US20150259135A1 - Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage - Google Patents

Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage Download PDF

Info

Publication number
US20150259135A1
US20150259135A1 US14/723,977 US201514723977A US2015259135A1 US 20150259135 A1 US20150259135 A1 US 20150259135A1 US 201514723977 A US201514723977 A US 201514723977A US 2015259135 A1 US2015259135 A1 US 2015259135A1
Authority
US
United States
Prior art keywords
door assembly
pouches
container
moving
pouch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/723,977
Inventor
Matthew S. Sanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bradford Co Inc
Original Assignee
Bradford Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bradford Co Inc filed Critical Bradford Co Inc
Priority to US14/723,977 priority Critical patent/US20150259135A1/en
Publication of US20150259135A1 publication Critical patent/US20150259135A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/12Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/10Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/16Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/02Rigid pallets with side walls, e.g. box pallets
    • B65D19/06Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components
    • B65D19/08Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components made wholly or mainly of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/38Details or accessories
    • B65D19/44Elements or devices for locating articles on platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/546Devices for loading or unloading and forming part of the container, e.g. rollers, conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/004Contents retaining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/008Doors for containers, e.g. ISO-containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/005Side walls formed with an aperture or a movable portion arranged to allow removal or insertion of contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00024Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00029Wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00034Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00049Materials for the base surface
    • B65D2519/00059Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00084Materials for the non-integral separating spacer
    • B65D2519/00094Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00223Materials for the corner elements or corner frames
    • B65D2519/00233Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00288Overall construction of the load supporting surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00293Overall construction of the load supporting surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00333Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00373Overall construction of the non-integral separating spacer whereby at least one spacer is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00492Overall construction of the side walls
    • B65D2519/00497Overall construction of the side walls whereby at least one side wall is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00492Overall construction of the side walls
    • B65D2519/00502Overall construction of the side walls whereby at least one side wall is made of two or more pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00562Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements chemical connection, e.g. glued, welded, sealed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00577Connections structures connecting side walls, including corner posts, to each other
    • B65D2519/00616Connections structures connecting side walls, including corner posts, to each other structures not intended to be disassembled
    • B65D2519/00626Connections structures connecting side walls, including corner posts, to each other structures not intended to be disassembled sidewalls connected via corner posts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00636Connections structures connecting side walls to the pallet
    • B65D2519/00666Structures not intended to be disassembled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00671Connections structures connecting corner posts to the pallet
    • B65D2519/00701Structures not intended to be disassembled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00805Means for facilitating the removal of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/0081Elements or devices for locating articles
    • B65D2519/0082Elements or devices for locating articles in the side wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00935Details with special means for nesting or stacking
    • B65D2519/00955Details with special means for nesting or stacking stackable
    • B65D2519/00965Details with special means for nesting or stacking stackable when loaded
    • B65D2519/0097Details with special means for nesting or stacking stackable when loaded through corner posts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2585/00Containers, packaging elements or packages specially adapted for particular articles or materials
    • B65D2585/68Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form
    • B65D2585/6802Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles
    • B65D2585/6875Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles engines, motors, machines and vehicle parts
    • B65D2585/6882Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles engines, motors, machines and vehicle parts vehicle parts

Definitions

  • the present invention relates to containers for use in shipping and, more particularly, to containers with movable members for supporting product.
  • a large number of different container structures are utilized by manufacturers to ship a variety of different products to end users, which may be, for example, assembly plants.
  • end users which may be, for example, assembly plants.
  • an assembly plant assembling a particular automobile might utilize a number of different parts from different manufacturers.
  • These manufacturers ship their respective parts to the assembly plant in container structures where the parts are then removed from dunnage or support members inside the container structure and assembled into a finished automobile.
  • the containers full of product are positioned on an assembly line adjacent to a work area, which is associated with a particular product to be installed on a manufactured vehicle.
  • a container full of interior door panels is usually positioned next to a particular station on an assembly line where interior door panels are installed so that a line worker may easily access the door panels inside the container.
  • the product or part is taken directly from the container and used on the line.
  • Some existing containers are difficult to access, which makes removal of the parts therein difficult and time-consuming.
  • some containers are configured so that a line worker must walk around the container to remove parts or products from opposite ends of the container.
  • a line worker only has a certain amount of time to install a part. Any delay in access and removal of the part from the container is undesirable.
  • a line worker or employee In many containers, a line worker or employee must insert or remove parts from a distal or rear part of the container.
  • the size and/or weight of the parts or workpieces may cause stress or strain on the line worker and, more particularly, on the back of the worker when inserting or removing parts from such a container.
  • Such ergonomically unfriendly movements may cause physical trauma, pain and other injuries that may lead to lost production time.
  • the line worker may move to the rear or opposite end of the container to remove parts from inside the container.
  • This requires space around the container which may not be available, depending on the physical layout of the plant or facility.
  • the length (front to back) of certain containers may be limited because the container manufacturer needs to eliminate the need for a line worker to walk around the container to remove product from inside the container.
  • Such containers having a reduced length reduce the number of parts or products which may be shipped and/or stored in the container. The more containers needed to ship a predetermined number of parts, the greater the cost to the shipper.
  • a line worker or employee In other containers, a line worker or employee must lean forward and bend down into the container to insert or remove a part or workpiece from a lower portion of the container. This movement by the line worker is ergonomically unfriendly because the line worker must lean forward and bend down and lift a part or workpiece up and over a wall into the container to remove the part or workpiece from inside the container. Similarly, when a part or workpiece must be inserted into a container, the line worker may have to lean forward and insert the part, which may be heavy, into its proper location inside the container, again experiencing ergonomically unfriendly movements. Such movements may be necessary with many top loading containers and/or containers having multiple layers or levels of parts.
  • the present invention provides a container for holding product therein during shipment.
  • the container comprises a frame having a bottom and multiple sides.
  • the frame is commonly made of metal, but may be made of any desired materials.
  • a plurality of straps is secured to opposed sides of the frame.
  • a plurality of generally horizontally oriented tracks is secured to the straps on each of the opposed sides of the frame at vertically spaced levels.
  • the container further comprises a plurality of movable support member assemblies that are supported by the tracks.
  • Each support member assembly extends between opposed tracks of the same layer or level.
  • the term “support member assembly” comprises multiple components secured together.
  • a “support member assembly” may comprise in combination a tubular support and a pair of end members which move or slide inside stationary tracks. If desired, a unitary support member may be used in place of a support member assembly.
  • the term “track” may be a unitary member or multiple components secured together.
  • the present invention is not intended to be limited to the tracks like those illustrated and described herein.
  • a “track” may comprise a rail attached to one or more walls of a container.
  • the term “track” is intended to include any number of stationary objects along which support members or support member assemblies, as defined and/or illustrated herein, may slide or move during the loading or unloading of products from dunnage inside the container.
  • the container further comprises dunnage supported by the support member assemblies.
  • the dunnage may be pouches or any other known dunnage.
  • the dunnage may be secured to the support member assemblies in any known manner, including those disclosed in U.S. patent application Ser. No. 13/896,675, which is fully incorporated by reference herein.
  • the container further comprises a movable door assembly on one side of the container which may be lowered for ergonomic reasons.
  • the door assembly is movable between raised and lowered positions.
  • the door assembly has pins adapted to move in slots of guide members secured to the frame. An operator may find loading and/or unloading parts from the dunnage in the container to be easier and less stressful on his/her body when the door assembly is in a lowered position.
  • the container may have two door assemblies on opposed sides of the container.
  • Each of the door assemblies regardless of whether the container has one or two door assemblies, may comprise multiple segments, at least one of which may be movable.
  • the container has a metal frame having a base and opposed sides.
  • the container further comprises a plurality of tracks supported by opposed sides of the frame at vertically spaced levels.
  • a plurality of movable support member assemblies extend between opposed tracks of each level, each of the support member assemblies comprising a pair of end members movable along the tracks and a support extending between the end members.
  • Pouches are supported by the support member assemblies.
  • a door assembly is movable between a raised position and a lowered position, the door assembly having multiple pins on each side. The pins are adapted to move in slots of guide members secured to the metal frame.
  • a method of loading a container with products for shipment comprises multiple steps.
  • the first step comprises lowering a movable door assembly, the movable door assembly having pins movable in slots of guide members to enable the door assembly to be raised and lowered in a controlled manner.
  • the next step comprises moving a plurality of upper support member assemblies supporting an upper layer of pouches away from an operator.
  • Each of the upper support member assemblies comprises a pair of end members and a tubular support extending between the end members, the end members moving in upper tracks secured to the container at the same level.
  • the next step comprises moving a plurality of lower support member assemblies supporting a lower layer of pouches to a position near the operator.
  • Each of the lower support member assemblies comprises a pair of end members and a tubular support extending between the end members, the end members moving in lower tracks secured to the container at the same level.
  • the next step comprises inserting products into pouches of the lower layer of pouches.
  • the next step comprises moving the upper support member assemblies supporting the upper layer of pouches proximate the operator after the lower layer of pouches is loaded and inserting additional products into the pouches of the upper layer of pouches one pouch at a time and moving the loaded pouches of the upper layer of pouches away from the operator one at a time.
  • the last step comprises raising the door assembly.
  • a method of unloading products from inside a container comprises multiple steps.
  • the first step comprises lowering an upper door segment of a door assembly, such that pins attached to the upper door segment move in slots of guide members to enable the upper door segment to be lowered in a controlled manner.
  • the next step comprises removing products supported by an upper layer of pouches.
  • Each of the pouches of the upper layer of pouches extends between a pair of support member assemblies.
  • Each of the support member assemblies comprises a pair of end members and a tubular support extending between the end members and surrounding portions of the end members.
  • the next step comprises moving the upper layer of empty pouches to a position away from an operator in which they do not interfere with unloading a lower layer of pouches, the end members moving in tracks secured to opposed sides of the container at the same level.
  • the next step comprises removing products supported by pouches of a lower layer of pouches, each pouch of the lower layer being supported by two support member assemblies.
  • the last step comprises raising the upper door segment of the door assembly to a locked position.
  • the container may be adapted so that an operator located at the front of the container may pull product to be emptied from the rear of the container forwardly to a more ergonomically friendly position after products suspended from dunnage at the front of the container have been unloaded or removed.
  • an operator located at the front of the container may pull product to be emptied from the rear of the container forwardly to a more ergonomically friendly position after products suspended from dunnage at the front of the container have been unloaded or removed.
  • a person unloading the container from the front or proximal location of the container will not have to stretch or reach to the back of the container to unload remaining product.
  • a person loading the container from the front of the container need not stretch or reach to the back of the container to insert or load product into the container.
  • the loader of the container may push the support member assemblies and associated dunnage loaded with product rearwardly and load additional product in a more ergonomically friendly position or manner. For example, after product is loaded into dunnage suspended by adjacent support member assemblies, these support member assemblies and associated dunnage are pushed rearwardly to enable the loader to load additional product.
  • the container allows product to be more efficiently and safely removed from the container or inserted therein without unnecessary stress or strain on the operator.
  • the sliders or end members may be made of plastic or any other desired material.
  • the sides of the container have horizontally oriented tracks in which the sliders move to move dunnage supported by the support member assemblies closer to the user for loading or unloading product.
  • Each slider may have at least one head located inside the interior of the track so the slider remains engaged with the track.
  • the slider may have another head outside the track for preventing the dunnage material from entering the interior of the track.
  • the horizontally oriented tracks may have openings therein and removable caps for covering and/or closing the openings. If one or more of the supports or support member assemblies needs to be removed or inserted, a person may remove and/or insert one or more support member assemblies via the openings in opposed tracks.
  • FIG. 1 is a perspective view of one embodiment of a reusable and returnable container
  • FIG. 2 is a partially disassembled view of a portion of the container of FIG. 1 ;
  • FIG. 3 is a perspective view of a portion of the container of FIG. 1 ;
  • FIG. 3A is a perspective view of a portion of the container of FIG. 1 ;
  • FIG. 3B is an enlarged view of the encircled area 3 B of FIG. 1 ;
  • FIG. 3C is a view taken along the line 3 C- 3 C of FIG. 3B ;
  • FIG. 3D is a cross-sectional view of a portion of an alternative support member assembly
  • FIG. 3E is an enlarged view of the encircled area 3 E of FIG. 1 ;
  • FIG. 4 is a cross-sectional view of the container of FIG. 1 , the container being fully loaded with product;
  • FIG. 5A is a cross-sectional view of a portion of the container of FIG. 1 , showing the door assembly being lowered;
  • FIG. 5B is a cross-sectional view of a portion of the container shown in FIG. 1 , showing the door assembly being lowered further;
  • FIG. 5C is a cross-sectional view of a portion of the container shown in FIG. 1 , showing the door assembly being in a lowered position;
  • FIG. 6A is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and the front product of the uppermost layer of products being removed;
  • FIG. 6B is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and the product behind the front product of the uppermost layer of products being removed;
  • FIG. 6C is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and the uppermost layer of dunnage being emptied and moved rearwardly;
  • FIG. 6D is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and the front product of the second uppermost layer of dunnage being emptied;
  • FIG. 6E is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and all the layers of dunnage emptied;
  • FIG. 6F is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and a first product being loaded into the lowest layer of dunnage;
  • FIG. 6G is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and a second product being loaded into the lowest layer of dunnage;
  • FIG. 6H is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and the lowest layer of dunnage being fully loaded with product;
  • FIG. 6I is a cross-sectional view of the container of FIG. 1 , showing the door assembly lowered and a first product being loaded into the second lowest layer of dunnage;
  • FIG. 7 is a perspective view of another embodiment of a reusable and returnable container
  • FIG. 8A is a cross-sectional view of a portion of the container of FIG. 7 , showing the door assembly being lowered;
  • FIG. 8B is a cross-sectional view of a portion of the container shown in FIG. 7 , showing the door assembly being lowered further;
  • FIG. 8C is a cross-sectional view of a portion of the container shown in FIG. 7 , showing the door assembly being in a lowered position;
  • FIG. 9 is a perspective view of another embodiment of a reusable and returnable container.
  • FIG. 10 is a partially disassembled view of a portion of the container of FIG. 9 ;
  • FIG. 11A is a cross-sectional view of a portion of the container of FIG. 9 , showing the door assembly being locked in a raised position;
  • FIG. 11B is a cross-sectional view of a portion of the container shown in FIG. 9 , showing the door assembly being in a dropped position;
  • FIG. 12A is a cross-sectional view taken along the line 12 A- 12 A of FIG. 11A ;
  • FIG. 12B is a cross-sectional view like FIG. 12A showing one of the pins in a contracted position inside one of the guide members;
  • FIG. 13 is a perspective view of another embodiment of a reusable and returnable container
  • FIG. 14 is a partially disassembled view of a portion of the container of FIG. 13 ;
  • FIG. 15A is a cross-sectional view of a portion of the container of FIG. 13 , showing the door assembly being locked in a raised position;
  • FIG. 15B is a cross-sectional view of a portion of the container shown in FIG. 13 , showing the door assembly being in a dropped position;
  • FIG. 16A is a cross-sectional view taken along the line 16 A- 16 A of FIG. 15A ;
  • FIG. 16B is a cross-sectional view like FIG. 16A showing one of the pins in a contracted position inside one of the dividers of one of the front corner posts.
  • the reusable and returnable container 10 comprises an outer metal frame 12 having a base 14 , two rear corner posts 16 and two front corner posts 18 , all four corner posts 16 , 18 extending upwardly from the base 14 .
  • the base 14 is generally rectangular in shape and comprises a front member 20 , a rear member 22 and two side members 24 .
  • the members of the base 14 may be secured together or secured to the corner posts 16 , 18 via any conventional means, including welding.
  • a plurality of stubs 26 extend upwardly from the base 14 and are secured thereto by welding, for example.
  • a generally rectangular sub-base 28 is spaced above the base 14 by the stubs 26 and secured to the stubs 26 by welding, for example.
  • the sub-base 28 comprises a front member 30 , a rear member 32 and two side members 34 .
  • the members of the sub-base 28 may be secured together or secured to the corner posts 16 , 18 via any conventional means, including welding.
  • two stubs 26 are shown extending upwardly from each of the base members 20 , 22 and 24 to corresponding sub-base members 30 , 32 and 34 , any number of stubs 26 may be used to space the sub-base 28 above the base 14 .
  • the sub-base 28 of the container 10 further comprises a plurality of intersecting interior members 36 extending between opposed perimeter sub-base members 30 , 32 and 34 and secured thereto, interior members 36 comprising part of the sub-base 28 of the metal frame 12 .
  • interior members 36 comprising part of the sub-base 28 of the metal frame 12 .
  • five interior members 36 are shown in the sub-base 28 of the container 10 , any number of interior members may be used.
  • each of the corner posts 16 and 18 may be generally rectangular in cross-section, have a hollow interior, and a knob 38 at the top thereof for stacking purposes so that multiple containers 10 may be stacked upon one another.
  • the knobs 38 of a first container fit inside the hollow interiors of the corner posts of another or second container located above the first container for stacking purposes.
  • metal frame 12 further comprises an upper rear member 40 and a rear panel 42 extending between the two rear corner posts 16 and being secured thereto.
  • the rear panel 42 is below the upper rear member 40 .
  • the metal frame 12 further comprises, on each side of the container, an upper side member 44 and a side panel 46 extending between one of the rear corner posts 16 and one of the front corner posts 18 and secured thereto.
  • upper side member 44 is located above side panel 46 .
  • each side wall may not be a solid wall.
  • a floor 48 rests on top of sub-base 28 of the metal frame 12 of container 10 .
  • the floor 48 may be made of plastic, wood, metal or any other desired material. Although the floor 48 is illustrated as being one piece or panel, more than one piece or panel may comprise the floor 48 resting on top of sub-base 28 of the metal frame 12 of container 10 .
  • container 10 further comprises a shield 50 which may be secured with fasteners or welded to the front member 30 of the sub-base 28 of the container 10 .
  • the shield 50 has a main portion 52 which is generally vertically oriented upon assembly and a flange 54 extending outwardly from the main portion 52 .
  • the flange 54 is generally horizontally oriented upon assembly and may be secured in any known manner to the front member 30 of the sub-base 28 of the container 10 including with any number of fasteners 55 (only two being shown) or via welding.
  • the container 10 further comprises two guide members 56 , one of the guide members 56 being fixedly secured to each of the front corner posts 18 of the container 10 via welds or fasteners.
  • Each of the guide members 56 is generally rectangular in cross-section and has a hollow interior.
  • Each of the guide members 56 has two slots therethrough, an upper slot 58 and a lower slot 60 .
  • upper slot 58 has a “candy cane” shape comprising a straight portion 62 and a curved upper portion 64 .
  • These upper and lower slots 58 , 60 are used to secure a movable door assembly 66 in a fixed position and guide the door assembly 66 during its movement from an upper or raised position shown in FIG.
  • the door assembly 66 comprises an upper piece 68 , which may function as a handle, a lower piece 70 and two side pieces 72 joined together to create a rectangular frame 74 inside which is a door panel 76 .
  • the door panel 76 is made of plastic and the frame 74 made of metal. However, any desired materials may be used.
  • the door assembly 66 has a pair of upper pins 78 , one on each side (only one being shown) extending outwardly from the door assembly 66 and adapted to ride or move inside the upper slots 58 .
  • the door assembly 66 has a pair of lower pins 80 extending outwardly from the door assembly 66 , one on each side (only one being shown). These pins 80 are adapted to ride or move inside the lower slots 60 .
  • FIG. 2 shows the door assembly 66 locked in a raised position with the upper pins 78 located at the outer ends of the curved portions 64 of the upper slots 58 . As the door assembly 66 is lowered, it moves outside the shield 50 . See FIG. 5C .
  • multiple stops may be secured to door assembly 66 .
  • the stop or stops may be made of foam or any other suitable material. When the door assembly 66 is in its raised position, the stop or stops may prevent products from hitting the door assembly 66 during the loading or unloading process.
  • container 10 further comprises a plurality of generally vertically oriented spaced straps 82 secured to each of the side panels 46 with fasteners 84 (only one set of straps 82 being shown).
  • fasteners 84 only one set of straps 82 being shown.
  • the straps 82 may be made of metal or any other desired material.
  • a plurality of generally horizontally oriented tracks or rails 86 are secured to the straps 82 in any desired manner, such as welding, for example.
  • the tracks 86 are vertically spaced apart from each other at different levels.
  • the tracks 86 are fixed in stationary positions in corresponding pairs at the same vertical levels as disclosed in pending U.S. patent application Ser. No. 13/896,675.
  • FIG. 3A discloses four different levels or layers of tracks 86 (only one side being shown), the container may have any number of different levels or layers of tracks 86 .
  • each track 86 has an upper wall 88 , a lower wall 90 joined to the upper wall 88 by a side wall 92 , and a lip 94 extending downwardly from the upper wall 88 and another lip 96 extending upwardly from the lower wall 90 defining an interior 98 of the track 86 .
  • container 10 further comprises a plurality of support member assemblies 100 extending between opposed tracks 86 at the same level on opposed sides of the container.
  • each support member assembly 100 includes a pair of sliders or end members 102 and a tubular support 104 having a hollow interior 106 extending therebetween.
  • the sliders 102 are preferably made of injection molded plastic, such as nylon, but may be made of any other material.
  • the tubular support 104 is preferably made of metal, but may be made of other suitable material, such as plastic.
  • each slider 102 preferably has a first portion 108 having an X-shaped cross-sectional configuration and a second portion 110 having a circular cross-sectional configuration.
  • each slider 102 has a pair of heads 112 , 114 at the end of the slider 102 .
  • Head 112 is furthest from the first portion 108 of the slider 102
  • head 114 is spaced inwardly from head 112 .
  • the heads 112 , 114 are spaced from one another to define a groove 116 therebetween which receives and retains the lips 94 , 96 of the stationary track 86 .
  • FIG. 1 As shown in FIG.
  • head 112 is located inside the interior 98 of track 86 , and head 114 is located outside the interior 98 of stationary track 86 .
  • Head 112 keeps the slider 102 engaged with the track 86
  • head 114 keeps the dunnage material out of the interior 98 of the track 86 , thereby ensuring that the sliders 102 may move smoothly along the stationary track.
  • support member assembly 100 one configuration is illustrated, the present invention may be used with any type or configuration of support member assembly for supporting dunnage so the dunnage may slide or move inside the container.
  • each end of tubular support 104 fits over at least one portion 108 of a slider 102 .
  • An end surface 118 of tubular support 104 abuts head 114 of slider 102 .
  • Each end member or slider 102 of each support member assembly 100 is adapted to engage and move along one of the tracks.
  • the end members 102 preferably slide along the length or width of the tracks; however, different end members may rotate rather than slide along the tracks.
  • one configuration of track and end member is shown and described, other types of end members and tracks may be used if desired.
  • support member assembly 100 includes a pair of sliders 102 (only one being shown in FIG. 3C ). Each slider 102 has a groove 120 formed in a portion 110 therein. Support member assemblies 100 further include a tubular support 104 having a hollow interior 106 extending therebetween. As shown in FIG. 3B , each end of tubular support 104 fits over at least one portion 108 of a slider 102 . An end surface 118 of tubular support 104 abuts head 114 of slider 102 .
  • the tubular support 104 is preferably made of metal, but may be made of other suitable material, such as plastic. As shown in FIG.
  • tubular support 104 has two detents 122 therethrough (one at each end) in which the material of the tubular support 104 is pressed downwardly into the groove 120 .
  • This attachment between each of the two sliders 102 and the tubular support 104 enables some movement therebetween.
  • Such interaction between the sliders 102 and tubular support 104 allows for a tolerance of approximately one-quarter inch on each side.
  • the detents 122 prevent separation of the tubular support 104 from the sliders 102 while allowing some movement therebetween as the detents 122 move within the grooves 120 formed in the sliders 102 .
  • a slightly different support member assembly 100 ′ including a pair of sliders 102 (only one being shown in FIG. 3D ), may be used.
  • Support member assembly 100 ′ is slightly different than support member assembly 100 shown in FIG. 3B and described above.
  • the only difference between support member assembly 100 ′ and support member assembly 100 shown in FIG. 3B is that tubular supports 104 ′ are slightly different than the tubular supports 104 ; they lack detents 122 . See FIG. 3C .
  • Each support member assembly 100 ′ includes a tubular support 104 ′ having a hole 124 at each end.
  • the tubular support 104 ′ is preferably made of metal, but may be made of other suitable material, such as plastic.
  • each end of tubular support 104 ′ fits over at least one portion 108 of a slider 102 .
  • An end surface 118 of tubular support 104 ′ abuts head 114 of slider 102 .
  • tubular support 104 ′ has holes 124 therethrough, which receive fasteners 126 .
  • fasteners 126 are shown as screws, they may be any other type of fasteners.
  • the fasteners 126 prevent separation of the tubular support 104 ′ from the sliders 102 while allowing some movement therebetween as the fastener 126 moves within the grooves 120 formed in the sliders 102 .
  • Other known means of securing the tubular support 104 to the sliders 102 may be used if desired.
  • FIGS. 1 and 3B illustrate all of the support member assemblies 100 having detents 122 , as shown in FIG. 3B .
  • containers may be made with all of the support member assemblies having fasteners, like support member assemblies 100 ′.
  • some of the support member assemblies may have fasteners like support member assemblies 100 ′, and some may have detents like support member assemblies 100 .
  • Containers may have a mixture thereof.
  • FIG. 3E illustrates another support member assembly 100 , exactly like the one shown in FIG. 3B , used to support one of the pouches.
  • Track 86 has an opening or cut-out 128 formed therein.
  • Holes 130 are formed in the upper wall 88 of track 86 , which are sized and threaded to receive fasteners 132 .
  • fasteners 132 are illustrated to be screws, they may be any other desirable fastener.
  • a cap 134 is removably secured to the track 86 to cover the opening or cut-out 128 formed in an upper portion of track 86 . As best seen in FIG.
  • cap 134 has a generally inverted U-shaped cross-sectional configuration, including a top portion 136 and side portions 138 extending downwardly from the top portion 136 . Holes 140 are formed through the top portion 136 of the cap 134 and sized to receive fasteners 132 , as shown in FIG. 3E . The fasteners 132 are adapted to pass through the holes 140 in the cap 134 and into the holes 130 in the upper wall 88 of the track 86 . Caps of alternative shapes or sizes may be used if desired.
  • container 10 comprises multiple layers or levels 142 a - 142 d of vertically spaced dunnage 144 , each level being in the form of a plurality of pouches 146 .
  • Each layer or level of dunnage is suspended by and supported by a plurality of support member assemblies 100 .
  • Each pouch 146 has a front wall 148 , a rear wall 150 and a bottom 152 extending therebetween. As shown in FIG. 4 , the top of the front wall 148 is attached to one of the support member assemblies 100 , and the rear wall 150 is attached to an adjacent support member assembly 100 .
  • the dunnage 144 shown comprises pouches, the dunnage may assume other shapes or configurations.
  • a pouch 146 is supported by two adjacent support member assemblies 100 . As shown in FIG. 3B , the fabric of the pouch 146 is sewn or otherwise secured together along a seam 154 to make a pocket 156 in which is located a tubular support 104 of the support member assembly 100 .
  • Support member assemblies 100 supporting pouches 146 are adapted to move from back to front inside the interior of the container 10 , the end members or sliders 102 of the support member assemblies 100 moving along the stationary tracks 86 .
  • each pouch 146 may be made from its own piece of material, in which case, the pouches 146 would not be interconnected other than via the straps or space limiters (not shown).
  • FIGS. 5A-5C and 6 A- 6 E illustrate a method of unloading product 5 from the pouches 146 of the container 10 .
  • the method comprises the step of lowering door assembly 66 from a raised and locked position shown in FIG. 5A to a lowered or dropped position illustrated in FIG. 5C .
  • a lowered or dropped position illustrated in FIG. 5C .
  • this height H 1 is approximately half the height of the interior of the container 10 .
  • an operator must grasp the upper piece or handle 68 of door assembly 66 and lift the door assembly 66 upwardly so the upper pins 78 move upwardly and outwardly, following the path of the curved upper portion 64 of the upper slots 58 of the guide members 56 .
  • FIG. 5B once the upper pins 78 of door assembly 66 reach the linear portion 62 of the upper slots 58 of the guide members 56 , the door assembly 66 moves further downwardly due in part to gravity, the lower pins 80 traveling along the lower slots 58 of the guide members 56 until the door assembly 66 reaches its open or lowered position shown in FIG. 5C .
  • the next step comprises removing the product 5 closest to the open door assembly 66 out of it dunnage pouch 146 in the uppermost or top level of dunnage 142 a in the direction of arrow 158 , as shown in FIG. 6A .
  • the next step comprises moving the second from the front support member assembly 100 towards the front of the container, the sliders 102 sliding in the stationary, generally horizontally oriented tracks 86 .
  • the entire string of product 5 in pouches 146 of the upper or top level 142 A of dunnage moves toward the front of the container.
  • the next step comprises removing another product 5 from the pouch 148 second closest to the open door assembly 66 out of it dunnage pouch 146 of the uppermost or top level of dunnage 142 a in the direction of arrow 160 .
  • This process is repeated each time a product 5 is removed from the upper or top level of dunnage, the support member assemblies 86 are pulled forwardly with the pouches 146 still containing product 5 , the sliders 102 sliding in the stationary, generally horizontally oriented tracks 86 , as shown in FIG. 6B .
  • the operator moves the empty dunnage or pouches 146 of the top level of dunnage 142 a rearwardly in the direction shown by arrow 162 .
  • the lowered position of the door assembly 66 makes it easier from an ergonomic standpoint for the operator to remove the product 5 because the operator may get closer to the product 5 in order to remove them from inside the container.
  • FIG. 6D shows a product 5 being removed from a front pouch 146 of the second lowest level of dunnage 142 b in the direction of arrow 164 .
  • the operator pushes the emptied pouches of level 142 b rearwardly, like he/she did with the upper level of emptied dunnage/pouches and then removes the products of level 142 c .
  • This process is repeated one layer or level at a time, each time all the product 5 are removed from the pouches 146 of a level, and each of the support member assemblies 100 are pushed rearwardly to a rear portion of the container, creating open space for the operator to remove product from the next lowest level.
  • FIG. 6E illustrates the empty container 10 still having the dunnage 144 therein, which may then be shipped back to its original location or any desired location for loading the empty dunnage 144 with product.
  • the tracks 86 remain stationary fixedly secured to the container 10 .
  • the support member assemblies 100 and dunnage 144 hanging from the support member assemblies 100 move inside the container with the assistance of an operator.
  • the loading process is the reverse.
  • FIGS. 6E-6I illustrates a method of loading product 5 into the pouches 146 of emptied container 10 .
  • the first step of the loading process after lowering the door assembly 66 , comprises moving the lowermost or bottom level of dunnage 142 d in the direction of arrow 166 , from back to front.
  • FIG. 6F with the bottom level of dunnage 142 d in a forward position, a product 5 is loaded into a dunnage pouch 146 furthest away from the open door assembly 66 in the direction of arrow 168 .
  • FIG. 6E with door assembly 66 in its lowered or dropped position, the first step of the loading process, after lowering the door assembly 66 , comprises moving the lowermost or bottom level of dunnage 142 d in the direction of arrow 166 , from back to front.
  • FIG. 6F with the bottom level of dunnage 142 d in a forward position, a product 5 is loaded into a dunnage pouch 146 furthest away from the
  • the next step comprises moving one or more of the support member assemblies 100 , including the single loaded pouch 146 of the bottom level 142 d towards the rear of the container, the sliders 102 sliding in the tracks 86 , the loaded rearwardmost pouch 146 containing a product 5 .
  • This process of loading one pouch 146 at a time of the bottom level 142 d continues until each pouch 146 of the bottom level 142 d is full.
  • the next step comprises inserting another product 5 into the last dunnage pouch 146 (furthest from the open door assembly 66 ) of the level of dunnage 142 c in the direction of arrow 174 .
  • This process is repeated each time a product 5 is inserted into a dunnage pouch 146 of the level of dunnage 142 c , the support member assemblies 86 are pushed rearwardly with the pouches 146 containing product 5 , the sliders 102 sliding in the tracks 86 . Once all of the pouches 146 of the level of dunnage 142 c have been loaded with product 5 , the operator loads the next highest level of dunnage pouches 146 with product 5 .
  • This process of loading product 5 is continued by an operator one level at a time, moving upwardly until the container is full of product 5 .
  • the method lastly comprises the step of raising door assembly 66 from its lowered or dropped position illustrated in FIGS. 6A-6I to its raised and locked position shown in FIG. 4 .
  • an operator In order to move the door assembly 66 from its lowered or dropped position shown in FIGS. 6A-6I , an operator must grasp the upper piece or handle 68 of door assembly 66 and lift the door assembly 66 upwardly, the upper and lower pins 78 , 80 , respectively, moving upwardly, following the paths of the upper and lower slots 58 , 60 of the guide members 56 .
  • FIG. 5B once the upper pins 78 of door assembly 66 pass through the curved upper portion 64 of the upper slots 58 of the guide members 56 , the door assembly 66 reaches its raised and locked position shown in FIG. 4 .
  • FIGS. 7 , 8 A, 8 B and 8 C illustrate an alternative embodiment of container 10 a .
  • Container 10 a is identical to container 10 except for the door assembly, including the guide members.
  • the door assembly 66 a of container 10 a has two movable pieces, while the door assembly 66 of container 10 has only one movable piece.
  • the loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved.
  • Each of the guide members 56 a of the frame 12 a is generally rectangular in cross-section and has a hollow interior.
  • Each of the guide members 56 a of the frame 12 a has two slots therethrough; an upper slot 58 a and a lower slot 60 a .
  • upper slot 58 a has a “candy cane” shape comprising a straight portion 62 a and a curved upper portion 64 a .
  • the lower slot 60 a is not linear, but rather has a “Z” shape, as best illustrated in FIG. 8A .
  • These upper and lower slots 58 a , 60 a are used to secure a movable multi-segmented or multi-piece door, or door assembly 66 a , in a fixed position, and guide the door assembly 66 a during its movement from an upper or raised position and a lower or dropped position.
  • the movable door assembly 66 a comprises a movable upper segment 180 and a movable lower segment 182 , which are not connected together.
  • the upper segment 180 has a flange 184 at the bottom thereof.
  • the upper segment 180 has a pair of upper pins 78 a extending outwardly from the upper segment 120 of the door assembly 66 a and adapted to ride or move inside the upper slots 58 a .
  • the upper segment 180 of the door assembly 66 a has an integral U-shaped upper handle 186 which a user may easily grasp and move the upper segment 180 of the door assembly 66 a , along with the lower segment 182 of the door assembly 66 a , due to the configuration of the door assembly 66 a .
  • the upper segment 180 of door assembly 66 a has a pair of lower pins 80 a extending outwardly from the upper segment 180 of door assembly 66 a and adapted to ride or move inside the lower slots 60 a .
  • FIG. 8A shows the door assembly 66 a locked in a raised position with the upper pins 78 a located at the outer ends of the curved upper portions 64 a of the upper slots 58 a.
  • the lower segment 182 of door assembly 66 a is not fastened or secured to any particular piece and is free floating between the stationary shield 50 and the upper segment 180 of door assembly 66 a .
  • the lower segment 182 of door assembly 66 a is generally C-shaped, having an upper flange 188 located at the upper end of the lower segment 182 and a lower flange 190 located at the lower end of the lower segment 182 .
  • the lower segment 182 of door assembly 66 a moves inside the stationary main portion 52 of the shield 50 .
  • the lower segment 182 of door assembly 66 a moves inside the main portion 52 of the shield 50 .
  • the flange 184 of the upper segment 180 of door assembly 66 a contacts the upper flange 188 located at the upper end of the lower segment 182 and raises the floating lower segment 182 of door assembly 66 a.
  • an opening having a height H 2 is created above the door assembly 66 a .
  • the height H 2 of the opening is greater than the height H 1 of the embodiment shown in FIGS. 5A-5C (approximately half the height of the container).
  • the opening H 2 is greater than half the height of the container H 1 , making it more desirable from an ergonomic standpoint for the loader/unloader.
  • FIGS. 9-12B illustrate an alternative embodiment of container 10 b .
  • Container 10 b is identical to container 10 , except for the door assembly and guide members.
  • the slotted guide members 56 of container 10 are omitted and replaced with two unslotted guide members 192 .
  • each guide member 192 is generally U-shaped in cross-section having an outer wall 210 and two side walls 212 .
  • each of the guide members 192 is secured to an inside surface of one of the front corner posts 18 via welding or fasteners and extends from an upper surface of front member 30 of sub-base 28 to the top of one of the front corner posts 18 (excluding knobs 38 ).
  • the movable door assembly 66 b of container 10 b has only one movable segment, like the movable door assembly 66 of container 10 .
  • the loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved.
  • door assembly 66 b slides in stationary generally vertically oriented guide members 192 (one on each side) between a raised and locked position shown in FIGS. 11A and 12A , and a lowered or dropped position shown in FIGS. 11B and 12B .
  • at the top of each guide member 192 is an opening 194 adapted to receive a movable pin 196 .
  • Each pin 196 is movable inside a housing 198 .
  • the door assembly 66 b has two pin housings 198 (only one being shown in FIG. 12A and FIG. 12B ), each housing 198 being secured to one of the side pieces 72 of door assembly 66 b .
  • a spring 199 biases the pin 196 outwardly in an extended position.
  • FIG. 12B shows the pin 196 in a contracted position inside one of the guide members 192 .
  • a ring 200 is attached to pin 196 at each end of the door assembly 66 b .
  • the housings 198 (only one housing is shown) are located at the sides of the door assembly 66 b and move with the door assembly 66 b .
  • a connector 202 which may be in the form of a wire or any other suitable material, extends between the rings 200 .
  • an operator may pull on the connector 202 , thereby moving the pins 196 toward each other out of engagement with the holes 194 .
  • the door assembly 66 b may be moved downwardly inside guide members 192 to the position shown in FIG. 11B . As the door assembly 66 b is lowered, it moves outside the shield 50 . See FIG. 11B .
  • FIGS. 9-12B illustrate container 10 b having only one door assembly 66 b
  • a door assembly may be located on opposite sides of a container. In such a container, two guide members would be located inside the container, one for each movable door assembly.
  • FIGS. 13-16B illustrate an alternative embodiment of container 10 c .
  • Container 10 c is identical to container 10 , except for the door assembly and guide members.
  • the slotted guide members 56 of container 10 are omitted.
  • each of the front corner posts 18 has a straight or linear slot 204 along an inside surface of the front corner post 18 .
  • a generally vertically oriented divider 206 is located inside each of the front corner posts 18 , and each slot 204 has an upper edge 208 .
  • the movable door assembly 66 c of container 10 c has only one movable segment, like the movable door assembly 66 of container 10 .
  • the loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved.
  • upper and lower pins 78 c , 80 c of movable door assembly 66 c slide in generally vertically oriented slots 204 between a raised and locked position shown in FIGS. 15A and 16A , and a lowered or dropped position shown in FIGS. 15B and 15B .
  • the divider 206 inside each front corner post 18 does not extend all the way to the top of each slot 204 , thereby creating an opening 210 above divider 206 .
  • the opening 210 is adapted to receive a movable pin 78 c movable inside a housing 198 .
  • the door assembly 66 c has two pin housings 198 (only one being shown in FIGS.
  • each housing 198 being secured to one of the side pieces 72 of door assembly 66 c .
  • a spring 199 biases a pin 78 c outwardly in an extended position.
  • FIG. 16B shows pin 78 c in a contracted position, the spring 199 biasing the pin 78 c against one of the dividers 206 . Due to the engagement of the pins 78 c (only one being shown) with the dividers 206 of the front corner posts 18 (only one being shown), the door assembly 66 c does not free fall downwardly upon the pins 78 c being moved towards each other due to connector 202 being pulled.
  • the movable door assembly 66 c may be moved downwardly in a controlled matter and held temporary at any desired position.
  • a ring 200 is attached to pin 78 c at each end of the door assembly 66 c .
  • the housings 198 (only one housing is shown) are located at the sides of the door assembly 66 c and move with the door assembly 66 c .
  • a connector 202 which may be in the form of a wire or any other suitable material, is connected to each ring 200 and extends between the rings 200 .
  • an operator may pull on the connector 202 , thereby moving the pins 78 c toward each other out of engagement with the openings 210 .
  • the door assembly 66 c may be moved downwardly, the pins 78 c , 80 c moving along slots 204 to the position shown in FIG. 16 B.
  • the door assembly 66 c is lowered, it moves outside the shield 50 . See FIG. 15B .
  • FIGS. 13-16B illustrate container 10 c having only one door assembly 66 c
  • a door assembly may be located on opposite sides of a container. In such a container, two guide members would be located inside the container, one for each movable door assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Pallets (AREA)
  • Buffer Packaging (AREA)
  • Wrapping Of Specific Fragile Articles (AREA)

Abstract

A method of loading a container for holding product therein during shipment and being returned for reuse has a movable door assembly to ease the loading process. Layers of tracks are supported by opposite sides of the container. Movable dunnage supports extending between the tracks support dunnage such as pouches. The dunnage supports may include end members movable along the tracks.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 13/975,682 filed Aug. 26, 2013, which is fully incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to containers for use in shipping and, more particularly, to containers with movable members for supporting product.
  • BACKGROUND OF THE INVENTION
  • A large number of different container structures are utilized by manufacturers to ship a variety of different products to end users, which may be, for example, assembly plants. In the automobile industry, for example, an assembly plant assembling a particular automobile might utilize a number of different parts from different manufacturers. These manufacturers ship their respective parts to the assembly plant in container structures where the parts are then removed from dunnage or support members inside the container structure and assembled into a finished automobile.
  • Access to the product in the containers is of particular concern. Specifically, in the automotive industry, the containers full of product are positioned on an assembly line adjacent to a work area, which is associated with a particular product to be installed on a manufactured vehicle. For example, a container full of interior door panels is usually positioned next to a particular station on an assembly line where interior door panels are installed so that a line worker may easily access the door panels inside the container. The product or part is taken directly from the container and used on the line. Some existing containers are difficult to access, which makes removal of the parts therein difficult and time-consuming. For example, some containers are configured so that a line worker must walk around the container to remove parts or products from opposite ends of the container. As may be appreciated, a line worker only has a certain amount of time to install a part. Any delay in access and removal of the part from the container is undesirable.
  • In many containers, a line worker or employee must insert or remove parts from a distal or rear part of the container. The size and/or weight of the parts or workpieces may cause stress or strain on the line worker and, more particularly, on the back of the worker when inserting or removing parts from such a container. Such ergonomically unfriendly movements may cause physical trauma, pain and other injuries that may lead to lost production time.
  • In some situations, in order to alleviate such stress and/or strain on his or her body, the line worker may move to the rear or opposite end of the container to remove parts from inside the container. This requires space around the container which may not be available, depending on the physical layout of the plant or facility. The length (front to back) of certain containers may be limited because the container manufacturer needs to eliminate the need for a line worker to walk around the container to remove product from inside the container. Such containers having a reduced length reduce the number of parts or products which may be shipped and/or stored in the container. The more containers needed to ship a predetermined number of parts, the greater the cost to the shipper.
  • In other containers, a line worker or employee must lean forward and bend down into the container to insert or remove a part or workpiece from a lower portion of the container. This movement by the line worker is ergonomically unfriendly because the line worker must lean forward and bend down and lift a part or workpiece up and over a wall into the container to remove the part or workpiece from inside the container. Similarly, when a part or workpiece must be inserted into a container, the line worker may have to lean forward and insert the part, which may be heavy, into its proper location inside the container, again experiencing ergonomically unfriendly movements. Such movements may be necessary with many top loading containers and/or containers having multiple layers or levels of parts.
  • Depending upon the number of times the line worker repeats this unnatural motion into the interior of the container, strain in the back, legs and arms may result. The size and/or weight of the parts or workpieces may increase the strain on the line worker. Thus, simply removing multiple parts during a work day may cause physical trauma, pain and other injuries that may lead to lost production time.
  • Accordingly, there is a need for a container which prevents employees from walking around the container to insert or remove product from inside the container.
  • There is further a need for a container which prevents employees from having to perform difficult or straining repetitive reaching motions.
  • There is further a need for a container which brings product into an ergonomically friendly area or zone for insertion or removal of the product.
  • SUMMARY OF THE INVENTION
  • The present invention provides a container for holding product therein during shipment. The container comprises a frame having a bottom and multiple sides. The frame is commonly made of metal, but may be made of any desired materials. In one embodiment, a plurality of straps is secured to opposed sides of the frame. A plurality of generally horizontally oriented tracks is secured to the straps on each of the opposed sides of the frame at vertically spaced levels.
  • The container further comprises a plurality of movable support member assemblies that are supported by the tracks. Each support member assembly extends between opposed tracks of the same layer or level. For purposes of this document, the term “support member assembly” comprises multiple components secured together. For example, a “support member assembly” may comprise in combination a tubular support and a pair of end members which move or slide inside stationary tracks. If desired, a unitary support member may be used in place of a support member assembly.
  • For purposes of the present invention, the term “track” may be a unitary member or multiple components secured together. The present invention is not intended to be limited to the tracks like those illustrated and described herein. For example, a “track” may comprise a rail attached to one or more walls of a container. The term “track” is intended to include any number of stationary objects along which support members or support member assemblies, as defined and/or illustrated herein, may slide or move during the loading or unloading of products from dunnage inside the container.
  • The container further comprises dunnage supported by the support member assemblies. The dunnage may be pouches or any other known dunnage. The dunnage may be secured to the support member assemblies in any known manner, including those disclosed in U.S. patent application Ser. No. 13/896,675, which is fully incorporated by reference herein.
  • The container further comprises a movable door assembly on one side of the container which may be lowered for ergonomic reasons. The door assembly is movable between raised and lowered positions. The door assembly has pins adapted to move in slots of guide members secured to the frame. An operator may find loading and/or unloading parts from the dunnage in the container to be easier and less stressful on his/her body when the door assembly is in a lowered position.
  • In an alternative embodiment, the container may have two door assemblies on opposed sides of the container. Each of the door assemblies, regardless of whether the container has one or two door assemblies, may comprise multiple segments, at least one of which may be movable.
  • According to another aspect of the present invention, the container has a metal frame having a base and opposed sides. The container further comprises a plurality of tracks supported by opposed sides of the frame at vertically spaced levels. A plurality of movable support member assemblies extend between opposed tracks of each level, each of the support member assemblies comprising a pair of end members movable along the tracks and a support extending between the end members. Pouches are supported by the support member assemblies. A door assembly is movable between a raised position and a lowered position, the door assembly having multiple pins on each side. The pins are adapted to move in slots of guide members secured to the metal frame.
  • According to another aspect of the invention, a method of loading a container with products for shipment comprises multiple steps. The first step comprises lowering a movable door assembly, the movable door assembly having pins movable in slots of guide members to enable the door assembly to be raised and lowered in a controlled manner. The next step comprises moving a plurality of upper support member assemblies supporting an upper layer of pouches away from an operator. Each of the upper support member assemblies comprises a pair of end members and a tubular support extending between the end members, the end members moving in upper tracks secured to the container at the same level. The next step comprises moving a plurality of lower support member assemblies supporting a lower layer of pouches to a position near the operator. Each of the lower support member assemblies comprises a pair of end members and a tubular support extending between the end members, the end members moving in lower tracks secured to the container at the same level. The next step comprises inserting products into pouches of the lower layer of pouches. The next step comprises moving the upper support member assemblies supporting the upper layer of pouches proximate the operator after the lower layer of pouches is loaded and inserting additional products into the pouches of the upper layer of pouches one pouch at a time and moving the loaded pouches of the upper layer of pouches away from the operator one at a time. The last step comprises raising the door assembly.
  • According to another aspect of the invention, a method of unloading products from inside a container comprises multiple steps. The first step comprises lowering an upper door segment of a door assembly, such that pins attached to the upper door segment move in slots of guide members to enable the upper door segment to be lowered in a controlled manner. The next step comprises removing products supported by an upper layer of pouches. Each of the pouches of the upper layer of pouches extends between a pair of support member assemblies. Each of the support member assemblies comprises a pair of end members and a tubular support extending between the end members and surrounding portions of the end members. The next step comprises moving the upper layer of empty pouches to a position away from an operator in which they do not interfere with unloading a lower layer of pouches, the end members moving in tracks secured to opposed sides of the container at the same level. The next step comprises removing products supported by pouches of a lower layer of pouches, each pouch of the lower layer being supported by two support member assemblies. The last step comprises raising the upper door segment of the door assembly to a locked position.
  • The container may be adapted so that an operator located at the front of the container may pull product to be emptied from the rear of the container forwardly to a more ergonomically friendly position after products suspended from dunnage at the front of the container have been unloaded or removed. Thus, a person unloading the container from the front or proximal location of the container will not have to stretch or reach to the back of the container to unload remaining product.
  • Similarly, a person loading the container from the front of the container need not stretch or reach to the back of the container to insert or load product into the container. The loader of the container may push the support member assemblies and associated dunnage loaded with product rearwardly and load additional product in a more ergonomically friendly position or manner. For example, after product is loaded into dunnage suspended by adjacent support member assemblies, these support member assemblies and associated dunnage are pushed rearwardly to enable the loader to load additional product. Thus, the container allows product to be more efficiently and safely removed from the container or inserted therein without unnecessary stress or strain on the operator.
  • The sliders or end members may be made of plastic or any other desired material. The sides of the container have horizontally oriented tracks in which the sliders move to move dunnage supported by the support member assemblies closer to the user for loading or unloading product. Each slider may have at least one head located inside the interior of the track so the slider remains engaged with the track. The slider may have another head outside the track for preventing the dunnage material from entering the interior of the track.
  • The horizontally oriented tracks may have openings therein and removable caps for covering and/or closing the openings. If one or more of the supports or support member assemblies needs to be removed or inserted, a person may remove and/or insert one or more support member assemblies via the openings in opposed tracks.
  • The ease of operation and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the brief description thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
  • FIG. 1 is a perspective view of one embodiment of a reusable and returnable container;
  • FIG. 2 is a partially disassembled view of a portion of the container of FIG. 1;
  • FIG. 3 is a perspective view of a portion of the container of FIG. 1;
  • FIG. 3A is a perspective view of a portion of the container of FIG. 1;
  • FIG. 3B is an enlarged view of the encircled area 3B of FIG. 1;
  • FIG. 3C is a view taken along the line 3C-3C of FIG. 3B;
  • FIG. 3D is a cross-sectional view of a portion of an alternative support member assembly;
  • FIG. 3E is an enlarged view of the encircled area 3E of FIG. 1;
  • FIG. 4 is a cross-sectional view of the container of FIG. 1, the container being fully loaded with product;
  • FIG. 5A is a cross-sectional view of a portion of the container of FIG. 1, showing the door assembly being lowered;
  • FIG. 5B is a cross-sectional view of a portion of the container shown in FIG. 1, showing the door assembly being lowered further;
  • FIG. 5C is a cross-sectional view of a portion of the container shown in FIG. 1, showing the door assembly being in a lowered position;
  • FIG. 6A is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and the front product of the uppermost layer of products being removed;
  • FIG. 6B is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and the product behind the front product of the uppermost layer of products being removed;
  • FIG. 6C is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and the uppermost layer of dunnage being emptied and moved rearwardly;
  • FIG. 6D is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and the front product of the second uppermost layer of dunnage being emptied;
  • FIG. 6E is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and all the layers of dunnage emptied;
  • FIG. 6F is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and a first product being loaded into the lowest layer of dunnage;
  • FIG. 6G is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and a second product being loaded into the lowest layer of dunnage;
  • FIG. 6H is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and the lowest layer of dunnage being fully loaded with product;
  • FIG. 6I is a cross-sectional view of the container of FIG. 1, showing the door assembly lowered and a first product being loaded into the second lowest layer of dunnage;
  • FIG. 7 is a perspective view of another embodiment of a reusable and returnable container;
  • FIG. 8A is a cross-sectional view of a portion of the container of FIG. 7, showing the door assembly being lowered;
  • FIG. 8B is a cross-sectional view of a portion of the container shown in FIG. 7, showing the door assembly being lowered further;
  • FIG. 8C is a cross-sectional view of a portion of the container shown in FIG. 7, showing the door assembly being in a lowered position;
  • FIG. 9 is a perspective view of another embodiment of a reusable and returnable container;
  • FIG. 10 is a partially disassembled view of a portion of the container of FIG. 9;
  • FIG. 11A is a cross-sectional view of a portion of the container of FIG. 9, showing the door assembly being locked in a raised position;
  • FIG. 11B is a cross-sectional view of a portion of the container shown in FIG. 9, showing the door assembly being in a dropped position;
  • FIG. 12A is a cross-sectional view taken along the line 12A-12A of FIG. 11A;
  • FIG. 12B is a cross-sectional view like FIG. 12A showing one of the pins in a contracted position inside one of the guide members;
  • FIG. 13 is a perspective view of another embodiment of a reusable and returnable container;
  • FIG. 14 is a partially disassembled view of a portion of the container of FIG. 13;
  • FIG. 15A is a cross-sectional view of a portion of the container of FIG. 13, showing the door assembly being locked in a raised position;
  • FIG. 15B is a cross-sectional view of a portion of the container shown in FIG. 13, showing the door assembly being in a dropped position;
  • FIG. 16A is a cross-sectional view taken along the line 16A-16A of FIG. 15A; and
  • FIG. 16B is a cross-sectional view like FIG. 16A showing one of the pins in a contracted position inside one of the dividers of one of the front corner posts.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, there is illustrated a reusable and returnable container 10 according to one embodiment. The reusable and returnable container 10, as shown, comprises an outer metal frame 12 having a base 14, two rear corner posts 16 and two front corner posts 18, all four corner posts 16, 18 extending upwardly from the base 14.
  • As best shown in FIG. 2, the base 14 is generally rectangular in shape and comprises a front member 20, a rear member 22 and two side members 24. The members of the base 14 may be secured together or secured to the corner posts 16, 18 via any conventional means, including welding. A plurality of stubs 26 extend upwardly from the base 14 and are secured thereto by welding, for example.
  • As best shown in FIG. 2, a generally rectangular sub-base 28 is spaced above the base 14 by the stubs 26 and secured to the stubs 26 by welding, for example. The sub-base 28 comprises a front member 30, a rear member 32 and two side members 34. The members of the sub-base 28 may be secured together or secured to the corner posts 16, 18 via any conventional means, including welding. Although two stubs 26 are shown extending upwardly from each of the base members 20, 22 and 24 to corresponding sub-base members 30, 32 and 34, any number of stubs 26 may be used to space the sub-base 28 above the base 14.
  • As best shown in FIGS. 2 and 3, the sub-base 28 of the container 10 further comprises a plurality of intersecting interior members 36 extending between opposed perimeter sub-base members 30, 32 and 34 and secured thereto, interior members 36 comprising part of the sub-base 28 of the metal frame 12. Although five interior members 36 are shown in the sub-base 28 of the container 10, any number of interior members may be used.
  • As best shown in FIG. 4, each of the corner posts 16 and 18 may be generally rectangular in cross-section, have a hollow interior, and a knob 38 at the top thereof for stacking purposes so that multiple containers 10 may be stacked upon one another. The knobs 38 of a first container fit inside the hollow interiors of the corner posts of another or second container located above the first container for stacking purposes.
  • As best shown in FIG. 3, metal frame 12 further comprises an upper rear member 40 and a rear panel 42 extending between the two rear corner posts 16 and being secured thereto. The rear panel 42 is below the upper rear member 40. The metal frame 12 further comprises, on each side of the container, an upper side member 44 and a side panel 46 extending between one of the rear corner posts 16 and one of the front corner posts 18 and secured thereto. On each side, upper side member 44 is located above side panel 46.
  • Although one type of metal frame is illustrated, the present invention may be used with other types or configurations of outer metal frames. For example, each side wall may not be a solid wall.
  • As best illustrated in FIG. 2, a floor 48 rests on top of sub-base 28 of the metal frame 12 of container 10. The floor 48 may be made of plastic, wood, metal or any other desired material. Although the floor 48 is illustrated as being one piece or panel, more than one piece or panel may comprise the floor 48 resting on top of sub-base 28 of the metal frame 12 of container 10.
  • As best shown in FIG. 2, container 10 further comprises a shield 50 which may be secured with fasteners or welded to the front member 30 of the sub-base 28 of the container 10. More particularly, the shield 50 has a main portion 52 which is generally vertically oriented upon assembly and a flange 54 extending outwardly from the main portion 52. The flange 54 is generally horizontally oriented upon assembly and may be secured in any known manner to the front member 30 of the sub-base 28 of the container 10 including with any number of fasteners 55 (only two being shown) or via welding.
  • As best shown in FIG. 2, the container 10 further comprises two guide members 56, one of the guide members 56 being fixedly secured to each of the front corner posts 18 of the container 10 via welds or fasteners. Each of the guide members 56 is generally rectangular in cross-section and has a hollow interior. Each of the guide members 56 has two slots therethrough, an upper slot 58 and a lower slot 60. As best shown in FIG. 2, upper slot 58 has a “candy cane” shape comprising a straight portion 62 and a curved upper portion 64. These upper and lower slots 58, 60 are used to secure a movable door assembly 66 in a fixed position and guide the door assembly 66 during its movement from an upper or raised position shown in FIG. 5A and a lower or dropped position shown in FIG. 5C. As best shown in FIG. 2, the door assembly 66 comprises an upper piece 68, which may function as a handle, a lower piece 70 and two side pieces 72 joined together to create a rectangular frame 74 inside which is a door panel 76. In one embodiment, the door panel 76 is made of plastic and the frame 74 made of metal. However, any desired materials may be used.
  • As best shown in FIGS. 5A-5C, the door assembly 66 has a pair of upper pins 78, one on each side (only one being shown) extending outwardly from the door assembly 66 and adapted to ride or move inside the upper slots 58. Similarly, the door assembly 66 has a pair of lower pins 80 extending outwardly from the door assembly 66, one on each side (only one being shown). These pins 80 are adapted to ride or move inside the lower slots 60. FIG. 2 shows the door assembly 66 locked in a raised position with the upper pins 78 located at the outer ends of the curved portions 64 of the upper slots 58. As the door assembly 66 is lowered, it moves outside the shield 50. See FIG. 5C.
  • As best shown in pending U.S. patent application Ser. No. 13/896,675, fully incorporated herein, multiple stops, or a continuous stop (not shown), may be secured to door assembly 66. The stop or stops may be made of foam or any other suitable material. When the door assembly 66 is in its raised position, the stop or stops may prevent products from hitting the door assembly 66 during the loading or unloading process.
  • As best shown in FIG. 3A, container 10 further comprises a plurality of generally vertically oriented spaced straps 82 secured to each of the side panels 46 with fasteners 84 (only one set of straps 82 being shown). Although the drawings show three straps 82 secured to each side of the container, any number of vertically oriented straps may be secured to each side of the container. The straps 82 may be made of metal or any other desired material.
  • As shown in FIG. 3A, a plurality of generally horizontally oriented tracks or rails 86 are secured to the straps 82 in any desired manner, such as welding, for example. The tracks 86 are vertically spaced apart from each other at different levels. The tracks 86 are fixed in stationary positions in corresponding pairs at the same vertical levels as disclosed in pending U.S. patent application Ser. No. 13/896,675. Although FIG. 3A discloses four different levels or layers of tracks 86 (only one side being shown), the container may have any number of different levels or layers of tracks 86.
  • As best shown in FIG. 3B, each track 86 has an upper wall 88, a lower wall 90 joined to the upper wall 88 by a side wall 92, and a lip 94 extending downwardly from the upper wall 88 and another lip 96 extending upwardly from the lower wall 90 defining an interior 98 of the track 86.
  • Referring to FIG. 1, container 10 further comprises a plurality of support member assemblies 100 extending between opposed tracks 86 at the same level on opposed sides of the container. As disclosed in pending U.S. patent application Ser. No. 13/896,675, each support member assembly 100 includes a pair of sliders or end members 102 and a tubular support 104 having a hollow interior 106 extending therebetween. The sliders 102 are preferably made of injection molded plastic, such as nylon, but may be made of any other material. The tubular support 104 is preferably made of metal, but may be made of other suitable material, such as plastic.
  • As shown in FIG. 3B, each slider 102 preferably has a first portion 108 having an X-shaped cross-sectional configuration and a second portion 110 having a circular cross-sectional configuration. Although one configuration of slider 102 is illustrated, any type or configuration of slider may be used with the present invention. In this embodiment, each slider 102 has a pair of heads 112, 114 at the end of the slider 102. Head 112 is furthest from the first portion 108 of the slider 102, and head 114 is spaced inwardly from head 112. The heads 112, 114 are spaced from one another to define a groove 116 therebetween which receives and retains the lips 94, 96 of the stationary track 86. As shown in FIG. 3B, head 112 is located inside the interior 98 of track 86, and head 114 is located outside the interior 98 of stationary track 86. Head 112 keeps the slider 102 engaged with the track 86, while head 114 keeps the dunnage material out of the interior 98 of the track 86, thereby ensuring that the sliders 102 may move smoothly along the stationary track. Although one configuration of support member assembly 100 is illustrated, the present invention may be used with any type or configuration of support member assembly for supporting dunnage so the dunnage may slide or move inside the container.
  • As shown in FIG. 3B, each end of tubular support 104 fits over at least one portion 108 of a slider 102. An end surface 118 of tubular support 104 abuts head 114 of slider 102. Each end member or slider 102 of each support member assembly 100 is adapted to engage and move along one of the tracks. The end members 102 preferably slide along the length or width of the tracks; however, different end members may rotate rather than slide along the tracks. Although one configuration of track and end member is shown and described, other types of end members and tracks may be used if desired.
  • As best shown in FIG. 3C, support member assembly 100 includes a pair of sliders 102 (only one being shown in FIG. 3C). Each slider 102 has a groove 120 formed in a portion 110 therein. Support member assemblies 100 further include a tubular support 104 having a hollow interior 106 extending therebetween. As shown in FIG. 3B, each end of tubular support 104 fits over at least one portion 108 of a slider 102. An end surface 118 of tubular support 104 abuts head 114 of slider 102. The tubular support 104 is preferably made of metal, but may be made of other suitable material, such as plastic. As shown in FIG. 3C, tubular support 104 has two detents 122 therethrough (one at each end) in which the material of the tubular support 104 is pressed downwardly into the groove 120. This attachment between each of the two sliders 102 and the tubular support 104 enables some movement therebetween. Such interaction between the sliders 102 and tubular support 104 allows for a tolerance of approximately one-quarter inch on each side. The detents 122 prevent separation of the tubular support 104 from the sliders 102 while allowing some movement therebetween as the detents 122 move within the grooves 120 formed in the sliders 102.
  • As shown in FIG. 3D, a slightly different support member assembly 100′, including a pair of sliders 102 (only one being shown in FIG. 3D), may be used. Support member assembly 100′ is slightly different than support member assembly 100 shown in FIG. 3B and described above. As shown in FIG. 3D, the only difference between support member assembly 100′ and support member assembly 100 shown in FIG. 3B is that tubular supports 104′ are slightly different than the tubular supports 104; they lack detents 122. See FIG. 3C. Each support member assembly 100′ includes a tubular support 104′ having a hole 124 at each end. The tubular support 104′ is preferably made of metal, but may be made of other suitable material, such as plastic. As shown in FIG. 3D, each end of tubular support 104′ fits over at least one portion 108 of a slider 102. An end surface 118 of tubular support 104′ abuts head 114 of slider 102. As shown in FIG. 3D, tubular support 104′ has holes 124 therethrough, which receive fasteners 126. Although fasteners 126 are shown as screws, they may be any other type of fasteners. The fasteners 126 prevent separation of the tubular support 104′ from the sliders 102 while allowing some movement therebetween as the fastener 126 moves within the grooves 120 formed in the sliders 102. Other known means of securing the tubular support 104 to the sliders 102 may be used if desired.
  • FIGS. 1 and 3B illustrate all of the support member assemblies 100 having detents 122, as shown in FIG. 3B. Alternatively, containers may be made with all of the support member assemblies having fasteners, like support member assemblies 100′. Alternatively, some of the support member assemblies may have fasteners like support member assemblies 100′, and some may have detents like support member assemblies 100. Containers may have a mixture thereof.
  • FIG. 3E illustrates another support member assembly 100, exactly like the one shown in FIG. 3B, used to support one of the pouches. However, FIG. 3E illustrates another innovative feature or aspect of the invention. Track 86 has an opening or cut-out 128 formed therein. Holes 130 are formed in the upper wall 88 of track 86, which are sized and threaded to receive fasteners 132. Although fasteners 132 are illustrated to be screws, they may be any other desirable fastener. A cap 134 is removably secured to the track 86 to cover the opening or cut-out 128 formed in an upper portion of track 86. As best seen in FIG. 3E, cap 134 has a generally inverted U-shaped cross-sectional configuration, including a top portion 136 and side portions 138 extending downwardly from the top portion 136. Holes 140 are formed through the top portion 136 of the cap 134 and sized to receive fasteners 132, as shown in FIG. 3E. The fasteners 132 are adapted to pass through the holes 140 in the cap 134 and into the holes 130 in the upper wall 88 of the track 86. Caps of alternative shapes or sizes may be used if desired.
  • When one of the sliders 102 or any part of support member assemblies 100, 100′ are damaged or need to be replaced for any reason, one may remove cap 134 after loosening fasteners 132, thereby exposing the opening or cut-out 128 of track 86. The support member assemblies 100, 100′ may then be removed or inserted as necessary to repair or replace the damaged part or parts.
  • As best shown in FIG. 4, container 10 comprises multiple layers or levels 142 a-142 d of vertically spaced dunnage 144, each level being in the form of a plurality of pouches 146. Each layer or level of dunnage is suspended by and supported by a plurality of support member assemblies 100. Each pouch 146 has a front wall 148, a rear wall 150 and a bottom 152 extending therebetween. As shown in FIG. 4, the top of the front wall 148 is attached to one of the support member assemblies 100, and the rear wall 150 is attached to an adjacent support member assembly 100. Although the dunnage 144 shown comprises pouches, the dunnage may assume other shapes or configurations. A pouch 146 is supported by two adjacent support member assemblies 100. As shown in FIG. 3B, the fabric of the pouch 146 is sewn or otherwise secured together along a seam 154 to make a pocket 156 in which is located a tubular support 104 of the support member assembly 100.
  • Support member assemblies 100 supporting pouches 146 are adapted to move from back to front inside the interior of the container 10, the end members or sliders 102 of the support member assemblies 100 moving along the stationary tracks 86.
  • Multiple pouches 146 are shown being formed or created from one piece of material draped or laying over and secured to the support member assemblies 100. Alternatively, each pouch 146 may be made from its own piece of material, in which case, the pouches 146 would not be interconnected other than via the straps or space limiters (not shown).
  • FIGS. 5A-5C and 6A-6E illustrate a method of unloading product 5 from the pouches 146 of the container 10. The method comprises the step of lowering door assembly 66 from a raised and locked position shown in FIG. 5A to a lowered or dropped position illustrated in FIG. 5C. As shown in FIG. 5C, when the door assembly 66 is in a lowered position, an opening having a height H1 is created above the door assembly 66. According to one embodiment, this height H1 is approximately half the height of the interior of the container 10. In order to move the door assembly 66 out of its raised and locked position shown in FIG. 5A, an operator must grasp the upper piece or handle 68 of door assembly 66 and lift the door assembly 66 upwardly so the upper pins 78 move upwardly and outwardly, following the path of the curved upper portion 64 of the upper slots 58 of the guide members 56. As shown in FIG. 5B, once the upper pins 78 of door assembly 66 reach the linear portion 62 of the upper slots 58 of the guide members 56, the door assembly 66 moves further downwardly due in part to gravity, the lower pins 80 traveling along the lower slots 58 of the guide members 56 until the door assembly 66 reaches its open or lowered position shown in FIG. 5C.
  • As shown in FIGS. 6A-6E, the next step comprises removing the product 5 closest to the open door assembly 66 out of it dunnage pouch 146 in the uppermost or top level of dunnage 142 a in the direction of arrow 158, as shown in FIG. 6A. As shown in FIG. 6B, the next step comprises moving the second from the front support member assembly 100 towards the front of the container, the sliders 102 sliding in the stationary, generally horizontally oriented tracks 86. As shown in FIG. 6B, the entire string of product 5 in pouches 146 of the upper or top level 142A of dunnage moves toward the front of the container. As shown in FIG. 6B, the next step comprises removing another product 5 from the pouch 148 second closest to the open door assembly 66 out of it dunnage pouch 146 of the uppermost or top level of dunnage 142 a in the direction of arrow 160. This process is repeated each time a product 5 is removed from the upper or top level of dunnage, the support member assemblies 86 are pulled forwardly with the pouches 146 still containing product 5, the sliders 102 sliding in the stationary, generally horizontally oriented tracks 86, as shown in FIG. 6B.
  • As shown in FIG. 6C, once all of the product 5 in the pouches 146 of the top level of dunnage 142 a have been removed, the operator moves the empty dunnage or pouches 146 of the top level of dunnage 142 a rearwardly in the direction shown by arrow 162. As shown in FIGS. 6A and 6B, the lowered position of the door assembly 66 makes it easier from an ergonomic standpoint for the operator to remove the product 5 because the operator may get closer to the product 5 in order to remove them from inside the container.
  • As shown in FIG. 6D, this process of unloading product 5 is continued by an operator one level at a time moving downwardly. FIG. 6D shows a product 5 being removed from a front pouch 146 of the second lowest level of dunnage 142 b in the direction of arrow 164. When all of the product 5 of level 142 b is removed, the operator pushes the emptied pouches of level 142 b rearwardly, like he/she did with the upper level of emptied dunnage/pouches and then removes the products of level 142 c. This process is repeated one layer or level at a time, each time all the product 5 are removed from the pouches 146 of a level, and each of the support member assemblies 100 are pushed rearwardly to a rear portion of the container, creating open space for the operator to remove product from the next lowest level.
  • FIG. 6E illustrates the empty container 10 still having the dunnage 144 therein, which may then be shipped back to its original location or any desired location for loading the empty dunnage 144 with product. During the unloading and loading processes, the tracks 86 remain stationary fixedly secured to the container 10. The support member assemblies 100 and dunnage 144 hanging from the support member assemblies 100 move inside the container with the assistance of an operator. The loading process is the reverse.
  • FIGS. 6E-6I illustrates a method of loading product 5 into the pouches 146 of emptied container 10. As shown in FIG. 6E, with door assembly 66 in its lowered or dropped position, the first step of the loading process, after lowering the door assembly 66, comprises moving the lowermost or bottom level of dunnage 142 d in the direction of arrow 166, from back to front. As shown in FIG. 6F, with the bottom level of dunnage 142 d in a forward position, a product 5 is loaded into a dunnage pouch 146 furthest away from the open door assembly 66 in the direction of arrow 168. As shown in FIG. 6G, the next step comprises moving one or more of the support member assemblies 100, including the single loaded pouch 146 of the bottom level 142 d towards the rear of the container, the sliders 102 sliding in the tracks 86, the loaded rearwardmost pouch 146 containing a product 5. This process of loading one pouch 146 at a time of the bottom level 142 d continues until each pouch 146 of the bottom level 142 d is full.
  • As shown in FIG. 6H, after the bottom level 142 d of dunnage is full, the empty pouches 146 of the level 142 c (third from the top) of dunnage is moved or pulled toward the front of the container in the direction of arrow 172. As shown in FIG. 6I, the next step comprises inserting another product 5 into the last dunnage pouch 146 (furthest from the open door assembly 66) of the level of dunnage 142 c in the direction of arrow 174. This process is repeated each time a product 5 is inserted into a dunnage pouch 146 of the level of dunnage 142 c, the support member assemblies 86 are pushed rearwardly with the pouches 146 containing product 5, the sliders 102 sliding in the tracks 86. Once all of the pouches 146 of the level of dunnage 142 c have been loaded with product 5, the operator loads the next highest level of dunnage pouches 146 with product 5.
  • This process of loading product 5 is continued by an operator one level at a time, moving upwardly until the container is full of product 5.
  • The method lastly comprises the step of raising door assembly 66 from its lowered or dropped position illustrated in FIGS. 6A-6I to its raised and locked position shown in FIG. 4. In order to move the door assembly 66 from its lowered or dropped position shown in FIGS. 6A-6I, an operator must grasp the upper piece or handle 68 of door assembly 66 and lift the door assembly 66 upwardly, the upper and lower pins 78, 80, respectively, moving upwardly, following the paths of the upper and lower slots 58, 60 of the guide members 56. As shown in FIG. 5B, once the upper pins 78 of door assembly 66 pass through the curved upper portion 64 of the upper slots 58 of the guide members 56, the door assembly 66 reaches its raised and locked position shown in FIG. 4.
  • Although one specific shape of product 5 is illustrated in the drawings, this document is not intended to limit in any way the size, shape or configuration of product 5 shipped or stored in any of the embodiments described or shown herein.
  • FIGS. 7, 8A, 8B and 8C illustrate an alternative embodiment of container 10 a. Container 10 a is identical to container 10 except for the door assembly, including the guide members. The door assembly 66 a of container 10 a has two movable pieces, while the door assembly 66 of container 10 has only one movable piece. The loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved.
  • Each of the guide members 56 a of the frame 12 a is generally rectangular in cross-section and has a hollow interior. Each of the guide members 56 a of the frame 12 a has two slots therethrough; an upper slot 58 a and a lower slot 60 a. As best shown in FIGS. 8A, 8B and 8C, upper slot 58 a has a “candy cane” shape comprising a straight portion 62 a and a curved upper portion 64 a. The lower slot 60 a is not linear, but rather has a “Z” shape, as best illustrated in FIG. 8A. These upper and lower slots 58 a, 60 a are used to secure a movable multi-segmented or multi-piece door, or door assembly 66 a, in a fixed position, and guide the door assembly 66 a during its movement from an upper or raised position and a lower or dropped position.
  • As best shown in FIGS. 7 and 8A-8C, the movable door assembly 66 a comprises a movable upper segment 180 and a movable lower segment 182, which are not connected together. As best shown in FIG. 8C, the upper segment 180 has a flange 184 at the bottom thereof. The upper segment 180 has a pair of upper pins 78 a extending outwardly from the upper segment 120 of the door assembly 66 a and adapted to ride or move inside the upper slots 58 a. In addition, the upper segment 180 of the door assembly 66 a has an integral U-shaped upper handle 186 which a user may easily grasp and move the upper segment 180 of the door assembly 66 a, along with the lower segment 182 of the door assembly 66 a, due to the configuration of the door assembly 66 a. Similarly, the upper segment 180 of door assembly 66 a has a pair of lower pins 80 a extending outwardly from the upper segment 180 of door assembly 66 a and adapted to ride or move inside the lower slots 60 a. FIG. 8A shows the door assembly 66 a locked in a raised position with the upper pins 78 a located at the outer ends of the curved upper portions 64 a of the upper slots 58 a.
  • The lower segment 182 of door assembly 66 a is not fastened or secured to any particular piece and is free floating between the stationary shield 50 and the upper segment 180 of door assembly 66 a. As best shown in FIG. 8C, the lower segment 182 of door assembly 66 a is generally C-shaped, having an upper flange 188 located at the upper end of the lower segment 182 and a lower flange 190 located at the lower end of the lower segment 182. The lower segment 182 of door assembly 66 a moves inside the stationary main portion 52 of the shield 50. As the door assembly 66 a is lowered, the lower segment 182 of door assembly 66 a moves inside the main portion 52 of the shield 50. As the door assembly 66 a is raised, the flange 184 of the upper segment 180 of door assembly 66 a contacts the upper flange 188 located at the upper end of the lower segment 182 and raises the floating lower segment 182 of door assembly 66 a.
  • When the door assembly 66 a is in its lowered position shown in FIG. 8C, an opening having a height H2 is created above the door assembly 66 a. The height H2 of the opening is greater than the height H1 of the embodiment shown in FIGS. 5A-5C (approximately half the height of the container). Thus, the opening H2 is greater than half the height of the container H1, making it more desirable from an ergonomic standpoint for the loader/unloader.
  • FIGS. 9-12B illustrate an alternative embodiment of container 10 b. Container 10 b is identical to container 10, except for the door assembly and guide members. In container 10 b, the slotted guide members 56 of container 10 are omitted and replaced with two unslotted guide members 192. As shown in FIG. 10, each guide member 192 is generally U-shaped in cross-section having an outer wall 210 and two side walls 212. As shown in FIGS. 9 and 10, each of the guide members 192 is secured to an inside surface of one of the front corner posts 18 via welding or fasteners and extends from an upper surface of front member 30 of sub-base 28 to the top of one of the front corner posts 18 (excluding knobs 38).
  • The movable door assembly 66 b of container 10 b has only one movable segment, like the movable door assembly 66 of container 10. The loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved. In container 10 b, door assembly 66 b slides in stationary generally vertically oriented guide members 192 (one on each side) between a raised and locked position shown in FIGS. 11A and 12A, and a lowered or dropped position shown in FIGS. 11B and 12B. As shown in FIG. 10, at the top of each guide member 192 is an opening 194 adapted to receive a movable pin 196. Each pin 196 is movable inside a housing 198. The door assembly 66 b has two pin housings 198 (only one being shown in FIG. 12A and FIG. 12B), each housing 198 being secured to one of the side pieces 72 of door assembly 66 b. As shown in FIG. 12A, inside each housing 198, a spring 199 biases the pin 196 outwardly in an extended position. FIG. 12B shows the pin 196 in a contracted position inside one of the guide members 192. A ring 200 is attached to pin 196 at each end of the door assembly 66 b. The housings 198 (only one housing is shown) are located at the sides of the door assembly 66 b and move with the door assembly 66 b. A connector 202, which may be in the form of a wire or any other suitable material, extends between the rings 200. In order to disengage the pins 196 from inside the holes 194 and lower the door assembly 66 b, an operator may pull on the connector 202, thereby moving the pins 196 toward each other out of engagement with the holes 194. With the pins 196 no longer holding the door assembly 66 b in an upward raised and locked position, the door assembly 66 b may be moved downwardly inside guide members 192 to the position shown in FIG. 11B. As the door assembly 66 b is lowered, it moves outside the shield 50. See FIG. 11B.
  • Although FIGS. 9-12B illustrate container 10 b having only one door assembly 66 b, a door assembly may be located on opposite sides of a container. In such a container, two guide members would be located inside the container, one for each movable door assembly.
  • FIGS. 13-16B illustrate an alternative embodiment of container 10 c. Container 10 c is identical to container 10, except for the door assembly and guide members. In container 10 c, the slotted guide members 56 of container 10 are omitted. Instead, each of the front corner posts 18 has a straight or linear slot 204 along an inside surface of the front corner post 18. As best shown in FIGS. 16A and 16B, a generally vertically oriented divider 206 is located inside each of the front corner posts 18, and each slot 204 has an upper edge 208.
  • The movable door assembly 66 c of container 10 c has only one movable segment, like the movable door assembly 66 of container 10. The loading and unloading processes described herein are identical in both containers, with the exception of how the door assembly is moved.
  • As seen in FIG. 14, upper and lower pins 78 c, 80 c of movable door assembly 66 c slide in generally vertically oriented slots 204 between a raised and locked position shown in FIGS. 15A and 16A, and a lowered or dropped position shown in FIGS. 15B and 15B. As shown in FIG. 16A, the divider 206 inside each front corner post 18 does not extend all the way to the top of each slot 204, thereby creating an opening 210 above divider 206. The opening 210 is adapted to receive a movable pin 78 c movable inside a housing 198. The door assembly 66 c has two pin housings 198 (only one being shown in FIGS. 16A and 16B), each housing 198 being secured to one of the side pieces 72 of door assembly 66 c. As shown in FIG. 16A, inside each housing 198, a spring 199 biases a pin 78 c outwardly in an extended position. FIG. 16B shows pin 78 c in a contracted position, the spring 199 biasing the pin 78 c against one of the dividers 206. Due to the engagement of the pins 78 c (only one being shown) with the dividers 206 of the front corner posts 18 (only one being shown), the door assembly 66 c does not free fall downwardly upon the pins 78 c being moved towards each other due to connector 202 being pulled. Rather, the movable door assembly 66 c may be moved downwardly in a controlled matter and held temporary at any desired position. A ring 200 is attached to pin 78 c at each end of the door assembly 66 c. The housings 198 (only one housing is shown) are located at the sides of the door assembly 66 c and move with the door assembly 66 c. A connector 202, which may be in the form of a wire or any other suitable material, is connected to each ring 200 and extends between the rings 200.
  • In order to disengage the pins 78 c from the openings 210 and lower the door assembly 66 c, an operator may pull on the connector 202, thereby moving the pins 78 c toward each other out of engagement with the openings 210. With the pins 78 c no longer holding the door assembly 66 c in an upward raised and locked position above the dividers 206, the door assembly 66 c may be moved downwardly, the pins 78 c, 80 c moving along slots 204 to the position shown in FIG. 16B. As the door assembly 66 c is lowered, it moves outside the shield 50. See FIG. 15B.
  • Although FIGS. 13-16B illustrate container 10 c having only one door assembly 66 c, a door assembly may be located on opposite sides of a container. In such a container, two guide members would be located inside the container, one for each movable door assembly.
  • While various embodiments of the present invention have been illustrated and described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspect is, therefore, not limited to the specific details, representative system, apparatus, and method, and illustrative example shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.

Claims (20)

What is claimed is:
1. A method of loading a container with products for shipment, the method comprising:
lowering a door assembly, the door assembly having pins movable in slots to enable the door assembly to be raised and lowered in a controlled manner;
moving a plurality of upper dunnage supports supporting an upper layer of pouches away from the door assembly,
moving a plurality of lower dunnage supports supporting a lower layer of pouches to a position near the door assembly,
inserting products into pouches of the lower layer of pouches;
moving the upper dunnage supports supporting the upper layer of pouches proximate the door assembly after the lower layer of pouches is loaded and inserting additional products into the pouches of the upper layer of pouches one pouch at a time and moving the loaded pouches of the upper layer of pouches away from the door assembly; and
raising the door assembly to a raised and locked position.
2. The method of claim 1 wherein inserting products into pouches of the lower layer of pouches comprises inserting at least one product into each pouch beginning with the pouch of the lower layer of pouches furthest from the door assembly.
3. The method of claim 1 wherein lowering the door assembly comprises moving a portion of the door assembly outside a stationary portion of the container.
4. The method of claim 1 wherein each of the dunnage supports comprises a pair of end members and a support extending between the end members, the end members moving in tracks at the same level.
5. The method of claim 1 wherein lowering the door assembly comprises moving the door assembly so the pins of the door assembly move through curved portions of the slots of the container.
6. The method of claim 1 wherein inserting products into pouches of the lower layer of pouches comprises inserting at least one product into each pouch beginning with the pouch of the lower layer of pouches furthest from the door assembly.
7. The method of claim 1 wherein raising the door assembly to a raised and locked position comprises moving the door assembly so at least some pins of the door assembly move through curved portions of some of the slots of the container.
8. The container of claim 1 wherein raising the movable door assembly to a raised and locked position comprises moving the door assembly so at least some pins of the door assembly move through curved portions of upper slots of the container.
9. A method of loading a container with products for shipment, the method comprising:
lowering a door assembly from a raised and locked position to a dropped position, the door assembly having portions movable in slots of the container;
moving a bottom level of pouches to a forward position near the lowered door assembly;
loading at least one product into a pouch of the bottom level furthest away from the door assembly;
moving the loaded pouch of the bottom level away from the door assembly;
repeating the loading process one pouch at a time until each pouch of the bottom level of pouches is full;
moving an empty upper level of pouches to a position near the lowered door assembly;
inserting products into pouches of the upper level of pouches, beginning with the pouch furthest from the lowered door assembly; and
raising the door assembly to its raised and locked position.
10. The method of claim 9 wherein moving the loaded pouch of the bottom level away from the door assembly comprises moving dunnage supports supporting the loaded pouch of the bottom level.
11. The method of claim 9 wherein lowering the door assembly comprises moving a portion of the door assembly outside a stationary portion of the container.
12. The method of claim 9 wherein lowering the door assembly comprises moving the door assembly so the portions of the door assembly move through curved portions of upper slots of the container.
13. The method of claim 9 wherein raising the door assembly to a raised and locked position comprises moving the door assembly so at least some pins of the door assembly move through curved portions of some of the slots of the container.
14. The method of claim 9 wherein moving the empty upper level of pouches to a position near the lowered door assembly comprises moving an upper level of dunnage supports from which the pouches hang.
15. The method of claim 9 wherein moving the empty upper level of pouches to a position near the lowered door assembly comprises moving an upper level of dunnage supports having end members movable in tracks at the same level.
16. A method of loading a container with products for shipment, the method comprising:
lowering a movable door assembly, the movable door assembly having pins movable in slots of the container to enable the door assembly to be raised and lowered in a controlled manner;
moving upper dunnage supports supporting an upper layer of pouches away from the door assembly,
moving lower dunnage supports supporting a lower layer of pouches to a position near the door assembly;
inserting products into pouches of the lower layer of pouches;
moving the upper dunnage supports supporting the upper layer of pouches proximate the door assembly after the lower layer of pouches is loaded and inserting additional products into the pouches of the upper layer of pouches and moving the loaded pouches of the upper layer of pouches away from the door assembly; and
raising the door assembly to a raised position.
17. The method of claim 16 wherein raising and lowering the movable door assembly comprises moving the pins through curved portions of upper slots of the container.
18. The method of claim 16 wherein raising and lowering the movable door assembly comprises moving the pins through curved portions of upper slots of the container and into linear portions of the upper slots.
19. The method of claim 16 wherein moving the upper dunnage supports comprises moving end members of upper dunnage supports along upper tracks.
20. The method of claim 16 wherein moving the upper dunnage supports comprises moving end members of upper dunnage supports along upper tracks secured to the container at the same level.
US14/723,977 2013-08-26 2015-05-28 Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage Abandoned US20150259135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/723,977 US20150259135A1 (en) 2013-08-26 2015-05-28 Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/975,682 US9073665B2 (en) 2013-08-26 2013-08-26 Container having door assembly and multiple layers of tracks
US14/723,977 US20150259135A1 (en) 2013-08-26 2015-05-28 Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/975,682 Division US9073665B2 (en) 2013-08-26 2013-08-26 Container having door assembly and multiple layers of tracks

Publications (1)

Publication Number Publication Date
US20150259135A1 true US20150259135A1 (en) 2015-09-17

Family

ID=52479451

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/975,682 Active 2033-11-23 US9073665B2 (en) 2013-08-26 2013-08-26 Container having door assembly and multiple layers of tracks
US14/724,236 Abandoned US20150259136A1 (en) 2013-08-26 2015-05-28 Method of Unloading Container Having Door Assembly and Multiple Layers of Dunnage
US14/723,977 Abandoned US20150259135A1 (en) 2013-08-26 2015-05-28 Method of Loading Container Having Door Assembly and Multiple Layers of Dunnage

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/975,682 Active 2033-11-23 US9073665B2 (en) 2013-08-26 2013-08-26 Container having door assembly and multiple layers of tracks
US14/724,236 Abandoned US20150259136A1 (en) 2013-08-26 2015-05-28 Method of Unloading Container Having Door Assembly and Multiple Layers of Dunnage

Country Status (4)

Country Link
US (3) US9073665B2 (en)
CA (1) CA2918427A1 (en)
MX (1) MX2016002124A (en)
WO (1) WO2015031101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371498A (en) * 2019-05-31 2019-10-25 中车齐齐哈尔车辆有限公司 Sliding door assembly and container with it
WO2021092142A1 (en) * 2019-11-07 2021-05-14 Bradford Company Rail support assembly for a transportation or storage container

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201205243D0 (en) 2012-03-26 2012-05-09 Kraft Foods R & D Inc Packaging and method of opening
GB2511559B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
GB2511560B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
US9434510B2 (en) 2013-08-26 2016-09-06 Bradford Company Container having door assembly and multiple layers of tracks
US9572426B1 (en) * 2013-11-11 2017-02-21 Amazon Technologies, Inc. Fabric pods
US9499334B2 (en) * 2014-01-15 2016-11-22 Cargo Cube Systems, Llc Modular shipping apparatus and system
US10464740B2 (en) * 2014-01-15 2019-11-05 Cargo Cube Systems, Llc Modular shipping apparatus and system
US9868589B2 (en) 2014-01-15 2018-01-16 Cargo Cube Systems, Llc Modular transportation systems, devices and methods
US9708119B2 (en) 2014-01-15 2017-07-18 Cargo Cube Systems, Llc Modular shipping apparatus and system
US9908723B2 (en) 2014-01-15 2018-03-06 Cargo Cuge Systems, LLC Modular transportation systems, devices and methods
US9896245B1 (en) * 2014-09-15 2018-02-20 Maricela Sanchez Sliding door and track assembly
USD764796S1 (en) * 2015-03-02 2016-08-30 Big Vault Storage Systems, LLC Storage container
USD872997S1 (en) * 2016-01-11 2020-01-21 Eric Vollmer Plate banded container
US10604334B2 (en) * 2016-04-28 2020-03-31 Bradford Company Container having multiple layers of dunnage, at least one layer having at least one lockable crossbar assembly
US11174071B2 (en) * 2016-04-28 2021-11-16 Bradford Company Container having multiple layers of lockable crossbar assemblies for keeping products inside container
US11254483B2 (en) 2016-04-28 2022-02-22 Bradford Company Container having at least one lockable crossbar assembly movable along tracks
US20190203459A1 (en) * 2016-06-21 2019-07-04 Nexus Eco Holdings Ltd Anchors
CZ29811U1 (en) * 2016-07-18 2016-09-27 Ppo Group Cz, S.R.O System of placing and movement of inserted cells in goods transportation packages
CN110562580A (en) * 2019-09-23 2019-12-13 德阳市东汽实业开发有限责任公司 Sealed package box

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1404632A (en) * 1922-01-24 Oooooooooo
US4923079A (en) * 1987-03-06 1990-05-08 Ropak Corporation Collapsible container
US5815903A (en) * 1995-11-01 1998-10-06 Packing Material Company Packaging system
US20040007544A1 (en) * 2002-06-21 2004-01-15 Mackelvie Winston Richard One piece hanging file
US20040148864A1 (en) * 2003-02-05 2004-08-05 Pax Products Inc. Vertically retractable door system for a stamping press
US20060249515A1 (en) * 2005-05-05 2006-11-09 Dobrinski Brian T Container having non-linear support members for supporting dunnage
US20060278646A1 (en) * 2005-05-05 2006-12-14 Bradford Company Container having sloped movable support member assemblies for supporting dunnage
US20070029164A1 (en) * 2003-02-28 2007-02-08 Conteyor Multibag Systems N.V. Device for transporting and/or storing piece goods
US20080023470A1 (en) * 2006-07-24 2008-01-31 Bradford Company Container Having Dunnage With Integral Stabilizing Members
US20080169285A1 (en) * 2007-01-16 2008-07-17 Nick Marazita Collapsible container
US20100018887A1 (en) * 2005-05-05 2010-01-28 Bradford Company Container Having Sliding Support Members
US20120043865A1 (en) * 2010-08-23 2012-02-23 Newkirk David C Vertical cabinet door with flush front face

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US634589A (en) 1899-02-21 1899-10-10 James Edwin Russell Cabinet or laces, &c.
US1712168A (en) 1926-06-11 1929-05-07 Remington Rand Inc Filing device
FR1455414A (en) 1965-09-03 1966-04-01 Device for storing and transporting bunches of bananas and vehicle incorporating this device
US4527694A (en) 1982-05-27 1985-07-09 Bolt William S Suspendable hanger framework assembly
NL182461C (en) 1982-12-30 1988-03-16 Vermeulen Hollandia Octrooien SLIDING ROOF FOR A VEHICLE.
US4721317A (en) 1985-04-12 1988-01-26 Societe Anonyme Dite: Livratel Trolley with removable containers for the use of customers in supermarkets
DE8511568U1 (en) 1985-04-18 1985-05-30 Electrolux Siegen GmbH, 5900 Siegen Use for an étagère on the inside door of a refrigerator
US4685571A (en) 1986-11-03 1987-08-11 Chrysler Motors Corporation Shipping unit
US4821879A (en) 1988-02-29 1989-04-18 Kupersmit Julius B Cradle type shipping container
US4864686A (en) 1988-12-12 1989-09-12 Schlage Lock Company Tamper resistant track assembly
US4988006A (en) 1989-03-23 1991-01-29 Minnesota Mining And Manufacturing Company Flexible pocket divider and support assembly
US5238139A (en) 1991-06-12 1993-08-24 Bisceglia Robert D Adjustable multiple recycling receptacle retaining apparatus
DE4138507A1 (en) 1991-11-23 1993-05-27 Ieper Ind Nv DEVICE FOR THE TRANSPORT AND / OR STORAGE OF PARTS
JPH0659230A (en) 1992-06-08 1994-03-04 Nikon Corp Rubbing inspecting device
US5324105A (en) 1992-12-11 1994-06-28 Arlington Rack And Packaging Company Steering wheel storage device
US5407262A (en) 1993-08-13 1995-04-18 Sunsor, Inc. Reinforced modular office file and furniture system
US5560507A (en) 1995-06-19 1996-10-01 General Motors Corporation Reusable shipping container
US5813566A (en) 1995-07-12 1998-09-29 Bradford Company Damage resistant container and sleeve pack assembly
DE19549166A1 (en) 1995-12-29 1997-07-03 Conteyor Multibag Sys Bv Transport device for general cargo
US6540096B1 (en) 1996-02-28 2003-04-01 Bradford Company Collapsible container with integrally supported dunnage and side entry
US5725119A (en) 1996-02-28 1998-03-10 Bradford Company Collapsible container with integrally supported
US6202884B1 (en) 1999-06-29 2001-03-20 International Business Machines Corporation Collapsible interior partition system for use in a collapsible returnable container
US6305764B1 (en) 2000-03-27 2001-10-23 Production Assembly Service, Inc. Industrial component holder assembly and rack
DE20101374U1 (en) 2001-01-26 2001-04-26 Conteyor Multibag Systems N.V., Merelbeke Device for storing and transporting elongated objects
US20030168461A1 (en) 2002-03-05 2003-09-11 Wainy Richardson Front-loading utility basket with an extendable handle
FR2860504B1 (en) 2003-10-02 2006-04-14 Kaysersberg Packaging Sa CONTAINER
DE20318172U1 (en) 2003-11-24 2004-04-15 Conteyor Multibag Systems N.V. Piece goods transport and storage device, e.g. for automotive parts, has parking devices formed by ends of guide rails for flexible web support parts
US7125062B2 (en) 2004-03-04 2006-10-24 Projx, Inc. Multi-functional cargo bed assembly
EP1796990B1 (en) * 2004-09-01 2011-01-26 Collapsible Containers Pty Ltd A large collapsible container with central hinges in side covers
US20060249514A1 (en) 2005-05-05 2006-11-09 Bradford Company Container having sliding support member assemblies for supporting dunnage
US8308015B2 (en) 2005-05-05 2012-11-13 Bradford Company Collapsible container having sliding support member assemblies for supporting dunnage
US7748803B2 (en) 2006-10-02 2010-07-06 Bradford Company Horizontal dispensing container having multiple removable, sliding, hinged shelves
US20100072206A1 (en) 2008-09-25 2010-03-25 Tinscape Llc Container with window
KR100991073B1 (en) 2010-03-12 2010-10-29 남상우 Container
US9120597B2 (en) 2011-09-06 2015-09-01 Bradford Company Container having sliding support members for supporting dunnage
US9004307B2 (en) * 2012-09-14 2015-04-14 Bradford Company Container having movable support member assemblies for supporting dunnage and movable door
US9010563B2 (en) * 2012-09-14 2015-04-21 Bradford Company Container having metal outer frame for supporting L-shaped tracks

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1404632A (en) * 1922-01-24 Oooooooooo
US4923079A (en) * 1987-03-06 1990-05-08 Ropak Corporation Collapsible container
US5815903A (en) * 1995-11-01 1998-10-06 Packing Material Company Packaging system
US20040007544A1 (en) * 2002-06-21 2004-01-15 Mackelvie Winston Richard One piece hanging file
US20040148864A1 (en) * 2003-02-05 2004-08-05 Pax Products Inc. Vertically retractable door system for a stamping press
US20070029164A1 (en) * 2003-02-28 2007-02-08 Conteyor Multibag Systems N.V. Device for transporting and/or storing piece goods
US20060249515A1 (en) * 2005-05-05 2006-11-09 Dobrinski Brian T Container having non-linear support members for supporting dunnage
US20060278646A1 (en) * 2005-05-05 2006-12-14 Bradford Company Container having sloped movable support member assemblies for supporting dunnage
US20100018887A1 (en) * 2005-05-05 2010-01-28 Bradford Company Container Having Sliding Support Members
US20080023470A1 (en) * 2006-07-24 2008-01-31 Bradford Company Container Having Dunnage With Integral Stabilizing Members
US20080169285A1 (en) * 2007-01-16 2008-07-17 Nick Marazita Collapsible container
US20120043865A1 (en) * 2010-08-23 2012-02-23 Newkirk David C Vertical cabinet door with flush front face

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371498A (en) * 2019-05-31 2019-10-25 中车齐齐哈尔车辆有限公司 Sliding door assembly and container with it
WO2021092142A1 (en) * 2019-11-07 2021-05-14 Bradford Company Rail support assembly for a transportation or storage container
US20220289430A1 (en) * 2019-11-07 2022-09-15 Bradford Company Rail support system for a dunnage container
US12097994B2 (en) * 2019-11-07 2024-09-24 Bradford Company Rail support system for a dunnage container

Also Published As

Publication number Publication date
US20150053691A1 (en) 2015-02-26
US9073665B2 (en) 2015-07-07
MX2016002124A (en) 2016-06-28
US20150259136A1 (en) 2015-09-17
CA2918427A1 (en) 2015-03-05
WO2015031101A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US9073665B2 (en) Container having door assembly and multiple layers of tracks
US9969528B2 (en) Container having door assembly and multiple layers of tracks
US10189640B2 (en) Container having generally L-shaped slotted tracks to facilitate movement of dunnage
US9725235B2 (en) Container having multiple layers of tracks including at least one non-linear track
US9010563B2 (en) Container having metal outer frame for supporting L-shaped tracks
US9611075B2 (en) Container having movable dunnage supports for supporting dunnage
US9540168B2 (en) Container having non-linear and linear tracks for supporting movable dunnage
US10604334B2 (en) Container having multiple layers of dunnage, at least one layer having at least one lockable crossbar assembly
EP3068697B1 (en) Container having non-linear tracks for supporting movable dunnage
US11174071B2 (en) Container having multiple layers of lockable crossbar assemblies for keeping products inside container
EP2708470B1 (en) Container with movable members for supporting product
US20160083179A1 (en) Container Having L-Shaped Tracks
WO2016196018A1 (en) Container having door assembly and multiple layers of tracks
WO2017044186A1 (en) Container having non-linear and linear tracks for supporting movable dunnage
CA2911813A1 (en) Container having generally l-shaped slotted tracks to facilitate movement of dunnage

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION