US20150240372A1 - Cathode and method of manufacturing - Google Patents

Cathode and method of manufacturing Download PDF

Info

Publication number
US20150240372A1
US20150240372A1 US14/431,569 US201314431569A US2015240372A1 US 20150240372 A1 US20150240372 A1 US 20150240372A1 US 201314431569 A US201314431569 A US 201314431569A US 2015240372 A1 US2015240372 A1 US 2015240372A1
Authority
US
United States
Prior art keywords
conducting bar
electrode
conducting
plate
inclined portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/431,569
Inventor
Jason Robert Cerezo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glencore Technology Pty Ltd
Original Assignee
Glencore Technology Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012904201A external-priority patent/AU2012904201A0/en
Application filed by Glencore Technology Pty Ltd filed Critical Glencore Technology Pty Ltd
Assigned to STEELMORE HOLDINGS PTY LTD. reassignment STEELMORE HOLDINGS PTY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CEREZO, JASON ROBERT, RICHBURY PTY. LTD.
Assigned to GLENCORE TECHNOLOGY PTY LTD reassignment GLENCORE TECHNOLOGY PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEELMORE HOLDINGS PTY LTD.
Publication of US20150240372A1 publication Critical patent/US20150240372A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • This invention is concerned with an electrode for electrolytic processes.
  • the invention is concerned particularly, although not exclusively, with a cathode for an electrolysis process.
  • Cathodes for electrolytic processes consist of a conducting bar and a plate of stainless steel or titanium placed in an electrolytic solution hanging from the conducting bar.
  • a problem with existing cathodes is that the conducting bar made of copper (which is a highly conductive metal) is welded to the stainless steel or titanium plate.
  • the problem is that such a weld is difficult to produce and has bad resistance to acid mist which is produced, potentially resulting in the weld being quickly corroded and the plate becoming detached.
  • a problem with replacing the copper with a different metal is that there would be a significant voltage drop, this, multiplied by the number of electrodes in use and the high currents increases the operating costs substantially.
  • One way around this is to coat a stainless steel conducting bar in copper, however, the copper coating separates from the stainless steel after a while due to the corrosion produced by the acid mist of the electrolytic operation, leading to a larger voltage drop.
  • Another prior art solution is to weld the stainless steel to the copper in a three part process where the first zone is formed of a copper-nickel alloy, an intermediate zone of mostly a nickel alloy and a second zone of stainless steel-nickel. This results in a satisfactory solution but requires a special welding process using nickel electrodes.
  • the invention resides in an electrode for electrolytic processes, the electrode comprising:
  • the conducting bar has a conducting member attached thereto to increase the conductivity of the conducting bar.
  • the electrode is a cathode. More preferably, the cathode can be used for electrolytic processes of copper production.
  • the electrolytic processes are electrolytic processes of copper production.
  • copper electro refining or electro winning are electrolytic processes of copper production.
  • the conducting bar is made of stainless steel.
  • the conducting bar may be made from another suitable metal or alloy, such as titanium. It will be appreciated that the conducting bar may also be referred to as a hanger bar.
  • the conducting member is attached to the conducting bar by welding.
  • the conducting bar preferably has an inside surface.
  • the conducting bar is hollow. More preferably the conducting bar has a tubular shape that is made by roll forming.
  • Roll forming is typically a continuous bending operation in which a long strip of sheet metal is passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section profile is obtained.
  • Design of the rolls used in the roll forming operation typically starts with a flower formation, which is the sequence of profile cross-sections, one profile for each stand of rolls.
  • the conducting member is made of copper or a copper alloy.
  • the conducting member may be made from another suitable metal or alloy having low resistivity.
  • the conducting member is welded to an inside surface of the conducting bar.
  • the conducting member is welded to an inside surface of the conducting bar before the conducting bar is formed.
  • the conducting member is welded to a sheet or plate which is then roll formed into a conducting bar.
  • the plate is made from stainless steel.
  • the plate may be made from another suitable metal or alloy, such as titanium.
  • the conducting bar is made from the same material as the plate. More preferably the conducting bar and plate are made of stainless steel. Typically the plate is welded to the conducting bar. Alternatively, the plate may be integrally formed with the conducting bar.
  • the conducting bar may have a first and second portion substantially in axial alignment, a third portion axially offset from the first and second portion, a fourth portion disposed between the first and third portion and a fifth portion disposed between second and the third portion.
  • the plate is attached to the third portion.
  • the axis of the third portion is below the level of the axis of the first and second portion. A benefit of this is that more of the plate can be in contact with an electrolyte solution.
  • the conducting bar is roll formed into such a shape.
  • the invention resides in a method of manufacturing an electrode, the method including the steps of:
  • the step of attaching the conducting member to an inside surface of the conducting bar involves welding the conducting member to the conducting bar.
  • the step of attaching the plate to the conducting bar involves welding the plate to the conducting bar.
  • the method includes the step of forming the conducting bar into a hollow shape and/or a tubular shape.
  • the step of forming the conducting bar into a hollow shape and/or a tubular shape involves roll forming the conducting bar.
  • the method includes the step of forming the conducting bar such that a first and second portion are substantially in axial alignment, a third portion is axially offset from the first and second portion, a fourth portion is disposed between the first and third portion and a fifth portion is disposed between second and the third portion.
  • the step of forming the conducting bar into such a configuration involves roll forming the conducting bar.
  • the method includes the step of forming the conducting bar such that a first and second portion are substantially in axial alignment, a third inclined portion and fourth inclined portion are disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions.
  • the third inclined portion and the fourth inclined portion form an obtuse angle.
  • the third inclined portion and the fourth inclined portion form a right angle or an acute angle.
  • the third inclined portion is adjacent to the fourth inclined portion.
  • the invention resides in an electrode for electrolytic processes, the electrode comprising:
  • the conducting bar has a first and second portion substantially in axial alignment, a third inclined portion and fourth inclined portion disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions.
  • the third inclined portion and the fourth inclined portion form an obtuse angle.
  • the third inclined portion and the fourth inclined portion form a right angle or an acute angle.
  • the third inclined portion is adjacent to the fourth inclined portion.
  • the third inclined portion and the fourth inclined portion are inclined inwardly relative to an upper edge of the plate.
  • the plate comprises at least one cut-out.
  • the at least one cut-out is located between a plane defined by the upper edge of the plate and a plane defined by the lowest part of the conducting bar.
  • the conducting bar is a conducting bar as disclosed in this specification.
  • the conducting bar may be made of copper and/or a copper alloy.
  • the invention resides in a hollow conducting bar for an electrode having:
  • a conducting member attached to an inside surface of the conducting bar.
  • the conducting bar is made of stainless steel.
  • the conducting bar may be made from another suitable metal or alloy, such as titanium.
  • the conducting member is attached to the conducting bar by welding.
  • the conducting member is made of copper or a copper alloy.
  • the conducting member may be made from another suitable metal or alloy having low resistivity.
  • the conducting member is welded to an inside surface of the conducting bar before the conducting bar is formed.
  • the conducting member is welded to a sheet or plate which is then roll formed into a conducting bar.
  • the conducting bar has a first and second portion substantially in axial alignment, a third portion axially offset from the first and second portion, a fourth portion disposed between the first and third portion and a fifth portion disposed between second and the third portion.
  • the conducting bar has a first and second portion substantially in axial alignment, a third inclined portion and fourth inclined portion disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions.
  • the third inclined portion and the fourth inclined portion form an obtuse angle.
  • the third inclined portion and the fourth inclined portion form a right angle or an acute angle.
  • the third inclined portion is adjacent to the fourth inclined portion.
  • FIG. 2 shows perspective schematic view according to an embodiment of the invention
  • FIG. 3 shows a schematic cross sectional view of a conducting bar and a conducting member according to an embodiment of the invention
  • FIG. 4 shows a schematic cross sectional view of the conducting bar and a conducting member of FIG. 3 welded together;
  • FIG. 5 shows a schematic cross sectional view of the conducting bar of FIG. 4 formed into a hollow shape
  • FIG. 6 shows a schematic cross sectional view of the conducting bar of FIG. 5 welded
  • FIG. 7 shows a schematic cross sectional view of the conducting bar of FIG. 6 and a plate
  • FIG. 8 shows a schematic cross sectional view of the conducting bar and the plate of FIG. 7 welded together
  • FIG. 9 shows a schematic cross sectional view of a conducting bar according to an embodiment of the invention.
  • FIG. 10 shows a schematic view of an electrode according to an embodiment of the invention.
  • FIG. 11 shows a schematic view of an electrode according to an embodiment of the invention.
  • FIG. 12 shows a schematic view of an electrode according to an embodiment of the invention.
  • the cathode 10 comprises a conducting bar 20 attached to a plate 30 by welds 32 .
  • a conducting member 26 is attached to the conducting bar 20 by welds 28 .
  • the conducting bar 20 and the plate 30 are made of stainless steel and as such the welds 32 are stainless steel welds of high structural strength having resistance to corrosion.
  • The, conducting bar 20 is hollow, with an inside surface 22 .
  • the conducting bar 20 is welded by a weld 24 to provide a tube shaped conducting bar 20 .
  • the conducting member 26 is made of copper and the welds 28 are not required to be as strong as the welds 32 , as there is minimal structural load placed on welds 28 .
  • the welds 28 are primarily for conductive purposes such that the conductivity of the stainless steel conducting bar 20 is increased by the copper conducting member 26 .
  • a benefit of having the conductive member 26 welded to an inside surface 22 of the conducting bar 20 is that the conductive member 26 and the welds 28 are less susceptible to corrosion.
  • a benefit of welding the conductive member 26 to the conductive bar 20 is that the conductive member 26 is not required to provide structural strength to the conductive bar 20 , as such, less copper material can be used, resulting in reduced costs.
  • FIGS. 3 , 4 , 5 , 6 , 7 and 8 there is shown a cathode 10 during various stages of production.
  • the conducting member 26 is placed on the inside surface 22 (i.e. this will become the inside surface) of conducting bar 20 (i.e. this plate or sheet material will become the conducting bar).
  • the conducting member 26 is attached to the conducting bar 20 by welds 28 .
  • the conducting bar 20 is roll formed to provide a hollow shape.
  • the conducting bar 20 is sealed along its length by weld 24 .
  • the plate 30 is positioned adjacent to the conducting bar 20 .
  • the plate 30 is attached to the conducting bar by welds 32 .
  • FIG. 9 there is shown a cross sectional view of a conducting bar 20 according to an embodiment of the present invention.
  • the conducting bar 20 is made of stainless steel and has a conducting member 26 made of copper attached to an inside surface 22 of the conducting bar 20 by welds 28 .
  • the conducting member 26 has a ‘U’ shape cross section. A benefit of this is that the conducting member 26 can be made by bending or roll forming a sheet or plate material.
  • FIG. 10 there is shown a cathode 10 according to the present invention with a “straight” shaped conducting bar 20 and a plate 30 which is placed in electrolyte solution 50 .
  • a cathode 10 with conducting bar 20 having a first portion 70 and a second portion 72 substantially in axial alignment, a third portion 74 is axially offset from the first portion 70 and second portion 72 , a fourth portion 76 is disposed between the first portion 70 and third portion 74 and a fifth portion 78 is disposed between second portion 72 and the third portion 74 .
  • a plate 30 is attached to the third portion 74 of the conducting bar 20 . The plate 30 is placed in electrolyte solution 50 .
  • the cathode 10 in FIG. 11 has more of the plate 30 in the electrolytic solution, this results in a lower voltage drop between the conducting bar 20 and the part of the plate 30 which is in the electrolytic solution 50 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

An electrode for electrolytic processes, the electrode comprising a conducting bar and a plate attached to the conducting bar, wherein the conducting bar has a conducting member attached thereto to increase the conductivity of the conducting bar.

Description

    FIELD OF THE INVENTION
  • This invention is concerned with an electrode for electrolytic processes. The invention is concerned particularly, although not exclusively, with a cathode for an electrolysis process.
  • BACKGROUND OF THE INVENTION
  • Cathodes for electrolytic processes consist of a conducting bar and a plate of stainless steel or titanium placed in an electrolytic solution hanging from the conducting bar.
  • A problem with existing cathodes is that the conducting bar made of copper (which is a highly conductive metal) is welded to the stainless steel or titanium plate. The problem is that such a weld is difficult to produce and has bad resistance to acid mist which is produced, potentially resulting in the weld being quickly corroded and the plate becoming detached.
  • A problem with replacing the copper with a different metal is that there would be a significant voltage drop, this, multiplied by the number of electrodes in use and the high currents increases the operating costs substantially. One way around this is to coat a stainless steel conducting bar in copper, however, the copper coating separates from the stainless steel after a while due to the corrosion produced by the acid mist of the electrolytic operation, leading to a larger voltage drop.
  • Another prior art solution is to weld the stainless steel to the copper in a three part process where the first zone is formed of a copper-nickel alloy, an intermediate zone of mostly a nickel alloy and a second zone of stainless steel-nickel. This results in a satisfactory solution but requires a special welding process using nickel electrodes.
  • Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
  • OBJECT OF THE INVENTION
  • It is an object of the invention to overcome or at least alleviate one or more of the above problems and/or provide the consumer with a useful or commercial choice.
  • Other preferred objects of the present invention will become apparent from the following description.
  • SUMMARY OF THE INVENTION
  • In one form, although it need not be the only or indeed the broadest form, the invention resides in an electrode for electrolytic processes, the electrode comprising:
  • a conducting bar; and
  • a plate attached to the conducting bar;
  • wherein the conducting bar has a conducting member attached thereto to increase the conductivity of the conducting bar.
  • Preferably, the electrode is a cathode. More preferably, the cathode can be used for electrolytic processes of copper production.
  • Preferably, the electrolytic processes are electrolytic processes of copper production. For example, copper electro refining or electro winning.
  • Preferably, the conducting bar is made of stainless steel. Alternatively, the conducting bar may be made from another suitable metal or alloy, such as titanium. It will be appreciated that the conducting bar may also be referred to as a hanger bar. Preferably the conducting member is attached to the conducting bar by welding. The conducting bar preferably has an inside surface. Preferably the conducting bar is hollow. More preferably the conducting bar has a tubular shape that is made by roll forming.
  • Roll forming is typically a continuous bending operation in which a long strip of sheet metal is passed through sets of rolls mounted on consecutive stands, each set performing only an incremental part of the bend, until the desired cross-section profile is obtained. Design of the rolls used in the roll forming operation typically starts with a flower formation, which is the sequence of profile cross-sections, one profile for each stand of rolls.
  • Preferably the conducting member is made of copper or a copper alloy. Alternatively, the conducting member may be made from another suitable metal or alloy having low resistivity. Typically the conducting member is welded to an inside surface of the conducting bar. Preferably the conducting member is welded to an inside surface of the conducting bar before the conducting bar is formed. For example, the conducting member is welded to a sheet or plate which is then roll formed into a conducting bar.
  • Preferably the plate is made from stainless steel. Alternatively, the plate may be made from another suitable metal or alloy, such as titanium.
  • Preferably the conducting bar is made from the same material as the plate. More preferably the conducting bar and plate are made of stainless steel. Typically the plate is welded to the conducting bar. Alternatively, the plate may be integrally formed with the conducting bar.
  • In one embodiment, the conducting bar may have a first and second portion substantially in axial alignment, a third portion axially offset from the first and second portion, a fourth portion disposed between the first and third portion and a fifth portion disposed between second and the third portion. Typically the plate is attached to the third portion. Preferably the axis of the third portion is below the level of the axis of the first and second portion. A benefit of this is that more of the plate can be in contact with an electrolyte solution. Preferably the conducting bar is roll formed into such a shape.
  • In another form, the invention resides in a method of manufacturing an electrode, the method including the steps of:
  • attaching a conducting member to an inside surface of a conducting bar; and
  • attaching a plate to the conducting bar.
  • Preferably the step of attaching the conducting member to an inside surface of the conducting bar involves welding the conducting member to the conducting bar.
  • Preferably the step of attaching the plate to the conducting bar involves welding the plate to the conducting bar.
  • Preferably the method includes the step of forming the conducting bar into a hollow shape and/or a tubular shape. Preferably, the step of forming the conducting bar into a hollow shape and/or a tubular shape involves roll forming the conducting bar.
  • Preferably the method includes the step of forming the conducting bar such that a first and second portion are substantially in axial alignment, a third portion is axially offset from the first and second portion, a fourth portion is disposed between the first and third portion and a fifth portion is disposed between second and the third portion. Preferably, the step of forming the conducting bar into such a configuration involves roll forming the conducting bar. More preferably the method includes the step of forming the conducting bar such that a first and second portion are substantially in axial alignment, a third inclined portion and fourth inclined portion are disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions. Preferably the third inclined portion and the fourth inclined portion form an obtuse angle. Alternatively the third inclined portion and the fourth inclined portion form a right angle or an acute angle. Preferably the third inclined portion is adjacent to the fourth inclined portion.
  • In a further form, the invention resides in an electrode for electrolytic processes, the electrode comprising:
  • a conducting bar; and
  • a plate attached to the conducting bar;
  • wherein at least part of the conducting bar dips below an upper edge of the plate.
  • Preferably at least a top part of the conducting bar dips below an upper edge of the plate. Preferably, the conducting bar has a first and second portion substantially in axial alignment, a third inclined portion and fourth inclined portion disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions. Preferably the third inclined portion and the fourth inclined portion form an obtuse angle. Alternatively the third inclined portion and the fourth inclined portion form a right angle or an acute angle. Preferably the third inclined portion is adjacent to the fourth inclined portion. Preferably the third inclined portion and the fourth inclined portion are inclined inwardly relative to an upper edge of the plate.
  • Preferably the plate comprises at least one cut-out. Preferably the at least one cut-out is located between a plane defined by the upper edge of the plate and a plane defined by the lowest part of the conducting bar.
  • Preferably the conducting bar is a conducting bar as disclosed in this specification. Alternatively, the conducting bar may be made of copper and/or a copper alloy.
  • In another form, the invention resides in a hollow conducting bar for an electrode having:
  • a conducting member attached to an inside surface of the conducting bar.
  • Preferably, the conducting bar is made of stainless steel. Alternatively, the conducting bar may be made from another suitable metal or alloy, such as titanium. Preferably the conducting member is attached to the conducting bar by welding.
  • Preferably the conducting member is made of copper or a copper alloy. Alternatively, the conducting member may be made from another suitable metal or alloy having low resistivity. Preferably the conducting member is welded to an inside surface of the conducting bar before the conducting bar is formed. For example, the conducting member is welded to a sheet or plate which is then roll formed into a conducting bar.
  • Preferably the conducting bar has a first and second portion substantially in axial alignment, a third portion axially offset from the first and second portion, a fourth portion disposed between the first and third portion and a fifth portion disposed between second and the third portion.
  • More preferably, the conducting bar has a first and second portion substantially in axial alignment, a third inclined portion and fourth inclined portion disposed between the first and second portions, wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions. Preferably the third inclined portion and the fourth inclined portion form an obtuse angle. Alternatively the third inclined portion and the fourth inclined portion form a right angle or an acute angle. Preferably the third inclined portion is adjacent to the fourth inclined portion.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • To assist in understanding the invention and to enable a person skilled in the art to put the invention into practical effect, preferred embodiments of the invention will be described by way of example only with reference to the accompanying drawings, wherein:
  • FIG. 1 shows a section of a prior art cathode;
  • FIG. 2 shows perspective schematic view according to an embodiment of the invention;
  • FIG. 3 shows a schematic cross sectional view of a conducting bar and a conducting member according to an embodiment of the invention;
  • FIG. 4 shows a schematic cross sectional view of the conducting bar and a conducting member of FIG. 3 welded together;
  • FIG. 5 shows a schematic cross sectional view of the conducting bar of FIG. 4 formed into a hollow shape;
  • FIG. 6 shows a schematic cross sectional view of the conducting bar of FIG. 5 welded;
  • FIG. 7 shows a schematic cross sectional view of the conducting bar of FIG. 6 and a plate;
  • FIG. 8 shows a schematic cross sectional view of the conducting bar and the plate of FIG. 7 welded together;
  • FIG. 9 shows a schematic cross sectional view of a conducting bar according to an embodiment of the invention;
  • FIG. 10 shows a schematic view of an electrode according to an embodiment of the invention;
  • FIG. 11 shows a schematic view of an electrode according to an embodiment of the invention;
  • FIG. 12 shows a schematic view of an electrode according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a prior art cathode 100 having a copper conducting bar 101 and a stainless steel plate 103. The stainless steel plate 103 is welded to the conducting bar 101 by welds 105. A problem with the stainless steel/copper welds 105 is that they are susceptible to corrosion and do not provide welds of high structural strength.
  • With reference to FIG. 2, there is shown an electrode in the form of a cathode 10. The cathode 10 comprises a conducting bar 20 attached to a plate 30 by welds 32. A conducting member 26 is attached to the conducting bar 20 by welds 28.
  • The conducting bar 20 and the plate 30 are made of stainless steel and as such the welds 32 are stainless steel welds of high structural strength having resistance to corrosion. The, conducting bar 20 is hollow, with an inside surface 22. The conducting bar 20 is welded by a weld 24 to provide a tube shaped conducting bar 20.
  • The conducting member 26 is made of copper and the welds 28 are not required to be as strong as the welds 32, as there is minimal structural load placed on welds 28.
  • The welds 28 are primarily for conductive purposes such that the conductivity of the stainless steel conducting bar 20 is increased by the copper conducting member 26. A benefit of having the conductive member 26 welded to an inside surface 22 of the conducting bar 20 is that the conductive member 26 and the welds 28 are less susceptible to corrosion. A benefit of welding the conductive member 26 to the conductive bar 20 is that the conductive member 26 is not required to provide structural strength to the conductive bar 20, as such, less copper material can be used, resulting in reduced costs.
  • With reference to FIGS. 3, 4, 5, 6, 7 and 8, there is shown a cathode 10 during various stages of production. In FIG. 3, the conducting member 26 is placed on the inside surface 22 (i.e. this will become the inside surface) of conducting bar 20 (i.e. this plate or sheet material will become the conducting bar). In FIG. 4, the conducting member 26 is attached to the conducting bar 20 by welds 28. In FIG. 5, the conducting bar 20 is roll formed to provide a hollow shape. In FIG. 6, the conducting bar 20 is sealed along its length by weld 24. In FIG. 7, the plate 30 is positioned adjacent to the conducting bar 20. In FIG. 8, the plate 30 is attached to the conducting bar by welds 32.
  • With reference to FIG. 9, there is shown a cross sectional view of a conducting bar 20 according to an embodiment of the present invention. The conducting bar 20 is made of stainless steel and has a conducting member 26 made of copper attached to an inside surface 22 of the conducting bar 20 by welds 28. As can be seen from FIG. 9, the conducting member 26 has a ‘U’ shape cross section. A benefit of this is that the conducting member 26 can be made by bending or roll forming a sheet or plate material.
  • With reference to FIG. 10, there is shown a cathode 10 according to the present invention with a “straight” shaped conducting bar 20 and a plate 30 which is placed in electrolyte solution 50.
  • With reference to FIG. 11, there is shown a cathode 10 according to the present invention with conducting bar 20 having a first portion 70 and a second portion 72 substantially in axial alignment, a third portion 74 is axially offset from the first portion 70 and second portion 72, a fourth portion 76 is disposed between the first portion 70 and third portion 74 and a fifth portion 78 is disposed between second portion 72 and the third portion 74. A plate 30 is attached to the third portion 74 of the conducting bar 20. The plate 30 is placed in electrolyte solution 50.
  • As can be seen by comparing FIGS. 10 and 11, the cathode 10 in FIG. 11 has more of the plate 30 in the electrolytic solution, this results in a lower voltage drop between the conducting bar 20 and the part of the plate 30 which is in the electrolytic solution 50.
  • With reference to FIG. 12, there is shown a cathode 10 according to the present invention with a conducting bar 20 having a first portion 80 and second portion 82 substantially in axial alignment, a third inclined portion 84 and a fourth inclined portion 86 are disposed between the first portion 80 and the second portion 82. The third inclined portion 84 and the fourth inclined portion 86 are angled relative to the first portion 80 and the second portion 82. The plate 30 is attached to the conducting bar 20 and is placed in electrolyte solution 50. As can be seen from FIG. 12, part of the third inclined portion 84 and the fourth inclined portion 86 of conducting bar 20 dip below an upper edge 90 of the plate 30. Cut-outs 60 are located adjacent to the conducting bar 20 and an upper edge 90 of the plate 30.
  • Throughout the specification the aim has been to describe the invention without limiting the invention to any one embodiment or specific collection of features. Persons skilled in the relevant art may realize variations from the specific embodiments that will nonetheless fall within the scope of the invention. For example, individual features from one embodiment may be combined with another embodiment.
  • It will be appreciated that various other changes and modifications may be made to the embodiment described without departing from the spirit and scope of the invention.
  • Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

Claims (21)

1. An electrode for electrolytic process, the electrode comprising:
a conducting bar; and
a plate attached to the conducting bar;
wherein at least part of the conducting bar dips below an upper edge of the plate.
2. An electrode as claimed in claim 1, wherein at least a top part of the conducting bar dips below an upper edge of the plate.
3. An electrode for electrolytic processes, the electrode comprising:
a conducting bar; and
a plate attached to the conducting bar;
wherein the conducting bar has a conducting member attached thereto to increase the conductivity of the conducting bar.
4. An electrode as claimed in claim 3, wherein the plate is integrally formed with the conducting bar.
5. An electrode as claimed in claim 3, wherein at least part of the conducting bar dips below an upper edge of the plate.
6. An electrode as claimed in claim 5, wherein at least a top part of the conducting bar dips below an upper surface of the plate.
7. An electrode as claimed in claim 3, wherein the conducting bar has a first portion and a second portion substantially in axial alignment, a third portion axially offset from the first portion and the second portion, a fourth portion disposed between the first portion and the third portion and a fifth portion disposed between the second portion and the third portion.
8. An electrode as claimed in claim 7, wherein the axis of the third portion is below the level of the axes of the first portion and the second portion.
9. An electrode as claimed in claim 7, wherein the plate is attached to the third portion.
10. An electrode as claimed in claim 3, wherein the conducting bar has a tubular shape and the conducting member is welded to an inner surface of the conducting bar.
11. An electrode as claimed in claim 3, wherein the electrode is a cathode used for electrolytic processes of copper production.
12. An electrode as claimed in claim 3, wherein the conducting bar is made of stainless steel.
13. A hollow conducting bar for an electrode, the hollow conducting bar having:
a first and second portion substantially in axial alignment; and
a third inclined portion and a fourth inclined portion disposed between the first and second portions;
wherein the axes of the third inclined portion and fourth inclined portion are angled relative to the axes of the first and second portions, and wherein a conducting member is attached to an inside surface of the conducting bar.
14. An electrode or a hollow conducting bar as claimed in claim 13, wherein the conducting bar is formed by roll forming.
15. A method of manufacturing an electrode, the method including the steps of:
attaching a conducting member to an inside surface of a conducting bar; and
attaching a plate to the conducting bar.
16. A method as claimed in claim 15, further including the step of forming the conducting bar such that a first and second portion of the conducting bar are substantially in axial alignment, a third portion of the conducting bar is axially offset from the first and second portion, a fourth portion of the conducting bar is disposed between the second and third portion.
17. A method as claimed in claim 15, further including the step of forming the conducting bar such that a first and second portion of the conducting bar are substantially in axial alignment, a third inclined portion and fourth inclined portion of the conducting bar are disposed between the first and second portions, wherein the axes of the third inclined portion and the fourth inclined portion are angled relative to the axes of the first and second portions.
18. A method as claimed in claim 17, wherein the third inclined portion and the fourth inclined portion form an obtuse angle.
19. A method as claimed in claim 18, wherein the third inclined portion and the fourth inclined portion form a right angle or an acute angle.
20. A method as claimed in claim 16 wherein the step of attaching a conducting member to an inside surface of a conducting bar involves welding the conducting member to an inside surface of the conducting bar before the conducting bar is formed.
21. A method as claimed in claim 16, wherein the step of forming the conducting bar involves roll forming the conducting bar.
US14/431,569 2012-09-26 2013-09-26 Cathode and method of manufacturing Abandoned US20150240372A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012904201 2012-09-26
AU2012904201A AU2012904201A0 (en) 2012-09-26 A cathode and method of manufacturing
PCT/AU2013/001109 WO2014047689A1 (en) 2012-09-26 2013-09-26 A cathode and method of manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2013/001109 A-371-Of-International WO2014047689A1 (en) 2012-09-26 2013-09-26 A cathode and method of manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/156,531 Division US11136683B2 (en) 2012-09-26 2018-10-10 Cathode and method of manufacturing

Publications (1)

Publication Number Publication Date
US20150240372A1 true US20150240372A1 (en) 2015-08-27

Family

ID=50386715

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/431,569 Abandoned US20150240372A1 (en) 2012-09-26 2013-09-26 Cathode and method of manufacturing
US16/156,531 Active 2034-05-14 US11136683B2 (en) 2012-09-26 2018-10-10 Cathode and method of manufacturing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/156,531 Active 2034-05-14 US11136683B2 (en) 2012-09-26 2018-10-10 Cathode and method of manufacturing

Country Status (17)

Country Link
US (2) US20150240372A1 (en)
EP (1) EP2900848B1 (en)
JP (2) JP6616187B2 (en)
CN (1) CN103917696B (en)
AP (1) AP2013008333A0 (en)
AU (1) AU2013325117B2 (en)
BR (1) BR112015006769B1 (en)
CA (1) CA2886023C (en)
CL (1) CL2015000750A1 (en)
CY (1) CY1123928T1 (en)
ES (1) ES2858558T3 (en)
MX (1) MX365023B (en)
PE (1) PE20150969A1 (en)
PL (1) PL2900848T3 (en)
RU (1) RU2663500C2 (en)
WO (1) WO2014047689A1 (en)
ZA (1) ZA201502315B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176118A1 (en) * 2016-04-06 2017-10-12 Beheermaatschappij Clement Weert B.V. Cathode carrier for use in a electrolysis device, and such an electrolysis device
WO2018045407A1 (en) * 2016-09-09 2018-03-15 Glencore Technology Pty Limited Improvements in hanger bars

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748041A1 (en) 2019-06-03 2020-12-09 Permascand Ab An electrode assembly for electrochemical processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269687A (en) * 1979-01-23 1981-05-26 Imi Kynoch Limited Electrode suspension bars
US7332064B2 (en) * 2002-01-25 2008-02-19 Mount Isa Mines Limited Hangar bar
CN201686759U (en) * 2010-04-30 2010-12-29 任海波 Clean maintenance-free cathode for electrolytic manganese
US20110272114A1 (en) * 2010-05-05 2011-11-10 Horacio Rafart Mouthon Method for manufacturing anodes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169119A (en) * 1967-06-05 1969-10-29 Pullman Inc Electrochemical Apparatus
JPS57185764U (en) * 1981-05-15 1982-11-25
DE3434278A1 (en) * 1984-09-19 1986-04-17 Norddeutsche Affinerie AG, 2000 Hamburg ELECTRICAL SUSPENSION DEVICE FOR CATHODES
NL8700537A (en) * 1987-03-05 1988-10-03 Gerardus Henrikus Josephus Den CARRIER FOR ANODE AND / OR CATHODIC PLATES IN ELECTROLYTIC REFINING OF METALS AND A METHOD OF MANUFACTURING SUCH A CARRIER.
DE4241433A1 (en) * 1992-12-09 1994-06-16 Hampel Heinrich Permanent electrode, used for copper refining by electrolysing - has a cross beam with a bonded plate on one side to carry the electrode plate, the electrode is simple to produce, has improved current transfer and a longer working life
US5492609A (en) * 1994-10-21 1996-02-20 T. A. Caid Industries, Inc. Cathode for electrolytic refining of copper
US6569300B1 (en) 2000-02-15 2003-05-27 T. A. Caid Industries Inc. Steel-clad cathode for electrolytic refining of copper
FI110519B (en) 2000-11-17 2003-02-14 Outokumpu Oy A method of joining a diaper member and a core member
RU2205250C2 (en) * 2001-08-14 2003-05-27 Закрытое акционерное общество "Пегас" Cathode element for electrolytic precipitation of metals
BRPI0311993B1 (en) 2002-06-18 2016-12-20 Falconbridge Ltd cathode assembly for use in metal refining and method of manufacture
US7393438B2 (en) 2004-07-22 2008-07-01 Phelps Dodge Corporation Apparatus for producing metal powder by electrowinning
RU2346087C1 (en) * 2007-04-05 2009-02-10 ОАО "Корпорация ВСМПО-АВИСМА" Cathode for copper receiving
US8337679B2 (en) * 2007-08-24 2012-12-25 Epcm Services Ltd. Electrolytic cathode assemblies and methods of manufacturing and using same
US8124556B2 (en) 2008-05-24 2012-02-28 Freeport-Mcmoran Corporation Electrochemically active composition, methods of making, and uses thereof
US8038855B2 (en) 2009-04-29 2011-10-18 Freeport-Mcmoran Corporation Anode structure for copper electrowinning
CN101851763B (en) 2010-04-30 2011-12-28 任海波 Energy-saving and environment-protecting cathode for electrolytic manganese
CN102296323B (en) * 2010-06-22 2014-11-05 陈榜龙 Manufacturing system for producing electrolytic manganese metal by two-ore method
US20130153435A1 (en) 2011-12-20 2013-06-20 Freeport-Mcmoran Corporation High surface area cathode assembly, system including the assembly, and method of using same
US20150218721A1 (en) 2012-08-10 2015-08-06 Epcm Services Ltd. Electrolytic cathode assembly with protective covering and injected seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269687A (en) * 1979-01-23 1981-05-26 Imi Kynoch Limited Electrode suspension bars
US7332064B2 (en) * 2002-01-25 2008-02-19 Mount Isa Mines Limited Hangar bar
CN201686759U (en) * 2010-04-30 2010-12-29 任海波 Clean maintenance-free cathode for electrolytic manganese
US20110272114A1 (en) * 2010-05-05 2011-11-10 Horacio Rafart Mouthon Method for manufacturing anodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation for CN 201686759 U *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176118A1 (en) * 2016-04-06 2017-10-12 Beheermaatschappij Clement Weert B.V. Cathode carrier for use in a electrolysis device, and such an electrolysis device
WO2018045407A1 (en) * 2016-09-09 2018-03-15 Glencore Technology Pty Limited Improvements in hanger bars
EA037114B1 (en) * 2016-09-09 2021-02-08 Гленкор Текнолоджи Пти Лимитед Improvements in hanger bars
US11131034B2 (en) 2016-09-09 2021-09-28 Glencore Technology Pty Limited Hanger bars

Also Published As

Publication number Publication date
RU2663500C2 (en) 2018-08-07
ES2858558T3 (en) 2021-09-30
CN103917696A (en) 2014-07-09
PL2900848T3 (en) 2021-06-14
EP2900848B1 (en) 2020-12-09
ZA201502315B (en) 2016-01-27
EP2900848A1 (en) 2015-08-05
CY1123928T1 (en) 2022-03-24
JP2015529286A (en) 2015-10-05
AP2013008333A0 (en) 2015-03-31
CA2886023C (en) 2021-06-15
JP6616187B2 (en) 2019-12-04
JP2019163549A (en) 2019-09-26
US11136683B2 (en) 2021-10-05
RU2015113932A (en) 2016-11-20
MX2015003847A (en) 2015-07-17
MX365023B (en) 2019-05-20
CN103917696B (en) 2018-02-27
CL2015000750A1 (en) 2015-12-04
BR112015006769A2 (en) 2017-07-04
PE20150969A1 (en) 2015-07-17
AU2013325117A1 (en) 2015-04-16
JP6840190B2 (en) 2021-03-10
EP2900848A4 (en) 2016-04-20
BR112015006769B1 (en) 2022-02-01
AU2013325117B2 (en) 2018-08-09
CA2886023A1 (en) 2014-04-03
US20190040539A1 (en) 2019-02-07
WO2014047689A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US11136683B2 (en) Cathode and method of manufacturing
US9988728B2 (en) Anode assembly, system including the assembly, and method of using same
AU2005201814B2 (en) Join zone, join method resistant to corrosion between copper materials and stainless steel or titanium, constituent of the permanent cathodes for electrolysis processes and cathode obtained thereof
US7914651B2 (en) Reducing power consumption in electro-refining or electro-winning of metal
US20050126906A1 (en) Hangar bar
KR102514742B1 (en) Multi-walled pipe and manufacture thereof
OA17446A (en) A cathode and method of manufacturing.
US6485621B2 (en) Cathode
CN113939614A (en) Electrode assembly for electrochemical processes
AU2002242514A1 (en) Cathode for copper electrorefining or electrowinning
CN106929878A (en) A kind of anode of electrolytic manganese metal
EP3510183B1 (en) Improvements in hanger bars
USH1314H (en) Cathode manufacturing process
JP2017145464A (en) Manufacturing method of cathode for electrolytic refining
JP2008179868A (en) Cathode for use in producing electrolytic copper

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLENCORE TECHNOLOGY PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEELMORE HOLDINGS PTY LTD.;REEL/FRAME:035265/0657

Effective date: 20141027

Owner name: STEELMORE HOLDINGS PTY LTD., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CEREZO, JASON ROBERT;RICHBURY PTY. LTD.;REEL/FRAME:035265/0559

Effective date: 20120926

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION