative embodiment recreational water flotation device, also referred to as a water board, is illustrated in its various aspects in FIGS. 7 through 21 .
  • the alternative embodiment water board 400 has a central body 404 which defines an upper side 410 , a bottom surface 412 ( FIG. 10 ), a front end 414 , and a rear end 416 .
  • the rear end 416 extends farther to the rear than the front end 414 projects forward and thus acts as a tail to assist in rotational stabilization of the water board 400 .
  • a left lateral element 405 and a right lateral element 407 are affixed to the left and right sides of the body 404 respectively.
  • the body 404 , left lateral element 405 , and right lateral element 407 are formed of a hydrodynamic flotation material such as a rigid closed cell polymeric foam of sufficient buoyancy to support a human being on the surface of a body of water. Most preferably, the body 404 , left lateral element 405 , and right lateral element 407 are formed of a single homogenous body of polymeric foam which, in turn, is machined or cut to create its finished three-dimensional profile.
  • the left lateral element 405 and the right lateral element 407 both include left and right canted surfaces 419 , 421 respectively wherein the left canted surface 419 and right canted surface 421 are sloped to the center of the body 404 and raised above upper side 410 as most clearly illustrated in FIG. 7 .
  • the canted surfaces 419 , 421 are intended to function as footpads for a user 200 to stand thereupon as described in greater detail below.
  • the canted surfaces 419 , 421 can optionally be textured or covered with a non-skid coating to provide secure footing for the user 200 .
  • the left lateral element 405 defines an arcuately convex left lateral side 418 and the right lateral element 407 also defines a convexly arcuate right lateral side 420 .
  • the front end 414 and the rear end 416 are also arcuately convex, and the peripheral areas connecting adjacent ones of the left lateral side 418 , the front end 414 , the right lateral side 420 , and the rear end 416 are generally arcuately concave such that the periphery as a whole is a series of alternating convexities and concavities.
  • the water board 400 is thus shaped as a generally four-lobed body, the four lobes being provided by the left lateral side 418 , the right lateral side 420 , the front end 414 and the rear end 416 , and including the said two opposed sloped or canted surfaces 419 , 421 converging towards the upper side 410 . Further, the width of the water board 400 from the left lateral side 418 to the right lateral side 420 is greater than the length of the body 404 from the front end 414 to the rear end 416 .
  • a tether 482 is affixed to the rear and 416 of the water board 400 .
  • the tether 482 includes a loop 483 at a free end thereof.
  • the size of the loop 483 is adjustable such that the user 200 is able to place the loop 483 around either the user's left or right ankle and adjust the loop 483 to a comfortable tightness.
  • the use of the tether 482 keeps the water board 400 within reach of the user 200 in the event that the user 200 falls off the water board 400 while in the water.
  • a front fin 423 includes a left front fin element 425 and a right front fin element 427 .
  • the front fin 423 is affixed to the bottom surface 412 proximate to the front end 414 and extending from the left lateral side 418 to the right lateral side 420 .
  • the fin elements 425 , 427 are arcuately concave to more closely match the front contour of the central body 404 .
  • the left and right front fin elements 425 , 427 can have a trapezoidal shaped cross-section wherein the widest base is affixed to the bottom surface 412 .
  • a front edge 413 of the central body 404 can be angled toward the rear at approximately the same angle as the trapezoidally shaped left and right front fin elements 425 , 427 to provide a smooth flow of water thereover as the water board 400 passes through the water.
  • a left rear fin 430 and a right rear fin 432 are also formed as arcuately concave and are affixed to the bottom surface 412 at the rear periphery of the central body 404 .
  • the concave curvature of the rear fins 430 , 432 proximately converge one with the other at the rear end 416 , to centrally direct the flow of water to towards an exit space 434 arranged between the rear fins 430 , 432 , to further directionally stabilize the water board 400 while moving through the water.
  • a bottom mount 470 is mounted to the bottom surface 412 with four mounting bolts 472 .
  • the central body 404 defines four holes 411 ( FIG. 10 ) arranged in a square pattern that is laterally centered and positioned more proximate to the rear and 416 than to the front end 414 .
  • the bottom mount 470 includes a mounting plate 471 comprising four mounting holes 473 which engage the four mounting bolts 472 to secure the bottom mount 470 to the bottom surface 412 .
  • a fixed outer tube 475 is perpendicular to and affixed to the mounting plate 471 .
  • a longitudinal fin 474 is rigidly affixed to the rear of the fixed outer tube 475 and extends rearwardly from the fixed outer tube 475 to aid in longitudinal stability.
  • An inner tube 476 is retained within the fixed outer tube 475 and is rotatable therein defining a rotation axis 480 , as best shown in FIGS. 20 and 21 .
  • the outer tube 475 comprises upper and lower segments spaced apart one from the other in a fixed vertical relationship and connected one to the other with two vertical stop bars 477 affixed to the left outer surface and the right outer surface of the fixed segments of the outer tube 475 .
  • the vertical stop bars 477 define the left and right boundaries of the opening.
  • the upper and lower segments of the fixed outer tube 475 in combination with the two stop bars 477 define a forwardly oriented opening exposing a portion of the inner tube 476 .
  • the fixed outer tube 475 can be a unitary tube (not shown) which defines a forward facing cutout thereby exposing the portion of the inner tube 476 .
  • a transverse tube 478 is affixed to the inner tube 476 and extends forwardly from the inner tube 476 through the opening defined by the outer tube 475 and the vertical stop bars 477 .
  • a cross tube 479 is horizontally oriented and affixed to the distal forward end of the transverse tube 478 such that the transverse tube 478 and the cross tube 479 together form a “T”.
  • the combination of the inner tube 476 , the transverse tube 478 , and the cross tube 479 can rotate within the outer tube 475 and is rotationally limited by the stop bars 477 .
  • a bottom bracket 485 is affixed to the cross tube 479 and comprises a vertically oriented bracket plate 487 in the shape of the letter “H”, an upper bracket bar 488 in the shape of the letter “U”, and a lower bracket bar 489 in the shape of a transversely bent letter “U”.
  • the upper bracket bar 488 is removably attached to an upper portion of the bracket plate 487
  • the lower bracket bar 489 is removably attached to a lower portion of the bracket plate 487 .
  • the bottom bracket 485 includes two vertical segments 489 a , two horizontal segments 489 b , and a top transverse segment 489 c .
  • the top transverse segment 489 c is affixed to the cross tube 479 .
  • the water board 400 further comprises a propulsion unit 490 including a battery-powered propeller 492 and a propeller mount 494 .
  • the propeller 492 can aid in propelling the water board 400 across the surface of a body of water.
  • the water board 400 can also comprise a weight unit 495 which, as shown in FIGS. 17 through 19 (showing the weight unit 495 in lieu of the propulsion unit 490 ).
  • the weight unit 495 can include a weight 496 and a weight mount 498 , similarly to the propulsion unit 490 .
  • the propeller mount 498 could interchangeably receive the propeller 492 and the weight 496 .
  • the weight 496 can be a solid body or alternatively a hollow body that is filled with water, sand, or other dense material. The weight 496 aids in stabilization of the water board 400 floating on the water surface by lowering its center of gravity. Use of the weight 496 in lieu of using the propeller 492 provides a more strenuous workout for the user 200 to progress over the water surface.
  • the water board 400 is configured so that the propeller 492 and the weight 496 can be interchangeably used.
  • the propulsion unit 490 and the weight unit 495 of the present embodiment are interchangeably attached to the water board body 404 by having the propeller mount 494 or weight mount 498 hang from the horizontal segments 489 b of the lower bracket bar 489 .
  • the vertically oriented bracket plate 487 , the upper bracket bar 488 , and the bottom bracket bar vertical segments 489 a and horizontal segments 489 b retain the propeller mount 494 or weight mount 498 therebetween.
  • the propulsion unit 490 or weight unit 495 are rotatable with respect to the water board body 404 around rotation axis 480 .
  • FIGS. 13 through 17 Operation of the water board 400 is demonstrated in FIGS. 13 through 17 .
  • Use of the device is initiated by a user 200 placing the tether loop 483 about either his right or left ankle and standing on the water board 400 , placing his left foot 202 on the left canted surface 419 of left lateral element 405 and placing his right foot 204 on the right canted surface 421 of right lateral element 407 .
  • the user 200 distributes his weight equally against the surfaces 419 , 421 to maintain a level stance of the water board 400 in the water as best illustrated in FIG. 13 .
  • the propulsion unit 490 and particularly the propeller 492 , at this point is centered with its thrust acting along the longitudinal centerline between front end 414 and rear end 416 ( FIG. 15 ). Starting the propeller 492 causes the water board 400 to begin to move forward along the water.
  • the user 200 shifts his weight to the left, as indicated by the larger arrow of FIG. 14 , thereby placing a greater force on the left canted surface 419 and effectively unloading a portion of his weight from right canted surface 421 .
  • This causes the left lateral element 405 to sink into the water and the right lateral element 407 to rise higher in the water relative to the left lateral element 504 ; in consequence, the left lateral element 405 tends to be stopped by water causing the water board 400 to slightly turn left.
  • the stepping force will cause the water board 400 to slightly tilt forward; in consequence, the water board 400 , and thus the rotation axis 480 , tilt sideways and forward as shown in FIG. 14 .
  • the forward and sideways tilting of the rotation axis 480 causes the propulsion unit 490 to freely rotate in a clockwise direction, so that its front portion is rotated towards the right lateral element 407 and its rear portion is rotated towards the left lateral element 405 , as shown in FIG. 14 ; in consequence, the propeller 492 propels the water board 400 towards the right.
  • the aforementioned leftward turning effect caused by stepping on the left canted surface 419 is counteracted by the propeller 492 pointing rightward and thus propel the water board 400 towards the right; such counteraction causes an overall effect of the water board 400 tending to maintain a forward movement, in the longitudinal directing extending from the water board rear end 416 towards the water board front end 414 .
  • the non-turning longitudinal fin 474 further contributes to maintain the longitudinal forward movement of the water board 400 .
  • the user 200 uses his right foot 204 to frictionally “kick” the right lateral element 407 forward and rotate the water board 400 forwardly and rotationally about the left lateral element 405 , as indicated in FIG. 16 .
  • the user 200 After having kicked forward as shown in FIG. 16 , the user 200 will then shift his weight to his right foot 204 .
  • the user 200 Utilizing his left foot 202 , the user 200 applies a forward force to the left canted surface 419 with his left foot 202 to rotate about the right lateral element 407 .
  • the forward movements alternating the users left foot 202 and right foot 204 are continued until the user 200 on the water board 400 has traversed the surface of the water the desired distance.
  • the battery powered propeller 492 provides an aided forward thrust to assist propelling the water board 400 in the forward direction.
  • the longitudinal fin 474 will contribute to maintain a forward direction while the user 200 carries out the downward stepping, forward kicking motion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Hydraulic Turbines (AREA)

Abstract

A recreational water flotation device includes a central body defining an upper surface and a bottom surface and having a front and a rear. A left lateral element extends from a left end of the central body and defines a left canted surface canted toward the central body and further defines a left end of said flotation device. A right lateral element extends from a right end of the central body and defines a left canted surface canted toward the central body and further defining a right end of the flotation device. A propulsion unit is mounted to the bottom surface of the central body. The device is buoyant in water. Preferably, the central body, the left lateral element, the said right lateral element are fabricated of a material buoyant in water.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present invention claims the benefit of co-pending U.S. Provisional Patent Application Ser. No. 61/931,119, filed Jan. 1, 2014, which is incorporated herein in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a personalized recreational watercraft and method of use, and more particularly, to a watercraft offering stability and balance in both hydrostatic and hydrodynamic conditions.
  • BACKGROUND OF THE INVENTION
  • Conventional types of personalized watercraft like surf boards require the presence of moving water to balance the surf board while a user stands on it. Typical surf boards are designed for movement by waves, requiring hydrodynamic conditions to support the surf board and inhibit rotation. The surf board has a high tendency to rotate when a user stands on it in calm waters. Accordingly, in calm waters, the surf board will rotate when standing on it, leading to a loss of balance and an overturn of the surf board.
  • Accordingly, there remains a need in the art for a watercraft that offers stability and user balance when deployed in hydrostatic conditions, without compromising the effectiveness of the watercraft in hydrodynamic conditions.
  • SUMMARY OF THE INVENTION
  • The present invention overcomes the deficiencies of the known art and the problems that remain unsolved by providing a watercraft that features stability and balance in both hydrostatic and hydrodynamic conditions, and supports the capability of a user to self-propel the watercraft even in hydrostatic conditions.
  • The present disclosure is generally directed to a recreational water flotation device includes a central body defining an upper surface and a bottom surface and having a front and a rear. A left lateral element extends from a left end of the central body and defines a left canted surface canted toward the central body and further defines a left end of said flotation device. A right lateral element extends from a right end of the central body and defines a right canted surface canted toward the central body and further defining a right end of the flotation device. A propulsion unit is mounted to the bottom surface of the central body. The device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a material buoyant in water.
  • In another aspect, the central body, the left lateral element, and the right lateral element are formed of a single homogenous body.
  • In still another aspect, a left side of the left lateral element and a right side of the right lateral element define a width of the flotation device, and the front end and rear end of the central body define a length of the flotation device wherein the width is greater than the length.
  • In yet another aspect, the left lateral side and the right lateral side have an arcuately convex peripheral shape, the front end and the rear end have an arcuately convex peripheral shape, and the peripheral areas connecting in adjacent ones of the left lateral side, front and, right lateral side, and rear end are arcuately concave.
  • In a still further aspect, the flotation device further includes a left rear fin and a right rear fin where in each fin is arcuately concave and protrudes from the bottom surface of the central body at a rear periphery thereof
  • In another aspect, the flotation device further includes a front fin extending along a front edge of the central body and further extending between the left lateral element and the right lateral element. The front fin and the front edge defining surface angled toward the rear for providing a smooth flow of water thereover.
  • In another aspect, the propulsion unit is at least partially rotatable with respect to the central body.
  • In a still further aspect, the flotation device further includes a bottom mount affixed to the bottom surface of the central body and includes an outer tube in fixed relation to the central body and an inner tube within the fixed outer tube that is at least partially rotatable with respect to the outer tube. The propulsion unit is attached to the inner tube.
  • In yet another aspect, the outer tube at least partially defines a forwardly oriented opening therethrough and the inner tube has attached thereto a transverse tube extending forwardly from the inner tube through the opening. A horizontal cross tube is attached to a distal forward end of the transverse tube. A bottom bracket is affixed to the cross tube. The propulsion unit includes a propeller mounted in a propeller mount, wherein the bottom bracket retains the propeller mount thereto.
  • In another aspect, the flotation device further includes vertical stop bars affixed to the fixed outer tube. The vertical stop bars define the left and right boundaries of the opening for limiting the rotation of the inner tube with respect to the outer tube.
  • In still another aspect, the device further includes a weight, wherein the weight and the propulsion unit are interchangeably mountable to the central body.
  • In yet another aspect, a recreational water flotation device includes a central body having an upper surface and a bottom surface and having a front and a rear. A left lateral element extends from a left end of the central body and defines a left canted surface which is canted toward the central body. The left lateral element defining a left end of the flotation device. A right lateral element extends from a right end of the central body and defines a right canted surface which is canted toward the central body. The right lateral element defines a right end of the flotation device. A propulsion unit is mounted to the bottom surface of the central body and is at least partially rotatable with respect to the central body. The device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a single homogenous body of material buoyant in water.
  • In another aspect, the left lateral side and the right lateral side have an arcuately convex peripheral shape and the front end and rear and have an arcuately convex peripheral shape. The peripheral areas connecting adjacent ones of the left lateral side the front end the right lateral side and the rear end are arcuately concave.
  • In still another aspect, the flotation device includes a left rear fin and a right rear fin, where in each fin is arcuately concave and protrudes from the bottom surface of the central body at a rear periphery thereof.
  • In yet another aspect, the flotation device further includes a front fin extending along a front edge of the central body and further extending between the left lateral element and the right lateral element wherein the front fin and the front edge defining a surface angled toward the rear for providing a smooth flow of water thereover.
  • In a still further aspect, the flotation device further includes a bottom mount affixed to the bottom surface of the central body. The bottom mount includes an outer tube in fixed relation to the central body and an inner tube within the fixed outer tube which is at least partially rotatable with respect to the outer tube. The propulsion unit is attached to the inner tube.
  • In another aspect, a recreational water flotation device includes a central body defining an upper surface and a bottom surface and has an arcuately convex front end and an arcuately convex rear end. A left lateral element has a convexly arcuate left lateral side and extends from a left end of the central body. The left lateral element defines a left canted surface which is canted toward the central body. A right lateral element has a convexly arcuate right lateral side and extends from a right end of the central body. The right lateral element defines a right canted surface which is canted toward the central body and further defines a right end of the flotation device. The peripheral areas connecting adjacent ones of the left lateral side, front end, right lateral side, and rear end are arcuately concave. A front fin extends along at least a front edge of the central body. The front fin and the front edge define a surface which is angled toward the rear for providing a smooth flow of water thereover. A left rear fin and a right rear fin are arcuately concave and protrude from the bottom surface of the central body at a rear periphery thereof. A propulsion unit is mounted to the bottom surface of the central body and is at least partially rotatable with respect to the central body. The device is buoyant in water; for instance, the central body, the left lateral element, and the right lateral element are fabricated of a single homogenous body of material buoyant in water.
  • In another aspect, the flotation device further includes a bottom mount affixed to the bottom surface of the central body and includes an outer tube in fixed relation to the central body and inner tube within the fixed outer tube. The inner tube is at least partially rotatable with respect to the outer tube and the propulsion unit is attached to the inner tube.
  • In a still further aspect, the outer tube at least partially defines a forwardly oriented opening therethrough. The inner tube has attached thereto a transverse tube extending forwardly therefrom and through the opening. A horizontal cross tube is attached to a distal forward end of the transverse tube and a bottom bracket is affixed to the cross tube. The propulsion unit includes a propeller mounted in a propeller mount wherein the bottom bracket retains the propeller mount thereto.
  • In yet another aspect, the device further includes left and right stops affixed to the fixed outer tube and defining the left and right boundaries of the opening for limiting the rotation of the inner tube with respect to the outer tube.
  • These and other aspects, features, and advantages of the present invention will become more readily apparent from the attached drawings and the detailed description of the preferred embodiments, which follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The preferred embodiments of the invention will hereinafter be described in conjunction with the appended drawings provided to illustrate and not to limit the invention, in which:
  • FIG. 1 presents an isometric rear view of an exemplary water board, according to one implementation of the present invention;
  • FIG. 2 presents an isometric bottom view of the water board originally introduced in FIG. 1;
  • FIG. 3 presents an exploded view of the water board originally introduced in FIG. 1, demonstrating the individual layers that are stacked to form the composite assembly of the water board;
  • FIG. 4 presents a top view of the water board originally introduced in FIG. 1;
  • FIG. 5 presents a side view of the water board originally introduced in FIG. 1, demonstrating a mode of operating the water board by a user;
  • FIG. 6 presents an isometric front view of the operation of the water board as originally introduced in FIG. 5;
  • FIG. 7 presents a top front isometric view of a water board, according to an alternate embodiment of the present invention;
  • FIG. 8 presents a top rear isometric view of the water board of FIG. 7;
  • FIG. 9 presents a bottom rear isometric view of the water board of FIG. 7;
  • FIG. 10 presents an exploded bottom front isometric view of the water board of FIG. 7;
  • FIG. 11 presents a right side elevation view of the water board of FIG. 7;
  • FIG. 12 presents a rear elevation view of the water board of FIG. 7;
  • FIG. 13 presents a front elevation view of the water board of FIG. 7 in use and floating in a body of water and a user standing on the water board;
  • FIG. 14 presents a front elevation view of the water board of FIG. 7 wherein the user has shifted his weight to his left foot;
  • FIG. 15 presents a top plan view of the water board of FIG. 7 with a user's feet placed atop thereof;
  • FIG. 16 presents a top plan view of the water board of FIG. 7 wherein the user is urging a left side of the water board forward and rotating the water board to the right; and
  • FIG. 17 presents a right side elevation view of the water board of FIG. 7 with a user standing on top thereof;
  • FIG. 18 presents a side elevation view of a bottom connector assembly attachable to the bottom of the water board showing the mounting of a weight thereto;
  • FIG. 19 presents a top plan view of the bottom connector assembly and weight of FIG. 18;
  • FIG. 20 presents an isometric view of a portion of the bottom connector assembly of FIG. 18 partially rotated; and
  • FIG. 21 presents an isometric view of the portion of the bottom connector assembly of FIG. 20 in a non-rotated position.
  • Like reference numerals refer to like parts throughout the several views of the drawings.
  • DETAILED DESCRIPTION
  • The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, and derivatives thereof shall be used to describe the invention in accordance with their common meaning. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
  • A water board 100 is presented in various configurations in the illustrations of FIGS. 1 through 4. The operation of the water board 100 by a user in a stand-up position is presented in FIGS. 5 and 6. The water board 100 includes an assembly of individual layers that are attached together in a stacking arrangement to form a composite structure. In particular, as depicted in FIG. 3, the water board 100 includes an upper or top layer 102, a main body layer 104 disposed below the upper layer 102, a mid or intermediate layer 106 disposed below the main body layer 104, and a lower or bottom layer 108 disposed below the mid layer 106. The assembled form of water board 100 is depicted in the various views of FIGS. 1, 2 and 4. The water board 100 can generally be considered a watercraft or water vessel suitable for recreational purposes.
  • In its assembled form, water board 100 includes a dorsal or upper side 110 at upper layer 102, a ventral or lower side 112 at lower layer 108, a left lateral side 118, and a right lateral side 120. The dorsal side 110 defines a location where a user is situated in an operating position, such as a stand-up position while navigating the water board 100 through water. The user mounts and rides the water board 100 at the dorsal side 110. The ventral side 112 defines a location where the water board 100 is placed on or contacts the water. Water board 100 further includes a front, forward or anterior end 114 and a back, rearward or posterior end 116. The front end 114 serves as the nose section that defines the leading edge of water board 100 as the water board 100 travels through water. The rear end 116 serves as the tail section that defines the trailing edge of water board 100 as the water board 100 travels through the water. During operation, the user faces in the direction of the front end 114. The front end 114 and the rear end 116 define a longitudinal axis of the water board 100, while the left lateral side 118 and the right lateral side 120 define a lateral axis of the water board 100.
  • The assembled form of water board 100 has a generally diamond-shaped construction in plan view, preferably modified to include rounded vertices and curved sides. In an exemplary form, the water board 100 includes generally convex corners and generally concave sides. The water board 100 is preferably asymmetric along its longitudinal and lateral axes, such that the water board 100 is wider along its lateral (side-to-side) axis than along its longitudinal (front-to-back) axis. This asymmetry produces a generally oblong shape to the water board 100. One benefit of this axial asymmetry is that it produces a low turning moment about the longitudinal axis, resulting in a high resistance to rotation about the longitudinal axis. This asymmetry likewise produces a more stable platform or deck for the user to stand on and maneuver the water board 100. The geometry of the water board 100 is suitably chosen to present an underside surface area contacting the water that is sufficient to sustain the weight of an individual in water, while also inhibiting any rotation about the longitudinal axis to provide stability, especially in a resting (non-moving) state.
  • The water board 100 of the present embodiment has both hydrostatic and hydrodynamic flotation properties. At rest or in hydrostatic conditions, the water board 100 is very stable and permits the user to stand in an upright position without the risk of capsizing the water board 100. The asymmetry of water board 100 creates a very small turning moment about the longitudinal (front-to-back) axis, making it very difficult for the water board 100 to rotate about the longitudinal axis and capsize the water board 100. In hydrodynamic conditions, the water board 100 can readily move through water in a surfing-style travel that rides along the water surface.
  • The exemplary shape and geometry of the water board 100 is implemented by a suitable construction of the individual layers 102, 104, 106, and 108. As depicted in FIG. 3, the exemplary upper layer 102 includes a front corner 130 disposed at the front end 114 of assembled water board 100, a rear corner 132 disposed at the rear end 116 of assembled water board 100, a left side corner 134 disposed at the left lateral side 118 of assembled water board 100, and a right side corner 136 disposed at the right lateral side 120 of assembled water board 100. The corners 130, 132, 134, and 136 are preferably rounded or curved in a convex shape. This convex geometry promotes flotation of the water board 100 and offers favorable resistance properties to facilitate ease of movement of the water board 100 through water. The convex corners 130, 132, 134, and 136 present reduced resistance and allow smooth water flow across the contours of the corners 130, 132, 134, and 136 as the water board 100 advances through the water.
  • The upper layer 102 further includes a front right edge or side 140 connecting the front corner 130 and the right side corner 136; a front left edge or side 142 connecting the front corner 130 and the left side corner 134; a right rear edge or side 144 connecting the rear corner 132 and the right side corner 136; and a left rear edge or side 146 connecting the rear corner 132 and the left side corner 134. The sides 140, 142, 144, and 146 are preferably curved in a concave shape. This concave geometry promotes smooth water flow along the periphery or boundary of water board 100 as the water board 100 travels through water.
  • The geometry and shape of the main body layer 104, the mid layer 106, and the lower layer 108 are similar to that of upper layer 102. Accordingly, once the upper layer 102, the main body layer 104, the mid layer 106, and the lower layer 108 are integrated together into a stacked configuration to produce the final assembled form of water board 100, the overall geometry of water board 100 is generally uniform throughout the layers 102, 104, 106, and 108. Various modifications to the geometry of the water board 100 can be made, however. For example, in order to promote greater hydrodynamic water flow at the front end 114 of water board 100, the layers 102, 104, 106, and 108 can be formed with progressively smaller sizes, while each still retains the same general shape. The upper layer 102 would have the largest size and the subsequent layers 104, 106, and 108 underneath it would be progressively smaller. The result would be a terraced-type profile. The scale factor used to create the different- sized layers 102, 104, 106, and 108 can be suitably selected to promote desired hydrodynamic flow patterns along and around the water board 100.
  • In an exemplary form, the lateral dimension extending between the left side corner 134 and the right side corner 136 is longer than the longitudinal dimension extending between the front corner 130 and the rear corner 132, producing an axial asymmetry that results in a generally oblong shape. The lateral and longitudinal dimensions can be adjusted to produce any type of oblong shape depending upon the hydrostatic and hydrodynamic properties that are desired. The combination of the front corner 130, rear corner 132, left side corner 134, and right side corner 136 can be collectively regarded as a set of vertices that define a generally diamond-shaped configuration, modified to produce a selected type of axial asymmetry, if desired.
  • Each of the layers 102, 104, 106, and 108 is preferably formed of a rigid foam or heavy duty foam material conducive to flotation. An advantageous embodiment will have at least one layer manufactured using Expanded polystyrene (EPS) foam or Polyurethane foam. It should be apparent to those skilled in the art that any type of material can be used to construct layers 102, 104, 106, and 108 that is compatible with maintaining a flotation capability for water board 100. In an exemplary form, the water board 100 is constructed so that the upper layer 102 is made of a 1″ (one inch) thick heavy duty EPS or Polyurethane foam layer; the main body layer 104 is made of a 2″ (two inch) thick heavy duty EPS or Polyurethane foam layer; the mid layer 106 is made of a 2″ (two inch) thick heavy duty EPS or Polyurethane foam layer; and the lower layer 108 is made of a 2″ (two inch) thick heavy duty EPS or Polyurethane foam layer. These specific dimensions should not be considered in limitation of the invention but merely illustrative, as other dimensional values can be used to practice the invention. All of the layers 102, 104, 106, and 108 are glued together to produce the assembled form of water board 100. However, other bonding techniques are possible to attach the layers 102, 104, 106, and 108. The assembled structure of water board 100 is preferably processed with a finishing exterior coat of waterproofing to protect the foam material from cracking or moisture. This exterior coat can be a water-resistant epoxy resin material or fiberglass, for example.
  • The water board 100 further includes a fin 122 attached to the bottom layer 108 at the front end 114 of water board 100, as best depicted in FIGS. 2 and 3. The fin 122 promotes guidance and maneuverability of the water board 100 through water. In addition, the fin 122 also provides an “oar” effect when moving the water board 100 backwards. This “oar” effect is enhanced by having the bottom layer 108 include two cut-outs 128 on its outer surface area, contiguous to the fin 122. The cut-outs 128 provide an increased total height of the rear wall of the fin 122 facing the cut-outs 128, contributing to the “oar” effect.
  • As best shown in FIG. 3, the upper layer 102 includes a trim or border 124 installed at the front or leading end 114 of water board 100, in order to add rigidity and to improve the ability of the water board 100 to cut through water. In an exemplary form, the trim 124 extends along the forward or anterior half of the perimeter of upper layer 102.
  • The upper layer 102 includes a carved left footprint hole 150 and a carved right footprint hole 152. The carved left footprint hole 150 and the carved right footprint hole 152 are appropriately sized to receive the left foot and the right foot, respectively, of a user situated in a standing position on water board 100, as best depicted in FIG. 6. In this standing position, the user places the left foot and the right foot in holes 150 and 152 respectively, resting the feet on the surface of main body layer 104 (underneath upper layer 102) that is exposed by the holes 150 and 152. The combination of the left footprint hole 150 and the right footprint hole 152, along with the corresponding surfaces of main body layer 104 exposed by holes 150 and 152, forms a pair of foot-receiving recesses or receptacles in the assembled configuration of water board 100. The combination of the upper layer 102 and the main body layer 104 serves as the deck or platform on which the user is positioned via the left footprint hole 150 and the right footprint hole 152. The footprint holes 150 and 152 enhance the traction of the user during operation of the water board 100.
  • The water board 100 further includes a cable support tubing or conduit 160 as best depicted in FIG. 3, in order to secure and locate a cable accessible to the user. A cable is threaded through the conduit 160 and made accessible to the user. In an exemplary form, the cable conduit 160 has a generally U-shaped structure including a horizontal section 162, a first vertical section 164 disposed at one end of horizontal section 162 and having a top opening 165, and a second vertical section 166 disposed at another end of horizontal section 162 and having a top opening 167. In order to receive and accommodate the installation of cable conduit 160, the water board 100 is equipped such that the upper layer 102 includes a left cable hole 154 and a right cable hole 156, and the main body layer 104 includes a left cable hole 155 aligned with the left cable hole 154 in upper layer 102 and a right cable hole 157 aligned with the right cable hole 156 in upper layer 102.
  • During installation of cable conduit 160, the first vertical section 164 of cable conduit 160 is inserted through the pair of aligned holes 156 and 157 formed in the upper layer 102 and the main body layer 104, respectively, and the second vertical section 166 of cable conduit 160 is inserted through the pair of aligned holes 154 and 155 formed in the upper layer 102 and the main body layer 104, respectively. In this installed position, the cable conduit 160 is positioned such that its horizontal section 162 lies between the main body layer 104 and the mid layer 106. Additionally, the top opening 165 of the first vertical conduit section 164 and the top opening 167 of the second vertical conduit section 166 lie above the upper surface of upper layer 102, as best depicted in FIG. 1. The cable holes 154, 155, 156, and 157 can be placed at any selected locations depending upon the desired location of the cable.
  • The water board 100 further includes a cable 170 that is threaded through cable conduit 160 and forms a loop accessible to the user 200, as best depicted in FIGS. 5 and 6. The cable 170 includes a left side 172, a right side 174, an upper end 176, a lower end 178 threading through the cable conduit 160, and a bridge, rung or connecting section 180 that spans between the left cable side 172 and the right cable side 174. The cable 170 has a suitable length to permit the user or operator 200 to grasp the upper cable end 176 at a body height favorable to steering the water board 100 and maintaining balance, such as waist height when the user 200 is in a fully upright position. The water board 100 optionally includes a tether 182 having a connecting end attached to a fixture 184 located on the rear corner 132 of upper layer 102, and a free end available for releasable attachment to the user ankle, as best depicted in FIGS. 1, 3 and 6. The tether 182 functions to keep the user safely attached to the water board 100 in the event of a fall.
  • The operation of water board 100 is best presented in FIGS. 5 and 6. The user 200 must first board or mount the water board 100 before engaging in water travel (i.e., riding water board 100). Initially, in order to mount or climb aboard the water board 100, the user 200 will likely need to swim to waters at least deep enough to have half of the user body underwater in a standing position. To mount the water board 100 at upper layer 102 from a swimming position, the user 200 first approaches the water board 100 from its rear end 116. The user 200 should then pull the lower cable rung 180 of cable 170 in order to slide the water board 100 under the user body, which enables the user to subsequently mount the water board 100 at upper layer 102. The user 200 can then attempt to stand up by grasping the upper end 176 of cable 170 and pulling on it until it becomes taut, providing stability and balance. At this time the user 200 can also insert his/her feet into the recesses formed by the left footprint hole 150 and the right footprint hole 152, which readies the user for water travel.
  • In order to start traveling from the crouched or standing position, the user 200 uses a side-to-side rocking motion in which the user 200 shifts his/her weight in an alternating sequence between the lateral sides of water board 100. This rocking motion effectuates rapid turns in the water board 100 that act to propel the water board 100 in the forward direction. The water board 100 can thus be self-propelling if used in calm waters, or can use the assistance of wave motion to supplement the motion activity performed by the user.
  • In particular, during operation, the user 200 shifts his/her weight onto one foot (e.g., the foot in recess 150 of FIG. 4), which loads or weighs down that side 118 of the water board 100 receiving the shifted weight, causing the loaded side to sink. In response, the other (opposite) side 120 of the water board 100 from which the weight has been lifted correspondingly rises because it is now unloaded. While the water board 100 is in this rotated or pivoted position due to the weight shifting, with the unloaded side 120 higher than the loaded side 118, the user initiates a forward kicking motion with the unloaded foot (i.e., the foot in recess 152), which causes the water board 100 to turn in the direction 300. This turn also advances the water board 100 forward due to the forward direction of the kicking motion. Following this forward kicking motion, the user 200 then immediately switches the body weight to the other side, i.e., the weight shifts back to side 120 so that the now loaded foot in recess 152 sinks down and the now unloaded foot in recess 150 rises up with the unloaded side 118. In this position, the user initiates a forward kicking motion with the unloaded foot in recess 150, which causes the water board 100 to turn in the direction 302 opposite the previous turning direction 300. The user continues this cycle of alternating weight shifts and alternating foot kicks.
  • The user repeats this sequence of alternately shifting weight from one side to the next while simultaneously performing a forward kicking motion with the elevated foot at the currently unloaded side of the water board 100. The net effect of this alternating shift in body weight, accompanied by the alternating kicking motions at the alternately unloaded sides, is to create a rapid sequence of small turns in water board 100 that collectively propel the water board 100 in the forward direction. The user can steer the water board 100 by appropriately changing the relative intensity of the forward kicking motions at the opposite sides of the water board 100, creating more turning momentum in one direction than the other. The user can travel in a generally straight line by employing forward kicking motions of comparatively equal strength at the opposite sides of the water board 100. Observed from above (FIG. 4), there is a succession of turning motions that alternate from one side to the next (e.g., left-to-right then right-to-left). The elevated or raised foot at the unloaded side (i.e., the side where the weight has been shifted away) is the foot used to implement the forward kicking motion and advance the water board 100 in a turning motion.
  • In the standing operating position, the water board 100 sits downward in the water in the forward direction, creating a forward tilted orientation 310 as depicted in FIG. 5. An exemplary angle of tilt is 10 degrees relative to the horizontal plane.
  • The water board 100 provides several advantages over the current art. Conventional types of personalized watercraft like surf boards require the presence of moving water to balance the surf board while standing. The surf board has a high tendency to rotate when a user stands on it in calm waters. Typical surf boards are designed to be moved by waves, so in calm waters the surf board will rotate when standing on it, leading to a loss of balance and an overturn of the surf board. However, the design of the water board 100 inhibits this side-to-side rotation, allowing a user to readily stand on the water board 100 in a fully balanced position in calm waters. The water board 100 is also effective in hydrodynamic conditions, i.e., wavy waters. The design of the water board 100 facilitates a side-to-side rocking motion that alternately loads and unloads opposite sides of the water board 100, which in combination with alternating kicking motions at the unloaded sides enable the user to self-propel the water board 100. The water board 100 features stability and balance in both hydrostatic (e.g., lake or pool) and hydrodynamic (e.g., river or ocean) conditions, and supports the capability of a user to self-propel the watercraft even in hydrostatic conditions.
  • An alternative embodiment recreational water flotation device, also referred to as a water board, is illustrated in its various aspects in FIGS. 7 through 21. As best shown in FIGS. 7 through 12, the alternative embodiment water board 400 has a central body 404 which defines an upper side 410, a bottom surface 412 (FIG. 10), a front end 414, and a rear end 416. The rear end 416 extends farther to the rear than the front end 414 projects forward and thus acts as a tail to assist in rotational stabilization of the water board 400. A left lateral element 405 and a right lateral element 407 are affixed to the left and right sides of the body 404 respectively. The body 404, left lateral element 405, and right lateral element 407 are formed of a hydrodynamic flotation material such as a rigid closed cell polymeric foam of sufficient buoyancy to support a human being on the surface of a body of water. Most preferably, the body 404, left lateral element 405, and right lateral element 407 are formed of a single homogenous body of polymeric foam which, in turn, is machined or cut to create its finished three-dimensional profile. In particular, the left lateral element 405 and the right lateral element 407 both include left and right canted surfaces 419, 421 respectively wherein the left canted surface 419 and right canted surface 421 are sloped to the center of the body 404 and raised above upper side 410 as most clearly illustrated in FIG. 7. The canted surfaces 419, 421 are intended to function as footpads for a user 200 to stand thereupon as described in greater detail below. The canted surfaces 419, 421 can optionally be textured or covered with a non-skid coating to provide secure footing for the user 200.
  • In plan form, and as most clearly seen in FIGS. 15 and 16, the left lateral element 405 defines an arcuately convex left lateral side 418 and the right lateral element 407 also defines a convexly arcuate right lateral side 420. The front end 414 and the rear end 416 are also arcuately convex, and the peripheral areas connecting adjacent ones of the left lateral side 418, the front end 414, the right lateral side 420, and the rear end 416 are generally arcuately concave such that the periphery as a whole is a series of alternating convexities and concavities. The water board 400 is thus shaped as a generally four-lobed body, the four lobes being provided by the left lateral side 418, the right lateral side 420, the front end 414 and the rear end 416, and including the said two opposed sloped or canted surfaces 419, 421 converging towards the upper side 410. Further, the width of the water board 400 from the left lateral side 418 to the right lateral side 420 is greater than the length of the body 404 from the front end 414 to the rear end 416.
  • As shown in FIG. 7, a tether 482 is affixed to the rear and 416 of the water board 400. The tether 482 includes a loop 483 at a free end thereof. The size of the loop 483 is adjustable such that the user 200 is able to place the loop 483 around either the user's left or right ankle and adjust the loop 483 to a comfortable tightness. The use of the tether 482 keeps the water board 400 within reach of the user 200 in the event that the user 200 falls off the water board 400 while in the water.
  • As most clearly seen in FIGS. 9 and 10, the left lateral side 418 of the left lateral element 405 and the right lateral side 420 of the right lateral element 407 extend below the bottom surface 412 of the central body 404. A front fin 423 includes a left front fin element 425 and a right front fin element 427. The front fin 423 is affixed to the bottom surface 412 proximate to the front end 414 and extending from the left lateral side 418 to the right lateral side 420. The fin elements 425, 427 are arcuately concave to more closely match the front contour of the central body 404. The left and right front fin elements 425, 427 can have a trapezoidal shaped cross-section wherein the widest base is affixed to the bottom surface 412. A front edge 413 of the central body 404 can be angled toward the rear at approximately the same angle as the trapezoidally shaped left and right front fin elements 425, 427 to provide a smooth flow of water thereover as the water board 400 passes through the water. Additionally, a left rear fin 430 and a right rear fin 432 are also formed as arcuately concave and are affixed to the bottom surface 412 at the rear periphery of the central body 404. Further, the concave curvature of the rear fins 430, 432 proximately converge one with the other at the rear end 416, to centrally direct the flow of water to towards an exit space 434 arranged between the rear fins 430, 432, to further directionally stabilize the water board 400 while moving through the water.
  • Referring now to FIGS. 8 through 10, and 18 through 21, a bottom mount 470 is mounted to the bottom surface 412 with four mounting bolts 472. The central body 404 defines four holes 411 (FIG. 10) arranged in a square pattern that is laterally centered and positioned more proximate to the rear and 416 than to the front end 414. The bottom mount 470 includes a mounting plate 471 comprising four mounting holes 473 which engage the four mounting bolts 472 to secure the bottom mount 470 to the bottom surface 412. A fixed outer tube 475 is perpendicular to and affixed to the mounting plate 471. A longitudinal fin 474 is rigidly affixed to the rear of the fixed outer tube 475 and extends rearwardly from the fixed outer tube 475 to aid in longitudinal stability. An inner tube 476 is retained within the fixed outer tube 475 and is rotatable therein defining a rotation axis 480, as best shown in FIGS. 20 and 21. The outer tube 475 comprises upper and lower segments spaced apart one from the other in a fixed vertical relationship and connected one to the other with two vertical stop bars 477 affixed to the left outer surface and the right outer surface of the fixed segments of the outer tube 475. The vertical stop bars 477 define the left and right boundaries of the opening. The upper and lower segments of the fixed outer tube 475 in combination with the two stop bars 477 define a forwardly oriented opening exposing a portion of the inner tube 476. Alternatively, the fixed outer tube 475 can be a unitary tube (not shown) which defines a forward facing cutout thereby exposing the portion of the inner tube 476.
  • With continued reference to FIGS. 20 and 21, a transverse tube 478 is affixed to the inner tube 476 and extends forwardly from the inner tube 476 through the opening defined by the outer tube 475 and the vertical stop bars 477. A cross tube 479 is horizontally oriented and affixed to the distal forward end of the transverse tube 478 such that the transverse tube 478 and the cross tube 479 together form a “T”. The combination of the inner tube 476, the transverse tube 478, and the cross tube 479 can rotate within the outer tube 475 and is rotationally limited by the stop bars 477.
  • As shown in FIGS. 10 and 18, a bottom bracket 485 is affixed to the cross tube 479 and comprises a vertically oriented bracket plate 487 in the shape of the letter “H”, an upper bracket bar 488 in the shape of the letter “U”, and a lower bracket bar 489 in the shape of a transversely bent letter “U”. The upper bracket bar 488 is removably attached to an upper portion of the bracket plate 487, and the lower bracket bar 489 is removably attached to a lower portion of the bracket plate 487. As best shown in FIG. 18, the bottom bracket 485 includes two vertical segments 489 a, two horizontal segments 489 b, and a top transverse segment 489 c. The top transverse segment 489 c is affixed to the cross tube 479.
  • The water board 400 further comprises a propulsion unit 490 including a battery-powered propeller 492 and a propeller mount 494. When activated, the propeller 492 can aid in propelling the water board 400 across the surface of a body of water.
  • The water board 400 can also comprise a weight unit 495 which, as shown in FIGS. 17 through 19 (showing the weight unit 495 in lieu of the propulsion unit 490). The weight unit 495 can include a weight 496 and a weight mount 498, similarly to the propulsion unit 490. In alternative embodiments, the propeller mount 498 could interchangeably receive the propeller 492 and the weight 496. The weight 496 can be a solid body or alternatively a hollow body that is filled with water, sand, or other dense material. The weight 496 aids in stabilization of the water board 400 floating on the water surface by lowering its center of gravity. Use of the weight 496 in lieu of using the propeller 492 provides a more strenuous workout for the user 200 to progress over the water surface. Preferably, the water board 400 is configured so that the propeller 492 and the weight 496 can be interchangeably used.
  • The propulsion unit 490 and the weight unit 495 of the present embodiment are interchangeably attached to the water board body 404 by having the propeller mount 494 or weight mount 498 hang from the horizontal segments 489 b of the lower bracket bar 489. As best shown in FIG. 18, the vertically oriented bracket plate 487, the upper bracket bar 488, and the bottom bracket bar vertical segments 489 a and horizontal segments 489 b retain the propeller mount 494 or weight mount 498 therebetween. The propulsion unit 490 or weight unit 495 are rotatable with respect to the water board body 404 around rotation axis 480.
  • Operation of the water board 400 is demonstrated in FIGS. 13 through 17. Use of the device is initiated by a user 200 placing the tether loop 483 about either his right or left ankle and standing on the water board 400, placing his left foot 202 on the left canted surface 419 of left lateral element 405 and placing his right foot 204 on the right canted surface 421 of right lateral element 407. The user 200 distributes his weight equally against the surfaces 419, 421 to maintain a level stance of the water board 400 in the water as best illustrated in FIG. 13. The propulsion unit 490, and particularly the propeller 492, at this point is centered with its thrust acting along the longitudinal centerline between front end 414 and rear end 416 (FIG. 15). Starting the propeller 492 causes the water board 400 to begin to move forward along the water.
  • To further move the water board 400 across the surface of the water, and enjoy the full riding and exercising experience, the user 200 shifts his weight to the left, as indicated by the larger arrow of FIG. 14, thereby placing a greater force on the left canted surface 419 and effectively unloading a portion of his weight from right canted surface 421. This causes the left lateral element 405 to sink into the water and the right lateral element 407 to rise higher in the water relative to the left lateral element 504; in consequence, the left lateral element 405 tends to be stopped by water causing the water board 400 to slightly turn left. In addition, if the user's stepping force is slightly oriented forward in a sort of “crawling” or circular fashion, the stepping force will cause the water board 400 to slightly tilt forward; in consequence, the water board 400, and thus the rotation axis 480, tilt sideways and forward as shown in FIG. 14. The forward and sideways tilting of the rotation axis 480 causes the propulsion unit 490 to freely rotate in a clockwise direction, so that its front portion is rotated towards the right lateral element 407 and its rear portion is rotated towards the left lateral element 405, as shown in FIG. 14; in consequence, the propeller 492 propels the water board 400 towards the right. The aforementioned leftward turning effect caused by stepping on the left canted surface 419 is counteracted by the propeller 492 pointing rightward and thus propel the water board 400 towards the right; such counteraction causes an overall effect of the water board 400 tending to maintain a forward movement, in the longitudinal directing extending from the water board rear end 416 towards the water board front end 414. The non-turning longitudinal fin 474 further contributes to maintain the longitudinal forward movement of the water board 400. In addition, stepping on the left canted surface 419 and rising of the right canted surface 421 as shown in FIG. 14 enables the user 200 to apply a forward frictional force with his right foot 204 against the right canted surface 421 to further contribute to rotate the water board 400 leftward, about the left lateral element 405. In other words, the user 200 uses his right foot 204 to frictionally “kick” the right lateral element 407 forward and rotate the water board 400 forwardly and rotationally about the left lateral element 405, as indicated in FIG. 16.
  • After having kicked forward as shown in FIG. 16, the user 200 will then shift his weight to his right foot 204. Utilizing his left foot 202, the user 200 applies a forward force to the left canted surface 419 with his left foot 202 to rotate about the right lateral element 407. The forward movements alternating the users left foot 202 and right foot 204 are continued until the user 200 on the water board 400 has traversed the surface of the water the desired distance. The battery powered propeller 492 provides an aided forward thrust to assist propelling the water board 400 in the forward direction. In the event of replacing the propeller 492 with a weight 496, the longitudinal fin 474 will contribute to maintain a forward direction while the user 200 carries out the downward stepping, forward kicking motion.
  • The above-described embodiments are merely exemplary illustrations of implementations set forth for a clear understanding of the principles of the invention. Many variations, combinations, modifications or equivalents may be substituted for elements thereof without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all the embodiments falling within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A recreational water flotation device comprising:
a central body defining an upper surface and a bottom surface and having a front and a rear;
a left lateral element extending from a left end of said central body, said left lateral element defining a left canted surface, said left canted surface canted toward said central body, and further defining a left end of said flotation device;
a right lateral element extending from a right end of said central body, said right lateral element defining a right canted surface, said right canted surface canted toward said central body, and further defining a right end of said flotation device; and
a propulsion unit mounted to said bottom surface of said central body; wherein:
said device is buoyant in water.
2. The recreational water flotation device according to claim 1, wherein said central body, said left lateral element, and said right lateral element are formed of a single homogenous body.
3. The recreational water flotation device according to claim 1, wherein a left side of said left lateral element and a right side of said right lateral element define a width of said flotation device, and the front end and rear end of said central body define a length of said flotation device, and further wherein said width is greater than said length.
4. The recreational water flotation device according to claim 3, wherein said left lateral side and said right lateral side have an arcuately convex peripheral shape, wherein said front end and said rear end have an arcuately convex peripheral shape, and further wherein peripheral areas connecting adjacent ones of said left lateral side, said front end, said right lateral side, and said rear end are arcuately concave.
5. The recreational water flotation device according to claim 4, further including a left rear fin and a right rear fin, wherein said left and right rear fins are arcuately concave and protrude from said bottom surface of said central body at a rear periphery thereof.
6. The recreational water flotation device according to claim 1, further including a front fin extending along a front edge of said central body and further extending between said left lateral element and said right lateral element, said front fin and said front edge defining a surface angled toward said rear for providing a smooth flow of water thereover.
7. The recreational water flotation device according to claim 1, wherein said propulsion unit is at least partially rotatable with respect to said central body.
8. The recreational water flotation device according to claim 1, further including a bottom mount affixed to said bottom surface of said central body, said bottom mount including an outer tube in fixed relation to said central body and an inner tube within said fixed outer tube, said inner at least partially rotatable with respect to said outer tube, and wherein said propulsion unit is attached to said inner tube.
9. The recreational water flotation device according to claim 8, wherein said outer tube at least partially defines a forwardly oriented opening therethrough and wherein said inner tube has attached thereto a transverse tube extending forwardly from said inner tube through said opening and a horizontal cross tube attached to a distal forward end of said transverse tube, and a bottom bracket affixed to said cross tube, said propulsion unit including a propeller mounted in a propeller mount, said bottom bracket retaining said propeller mount thereto.
10. The recreational water flotation device according to claim 9, further including vertical stop bars affixed to said fixed outer tube, said vertical stop bars defining the left and right boundaries of said opening for limiting the rotation of said inner tube with respect to said outer tube.
11. The recreational water flotation device according to claim 10, further comprising a weight, wherein the propulsion unit and the weight are interchangeably mountable to said central body.
12. A recreational water flotation device comprising:
a central body defining an upper surface and a bottom surface and having a front and a rear;
a left lateral element extending from a left end of said central body, said left lateral element defining a left canted surface, said left canted surface canted toward said central body, and further defining a left end of said flotation device;
a right lateral element extending from a right end of said central body, said right lateral element defining a right canted surface, said right canted surface canted toward said central body, and further defining a right end of said flotation device; and
a propulsion unit mounted to said bottom surface of said central body, said propulsion unit at least partially rotatable with respect to said central body; wherein:
said device is buoyant in water.
13. The recreational water flotation device according to claim 12, wherein said left lateral side and said right lateral side have an arcuately convex peripheral shape, wherein said front end and said rear end have an arcuately convex peripheral shape, and further wherein peripheral areas connecting adjacent ones of said left lateral side, said front end, said right lateral side, and said rear end are arcuately concave.
14. The recreational water flotation device according to claim 13, further including a left rear fin and a right rear fin, wherein said left and right rear fins are arcuately concave and protrude from said bottom surface of said central body at a rear periphery thereof.
15. The recreational water flotation device according to claim 13, further including a front fin extending along a front edge of said central body and further extending between said left lateral element and said right lateral element, said front fin and said front edge defining a surface angled toward said rear for providing a smooth flow of water thereover.
16. The recreational water flotation device according to claim 12, further including a bottom mount affixed to said bottom surface of said central body, said bottom mount including an outer tube in fixed relation to said central body and an inner tube within said fixed outer tube, said inner tube at least partially rotatable with respect to said outer tube, and wherein said propulsion unit is attached to said inner tube.
17. A recreational water flotation device comprising:
a central body defining an upper surface and a bottom surface and having an arcuately convex front end and an arcuately convex rear end;
a left lateral element having a convexly arcuate left lateral side and extending from a left end of said central body, said left lateral element defining a left canted surface, said left canted surface canted toward said central body, and further defining a left end of said flotation device;
a right lateral element having a convexly arcuate right lateral side and extending from a right end of said central body, said right lateral element defining a right canted surface, said right canted surface canted toward said central body, and further defining a right end of said flotation device, wherein
peripheral areas connecting adjacent ones of said left lateral side, said front end, said right lateral side, and said rear end are arcuately concave;
a front fin extending along at least a front edge of said central body, said front fin and said front edge defining a surface angled toward said rear for providing a smooth flow of water thereover;
a left rear fin and a right rear fin, said left and right rear fins being arcuately concave and protruding from said bottom surface of said central body at a rear periphery thereof; and
a propulsion unit mounted to said bottom surface of said central body, said propulsion unit at least partially rotatable with respect to said central body; wherein
said device is buoyant in water.
18. The recreational water flotation device according to claim 17, further including a bottom mount affixed to said bottom surface of said central body, said bottom mount including an outer tube in fixed relation to said central body and an inner tube within said fixed outer tube, said inner tube at least partially rotatable with respect to said outer tube, and wherein said propulsion unit is attached to said inner tube.
19. The recreational water flotation device according to claim 18, wherein said outer tube at least partially defines a forwardly oriented opening therethrough and wherein said inner tube has attached thereto a transverse tube extending forwardly from said inner tube through said opening and a horizontal cross tube attached to a distal forward end of said transverse tube, and a bottom bracket affixed to said cross tube, said propulsion unit including a propeller mounted in a propeller mount, said bottom bracket retaining said propeller mount thereto.
20. The recreational water flotation device according to claim 19, further including left and right stops affixed to said fixed outer tube, said stops defining the left and right boundaries of said opening for limiting the rotation of said inner tube with respect to said outer tube.
US14/556,943 2014-01-24 2014-12-01 Flotation device for use in water recreation Abandoned US20150321736A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/556,943 US20150321736A1 (en) 2014-01-24 2014-12-01 Flotation device for use in water recreation
EP15173244.3A EP3028938A1 (en) 2014-12-01 2015-06-23 Flotation device for use in water recreation
US14/749,444 US9399502B1 (en) 2014-01-24 2015-06-24 Flotation device for use in water recreation
US15/176,125 US9714070B2 (en) 2014-01-24 2016-06-07 Floatation device for use in water recreation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461931119P 2014-01-24 2014-01-24
US14/556,943 US20150321736A1 (en) 2014-01-24 2014-12-01 Flotation device for use in water recreation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/749,444 Continuation-In-Part US9399502B1 (en) 2014-01-24 2015-06-24 Flotation device for use in water recreation

Publications (1)

Publication Number Publication Date
US20150321736A1 true US20150321736A1 (en) 2015-11-12

Family

ID=54367139

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/556,943 Abandoned US20150321736A1 (en) 2014-01-24 2014-12-01 Flotation device for use in water recreation

Country Status (1)

Country Link
US (1) US20150321736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221768A1 (en) * 2017-05-31 2018-12-06 주식회사 아이엠에스그룹 Detachable two-part structure, of water board, having power device
USD838794S1 (en) * 2014-11-18 2019-01-22 Scott William Smiles Emergency flotation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD838794S1 (en) * 2014-11-18 2019-01-22 Scott William Smiles Emergency flotation device
WO2018221768A1 (en) * 2017-05-31 2018-12-06 주식회사 아이엠에스그룹 Detachable two-part structure, of water board, having power device

Similar Documents

Publication Publication Date Title
US20180141624A1 (en) Aquatic sports board
US8845382B2 (en) Submersible water toy and related methods of use
US9714070B2 (en) Floatation device for use in water recreation
US4214547A (en) Rider propelled boat
WO2003010043A2 (en) Upright human floatation apparatus and propulsion mechanism therefore
WO2005082705A1 (en) Towable recreational water board
US8882553B2 (en) Forearm boat
US8696395B2 (en) Prone position watercraft
US20150321736A1 (en) Flotation device for use in water recreation
US9415844B2 (en) Multipurpose recreational device
US7955150B2 (en) Surfing skis
JP2016503325A (en) Swimming assistance accessories to achieve a swimming style that particularly requires swell movements
US5277636A (en) Personal flotation device
EP3028938A1 (en) Flotation device for use in water recreation
JP6955764B2 (en) Amphibious balance board structure
US11208178B2 (en) Manually propelled water skis
US20120302116A1 (en) Buoyant Apparatus for Use on a Wearer's Foot
US10093397B2 (en) Enhanced body board
US9533193B2 (en) Foot-propelled catamaran watercraft
US20130102212A1 (en) Axially stabilizing apparatus
NL2010508C2 (en) A watercraft.
US20140315450A1 (en) Buoyant apparatus system
JP7432232B2 (en) Leg kick propelled water boat
KR102120648B1 (en) Foil board
JP6898691B2 (en) Human-powered propulsion boat

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: WATERBLADE, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRUZ RICARDEZ, GAMELI E.;REEL/FRAME:038110/0307

Effective date: 20151212

AS Assignment

Owner name: WATERBLADE L.L.C., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRUZ RICARDEZ, GAMELI E.;REEL/FRAME:038127/0027

Effective date: 20151212