US20150279578A1 - High Power and High Energy Electrodes Using Carbon Nanotubes - Google Patents
High Power and High Energy Electrodes Using Carbon Nanotubes Download PDFInfo
- Publication number
- US20150279578A1 US20150279578A1 US14/679,393 US201514679393A US2015279578A1 US 20150279578 A1 US20150279578 A1 US 20150279578A1 US 201514679393 A US201514679393 A US 201514679393A US 2015279578 A1 US2015279578 A1 US 2015279578A1
- Authority
- US
- United States
- Prior art keywords
- layer
- electrode
- cnt
- current collector
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 59
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 238000004146 energy storage Methods 0.000 abstract description 7
- 239000003990 capacitor Substances 0.000 abstract description 4
- 239000002011 CNT10 Substances 0.000 description 18
- 239000004020 conductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/02—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
- B32B37/025—Transfer laminating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- Carbon nanotubes are carbon structures that exhibit a variety of properties. Many of the properties suggest opportunities for improvements in a variety of technology areas. These technology areas include electronic device materials, optical materials as well as conducting and other materials. For example, CNTs are proving to be useful for energy storage in capacitors.
- a method for fabricating an electrode includes selecting a current collector that has a bonding layer disposed thereon; and bonding to the bonding layer another bonding layer including a layer of aligned carbon nanotubes disposed thereon.
- FIG. 1 is a block diagram depicting a current collector and a substrate onto which a plurality of carbon nanotubes (CNT) have been formed;
- FIG. 2 is a block diagram depicting loading the CNT of FIG. 1 onto the current collector
- the process of transferring the CNT 10 onto the current collector 2 with the addition of pressure results in a layer of compressed CNT 12 .
- the compressed CNT 12 which now include physical defects, such as windows and cracks, generally provide more surface area for charge storage, while in a smaller volume than the uncompressed CNT 10 .
- the addition of another layer of CNT 10 is also shown in FIG. 3 .
- the current collector 2 with at least one layer of compressed CNT 12 to a plurality of layers of compressed CNT 12 disposed thereon may be used as a charge storage device (i.e., a high-power electrode).
- a charge storage device i.e., a high-power electrode
- the high-power electrode are particularly well adapted for use in a capacitor, or an ultracapacitor.
- less electrolyte is required.
- users are provided with an improved performance energy storage that is less expensive to manufacture.
- At least one other layer may be included.
- an ohmic contact layer may be included, and provided to enhance ohmic contact between the another bonding layer 4 , the compressed CNT 12 (which also may be referred to as an “energy storage layer,” an “active layer” and by other similar terms) or another layer.
- an adhesion layer may be included, and provided to enhance adhesion between the another bonding layer 4 and the compressed CNT 12 , or another layer.
- Materials in the additional or optional layers may be chosen according to at least one property, such as electrical conductivity, compatibility and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
- This invention was made with government support under grant DE-AR0000035/0001 awarded by the Unites States Department of Energy (ARPA-E). The United States government has certain rights in the invention.
- 1. Field of the Invention
- The present invention relates to producing aligned carbon-nanotube aggregates and, in particular, to methods and apparatus for producing carbon-nanotube aggregates.
- 2. Description of the Related Art
- Carbon nanotubes (hereinafter referred to also as “CNTs”) are carbon structures that exhibit a variety of properties. Many of the properties suggest opportunities for improvements in a variety of technology areas. These technology areas include electronic device materials, optical materials as well as conducting and other materials. For example, CNTs are proving to be useful for energy storage in capacitors.
- However, effective transfer of the CNTs onto a current collector for a capacitor has proven to be challenging. Further, techniques have not enabled transfer of CNTs in a form that will provide for desired power capabilities.
- Thus, what are needed are methods and apparatus for production of a high power electrode based on carbon nanotubes. Preferably, the methods and apparatus are simple to perform and thus offer reduced cost of manufacture, as well as an improved rate of production.
- In one embodiment, an electrode is provided. The electrode includes a current collector that has at least one layer of compressed carbon nanotubes disposed thereon.
- In another embodiment, a method for fabricating an electrode is provided. The method includes selecting a current collector that has a bonding layer disposed thereon; and bonding to the bonding layer another bonding layer including a layer of aligned carbon nanotubes disposed thereon.
- In yet another embodiment, a method for fabricating an aligned carbon nanotube aggregate for an electrode is provided. The method includes selecting a substrate; growing the aligned carbon nanotube aggregate onto the substrate; and disposing a bonding layer onto the aligned carbon nanotube aggregate following the growth thereof, wherein the bonding layer is adapted for bonding with a current collector of the electrode.
- In a further embodiment, an ultracapacitor is provided. The ultracapacitor includes at least one electrode comprising a current collector that has at least one layer of compressed carbon nanotubes disposed thereon.
- In yet another embodiment, a method for fabricating an ultracapacitor is provided. The method includes selecting an electrode having at least one layer of compressed carbon nanotubes disposed thereon and including the electrode in the ultracapacitor.
- The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
-
FIG. 1 is a block diagram depicting a current collector and a substrate onto which a plurality of carbon nanotubes (CNT) have been formed; -
FIG. 2 is a block diagram depicting loading the CNT ofFIG. 1 onto the current collector; -
FIG. 3 is a block diagram depicting the loaded current collector ofFIG. 2 , as well as another substrate prepared for transfer of additional CNT onto the loaded current collector; -
FIG. 4 is a block diagram depicting loading of additional CNT onto the loaded current collector; and -
FIG. 5 is a block diagram depicting a high-power electrode resulting from multiple transfers of CNT onto the current collector ofFIG. 1 . - Disclosed are methods and apparatus for providing a high-power electrode, where the electrode includes at least one layer of carbon nanotube aggregate (CNT). Advantageously, the electrode may be fabricated from mass-produced CNT and exhibits, among other things, higher gravimetric power density (power as a function of weight) and volumetric power density (power as a function of volume) than previously achievable. Further, the high-power electrode exhibits a low internal resistance and can be fabricated to provide high voltages (of about four or more volts).
- In order to provide some context for the teachings herein, reference is first made to U.S. Pat. No. 7,897,209, entitled “Apparatus and Method for Producing Aligned Carbon Nanotube Aggregate.” This patent is incorporated herein by reference, in its entirety.
- The foregoing patent (the “'209 patent”) teaches a process for producing aligned carbon nanotube aggregate.” Accordingly, the teachings of the '209 patent, which are but one example of techniques for producing aligned carbon nanotube aggregate, may be used to produce carbon nanotube aggregate (CNT) referred to herein.
- One example of a device incorporating an electrode as provided herein is provided in U.S. Patent Application Publication No. 2007-0258192, entitled “Engineered Structure for Charge Storage and Method of Making,” also incorporated herein by reference, in its entirety. In general, methods and apparatus disclosed herein may be used to enhance an energy storage system, such as the embodiments disclosed in this publication. One embodiment of such energy storage is referred to as an “ultracapacitor.” However, it should be recognized that the teachings herein may be applicable to other embodiments of energy storage and are therefore not limited to practice with an ultracapacitor.
- Referring now to
FIG. 1 , there is a shown a first component, acurrent collector 2. Generally, thecurrent collector 2 includes aconductor layer 3, and may include abonding layer 4. Theconductor layer 3 may be fabricated from any material suited for conducting charge in the intended application. An exemplary material includes aluminum. Theconductor layer 3 may be presented as a foil, a mesh, a plurality of wires or in other forms. Generally, theconductor layer 3 is selected for properties such as conductivity and being electrochemically inert. - In some embodiments, the
conductor layer 3 is prepared by removing an oxide layer thereon. The oxide may be removed by, for example, etching theconductor layer 3 with KOH. - In some embodiments, a
bonding layer 4 is disposed on theconducting layer 3. Thebonding layer 4 may appear as a thin layer, such as layer that is applied by sputtering, e-beam or through another suitable technique. In various embodiments, thebonding layer 4 is between about 1 nm to about 100 nm. Generally, thebonding layer 4 is selected for its properties such as conductivity, being electrochemically inert and compatibility with the material of theconductor layer 3. Some exemplary materials include aluminum, gold, silver, palladium, titanium, tin and platinum as well as alloys or in combinations of materials, such as Fe—Cr—Ni. - A second component includes a
substrate 8 that is host to the carbon nanotube aggregate (CNT) 10. Some exemplary techniques for providing theCNT 10 are provided in the '209 patent. In the embodiment shown inFIG. 1 , thesubstrate 8 includes abase material 6 with a thin layer of acatalyst 7 disposed thereon. - In general, the
substrate 8 is at least somewhat flexible (i.e., thesubstrate 8 is not brittle), and is fabricated from components that can withstand environments for deposition of the CNT 10 (e.g., a high-temperature environment of between about 400 degrees Celsius to about 1,100 degrees Celsius). - Once the
CNT 10 have been fabricated, anotherbonding layer 4 is disposed thereon. In some embodiments, the anotherbonding layer 4 is between about 10 nm to 1,000 nm thick. Subsequently, thebonding layer 4 of thecurrent collector 2 is mated with the anotherbonding layer 4 disposed over theCNT 10, as shown inFIG. 2 . -
FIG. 2 illustrates aspects of mating theCNT 10 with thecurrent collector 2. As implied by the downward arrows, pressure is applied onto thebase material 6. The application of theCNT 10 may be accompanied by heating of the components. As an example, when platinum is used in the bonding layers 4, heating to between about 200 degrees Celsius to about 250 degrees Celsius is generally adequate. Subsequently, theCNT 10 and thecatalyst 7 are separated, with a resulting layer ofCNT 10 disposed onto thecurrent collector 2. - Various post-manufacture processes may be completed to encourage separation of the
CNT 10 from thecatalyst 7. For example, following completion of deposition, thesubstrate 8 including theCNT 10 thereon may be exposed to (e.g., heated in) an environment of room air, carbon dioxide or another oxidative environment. Generally, the post-manufacture treatment of theCNT 10 includes slowly ramping theCNT 10 to an elevated temperature, and then maintaining theCNT 10 at temperature for a few hours at a reduced pressure (i.e., below 1 atmosphere). - As shown in
FIG. 3 , the process of transferring theCNT 10 onto thecurrent collector 2 with the addition of pressure results in a layer ofcompressed CNT 12. Thecompressed CNT 12, which now include physical defects, such as windows and cracks, generally provide more surface area for charge storage, while in a smaller volume than theuncompressed CNT 10. Also shown inFIG. 3 , is the addition of another layer ofCNT 10. - As shown in
FIG. 4 , the another layer ofCNT 10 may be applied over thecompressed CNT 12. In some embodiments, this process involves applying a nominal amount of pressure (such as by hand). Generally, it is considered that the another layer ofCNT 10 is transferred to (i.e., adheres to) the compressedCNT 12 by the Van der Waals forces between the carbon nanotubes. Advantageously, this results in another layer of compressed CNT 12 (i.e., another thickness of compressed CNT 12) on thecurrent collector 2. - The process may be repeated to provide a plurality of thicknesses of
compressed CNT 12 on thecurrent collector 2. In general, however, it is expected that certain practical limitations will be realized. That is, for example, compounding defects in transfer of each layer may result in a layer ofcompressed CNT 12 that does not exhibit desired performance for charge storage. However, it is also expected that as transfer protocols continue to improve, that the addition of an ever greater number of layers will be possible. - Accordingly, the
current collector 2 with at least one layer ofcompressed CNT 12 to a plurality of layers ofcompressed CNT 12 disposed thereon may be used as a charge storage device (i.e., a high-power electrode). Generally, such embodiments of the high-power electrode are particularly well adapted for use in a capacitor, or an ultracapacitor. In addition to some of the foregoing mentioned advantages (higher gravimetric and volumetric power densities, low internal resistance and high voltage delivery), less electrolyte is required. Thus, users are provided with an improved performance energy storage that is less expensive to manufacture. - In other embodiments, consideration may be given to the particular properties of the
base material 6, thecatalyst 7, theconductor layer 3 and the bonding layers 4. That is, for example, if the foregoing fabrication is completed in a substantially oxygen-free environment, it is expected that other materials and processes may be used (or omitted) to provide for thecurrent collector 2 with at least one layer ofcompressed CNT 12 to a plurality of layers ofcompressed CNT 12. Accordingly, these and other embodiments as may be devised by one skilled in the art are within the ambit of the invention and the teachings herein. - In further embodiments, at least one other layer may be included. For example, an ohmic contact layer may be included, and provided to enhance ohmic contact between the another
bonding layer 4, the compressed CNT 12 (which also may be referred to as an “energy storage layer,” an “active layer” and by other similar terms) or another layer. In another example, an adhesion layer may be included, and provided to enhance adhesion between the anotherbonding layer 4 and thecompressed CNT 12, or another layer. Materials in the additional or optional layers may be chosen according to at least one property, such as electrical conductivity, compatibility and the like. - With regard to the ohmic contact layer, the ohmic contact layer may be useful for achieving an ohmic contact with the carbonaceous layer. If the ohmic contact layer will be exposed to the electrolyte in which the electrode will ultimately be immersed (such as through a porous carbonaceous layer), the ohmic contact layer material should be chosen for good electric compliance, usually a suitably low reaction rate, with that particular embodiment of electrolyte. The ohmic contact layer may be deposited onto the carbonaceous layer using magnetron sputtering, thermal evaporation, or a similar process. Exemplary materials that may be used in the ohmic contact layer are aluminum (Al), tantalum (Ta), and platinum (Pt). In general, a thickness of this ohmic contact layer varies in the range of from about 1 nm to about 10 μm.
- With regard to the “adhesion layer,” this layer may be used to improve adhesion between the
current collector 2 and another layer. The adhesion layer may be deposited onto thecurrent collector 2 using magnetron sputtering or a similar process. Typical materials included in the adhesion layer are titanium (Ti), chromium (Cr), titanium-tungsten (Ti—W) or a combination of those materials. If the conductivity of the material making up the adhesion layer is relatively low, then its thickness should be limited to achieve suitable current handling performance. In general, a thickness of this adhesion layer varies between about 1 nanometer (nm) and about 100 (nm). - Having disclosed aspects of embodiments of the production apparatus and techniques for fabricating aggregates of carbon nanotubes, it should be recognized that a variety of embodiments may be realized. Further a variety of techniques of fabrication may be practiced. For example, steps of fabrication may be adjusted, as well as techniques for joining, materials and chemicals used and the like.
- As a matter of convention, it should be considered that the terms “may” as used herein is to be construed as optional; “includes,” “has” and “having” are to be construed as not excluding other options (i.e., steps, materials, components, compositions, etc., . . . ); “should” does not imply a requirement, rather merely an occasional or situational preference. Other similar terminology is likewise used in a generally conventional manner.
- While the invention has been described with reference to exemplary embodiments, it will be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. For example, in some embodiments, one of the foregoing layers may include a plurality of layers there within. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims (10)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161602121P | 2011-02-23 | 2011-02-23 | |
US201161494164P | 2011-06-07 | 2011-06-07 | |
US201161524071P | 2011-08-16 | 2011-08-16 | |
US201161525326P | 2011-08-19 | 2011-08-19 | |
US201161568450P | 2011-12-08 | 2011-12-08 | |
US201161569010P | 2011-12-09 | 2011-12-09 | |
US201161570587P | 2011-12-14 | 2011-12-14 | |
US13/587,037 US9001495B2 (en) | 2011-02-23 | 2012-08-16 | High power and high energy electrodes using carbon nanotubes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/587,037 Continuation US9001495B2 (en) | 2011-02-23 | 2012-08-16 | High power and high energy electrodes using carbon nanotubes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150279578A1 true US20150279578A1 (en) | 2015-10-01 |
Family
ID=47712489
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/587,037 Active 2033-03-20 US9001495B2 (en) | 2011-02-23 | 2012-08-16 | High power and high energy electrodes using carbon nanotubes |
US14/679,393 Abandoned US20150279578A1 (en) | 2011-02-23 | 2015-04-06 | High Power and High Energy Electrodes Using Carbon Nanotubes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/587,037 Active 2033-03-20 US9001495B2 (en) | 2011-02-23 | 2012-08-16 | High power and high energy electrodes using carbon nanotubes |
Country Status (1)
Country | Link |
---|---|
US (2) | US9001495B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10475595B2 (en) | 2016-05-20 | 2019-11-12 | Avx Corporation | Ultracapacitor for use at high temperatures |
US10563501B2 (en) | 2013-12-20 | 2020-02-18 | Fastcap Systems Corporation | Electromagnetic telemetry device |
US10600582B1 (en) | 2016-12-02 | 2020-03-24 | Fastcap Systems Corporation | Composite electrode |
US10714271B2 (en) | 2011-07-08 | 2020-07-14 | Fastcap Systems Corporation | High temperature energy storage device |
US10830034B2 (en) | 2011-11-03 | 2020-11-10 | Fastcap Systems Corporation | Production logging instrument |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US10886074B2 (en) | 2014-10-09 | 2021-01-05 | Fastcap Systems Corporation | Nanostructured electrode for energy storage device |
WO2021015926A1 (en) * | 2019-07-19 | 2021-01-28 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
US11081684B2 (en) | 2017-05-24 | 2021-08-03 | Honda Motor Co., Ltd. | Production of carbon nanotube modified battery electrode powders via single step dispersion |
US11121358B2 (en) | 2017-09-15 | 2021-09-14 | Honda Motor Co., Ltd. | Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder |
US11127537B2 (en) | 2015-01-27 | 2021-09-21 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
US11171324B2 (en) | 2016-03-15 | 2021-11-09 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US11201318B2 (en) | 2017-09-15 | 2021-12-14 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
US11250995B2 (en) | 2011-07-08 | 2022-02-15 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US11270850B2 (en) | 2013-12-20 | 2022-03-08 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
US11325833B2 (en) | 2019-03-04 | 2022-05-10 | Honda Motor Co., Ltd. | Composite yarn and method of making a carbon nanotube composite yarn |
US11352258B2 (en) | 2019-03-04 | 2022-06-07 | Honda Motor Co., Ltd. | Multifunctional conductive wire and method of making |
US11374214B2 (en) | 2017-07-31 | 2022-06-28 | Honda Motor Co., Ltd. | Self standing electrodes and methods for making thereof |
US11383213B2 (en) | 2016-03-15 | 2022-07-12 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US11535517B2 (en) | 2019-01-24 | 2022-12-27 | Honda Motor Co., Ltd. | Method of making self-standing electrodes supported by carbon nanostructured filaments |
US11557765B2 (en) | 2019-07-05 | 2023-01-17 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11569490B2 (en) | 2017-07-31 | 2023-01-31 | Honda Motor Co., Ltd. | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
US11830672B2 (en) | 2016-11-23 | 2023-11-28 | KYOCERA AVX Components Corporation | Ultracapacitor for use in a solder reflow process |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
EP2723979B1 (en) | 2011-05-24 | 2020-07-08 | FastCAP SYSTEMS Corporation | Power system for high temperature applications with rechargeable energy storage |
CA3098849A1 (en) | 2011-06-07 | 2012-12-13 | Fastcap Systems Corporation | Energy storage media for ultracapacitors |
US9425254B1 (en) * | 2012-04-04 | 2016-08-23 | Ball Aerospace & Technologies Corp. | Hybrid integrated nanotube and nanostructure substrate systems and methods |
US9206672B2 (en) | 2013-03-15 | 2015-12-08 | Fastcap Systems Corporation | Inertial energy generator for supplying power to a downhole tool |
CA2851434A1 (en) | 2013-05-03 | 2014-11-03 | The Governors Of The University Of Alberta | Carbon nanosheets |
WO2015138038A2 (en) | 2013-12-20 | 2015-09-17 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
US9505624B2 (en) | 2014-02-18 | 2016-11-29 | Corning Incorporated | Metal-free CVD coating of graphene on glass and other dielectric substrates |
US20180175379A1 (en) * | 2015-06-10 | 2018-06-21 | William Marsh Rice University | Germanium-containing carbon nanotube arrays as electrodes |
CN109599270B (en) * | 2017-09-30 | 2020-08-11 | 清华大学 | Preparation method of photoelectric self-energy storage device |
KR20230049717A (en) * | 2020-09-15 | 2023-04-13 | 이 잉크 코포레이션 | Compositions Comprising Additives Having Polycyclic Aromatic Groups |
Family Cites Families (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982182A (en) | 1973-08-13 | 1976-09-21 | Coulter Electronics, Inc. | Conductivity cell for particle study device |
US4408259A (en) | 1979-02-09 | 1983-10-04 | Matsushita Electric Industrial Company, Limited | Electrochemical double-layer capacitor |
US4349910A (en) | 1979-09-28 | 1982-09-14 | Union Carbide Corporation | Method and apparatus for orientation of electrode joint threads |
US4934366A (en) | 1988-09-01 | 1990-06-19 | Siemens-Pacesetter, Inc. | Feedthrough connector for implantable medical device |
NL9001976A (en) | 1990-09-07 | 1992-04-01 | Kinetron Bv | GENERATOR. |
CH686206A5 (en) | 1992-03-26 | 1996-01-31 | Asulab Sa | Cellule photoelectrochimique regeneratrice transparent. |
US5476709A (en) | 1992-06-15 | 1995-12-19 | Mitsui Toatsu Chemicals, Inc. | Polymeric insulating material and formed article making use of the material |
US5711988A (en) | 1992-09-18 | 1998-01-27 | Pinnacle Research Institute, Inc. | Energy storage device and its methods of manufacture |
US5440447A (en) | 1993-07-02 | 1995-08-08 | The Morgan Crucible Company, Plc | High temperature feed-through system and method for making same |
US5621607A (en) | 1994-10-07 | 1997-04-15 | Maxwell Laboratories, Inc. | High performance double layer capacitors including aluminum carbon composite electrodes |
WO1997043774A1 (en) | 1996-05-15 | 1997-11-20 | Hyperion Catalysis International, Inc. | Graphitic nanofibers in electrochemical capacitors |
PT964936E (en) | 1997-02-19 | 2002-03-28 | Starck H C Gmbh | PO DE TANTALO ITS PRODUCTION PROCESS AND SINTERIZED ANODOS PRODUCED FROM THIS PO |
US6683783B1 (en) | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
US6205016B1 (en) | 1997-06-04 | 2001-03-20 | Hyperion Catalysis International, Inc. | Fibril composite electrode for electrochemical capacitors |
US6843119B2 (en) | 1997-09-18 | 2005-01-18 | Solinst Canada Limited | Apparatus for measuring and recording data from boreholes |
US6511760B1 (en) | 1998-02-27 | 2003-01-28 | Restek Corporation | Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating |
US6247533B1 (en) | 1998-03-09 | 2001-06-19 | Seismic Recovery, Llc | Utilization of energy from flowing fluids |
US6141205A (en) | 1998-04-03 | 2000-10-31 | Medtronic, Inc. | Implantable medical device having flat electrolytic capacitor with consolidated electrode tabs and corresponding feedthroughs |
US6201685B1 (en) | 1998-10-05 | 2001-03-13 | General Electric Company | Ultracapacitor current collector |
US6232706B1 (en) | 1998-11-12 | 2001-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Self-oriented bundles of carbon nanotubes and method of making same |
US6444326B1 (en) | 1999-03-05 | 2002-09-03 | Restek Corporation | Surface modification of solid supports through the thermal decomposition and functionalization of silanes |
US6716554B2 (en) | 1999-04-08 | 2004-04-06 | Quallion Llc | Battery case, cover, and feedthrough |
EP1059266A3 (en) | 1999-06-11 | 2000-12-20 | Iljin Nanotech Co., Ltd. | Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition |
EP1061554A1 (en) | 1999-06-15 | 2000-12-20 | Iljin Nanotech Co., Ltd. | White light source using carbon nanotubes and fabrication method thereof |
US6449139B1 (en) | 1999-08-18 | 2002-09-10 | Maxwell Electronic Components Group, Inc. | Multi-electrode double layer capacitor having hermetic electrolyte seal |
US6257332B1 (en) | 1999-09-14 | 2001-07-10 | Halliburton Energy Services, Inc. | Well management system |
JP2001160525A (en) | 1999-09-24 | 2001-06-12 | Honda Motor Co Ltd | Pretreatment method of active carbon for polarized electrode |
TW497286B (en) | 1999-09-30 | 2002-08-01 | Canon Kk | Rechargeable lithium battery and process for the production thereof |
US6413285B1 (en) * | 1999-11-01 | 2002-07-02 | Polyplus Battery Company | Layered arrangements of lithium electrodes |
US6304427B1 (en) | 2000-01-07 | 2001-10-16 | Kemet Electronics Corporation | Combinations of materials to minimize ESR and maximize ESR stability of surface mount valve-metal capacitors after exposure to heat and/or humidity |
US6679332B2 (en) | 2000-01-24 | 2004-01-20 | Shell Oil Company | Petroleum well having downhole sensors, communication and power |
KR100487069B1 (en) | 2000-04-12 | 2005-05-03 | 일진나노텍 주식회사 | Supercapacitor using electrode of new material and manufacturing method the same |
US6388423B1 (en) | 2001-02-23 | 2002-05-14 | John W. Schilleci, Jr. | Battery monitor and open circuit protector |
JP2002270235A (en) | 2001-03-07 | 2002-09-20 | Nisshinbo Ind Inc | Pregel component for polymer gel electrolyte and dehidrating method of the same, secondary cell and electric double layer capacitor |
US6872681B2 (en) | 2001-05-18 | 2005-03-29 | Hyperion Catalysis International, Inc. | Modification of nanotubes oxidation with peroxygen compounds |
US6497974B2 (en) | 2001-05-23 | 2002-12-24 | Avista Laboratories, Inc. | Fuel cell power system, method of distributing power, and method of operating a fuel cell power system |
US20080068801A1 (en) | 2001-10-04 | 2008-03-20 | Ise Corporation | High-Power Ultracapacitor Energy Storage Cell Pack and Coupling Method |
JP3941917B2 (en) | 2001-10-19 | 2007-07-11 | Necトーキン株式会社 | Electric double layer capacitor manufacturing method and electric double layer capacitor |
EP1472756B1 (en) | 2002-01-09 | 2011-03-16 | Eco-Bat Indiana, LLC | Method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid |
CA2367290A1 (en) | 2002-01-16 | 2003-07-16 | Hydro Quebec | High stability polymer electrolyte > 4 volts as electrolyte for a hybrid supercondenser and electrochemical generator |
US6872645B2 (en) | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
US7335395B2 (en) | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US7452452B2 (en) | 2002-04-29 | 2008-11-18 | The Trustees Of Boston College | Carbon nanotube nanoelectrode arrays |
EP1411533A1 (en) | 2002-10-09 | 2004-04-21 | Asahi Glass Company, Limited | Electric double layer capacitor and process for its production |
EP2323145A1 (en) | 2002-10-31 | 2011-05-18 | Mitsubishi Chemical Corporation | Electrolytic solution for electrolytic capacitor and electrolytic capacitor as well as method for preparing an organic onium tetrafluoroaluminate |
DE10250808B3 (en) | 2002-10-31 | 2004-04-08 | Honeywell Specialty Chemicals Seelze Gmbh | Preparation of electrolyte containing tetraalkylammonium tetrafluoroborate, used in electrochemical cell or capacitor, involves mixing tetraalkylammonium halide and metal tetrafluoroborate in (partly) water-miscible organic solvent |
KR100675366B1 (en) | 2002-12-30 | 2007-01-29 | 주식회사 네스캡 | Electric energy storage device and method of charging and discharging the same |
TWI236778B (en) | 2003-01-06 | 2005-07-21 | Hon Hai Prec Ind Co Ltd | Lithium ion battery |
US6764874B1 (en) | 2003-01-30 | 2004-07-20 | Motorola, Inc. | Method for chemical vapor deposition of single walled carbon nanotubes |
AU2003900633A0 (en) | 2003-02-13 | 2003-02-27 | Energy Storage Systems Pty Ltd | A resistive balance for an energy storage device |
US7070833B2 (en) | 2003-03-05 | 2006-07-04 | Restek Corporation | Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments |
DE10313207A1 (en) | 2003-03-25 | 2004-10-07 | Basf Ag | Cleaning or processing ionic liquids with adsorptive separation processes |
US7388740B2 (en) | 2003-03-31 | 2008-06-17 | Toyo Aluminium Kabushiki Kaisha | Foil for negative electrode of capacitor and process for producing the same |
US20040229117A1 (en) | 2003-05-14 | 2004-11-18 | Masaya Mitani | Electrochemical cell stack |
US6914341B1 (en) | 2003-07-29 | 2005-07-05 | Mcintyre Stephen | Rotational inertia aided electric generator |
US7201627B2 (en) | 2003-07-31 | 2007-04-10 | Semiconductor Energy Laboratory, Co., Ltd. | Method for manufacturing ultrafine carbon fiber and field emission element |
JP4415673B2 (en) | 2003-12-26 | 2010-02-17 | Tdk株式会社 | Capacitor electrode manufacturing method |
AU2004309904B2 (en) | 2003-12-29 | 2008-04-03 | Shell Internationale Research Maatschappij B.V. | Electrochemical element for use at high temperatures |
US7999695B2 (en) | 2004-03-03 | 2011-08-16 | Halliburton Energy Services, Inc. | Surface real-time processing of downhole data |
US7521153B2 (en) | 2004-03-16 | 2009-04-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Corrosion protection using protected electron collector |
US20050231893A1 (en) | 2004-04-19 | 2005-10-20 | Harvey Troy A | Electric double layer capacitor enclosed in polymer housing |
JP4379247B2 (en) | 2004-04-23 | 2009-12-09 | 住友電気工業株式会社 | Method for producing carbon nanostructure |
US20050238810A1 (en) | 2004-04-26 | 2005-10-27 | Mainstream Engineering Corp. | Nanotube/metal substrate composites and methods for producing such composites |
US8277984B2 (en) | 2006-05-02 | 2012-10-02 | The Penn State Research Foundation | Substrate-enhanced microbial fuel cells |
US7245478B2 (en) | 2004-08-16 | 2007-07-17 | Maxwell Technologies, Inc. | Enhanced breakdown voltage electrode |
WO2007011399A2 (en) | 2004-10-22 | 2007-01-25 | Georgia Tech Research Corporation | Aligned carbon nanotubes and methods for construction thereof |
KR100627313B1 (en) | 2004-11-30 | 2006-09-25 | 삼성에스디아이 주식회사 | Secondary battery |
US7699102B2 (en) | 2004-12-03 | 2010-04-20 | Halliburton Energy Services, Inc. | Rechargeable energy storage device in a downhole operation |
DE102004058907A1 (en) | 2004-12-07 | 2006-06-08 | Basf Ag | Purification of ionic liquids |
US7381367B1 (en) | 2005-03-21 | 2008-06-03 | Catalytic Materials, Llc | Aluminum electrolytic capacitor having an anode having a uniform array of micron-sized pores |
US7126207B2 (en) | 2005-03-24 | 2006-10-24 | Intel Corporation | Capacitor with carbon nanotubes |
US7800886B2 (en) | 2005-04-12 | 2010-09-21 | Sumitomo Chemical Company, Limited | Electric double layer capacitor |
US20060256506A1 (en) | 2005-04-27 | 2006-11-16 | Showa Denko K.K. | Solid electrolyte capacitor and process for producing same |
CN101185148A (en) | 2005-05-31 | 2008-05-21 | 康宁股份有限公司 | Cellular honeycomb ultracapacitors and hybrid capacitors and methods for producing |
US7271994B2 (en) | 2005-06-08 | 2007-09-18 | Greatbatch Ltd. | Energy dense electrolytic capacitor |
US7511941B1 (en) | 2005-06-08 | 2009-03-31 | Maxwell Technologies, Inc. | Ultrasonic sealed fill hole |
TWI367511B (en) | 2005-06-10 | 2012-07-01 | Japan Gore Tex Inc | Electrode for electric double layer capacitor and electric double layer capacitor |
KR100925013B1 (en) | 2005-07-29 | 2009-11-04 | 세이코 인스트루 가부시키가이샤 | Electrochemical cell |
US7466539B2 (en) | 2005-09-30 | 2008-12-16 | Wisconsin Alumni Research Foundation | Electrochemical double-layer capacitor using organosilicon electrolytes |
JP2009516916A (en) | 2005-11-22 | 2009-04-23 | マックスウェル テクノロジーズ, インク | Ultracapacitor pressure control system |
US7692411B2 (en) | 2006-01-05 | 2010-04-06 | Tpl, Inc. | System for energy harvesting and/or generation, storage, and delivery |
JP4817296B2 (en) | 2006-01-06 | 2011-11-16 | 独立行政法人産業技術総合研究所 | Aligned carbon nanotube bulk aggregate and method for producing the same |
CN101375431B (en) | 2006-01-30 | 2011-02-02 | 京瓷株式会社 | Container for electricity accumulator and battery and electric double layer capacitor employing same |
US8124503B2 (en) | 2006-03-03 | 2012-02-28 | William Marsh Rice University | Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces |
EP2005504B1 (en) | 2006-03-08 | 2013-05-29 | CAP-XX Limited | Electrolyte |
US20070258192A1 (en) | 2006-05-05 | 2007-11-08 | Joel Schindall | Engineered structure for charge storage and method of making |
US7990679B2 (en) | 2006-07-14 | 2011-08-02 | Dais Analytic Corporation | Nanoparticle ultracapacitor |
EP2048131A4 (en) | 2006-07-27 | 2012-05-16 | Nichicon Corp | Ionic compound |
GB2453907B (en) | 2006-08-02 | 2011-11-02 | Ada Technologies Inc | High performance ultracapacitors with carbon nanomaterials and ionic liquids |
US7983022B2 (en) | 2008-03-05 | 2011-07-19 | Greatbatch Ltd. | Electrically connecting multiple cathodes in a case negative multi-anode capacitor |
KR101005399B1 (en) | 2008-04-16 | 2010-12-30 | 닛토덴코 가부시키가이샤 | Fibrous rod-like structure aggregates and adhesive members wherein same are used |
CN102741161B (en) | 2008-04-16 | 2014-06-25 | 日本瑞翁株式会社 | Equipment and method for producing orientated carbon nano-tube aggregates |
US8277691B2 (en) | 2008-05-05 | 2012-10-02 | Ada Technologies, Inc. | High performance carbon nanocomposites for ultracapacitors |
FR2933814B1 (en) | 2008-07-11 | 2011-03-25 | Commissariat Energie Atomique | IONIC LIQUID ELECTROLYTES COMPRISING A SURFACTANT AND ELECTROCHEMICAL DEVICES SUCH AS ACCUMULATORS COMPRISING SAME |
US9243013B2 (en) | 2008-08-22 | 2016-01-26 | Nippon Shokubai Co., Ltd. | Ionic compound, method for producing the same, and ion-conductive material comprising the same |
US8531818B2 (en) * | 2008-12-08 | 2013-09-10 | Panasonic Corporation | Electric double layer capacitor and method for manufacturing the same |
US20110080689A1 (en) | 2009-09-04 | 2011-04-07 | Bielawski Christopher W | Ionic Liquids for Use in Ultracapacitor and Graphene-Based Ultracapacitor |
US8194395B2 (en) | 2009-10-08 | 2012-06-05 | Avx Corporation | Hermetically sealed capacitor assembly |
US8373971B2 (en) | 2010-01-13 | 2013-02-12 | Karl S. YOUNG | Supercapacitors using nanotube fibers and methods of making the same |
US8102642B2 (en) | 2010-08-06 | 2012-01-24 | International Battery, Inc. | Large format ultracapacitors and method of assembly |
US8760851B2 (en) | 2010-12-21 | 2014-06-24 | Fastcap Systems Corporation | Electrochemical double-layer capacitor for high temperature applications |
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
US20120313586A1 (en) | 2011-06-09 | 2012-12-13 | Fastcap Systems Corporation | Automotive electrified drive train systems with high temperature rechargeable energy storage device |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US8932750B2 (en) | 2011-07-27 | 2015-01-13 | Fastcap Systems Corporation | Aluminum housing with a hermetic seal |
US9153195B2 (en) | 2011-08-17 | 2015-10-06 | Microsoft Technology Licensing, Llc | Providing contextual personal information by a mixed reality device |
US9017634B2 (en) | 2011-08-19 | 2015-04-28 | Fastcap Systems Corporation | In-line manufacture of carbon nanotubes |
US20130141840A1 (en) | 2011-12-05 | 2013-06-06 | Fastcap Systems Corporation | On-board power supply |
US20140057164A1 (en) | 2012-05-02 | 2014-02-27 | Fastcap Systems Corporation | Enhanced carbon based electrode for use in energy storage devices |
US20140265565A1 (en) | 2013-03-15 | 2014-09-18 | Fastcap Systems Corporation | Modular signal interface devices and related downhole power and data systems |
US9206672B2 (en) | 2013-03-15 | 2015-12-08 | Fastcap Systems Corporation | Inertial energy generator for supplying power to a downhole tool |
-
2012
- 2012-08-16 US US13/587,037 patent/US9001495B2/en active Active
-
2015
- 2015-04-06 US US14/679,393 patent/US20150279578A1/en not_active Abandoned
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11482384B2 (en) | 2011-07-08 | 2022-10-25 | Fastcap Systems Corporation | High temperature energy storage device |
US11776765B2 (en) | 2011-07-08 | 2023-10-03 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US10714271B2 (en) | 2011-07-08 | 2020-07-14 | Fastcap Systems Corporation | High temperature energy storage device |
US11250995B2 (en) | 2011-07-08 | 2022-02-15 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US11901123B2 (en) | 2011-07-08 | 2024-02-13 | Fastcap Systems Corporation | High temperature energy storage device |
US10830034B2 (en) | 2011-11-03 | 2020-11-10 | Fastcap Systems Corporation | Production logging instrument |
US11512562B2 (en) | 2011-11-03 | 2022-11-29 | Fastcap Systems Corporation | Production logging instrument |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US11488787B2 (en) | 2013-10-09 | 2022-11-01 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US10563501B2 (en) | 2013-12-20 | 2020-02-18 | Fastcap Systems Corporation | Electromagnetic telemetry device |
US12071847B2 (en) | 2013-12-20 | 2024-08-27 | Fastcap Systems Corporation | Electromagnetic telemetry device |
US11313221B2 (en) | 2013-12-20 | 2022-04-26 | Fastcap Systems Corporation | Electromagnetic telemetry device |
US11270850B2 (en) | 2013-12-20 | 2022-03-08 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
US10886074B2 (en) | 2014-10-09 | 2021-01-05 | Fastcap Systems Corporation | Nanostructured electrode for energy storage device |
US11664173B2 (en) | 2014-10-09 | 2023-05-30 | Fastcap Systems Corporation | Nanostructured electrode for energy storage device |
US11942271B2 (en) | 2014-10-09 | 2024-03-26 | Fastcap Systems Corporation | Nanostructured electrode for energy storage device |
US11127537B2 (en) | 2015-01-27 | 2021-09-21 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
US11756745B2 (en) | 2015-01-27 | 2023-09-12 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
US11171324B2 (en) | 2016-03-15 | 2021-11-09 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US11888152B2 (en) | 2016-03-15 | 2024-01-30 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US11383213B2 (en) | 2016-03-15 | 2022-07-12 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US10475595B2 (en) | 2016-05-20 | 2019-11-12 | Avx Corporation | Ultracapacitor for use at high temperatures |
US10840031B2 (en) | 2016-05-20 | 2020-11-17 | Avx Corporation | Ultracapacitor for use at high temperatures |
US11830672B2 (en) | 2016-11-23 | 2023-11-28 | KYOCERA AVX Components Corporation | Ultracapacitor for use in a solder reflow process |
US10600582B1 (en) | 2016-12-02 | 2020-03-24 | Fastcap Systems Corporation | Composite electrode |
US11450488B2 (en) | 2016-12-02 | 2022-09-20 | Fastcap Systems Corporation | Composite electrode |
EP4243122A2 (en) | 2016-12-02 | 2023-09-13 | Fastcap Systems Corporation | Composite electrode |
US11081684B2 (en) | 2017-05-24 | 2021-08-03 | Honda Motor Co., Ltd. | Production of carbon nanotube modified battery electrode powders via single step dispersion |
US11735705B2 (en) | 2017-05-24 | 2023-08-22 | Honda Motor Co., Ltd. | Production of carbon nanotube modified battery electrode powders via single step dispersion |
US11374214B2 (en) | 2017-07-31 | 2022-06-28 | Honda Motor Co., Ltd. | Self standing electrodes and methods for making thereof |
US11569490B2 (en) | 2017-07-31 | 2023-01-31 | Honda Motor Co., Ltd. | Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive |
US11121358B2 (en) | 2017-09-15 | 2021-09-14 | Honda Motor Co., Ltd. | Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder |
US11616221B2 (en) | 2017-09-15 | 2023-03-28 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
US11489147B2 (en) | 2017-09-15 | 2022-11-01 | Honda Motor Co., Ltd. | Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder |
US11201318B2 (en) | 2017-09-15 | 2021-12-14 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
US11535517B2 (en) | 2019-01-24 | 2022-12-27 | Honda Motor Co., Ltd. | Method of making self-standing electrodes supported by carbon nanostructured filaments |
US11834335B2 (en) | 2019-03-04 | 2023-12-05 | Honda Motor Co., Ltd. | Article having multifunctional conductive wire |
US11352258B2 (en) | 2019-03-04 | 2022-06-07 | Honda Motor Co., Ltd. | Multifunctional conductive wire and method of making |
US11325833B2 (en) | 2019-03-04 | 2022-05-10 | Honda Motor Co., Ltd. | Composite yarn and method of making a carbon nanotube composite yarn |
US11557765B2 (en) | 2019-07-05 | 2023-01-17 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11848449B2 (en) | 2019-07-05 | 2023-12-19 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11539042B2 (en) | 2019-07-19 | 2022-12-27 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
WO2021015926A1 (en) * | 2019-07-19 | 2021-01-28 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
Also Published As
Publication number | Publication date |
---|---|
US9001495B2 (en) | 2015-04-07 |
US20130044405A1 (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9001495B2 (en) | High power and high energy electrodes using carbon nanotubes | |
Zhang et al. | Stamping of flexible, coplanar micro‐supercapacitors using MXene inks | |
CN107533925B (en) | Nanostructured electrodes for energy storage devices | |
Feng et al. | Flexible cellulose paper‐based asymmetrical thin film supercapacitors with high‐performance for electrochemical energy storage | |
JP5289033B2 (en) | Solid electrolytic capacitor | |
Oka et al. | Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires | |
US10622180B2 (en) | Method for producing an electron emitter coated with a nanorod-containing coating | |
JP2007527099A (en) | Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode | |
JP5511630B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
TW201021064A (en) | Composite cathode foils and solid electrolytic capacitors comprising the same | |
US20150064571A1 (en) | Current collector structure | |
JP2003229564A (en) | Method for manufacturing carbon nanotube device, and carbon nanotube device | |
JP2007194354A (en) | Polarizable electrode, and electric double layer capacitor comprising same | |
JP2007182360A (en) | Article having whisker formed thereon and electrochemical capacitor using same | |
JP4392312B2 (en) | ELECTRIC DOUBLE LAYER CAPACITOR ELECTRODE MEMBER, ITS MANUFACTURING METHOD, AND ELECTRIC DOUBLE LAYER CAPACITOR USING ELECTRO DOUBLE LAYER CAPACITOR ELECTRODE MEMBER | |
JP4555204B2 (en) | Aluminum cathode foil for electrolytic capacitors | |
TW201232582A (en) | Dual-layer method of fabricating ultracapacitor current collectors | |
Byun et al. | Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes | |
CN110449574B (en) | Preparation method of low-defect graphene-coated aluminum powder particles | |
TW200306592A (en) | Solid electrolytic capacitor and method of manufacturing same | |
KR102398468B1 (en) | Sheet electrode for electric double layer capacitor and manufacturing method thereof | |
Wang et al. | Electrochemical capacitors of horizontally aligned carbon nanotube electrodes with oxygen plasma treatment | |
JP2018073937A (en) | Solid electrolytic capacitor | |
JP2004342744A (en) | Laminated ceramic electronic part | |
CN114144264B (en) | Pressure wave generating element and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WINDSAIL CREDIT FUND, L.P., AS ADMINISTRATIVE AGEN Free format text: SECOND SUPPLEMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:FASTCAP SYSTEMS CORPORATION;REEL/FRAME:036171/0059 Effective date: 20150722 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: WINDSAIL CREDIT FUND, L.P., MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:FASTCAP SYSTEMS CORPORATION;REEL/FRAME:062738/0152 Effective date: 20220826 |