US20150240489A1 - Concrete floor system using integrated concrete slab and joint filling strips - Google Patents

Concrete floor system using integrated concrete slab and joint filling strips Download PDF

Info

Publication number
US20150240489A1
US20150240489A1 US14/625,109 US201514625109A US2015240489A1 US 20150240489 A1 US20150240489 A1 US 20150240489A1 US 201514625109 A US201514625109 A US 201514625109A US 2015240489 A1 US2015240489 A1 US 2015240489A1
Authority
US
United States
Prior art keywords
concrete
sawcut
region
floor system
concrete floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/625,109
Inventor
Gregory M. Scurto
S. Allen Face
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DUCTILCRETE SLAB SYSTEMS LLC
Original Assignee
DUCTILCRETE SLAB SYSTEMS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DUCTILCRETE SLAB SYSTEMS LLC filed Critical DUCTILCRETE SLAB SYSTEMS LLC
Priority to US14/625,109 priority Critical patent/US20150240489A1/en
Assigned to DUCTILCRETE SLAB SYSTEMS, LLC reassignment DUCTILCRETE SLAB SYSTEMS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FACE, S. ALLEN, SCURTO, GREGORY M
Publication of US20150240489A1 publication Critical patent/US20150240489A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6801Fillings therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6803Joint covers
    • E04B1/6804Joint covers specially adapted for floor parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6812Compressable seals of solid form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • E04F15/14Construction of joints, e.g. dividing strips
    • E04F15/142Dividing strips or boundary strips
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the invention relates generally to concrete slab construction, and more particularly to a concrete floor system employing integrated concrete slabs exhibiting little or no curl and joint filling strips.
  • concrete e.g., Portland cement concrete with or without pozzolans mixed therein
  • the amount of drying shrinkage typically ranges between approximately 0.0002 to approximately 0.0008 inches per inch with approximately 0.0005 inches per inch being the norm.
  • the drying shrinkage does not occur through the full depth of the concrete, but is rather rapidly attenuated to insignificance only a few inches from the exposed surfaces. Since the top is typically the only surface of a concrete slab exposed to drying, it is normal for a downwardly decreasing shrinkage gradient to develop within the uppermost few inches of a slab.
  • Another object of the present invention is to provide a concrete floor system that minimizes slab curl and reduces/eliminates spalling at sawcuts formed in the floor system in a cost effective manner.
  • Still another object of the present invention is to provide a cost-effective concrete joint filler.
  • a concrete floor system includes an integrated concrete slab and a joint strip.
  • the integrated concrete slab has (i) a first region of concrete with approximately 3-9 pounds of stretchable fibers mixed in each cubic yard thereof wherein an exposed portion of the first region defines a top surface of the concrete slab, (ii) a second region of concrete disposed below the first region, (iii) a third region defined by a mixture of a portion of the concrete from the first region with a portion of the concrete from the second region, and (iv) a sawcut extending at least partially into the concrete slab from its top surface thereof where the sawcut is defined by opposing walls and a bottom adjacent the opposing side walls.
  • the flexible-material joint strip is disposed in the sawcut.
  • the joint strip includes a top portion and a shaft portion coupled to the top portion.
  • the top portion fills an upper part of the sawcut adjacent to the top surface of the concrete slab.
  • the shaft portion spans a lower part of the sawcut.
  • the shaft portion has at least one pair of opposing fins angled towards the top portion. Each fin terminates in a wedge in contact with one of the opposing side walls of the sawcut.
  • FIG. 1 is a schematic view of a cross-section of an integrated concrete slab used in a concrete floor system in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic view of a non-fiber concrete mixture after placement on a base in accordance with a method of fabricating the integrated concrete slab;
  • FIG. 3 is a schematic view of the non-fiber concrete mixture with its top region in a plastic state and roughened in accordance with an embodiment of the integrated concrete slab;
  • FIG. 4 is a schematic view of the non-fiber concrete mixture with its top region in a plastic state and roughened, and further having a plastic stretchable-fiber-inclusive concrete mixture placed thereon;
  • FIG. 5 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut formed therein for purpose of inducing a hairline crack within the concrete slab;
  • FIG. 6 is a cross-sectional view of two adjacent integrated concrete slabs with a surface sawcut formed where the two slabs meet;
  • FIG. 7 is a cross-sectional view of an embodiment of a joint filling strip of the present invention in its pre-use state
  • FIG. 8 is a cross-sectional view of another embodiment of a joint filling strip in its pre-use state
  • FIG. 9 is a cross-sectional view of another embodiment of a joint filling strip in its pre-use state.
  • FIG. 10 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 7 ;
  • FIG. 11 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 8 ;
  • FIG. 12 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 9 ;
  • FIG. 13 is a cross-sectional view of yet another embodiment of a joint filling strip in its pre-use state.
  • the present invention is a concrete floor system employing integrated concrete slabs and joint filling strips that are inserted into surface sawcuts made in the slabs for crack control and surface sawcuts made at the junctures of two adjacent slabs.
  • the integrated concrete slabs of the present invention exhibit little or no curl, and have been described in U.S. Pat. No. 7,968,178, the contents of which are hereby incorporated by reference. However, for a complete understanding of the present invention, these integrated concrete slabs will be described in detail below.
  • an integrated concrete slab used in the concrete floor system of the present invention is shown and is referenced generally by numeral 10 . While the illustration of concrete slab 10 will facilitate an understanding of the novelty of the concrete slab, it is to be understood that the illustrated dimensions (i.e., both literally and in relative terms) of concrete slab 10 are not meant to represent a scale version of a real concrete slab. Further, the rectangular cross-sectional shape of concrete slab 10 is merely used for illustrative purposes and does not represent a limitation of the present invention.
  • Concrete slab 10 will typically rest on an earthen, engineered stone, or engineered structural base 100 .
  • base 100 is not a limitation of the present invention.
  • the only requirement of base 100 is that it provides sufficiently firm support for concrete slab 10 as would be understood in the art.
  • concrete slab 10 is generally defined by a concrete mixture 12 containing either no fibers or a relatively small quantity of fibers, an integration region 14 , and a concrete mixture 16 containing enough stretchable fibers to decrease the mixture's elastic modulus significantly upon hardening.
  • a concrete mixture 12 containing either no fibers or a relatively small quantity of fibers
  • an integration region 14 containing enough stretchable fibers to decrease the mixture's elastic modulus significantly upon hardening.
  • a concrete mixture 16 containing enough stretchable fibers to decrease the mixture's elastic modulus significantly upon hardening.
  • the illustrated embodiment will refer to mixture 12 as having no fibers mixed therein.
  • Concrete mixtures 12 and 16 are both typically Portland cement concretes with or without pozzolans (e.g., filler materials having behavioral properties similar to that of cement) mixed therein. As just mentioned, concrete mixture 12 will typically have no fibers mixed therein. However, if fibers are included in concrete mixture 12 , they may be of any size and type (e.g., metal, synthetic, or natural). Note that since such fibers will typically increase cost and will provide no appreciable benefit (as they are below the shrinking upper portion of the slab), their inclusion in concrete mixture 12 is generally unnecessary.
  • pozzolans e.g., filler materials having behavioral properties similar to that of cement
  • concrete mixture 16 includes a large quantity of stretchable fibers to decrease the elastic modulus of concrete mixture 16 when it hardens. Approximately 3-9 pounds of stretchable fibers should be mixed into each cubic yard of mixture 16 so that it will be flexible enough after setting to eliminate curl of concrete slab 10 .
  • the fibers could be polymer macrofibers that range in length from approximately 0.5 inches to approximately 2.5 inches. The fibers could be all the same length or different lengths without departing from the scope of the present invention.
  • the various means for mixing the fibers into concrete mixture 16 are well understood in the art.
  • Coupling mixtures 12 and 16 is integration region 14 that allows mixtures 12 and 16 to function cooperatively and thereby define integrated concrete slab 10 .
  • Integration region 14 is defined when concrete mixture 16 is placed on concrete mixture 12 as will be explained later herein.
  • integration region 14 is formed by intermixing some of mixture 16 and some of mixture 12 . More specifically, with at least the top region of mixture 12 in a plastic state (i.e., also referred to in the art as the state where concrete is said to be “alive”), an integration between this top region of mixture 12 and the bottom region of mixture 16 in its plastic state occurs when the two come into contact with one another.
  • the resulting integration region 14 is thereby defined when the top region of mixture 12 is in its plastic state and when the bottom region of mixture 16 is in its plastic state, i.e, when mixture 16 is placed. Integration region 14 retains its integrating attributes throughout the setting and hardening of concrete slab 10 as well as the entire useful life of concrete slab 10 .
  • concrete slab 10 reduces curl that ultimately affects the flatness of the exposed surface of concrete slab 10 . That is, upon hardening, concrete slab 10 provides a reduced modulus of elasticity in mixture 16 owing to the stretchable nature of the fibers contained therein. The following three conditions contribute to this result:
  • FIGS. 2-4 depict a typical fabrication sequence.
  • concrete mixture 12 is placed on base 100 in accordance with methodologies well understood in the art.
  • Mixture 12 is configured as described earlier herein, i.e., either no fibers or relatively few fibers are mixed therein. While the particular vertical thickness of mixture 12 on base 100 is not a limitation of the present invention, it will typically be more than two inches thick.
  • mixture 12 can be the recipient of activities designed to make mixture 12 set from its bottom. That is, the various activities are designed such that the last portion of mixture 12 that is allowed to set is its top region 12 A. Until it is set, mixture 12 is said to be “alive” or in its plastic state, i.e., deformable but not capable of rebounding to a pre-deformed state. In accordance with the present invention, it is critical that, at a minimum, top region 12 A of mixture 12 remain in its plastic state during fabrication of the present invention's integrated concrete slab.
  • a retardant e.g., a solution of sugar and water
  • evaporation inhibitor e.g., cetyl alcohol
  • top region 12 A is plastic, it may also be desirable to roughen (e.g., via raking, rough troweling, etc.) top region 12 A to prepare it for receipt of mixture 16 . Accordingly, FIG. 3 illustrates the exposed surface of top region 12 A as being irregular after the roughening thereof. Since such roughening will typically require workers (not shown) to stand/walk on mixture 12 , the roughening process will typically not occur until the portion of mixture 12 beneath top region 12 A has set such that workers will not sink into mixture 12 beyond top region 12 A.
  • mixture 16 is placed on mixture 12 as shown in FIG. 4 .
  • Mixture 16 is configured as described earlier herein, i.e., stretchable fibers are mixed therein. Since mixture 16 is in its plastic state when it is placed and top region 12 A is in its plastic state as described above, integration between the lower portion of mixture 16 and top region 12 A begins upon contact therebetween, and can be further enhanced by the typical succession of routine mechanical concrete finishing processes (e.g., screeding, vibrating, troweling, etc.) as these tend to further compress mixture 16 while it is plastic. As a result, integration region 14 is defined as indicated in FIG. 4 by the region between the two horizontally-oriented dashed lines. After mixture 16 has been placed, finishing of the top surface thereof can proceed with a variety of processing steps well known in the art of concrete construction.
  • the above-described integrated concrete slab resists curling during the hardening thereof as the stretchable fibers reduce the modulus of elasticity of the shrinking portion of the slab while the shrinking portion is integrated with the non-shrinking portion of the slab. Since the inclusion of the stretchable fibers is only required in that fraction of the overall slab where they will provide benefit, the cost associated with the use of such fibers is minimized.
  • FIG. 5 illustrates a sawcut 200 made in the exposed top surface of an integrated slab 10 to initiate an underlying hairline crack 202 to thereby reduce/eliminate such cracks at the surface of the integrated slab 10 .
  • a sawcut 210 made in a floor's top surface where two adjacent integrated slabs meet provides a clean joint at the surface of the adjacent integrated slabs 10 .
  • Sawcuts 200 and 210 are typically made any time after slab 10 can support early entry saw cutting as is known in the art.
  • each sawcut is generally about one-quarter of the slab's thickness as is known in the art.
  • the width of each sawcut is generally commensurate with the width of the saw blade used to make the sawcut.
  • the edges of the sawcut at the slab/floor's exposed surface will be level (or virtually level) with the exposed surface. This means that the opposing (vertical) walls of the sawcut are essentially parallel to one another owing to the parallel faces of a sawblade (not shown) used to create the sawcut.
  • the sawcuts must be filled.
  • a pre-made strip of uniform cross-section along its length is pressed into the sawcuts.
  • the strip will be cut to a desired length from a continuous (roll) thereof.
  • the strip can be made from a flexible plastic material (e.g., polyvinyl chloride or PVC, or any other suitable polymer) with a durometer measure in the range of approximately 70 to approximately 100.
  • a joint filling strip 20 includes a top or head portion 22 and a shaft portion 24 .
  • Strip 20 is a solid monolithic structure that can be extruded and then coiled for ease of handling prior to cutting to a desired length.
  • Top portion 22 has a continuous width portion 22 A and a tapered width portion 22 B.
  • Constant width portion 22 A has a pre-use width “W” that is approximately equal to the width of a sawcut it will be used to fill plus the expected amount of concrete shrinkage. That is, prior to being inserted in a sawcut, width W is slightly greater than the width of a fresh or new sawcut it will be used to fill. Constant width portion 22 A is a rectangular structure (e.g., square or rectangle) such that a top 22 C is perpendicular to opposing parallel sides 22 D/ 22 E of constant width portion 22 A. Tapered width portion 22 B couples constant width portion 22 A to shaft portion 24 .
  • Shaft portion 24 includes a central support 24 A aligned with the center of constant width portion 22 A and terminated in a tip 24 B that can be tapered (as shown), rounded, or blunt.
  • Extending from either side of central support 24 A are fins 24 C, e.g., three fins 24 C are illustrated on each side of central support 24 A but one, two, or more than three could be provided on each side of central support 24 A without departing from the scope of the present invention. More specifically, fins 24 C are provided in opposing, mirror-imaged pairs thereof relative to central support 24 A with each fin 24 C extending perpendicularly away from central support 24 A and terminating in a wedge-shaped tip 24 D that extends beyond the width confines of constant width portion 22 A.
  • the pre-use tip-to-tip width “W T ” of shaft portion 24 is greater than the pre-use width W of constant width portion 22 A and greater than the expected width of a sawcut after slab shrinkage has occurred.
  • the angle defined at the outboard point of each wedge-shaped tip 24 D is acute so that each corresponding wedge face is angled (downward) towards tapered tip 24 B.
  • fins 24 C are identical in size and shape. However, it is to be understood that fins 24 C can be varied in terms of length, thickness, tip shape, etc., without departing from the scope of the present invention.
  • Strip 30 is a monolithic structure that can be extruded/coiled/cut just like strip 20 , but differs from strip 20 in that it is not completely solid. More specifically, constant width portion 22 A incorporates a void or hole 22 F therein that extends all along the length of strip 30 . Hole 22 F can be octagonal (as shown), circular, or any other regular or irregular geometric shape without departing from the scope of the present invention. The purpose of hole 22 F will be described further below.
  • Strip 40 is also a monolithic structure that can be extruded/coiled/cut just like strip 20 , but differs from strip 20 in that it is not completely solid. More specifically, constant width portion 22 A incorporates two voids/holes 22 G and 22 H separated from one another by a vertical region 22 I that is contiguous with the rest of constant width portion 22 A. Holes 22 G/ 22 H and vertical region 22 I extend all along the length of strip 40 . Holes 22 G and 22 H can be mirror images of one another relative to vertical region 22 I, and can be semi-circular (as shown) or any other regular or irregular geometric shape without departing from the scope of the present invention.
  • Vertical region 22 I is perpendicular to top 22 C and parallel to opposing sides 22 D/ 22 E. The purpose of holes 22 G/ 22 H and vertical region 22 I will be described further below.
  • FIG. 10 A portion of a completed concrete floor system in accordance with an embodiment of the present invention is shown in FIG. 10 where integrated concrete slab 10 has sawcut 200 with joint filling strip 20 inserted therein.
  • shaft portion 24 As shaft portion 24 is driven into a fresh sawcut 200 , fins 24 C flex up towards head portion 22 as shaft portion 24 fully spans the width of sawcut 200 .
  • Strip 20 is continued to be driven into sawcut 200 until top 22 C is flush with the exposed top surface of slab 10 to thereby fill the upper portion of sawcut 200 .
  • Use of a tapered tip 24 B will allow tip 24 B to flex in situations where the height of sawcut 200 is less than the overall height of strip 20 .
  • the width of constant width portion 22 A includes the expected amount of shrinkage that will increase the width of sawcut 200 . Accordingly, constant width portion 22 A is compressed laterally upon insertion into a fresh sawcut 200 , and then expands laterally while still fully filling the width of a mature sawcut 200 for slab 10 that has experienced shrinkage.
  • Strip 20 is held/fixed in place in sawcut 200 as fins 24 C are flexed upward toward the surface of slab 10 such that the upper angle ⁇ formed between central support 24 A and each fins 24 C is acute.
  • the wedge-shaped tips 24 D facilitate the insertion of strip 20 into sawcut 200 , and define a friction-based grip surface/interface with the walls of sawcut 200 once the strip is in sawcut 200 .
  • shaft portion 24 Since the pre-use tip-to-tip width W T ( FIG. 7 ) of shaft portion 24 is greater than the width of constant width portion 22 A and that of a sawcut after slab shrinkage, the grip function provided by tips 24 D is retained even after slab 10 has undergone shrinkage. That is, shaft portion 24 spans the width of sawcut 200 throughout the life of slab 10 .
  • FIG. 11 A portion of a completed concrete floor system in accordance with another embodiment of the present invention is shown in FIG. 11 where integrated concrete slab 10 has sawcut 200 with joint filling strip 30 inserted therein.
  • hole 22 F allows constant width portion 22 A to more readily experience small amounts of lateral compression/expansion to accommodate variations and/or expansion/contraction of the width of sawcut 200 during the life of slab 10 .
  • FIG. 12 A portion of a completed concrete floor system in accordance with another embodiment of the present invention is shown in FIG. 12 where integrated concrete slab 10 has sawcut 200 with joint filling strip 40 inserted therein.
  • holes 22 G/ 22 H allow constant width portion 22 A to more readily experience small amounts of lateral compression/expansion to accommodate variations and/or expansion/contraction of the width of sawcut 200 during the life of slab 10 .
  • vertical region 22 I is perpendicular to top 22 C and parallel to opposing sides 22 D/ 22 E, it provides support of constant width portion 22 A when strip 40 is pounded into sawcut 200 .
  • the advantages of the present invention are numerous.
  • the described concrete floor system exhibits little or no curl on a slab-by-slab basis.
  • the joint filling strip provides an efficient means to fill sawcut “joints” in slabs or between slabs. No liquid adhesives or fillers are required to fill sawcuts thereby insuring an efficient and neat finishing process and finished product.
  • the integrated concrete slab using the described joint filling strip provides the means to construct a non-curling, flat concrete floor system that will substantially reduce or eliminate spalling at sawcut “joints”.
  • FIG. 13 illustrates another embodiment of a joint filling strip in its pre-use state that is referenced generally by numeral 50 .
  • Strip 50 is similar to strip 40 and is, therefore, labeled with reference numerals to identify structural elements that strip 50 has in common with strip 40 .
  • the common structural elements will not be described again herein.
  • Strip 50 has holes 22 J and 22 K that are mirror images of one another relative to vertical region 22 I. Further, the outer edges of each hole 22 J/ 22 K are parallel to the adjacent outer edges of top portion 22 . Shaping of holes 22 J/ 22 K in this fashion will facilitate lateral compression/expansion of top portion 22 during strip insertion and during contraction/expansion of a sawcut having strip 50 disposed therein.
  • joint filling strips is not limited to use in the integrated concrete slab described herein. That is, in general, any of the joint filling strips described herein can be used to fill a sawcut/joint in any concrete slab or an elongated open joint in any construction surface. The strips can be pre-made in a factory or extruded on site. It is therefore to be understood that the invention may be practiced other than as specifically described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Floor Finish (AREA)
  • Bridges Or Land Bridges (AREA)
  • Building Environments (AREA)

Abstract

A concrete floor system includes an integrated concrete slab and a joint strip. The slab has a top region defined by concrete with stretchable fibers mixed therein. The top region covers and is partially blended into concrete beneath the top region. A sawcut, extending into the slab, is defined by opposing walls and a bottom. The joint strip is disposed in the sawcut and includes a top portion and a shaft portion. The top portion fills an upper part of the sawcut. The shaft portion spans a lower part of the sawcut. The shaft portion has at least one pair of opposing fins angled towards the joint strip's top portion. Each fin terminates at and is in contact with one of the opposing side walls of the sawcut.

Description

  • Pursuant to 35 U.S.C. §119, the benefit of priority from provisional application 61/943,314, with a filing date of Feb. 22, 2014, is claimed for this non-provisional application.
  • CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This patent application is co-pending with one related patent application entitled “JOINT FILLING STRIP”, filed on the same date and owned by the same assignee as this patent application.
  • FIELD OF THE INVENTION
  • The invention relates generally to concrete slab construction, and more particularly to a concrete floor system employing integrated concrete slabs exhibiting little or no curl and joint filling strips.
  • BACKGROUND OF THE INVENTION
  • Under normal drying conditions, concrete (e.g., Portland cement concrete with or without pozzolans mixed therein) will shrink from the exposed surfaces inward as it desiccates and hardens. The amount of drying shrinkage typically ranges between approximately 0.0002 to approximately 0.0008 inches per inch with approximately 0.0005 inches per inch being the norm. Significantly, the drying shrinkage does not occur through the full depth of the concrete, but is rather rapidly attenuated to insignificance only a few inches from the exposed surfaces. Since the top is typically the only surface of a concrete slab exposed to drying, it is normal for a downwardly decreasing shrinkage gradient to develop within the uppermost few inches of a slab. As a result of such shrinkage gradient, the top region of a concrete slab tends to “curl” (i.e., develop an upward facing concave curvature) as it dries. This is not a desirable condition, since a measure of quality in a concrete slab is its surface flatness.
  • The problems associated with curling concrete slabs are exacerbated at concrete “joints” formed at sawcuts. Such sawcuts are made at the surface of a slab to control cracking within the slab, or are made at the surface of two adjacent slabs. Specifically, a sawcut's surface edges are subject to spalling as traffic moves over slab joints.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a concrete floor system.
  • Another object of the present invention is to provide a concrete floor system that minimizes slab curl and reduces/eliminates spalling at sawcuts formed in the floor system in a cost effective manner.
  • Still another object of the present invention is to provide a cost-effective concrete joint filler.
  • Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
  • In accordance with the present invention, a concrete floor system includes an integrated concrete slab and a joint strip. The integrated concrete slab has (i) a first region of concrete with approximately 3-9 pounds of stretchable fibers mixed in each cubic yard thereof wherein an exposed portion of the first region defines a top surface of the concrete slab, (ii) a second region of concrete disposed below the first region, (iii) a third region defined by a mixture of a portion of the concrete from the first region with a portion of the concrete from the second region, and (iv) a sawcut extending at least partially into the concrete slab from its top surface thereof where the sawcut is defined by opposing walls and a bottom adjacent the opposing side walls. The flexible-material joint strip is disposed in the sawcut. The joint strip includes a top portion and a shaft portion coupled to the top portion. The top portion fills an upper part of the sawcut adjacent to the top surface of the concrete slab. The shaft portion spans a lower part of the sawcut. The shaft portion has at least one pair of opposing fins angled towards the top portion. Each fin terminates in a wedge in contact with one of the opposing side walls of the sawcut.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:
  • FIG. 1 is a schematic view of a cross-section of an integrated concrete slab used in a concrete floor system in accordance with an embodiment of the present invention;
  • FIG. 2 is a schematic view of a non-fiber concrete mixture after placement on a base in accordance with a method of fabricating the integrated concrete slab;
  • FIG. 3 is a schematic view of the non-fiber concrete mixture with its top region in a plastic state and roughened in accordance with an embodiment of the integrated concrete slab;
  • FIG. 4 is a schematic view of the non-fiber concrete mixture with its top region in a plastic state and roughened, and further having a plastic stretchable-fiber-inclusive concrete mixture placed thereon;
  • FIG. 5 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut formed therein for purpose of inducing a hairline crack within the concrete slab;
  • FIG. 6 is a cross-sectional view of two adjacent integrated concrete slabs with a surface sawcut formed where the two slabs meet;
  • FIG. 7 is a cross-sectional view of an embodiment of a joint filling strip of the present invention in its pre-use state;
  • FIG. 8 is a cross-sectional view of another embodiment of a joint filling strip in its pre-use state;
  • FIG. 9 is a cross-sectional view of another embodiment of a joint filling strip in its pre-use state;
  • FIG. 10 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 7;
  • FIG. 11 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 8;
  • FIG. 12 is a cross-sectional view of a portion of an integrated concrete slab with a surface sawcut filled with the joint filling strip illustrated in FIG. 9; and
  • FIG. 13 is a cross-sectional view of yet another embodiment of a joint filling strip in its pre-use state.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is a concrete floor system employing integrated concrete slabs and joint filling strips that are inserted into surface sawcuts made in the slabs for crack control and surface sawcuts made at the junctures of two adjacent slabs. The integrated concrete slabs of the present invention exhibit little or no curl, and have been described in U.S. Pat. No. 7,968,178, the contents of which are hereby incorporated by reference. However, for a complete understanding of the present invention, these integrated concrete slabs will be described in detail below.
  • Referring now to the drawings and more particularly to FIG. 1, an integrated concrete slab used in the concrete floor system of the present invention is shown and is referenced generally by numeral 10. While the illustration of concrete slab 10 will facilitate an understanding of the novelty of the concrete slab, it is to be understood that the illustrated dimensions (i.e., both literally and in relative terms) of concrete slab 10 are not meant to represent a scale version of a real concrete slab. Further, the rectangular cross-sectional shape of concrete slab 10 is merely used for illustrative purposes and does not represent a limitation of the present invention.
  • Concrete slab 10 will typically rest on an earthen, engineered stone, or engineered structural base 100. However, the particular nature of base 100 is not a limitation of the present invention. The only requirement of base 100 is that it provides sufficiently firm support for concrete slab 10 as would be understood in the art.
  • Moving upward from base 100, concrete slab 10 is generally defined by a concrete mixture 12 containing either no fibers or a relatively small quantity of fibers, an integration region 14, and a concrete mixture 16 containing enough stretchable fibers to decrease the mixture's elastic modulus significantly upon hardening. As will be explained further below, since the inclusion of a low dosage of fibers or other benign fillers in mixture 12 will not improve the performance of the present invention, such fibers/fillers will not typically be included in mixture 12. Accordingly, the illustrated embodiment will refer to mixture 12 as having no fibers mixed therein.
  • Concrete mixtures 12 and 16 are both typically Portland cement concretes with or without pozzolans (e.g., filler materials having behavioral properties similar to that of cement) mixed therein. As just mentioned, concrete mixture 12 will typically have no fibers mixed therein. However, if fibers are included in concrete mixture 12, they may be of any size and type (e.g., metal, synthetic, or natural). Note that since such fibers will typically increase cost and will provide no appreciable benefit (as they are below the shrinking upper portion of the slab), their inclusion in concrete mixture 12 is generally unnecessary.
  • Unlike concrete mixture 12, concrete mixture 16 includes a large quantity of stretchable fibers to decrease the elastic modulus of concrete mixture 16 when it hardens. Approximately 3-9 pounds of stretchable fibers should be mixed into each cubic yard of mixture 16 so that it will be flexible enough after setting to eliminate curl of concrete slab 10. For example, the fibers could be polymer macrofibers that range in length from approximately 0.5 inches to approximately 2.5 inches. The fibers could be all the same length or different lengths without departing from the scope of the present invention. The various means for mixing the fibers into concrete mixture 16 are well understood in the art.
  • Coupling mixtures 12 and 16 is integration region 14 that allows mixtures 12 and 16 to function cooperatively and thereby define integrated concrete slab 10. Integration region 14 is defined when concrete mixture 16 is placed on concrete mixture 12 as will be explained later herein. In terms of the structure of concrete slab 10, integration region 14 is formed by intermixing some of mixture 16 and some of mixture 12. More specifically, with at least the top region of mixture 12 in a plastic state (i.e., also referred to in the art as the state where concrete is said to be “alive”), an integration between this top region of mixture 12 and the bottom region of mixture 16 in its plastic state occurs when the two come into contact with one another. The resulting integration region 14 is thereby defined when the top region of mixture 12 is in its plastic state and when the bottom region of mixture 16 is in its plastic state, i.e, when mixture 16 is placed. Integration region 14 retains its integrating attributes throughout the setting and hardening of concrete slab 10 as well as the entire useful life of concrete slab 10.
  • The above-recited construction of concrete slab 10 reduces curl that ultimately affects the flatness of the exposed surface of concrete slab 10. That is, upon hardening, concrete slab 10 provides a reduced modulus of elasticity in mixture 16 owing to the stretchable nature of the fibers contained therein. The following three conditions contribute to this result:
      • shrinkage of concrete slab 10 only occurs within the top several (vertical) inches thereof regardless of its overall (vertical) thickness,
      • mixture 16 occupies this isolated upper shrinking region, and
      • mixture 16 (by virtue of its high stretchable fiber content) exhibits a much lower than normal elastic modulus upon hardening. As a result, when mixture 16 shrinks, rather than being stiff enough to lift and bend mixture 12 (which is not shrinking) off base 100 (and thus cause concrete slab 10 to curl), it instead stretches sufficiently to allow mixture 12 to remain substantially in contact with base 100. That is, the addition of stretchable fibers in mixture 16 reduces its ability to pull up the non-shrinking portion of concrete slab 10 to reduce curl at the exposed surface of concrete slab 10. Accordingly, curl is minimized when the thickness of mixture 16 is selected such that the shrinkage of integration region 14 is minimized as concrete slab 10 hardens. This result can be achieved for the vast majority of concrete slabs if approximately 2-3 inches of mixture 16 is placed during fabrication. Since the inclusion of stretchable fibers is only required in a portion of concrete slab 10, the present invention provides a cost-effective approach for producing concrete slabs having little or no curl.
  • The method of fabricating integrated concrete slab 10 will now be explained using the sequence of schematic illustrations in FIGS. 2-4 that depict a typical fabrication sequence. In FIG. 2, concrete mixture 12 is placed on base 100 in accordance with methodologies well understood in the art. Mixture 12 is configured as described earlier herein, i.e., either no fibers or relatively few fibers are mixed therein. While the particular vertical thickness of mixture 12 on base 100 is not a limitation of the present invention, it will typically be more than two inches thick.
  • Using procedures well-known in the art, mixture 12 can be the recipient of activities designed to make mixture 12 set from its bottom. That is, the various activities are designed such that the last portion of mixture 12 that is allowed to set is its top region 12A. Until it is set, mixture 12 is said to be “alive” or in its plastic state, i.e., deformable but not capable of rebounding to a pre-deformed state. In accordance with the present invention, it is critical that, at a minimum, top region 12A of mixture 12 remain in its plastic state during fabrication of the present invention's integrated concrete slab. This can be achieved passively by monitoring the state of top region 12A, or actively by (i) applying a retardant (e.g., a solution of sugar and water) to top region 12A as indicated by the arrow referenced by the letter “R”, (ii) wetting top region 12A with water as indicated by the arrow referenced by the letter “W”, or (iii) applying an evaporation inhibitor (e.g., cetyl alcohol) to top region 12A as indicated by the arrow referenced by the letter “E”.
  • While top region 12A is plastic, it may also be desirable to roughen (e.g., via raking, rough troweling, etc.) top region 12A to prepare it for receipt of mixture 16. Accordingly, FIG. 3 illustrates the exposed surface of top region 12A as being irregular after the roughening thereof. Since such roughening will typically require workers (not shown) to stand/walk on mixture 12, the roughening process will typically not occur until the portion of mixture 12 beneath top region 12A has set such that workers will not sink into mixture 12 beyond top region 12A.
  • Following placement of mixture 12 and while top region 12A is in its plastic state and has optionally been roughened as just described, mixture 16 is placed on mixture 12 as shown in FIG. 4. Mixture 16 is configured as described earlier herein, i.e., stretchable fibers are mixed therein. Since mixture 16 is in its plastic state when it is placed and top region 12A is in its plastic state as described above, integration between the lower portion of mixture 16 and top region 12A begins upon contact therebetween, and can be further enhanced by the typical succession of routine mechanical concrete finishing processes (e.g., screeding, vibrating, troweling, etc.) as these tend to further compress mixture 16 while it is plastic. As a result, integration region 14 is defined as indicated in FIG. 4 by the region between the two horizontally-oriented dashed lines. After mixture 16 has been placed, finishing of the top surface thereof can proceed with a variety of processing steps well known in the art of concrete construction.
  • The above-described integrated concrete slab resists curling during the hardening thereof as the stretchable fibers reduce the modulus of elasticity of the shrinking portion of the slab while the shrinking portion is integrated with the non-shrinking portion of the slab. Since the inclusion of the stretchable fibers is only required in that fraction of the overall slab where they will provide benefit, the cost associated with the use of such fibers is minimized.
  • As mentioned above, surface sawcuts (or “joints” as they are also referred to in the art) are an integral part of concrete floor manufacturing and the ultimate concrete floor system. For example, FIG. 5 illustrates a sawcut 200 made in the exposed top surface of an integrated slab 10 to initiate an underlying hairline crack 202 to thereby reduce/eliminate such cracks at the surface of the integrated slab 10. Referring to FIG. 6, a sawcut 210 made in a floor's top surface where two adjacent integrated slabs meet provides a clean joint at the surface of the adjacent integrated slabs 10. Sawcuts 200 and 210 are typically made any time after slab 10 can support early entry saw cutting as is known in the art. It is desirable to fill either of sawcuts 200 and 210 to prevent spalling at the edges of the sawcut. The depth of each sawcut is generally about one-quarter of the slab's thickness as is known in the art. The width of each sawcut is generally commensurate with the width of the saw blade used to make the sawcut.
  • When building a concrete floor system using the above-described integrated slabs that exhibit little or no curl, the edges of the sawcut at the slab/floor's exposed surface will be level (or virtually level) with the exposed surface. This means that the opposing (vertical) walls of the sawcut are essentially parallel to one another owing to the parallel faces of a sawblade (not shown) used to create the sawcut.
  • To prevent spalling at the top edges of sawcut 200 or sawcut 210, the sawcuts must be filled. In accordance with the present invention, a pre-made strip of uniform cross-section along its length is pressed into the sawcuts. The strip will be cut to a desired length from a continuous (roll) thereof. The strip can be made from a flexible plastic material (e.g., polyvinyl chloride or PVC, or any other suitable polymer) with a durometer measure in the range of approximately 70 to approximately 100.
  • Three exemplary cross-sectional shapes for the joint filling strip of the present invention are shown in their pre-use states (i.e., prior to being inserted into a sawcut) in FIGS. 7-9. Each strip is an elongate structure that can be cut to a desired length to fill a sawcut. Referring first to FIG. 7, a joint filling strip 20 includes a top or head portion 22 and a shaft portion 24. Strip 20 is a solid monolithic structure that can be extruded and then coiled for ease of handling prior to cutting to a desired length. Top portion 22 has a continuous width portion 22A and a tapered width portion 22B. Constant width portion 22A has a pre-use width “W” that is approximately equal to the width of a sawcut it will be used to fill plus the expected amount of concrete shrinkage. That is, prior to being inserted in a sawcut, width W is slightly greater than the width of a fresh or new sawcut it will be used to fill. Constant width portion 22A is a rectangular structure (e.g., square or rectangle) such that a top 22C is perpendicular to opposing parallel sides 22D/22E of constant width portion 22A. Tapered width portion 22B couples constant width portion 22A to shaft portion 24.
  • Shaft portion 24 includes a central support 24A aligned with the center of constant width portion 22A and terminated in a tip 24B that can be tapered (as shown), rounded, or blunt. Extending from either side of central support 24A are fins 24C, e.g., three fins 24C are illustrated on each side of central support 24A but one, two, or more than three could be provided on each side of central support 24A without departing from the scope of the present invention. More specifically, fins 24C are provided in opposing, mirror-imaged pairs thereof relative to central support 24A with each fin 24C extending perpendicularly away from central support 24A and terminating in a wedge-shaped tip 24D that extends beyond the width confines of constant width portion 22A. Accordingly, the pre-use tip-to-tip width “WT” of shaft portion 24 is greater than the pre-use width W of constant width portion 22A and greater than the expected width of a sawcut after slab shrinkage has occurred. The angle defined at the outboard point of each wedge-shaped tip 24D is acute so that each corresponding wedge face is angled (downward) towards tapered tip 24B. In the illustrated embodiment, fins 24C are identical in size and shape. However, it is to be understood that fins 24C can be varied in terms of length, thickness, tip shape, etc., without departing from the scope of the present invention.
  • Referring now to FIGS. 8 and 9, additional embodiments of a joint filling strip are shown in cross-section and are referenced generally by numerals 30 and 40, respectively. The structural elements that are common between strip 20 and each of strips 30 and 40 are referenced with common numerals and will not be described again. Strip 30 is a monolithic structure that can be extruded/coiled/cut just like strip 20, but differs from strip 20 in that it is not completely solid. More specifically, constant width portion 22A incorporates a void or hole 22F therein that extends all along the length of strip 30. Hole 22F can be octagonal (as shown), circular, or any other regular or irregular geometric shape without departing from the scope of the present invention. The purpose of hole 22F will be described further below.
  • Strip 40 is also a monolithic structure that can be extruded/coiled/cut just like strip 20, but differs from strip 20 in that it is not completely solid. More specifically, constant width portion 22A incorporates two voids/ holes 22G and 22H separated from one another by a vertical region 22I that is contiguous with the rest of constant width portion 22A. Holes 22G/22H and vertical region 22I extend all along the length of strip 40. Holes 22G and 22H can be mirror images of one another relative to vertical region 22I, and can be semi-circular (as shown) or any other regular or irregular geometric shape without departing from the scope of the present invention. More than two holes could also be provided all along the length of constant width portion 22A without departing from the scope of the present invention. Vertical region 22I is perpendicular to top 22C and parallel to opposing sides 22D/22E. The purpose of holes 22G/22H and vertical region 22I will be described further below.
  • A portion of a completed concrete floor system in accordance with an embodiment of the present invention is shown in FIG. 10 where integrated concrete slab 10 has sawcut 200 with joint filling strip 20 inserted therein. As shaft portion 24 is driven into a fresh sawcut 200, fins 24C flex up towards head portion 22 as shaft portion 24 fully spans the width of sawcut 200. Strip 20 is continued to be driven into sawcut 200 until top 22C is flush with the exposed top surface of slab 10 to thereby fill the upper portion of sawcut 200. Use of a tapered tip 24B will allow tip 24B to flex in situations where the height of sawcut 200 is less than the overall height of strip 20.
  • As mentioned above, the width of constant width portion 22A includes the expected amount of shrinkage that will increase the width of sawcut 200. Accordingly, constant width portion 22A is compressed laterally upon insertion into a fresh sawcut 200, and then expands laterally while still fully filling the width of a mature sawcut 200 for slab 10 that has experienced shrinkage. Strip 20 is held/fixed in place in sawcut 200 as fins 24C are flexed upward toward the surface of slab 10 such that the upper angle α formed between central support 24A and each fins 24C is acute. The wedge-shaped tips 24D facilitate the insertion of strip 20 into sawcut 200, and define a friction-based grip surface/interface with the walls of sawcut 200 once the strip is in sawcut 200. Since the pre-use tip-to-tip width WT (FIG. 7) of shaft portion 24 is greater than the width of constant width portion 22A and that of a sawcut after slab shrinkage, the grip function provided by tips 24D is retained even after slab 10 has undergone shrinkage. That is, shaft portion 24 spans the width of sawcut 200 throughout the life of slab 10.
  • A portion of a completed concrete floor system in accordance with another embodiment of the present invention is shown in FIG. 11 where integrated concrete slab 10 has sawcut 200 with joint filling strip 30 inserted therein. In this embodiment, hole 22F allows constant width portion 22A to more readily experience small amounts of lateral compression/expansion to accommodate variations and/or expansion/contraction of the width of sawcut 200 during the life of slab 10.
  • A portion of a completed concrete floor system in accordance with another embodiment of the present invention is shown in FIG. 12 where integrated concrete slab 10 has sawcut 200 with joint filling strip 40 inserted therein. In this embodiment, holes 22G/22H allow constant width portion 22A to more readily experience small amounts of lateral compression/expansion to accommodate variations and/or expansion/contraction of the width of sawcut 200 during the life of slab 10. In addition, since vertical region 22I is perpendicular to top 22C and parallel to opposing sides 22D/22E, it provides support of constant width portion 22A when strip 40 is pounded into sawcut 200.
  • The advantages of the present invention are numerous. The described concrete floor system exhibits little or no curl on a slab-by-slab basis. The joint filling strip provides an efficient means to fill sawcut “joints” in slabs or between slabs. No liquid adhesives or fillers are required to fill sawcuts thereby insuring an efficient and neat finishing process and finished product. The integrated concrete slab using the described joint filling strip provides the means to construct a non-curling, flat concrete floor system that will substantially reduce or eliminate spalling at sawcut “joints”.
  • Although the invention has been described relative to specific embodiments thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. For example, FIG. 13 illustrates another embodiment of a joint filling strip in its pre-use state that is referenced generally by numeral 50. Strip 50 is similar to strip 40 and is, therefore, labeled with reference numerals to identify structural elements that strip 50 has in common with strip 40. The common structural elements will not be described again herein. Strip 50 has holes 22J and 22K that are mirror images of one another relative to vertical region 22I. Further, the outer edges of each hole 22J/22K are parallel to the adjacent outer edges of top portion 22. Shaping of holes 22J/22K in this fashion will facilitate lateral compression/expansion of top portion 22 during strip insertion and during contraction/expansion of a sawcut having strip 50 disposed therein.
  • Each of the above-described joint filling strips is not limited to use in the integrated concrete slab described herein. That is, in general, any of the joint filling strips described herein can be used to fill a sawcut/joint in any concrete slab or an elongated open joint in any construction surface. The strips can be pre-made in a factory or extruded on site. It is therefore to be understood that the invention may be practiced other than as specifically described.

Claims (29)

What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. A concrete floor system, comprising:
an integrated concrete slab having
a first region of concrete with approximately 3-9 pounds of stretchable fibers mixed in each cubic yard thereof wherein an exposed portion of said first region defines a top surface of said concrete slab,
a second region of concrete disposed below said first region,
a third region defined by a mixture of a portion of said concrete from said first region with a portion of said concrete from said second region, and
a sawcut extending at least partially into said concrete slab from said top surface thereof, said sawcut defined by opposing walls and a bottom adjacent said opposing side walls; and
a flexible-material joint strip disposed in said sawcut, said joint strip including a top portion and a shaft portion coupled to said top portion, said top portion filling an upper part of said sawcut adjacent to said top surface of said concrete slab, said shaft portion spanning a lower part of said sawcut adjacent to said upper part, said shaft portion having at least one pair of opposing fins angled towards said top portion, each of said fins terminating in a wedge in contact with one of said opposing side walls of said sawcut.
2. A concrete floor system as in claim 1, wherein said concrete in said first region comprises Portland cement concrete.
3. A concrete floor system as in claim 1, wherein said concrete in said first region comprises Portland cement concrete with pozzolans mixed therein.
4. A concrete floor system as in claim 1, wherein said concrete in said second region comprises Portland cement concrete.
5. A concrete floor system as in claim 1, wherein said concrete in said second region comprises Portland cement concrete with at least pozzolans mixed therein.
6. A concrete floor system as in claim 1, wherein said stretchable fibers comprise polymer-based macrofibers.
7. A concrete floor system as in claim 1, wherein said stretchable fibers are approximately 0.5 to approximately 2.5 inches in length.
8. A concrete floor system as in claim 1, wherein thickness of said first region is selected to minimize shrinkage of said third region during hardening of said third region.
9. A concrete floor system as in claim 1, wherein said top portion includes at least one hole extending along a length of said joint strip.
10. A concrete floor system as in claim 1, wherein said top portion includes a pair of holes extending along a length of said joint strip.
11. A concrete floor system as in claim 10, wherein said holes are separated by a region of said top portion, said region being parallel to said opposing side walls of said sawcut.
12. A concrete floor system as in claim 10, wherein each of said holes includes edges running parallel to edges of said top portion.
13. A concrete floor system as in claim 1, wherein said joint strip comprises a plastic material having a durometer measure in a range of approximately 70 to approximately 100.
14. A concrete floor system, comprising:
a concrete slab having a top region defined by concrete in its plastic state with approximately 3-9 pounds of stretchable fibers mixed in each cubic yard thereof, said top region covering and partially blended into concrete having none of said fibers mixed therein;
a sawcut originating at an exposed surface of said top region and extending at least partially into said concrete slab, said sawcut defined by opposing walls and a bottom adjacent said opposing side walls; and
a flexible-material joint strip disposed in said sawcut, said joint strip including a top portion and a shaft portion coupled to said top portion, said top portion filling an upper part of said sawcut adjacent to said exposed surface of said top region, said shaft portion spanning a lower part of said sawcut adjacent to said upper part, said shaft portion including a central support and at least one pair of opposing fins extending from either side of said central support, each of said fins angled towards said top portion, each of said fins terminating at and in contact with one of said opposing side walls of said sawcut.
15. A concrete floor system as in claim 14, wherein said stretchable fibers comprise polymer-based macrofibers.
16. A concrete floor system as in claim 14, wherein said stretchable fibers are approximately 0.5 to approximately 2.5 inches in length.
17. A concrete floor system as in claim 14, wherein said top portion includes at least one hole extending along a length of said joint strip.
18. A concrete floor system as in claim 14, wherein said top portion includes a pair of holes extending along a length of said joint strip.
19. A concrete floor system as in claim 18, wherein said holes are separated by a region of said top portion, said region being parallel to said opposing side walls of said sawcut.
20. A concrete floor system as in claim 18, wherein each of said holes includes edges running parallel to edges of said top portion.
21. A concrete floor system as in claim 14, wherein said joint strip comprises a plastic material having a durometer measure in a range of approximately 70 to approximately 100.
22. A concrete floor system as in claim 14, wherein said central support terminates in a tapered tip.
23. A concrete floor system, comprising:
a concrete slab having a top region defined by concrete with approximately 3-9 pounds of stretchable fibers mixed in each cubic yard thereof, said top region covering and partially integrated with concrete having none of said fibers mixed therein;
a sawcut originating at an exposed surface of said top region and extending at least partially into said concrete slab, said sawcut defined by opposing walls and a bottom adjacent said opposing side walls; and
a flexible-material joint strip disposed in said sawcut, said joint strip made from a plastic material having a durometer measure in a range of approximately 70 to approximately 100, said joint strip including a top portion and a shaft portion coupled to said top portion, said top portion filling an upper part of said sawcut adjacent to said exposed surface of said top region, said top portion including at least one hole extending along a length of said joint strip, said shaft portion spanning a lower part of said sawcut adjacent to said upper part, said shaft portion including a central support and at least one pair of opposing fins extending from either side of said central support, each of said fins angled towards said top portion, each of said fins terminating at and in contact with one of said opposing side walls of said sawcut.
24. A concrete floor system as in claim 23, wherein said stretchable fibers comprise polymer-based macrofibers.
25. A concrete floor system as in claim 23, wherein said stretchable fibers are approximately 0.5 to approximately 2.5 inches in length.
26. A concrete floor system as in claim 23, wherein said at least one hole comprises a plurality of holes extending along a length of said joint strip.
27. A concrete floor system as in claim 23, wherein said at least one hole comprises a pair of holes separated by a region of said top portion, said region being parallel to said opposing side walls of said sawcut.
28. A concrete floor system as in claim 27, wherein each of said holes includes edges running parallel to edges of said top portion.
29. A concrete floor system as in claim 23, wherein said central support terminates in a tapered tip.
US14/625,109 2014-02-22 2015-02-18 Concrete floor system using integrated concrete slab and joint filling strips Abandoned US20150240489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/625,109 US20150240489A1 (en) 2014-02-22 2015-02-18 Concrete floor system using integrated concrete slab and joint filling strips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461943314P 2014-02-22 2014-02-22
US14/625,109 US20150240489A1 (en) 2014-02-22 2015-02-18 Concrete floor system using integrated concrete slab and joint filling strips

Publications (1)

Publication Number Publication Date
US20150240489A1 true US20150240489A1 (en) 2015-08-27

Family

ID=53881695

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/625,109 Abandoned US20150240489A1 (en) 2014-02-22 2015-02-18 Concrete floor system using integrated concrete slab and joint filling strips
US14/625,151 Active US9359761B2 (en) 2014-02-22 2015-02-18 Joint filling strip

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/625,151 Active US9359761B2 (en) 2014-02-22 2015-02-18 Joint filling strip

Country Status (1)

Country Link
US (2) US20150240489A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900012477A1 (en) * 2019-07-22 2021-01-22 Mapei Spa PROCEDURE FOR SEALING JOINTS BETWEEN PREFABRICATED SEGMENTS OR SIMILAR CONSTRUCTION ELEMENTS, IN PARTICULAR IN THE CONSTRUCTION OF TUNNELS AND TUNNELS, AND CORRESPONDING SYSTEM AND SEALING STRIP
CN112962847A (en) * 2021-02-05 2021-06-15 中建七局第二建筑有限公司 Construction method of assembled laminated slab

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240489A1 (en) * 2014-02-22 2015-08-27 Ductilcrete Slab Systems, Llc Concrete floor system using integrated concrete slab and joint filling strips
DE202016102430U1 (en) * 2016-05-06 2017-08-09 Sk Wiegrink Beteiligungs Gmbh Joint filling profile
US10794064B2 (en) * 2017-03-06 2020-10-06 Jehbco Manufacturing Pty Ltd Seal and gaps and joints sealing method
US10190311B1 (en) * 2017-07-26 2019-01-29 Embraer S.A. Devices and methods to seal gaps between adjacent structural panels
WO2020003323A1 (en) * 2018-06-25 2020-01-02 Trivedi Anil A sealing element for sealing a gap between concrete pavements/structures
DE202020103699U1 (en) * 2020-06-26 2021-09-28 Schlüter-Systems Kg Expansion joint profile system

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB504570A (en) * 1936-12-17 1939-04-27 Goodrich Co B F Improvements in or relating to joints for pavements, roads, dams and the like, and methods of making the same
US2156681A (en) * 1936-06-18 1939-05-02 Goodrich Co B F Sealing strip
US3180238A (en) * 1961-07-19 1965-04-27 Acme Highway Prod Groove filler
US3286425A (en) * 1964-06-19 1966-11-22 Brown Co D S Joint seals
US3426658A (en) * 1967-01-26 1969-02-11 Albert J Frederickson Contraction joint for pavements
US3521528A (en) * 1969-02-28 1970-07-21 Grace W R & Co Joint sealing device
US3523493A (en) * 1967-04-24 1970-08-11 Uniroyal Inc Composition of matter and use thereof in joint sealing
US3871787A (en) * 1973-10-30 1975-03-18 William James Stegmeier Joint structure for concrete materials and the like
US3923411A (en) * 1975-01-28 1975-12-02 Thor Johan Berghman Sealing strip
US3967911A (en) * 1973-11-28 1976-07-06 John Aubrey Miers Sealing member
US4362427A (en) * 1980-05-30 1982-12-07 Schlegel Corporation Sealing strip
US4884381A (en) * 1976-06-10 1989-12-05 Jorge Gabrielli Zacharias Calixto Structural joint system
US5735633A (en) * 1994-08-22 1998-04-07 Metzger; Steven N. Method of and devices for sealing and supporting concrete floor joints and the like
US6219982B1 (en) * 1998-04-13 2001-04-24 Miller-Valentine Construction Inc. Joint cover and sealing device for concrete panels
US6272806B1 (en) * 1999-03-24 2001-08-14 Face, Iii S. Allen Joint insert and method/system for using same
US20090145070A1 (en) * 2007-12-07 2009-06-11 Carl Jeffery Linn Temporary floor joint filler
US20090266020A1 (en) * 2006-11-14 2009-10-29 Srb Construction Technologies Pty Ltd. Moulded panel joint caulking means
US20100058696A1 (en) * 2006-09-08 2010-03-11 Boss Polymer Technologies Pty Ltd. Joint seal
US20100095620A1 (en) * 2008-10-20 2010-04-22 Wilkes Jr Robert David Compliant Trim for Concrete Slabs
US7968178B1 (en) * 2010-06-10 2011-06-28 Concrete Solutions Consulting, LLC Integrated concrete slab
US8955287B2 (en) * 2006-11-22 2015-02-17 Mike Fortney Replacement expansion joint for cement
US20150240503A1 (en) * 2014-02-22 2015-08-27 Ductilcrete Slab Systems, Llc Joint filling strip

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162906A (en) * 1961-04-05 1964-12-29 Tracey Cook Brunstrom & Dudley Separating strips for wall joints
US3080950A (en) * 1961-06-02 1963-03-12 Greene Samuel Metal window frame, sash and weather strip therefor
US3575094A (en) * 1968-09-26 1971-04-13 Charles S Hewitt Expansion joint with water lock
US3896597A (en) * 1974-04-04 1975-07-29 Max W Deason Concrete expansion and contraction joint
US4548009A (en) * 1981-08-19 1985-10-22 Quaker Plastic Corporation Concrete expansion joint
US4906129A (en) * 1988-01-05 1990-03-06 Stegmeier William J Swimming pool contraction-expansion joint
FR2629845B1 (en) * 1988-04-12 1991-11-22 Couvraneuf FRACTIONATION JOINT FOR CONCRETE FLOORS
US4889445A (en) * 1988-08-12 1989-12-26 Vittone Larry W Expansion joint for settable compositions
JP2849716B2 (en) * 1989-05-18 1999-01-27 日本イトン工業株式会社 Joint gasket
US5375386A (en) * 1993-07-26 1994-12-27 Greenstreak Plastic Products Company, Inc. Waterstop/mechanical seal
DE20015359U1 (en) * 2000-09-06 2000-11-16 Baedje K H Meteor Gummiwerke Sealing profile for a lamp
US20040055235A1 (en) * 2002-09-19 2004-03-25 Aztec Concrete Accessories, Inc. Concrete construction with control joint protective strip
US8276918B1 (en) * 2011-07-18 2012-10-02 Gilstad Barbara C Plunger seal ring

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156681A (en) * 1936-06-18 1939-05-02 Goodrich Co B F Sealing strip
GB504570A (en) * 1936-12-17 1939-04-27 Goodrich Co B F Improvements in or relating to joints for pavements, roads, dams and the like, and methods of making the same
US3180238A (en) * 1961-07-19 1965-04-27 Acme Highway Prod Groove filler
US3286425A (en) * 1964-06-19 1966-11-22 Brown Co D S Joint seals
US3426658A (en) * 1967-01-26 1969-02-11 Albert J Frederickson Contraction joint for pavements
US3523493A (en) * 1967-04-24 1970-08-11 Uniroyal Inc Composition of matter and use thereof in joint sealing
US3521528A (en) * 1969-02-28 1970-07-21 Grace W R & Co Joint sealing device
US3871787A (en) * 1973-10-30 1975-03-18 William James Stegmeier Joint structure for concrete materials and the like
US3967911A (en) * 1973-11-28 1976-07-06 John Aubrey Miers Sealing member
US3923411A (en) * 1975-01-28 1975-12-02 Thor Johan Berghman Sealing strip
US4884381A (en) * 1976-06-10 1989-12-05 Jorge Gabrielli Zacharias Calixto Structural joint system
US4362427A (en) * 1980-05-30 1982-12-07 Schlegel Corporation Sealing strip
US5735633A (en) * 1994-08-22 1998-04-07 Metzger; Steven N. Method of and devices for sealing and supporting concrete floor joints and the like
US6219982B1 (en) * 1998-04-13 2001-04-24 Miller-Valentine Construction Inc. Joint cover and sealing device for concrete panels
US6272806B1 (en) * 1999-03-24 2001-08-14 Face, Iii S. Allen Joint insert and method/system for using same
US20100058696A1 (en) * 2006-09-08 2010-03-11 Boss Polymer Technologies Pty Ltd. Joint seal
US20090266020A1 (en) * 2006-11-14 2009-10-29 Srb Construction Technologies Pty Ltd. Moulded panel joint caulking means
US8955287B2 (en) * 2006-11-22 2015-02-17 Mike Fortney Replacement expansion joint for cement
US20090145070A1 (en) * 2007-12-07 2009-06-11 Carl Jeffery Linn Temporary floor joint filler
US7797899B2 (en) * 2007-12-07 2010-09-21 Nox-Crete Products Group Temporary floor joint filler
US20100095620A1 (en) * 2008-10-20 2010-04-22 Wilkes Jr Robert David Compliant Trim for Concrete Slabs
US8132380B2 (en) * 2008-10-20 2012-03-13 Wilkes Jr Robert David Compliant trim for concrete slabs
US7968178B1 (en) * 2010-06-10 2011-06-28 Concrete Solutions Consulting, LLC Integrated concrete slab
US20150240503A1 (en) * 2014-02-22 2015-08-27 Ductilcrete Slab Systems, Llc Joint filling strip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"What is Durometer?", 1 page pdf found online, © 2012, FreelinWade. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900012477A1 (en) * 2019-07-22 2021-01-22 Mapei Spa PROCEDURE FOR SEALING JOINTS BETWEEN PREFABRICATED SEGMENTS OR SIMILAR CONSTRUCTION ELEMENTS, IN PARTICULAR IN THE CONSTRUCTION OF TUNNELS AND TUNNELS, AND CORRESPONDING SYSTEM AND SEALING STRIP
US20210025276A1 (en) * 2019-07-22 2021-01-28 Mapei S.P.A. Process for Sealing Joints Between Prefabricated Ashlars or Similar Construction Elements, in Particular in The Construction of Tunnels and Galleries, and Corresponding Sealing System and Strip
CN112962847A (en) * 2021-02-05 2021-06-15 中建七局第二建筑有限公司 Construction method of assembled laminated slab

Also Published As

Publication number Publication date
US9359761B2 (en) 2016-06-07
US20150240503A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
US9359761B2 (en) Joint filling strip
AU2008253759B2 (en) Composite cement panel
US20110258958A1 (en) Transferring loads across joints in concrete slabs
US9909265B2 (en) Concrete slab panel forming, reinforcing, joint sealing and edge protecting framing system
US4052825A (en) Method in the production of a wall element and a wall tile for use in connection with the method
US20090145070A1 (en) Temporary floor joint filler
EP3231784B1 (en) A layered tile and a method for manufacturing the layered tile
US6823640B1 (en) Hollow spacer for tiles and the like
US7968178B1 (en) Integrated concrete slab
US2152190A (en) Composite block
US4023324A (en) Methods of making expansion joints for roads and buildings
EP3216775A1 (en) A laminated tile, a method for manufacturing the laminated tile, and use of a primer composition
US3145503A (en) Joint water stop
US20110304072A1 (en) Method of fabricating integrated concrete slab
CN110685424A (en) Building floor leveling anti-cracking construction method and building floor leveling anti-cracking structure
US3132571A (en) Cementitious slab and means and method for forming same with lines of weakness
US20170349487A1 (en) Fibers for Reinforcing Concrete
CA2773689C (en) Integrated concrete slab
KR101826319B1 (en) Expansion joints and construction method of buildings with floor using the expansion joints
US10329198B2 (en) Roofing tile and method for producing such a roofing tile
US2071455A (en) Floor slab
JPH0752133A (en) Embedding form made of precast concrete
CN107165292A (en) The self heat insulation wall and its building method of bridge cut-off built in screed
US1725731A (en) Method and means for laying concrete floorings
US3530629A (en) Filler for concrete joints

Legal Events

Date Code Title Description
AS Assignment

Owner name: DUCTILCRETE SLAB SYSTEMS, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCURTO, GREGORY M;FACE, S. ALLEN;REEL/FRAME:035250/0451

Effective date: 20150322

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION