US20150233147A1 - Actuator for vehicle latch and multi-function rack for use with the actuator - Google Patents
Actuator for vehicle latch and multi-function rack for use with the actuator Download PDFInfo
- Publication number
- US20150233147A1 US20150233147A1 US14/623,449 US201514623449A US2015233147A1 US 20150233147 A1 US20150233147 A1 US 20150233147A1 US 201514623449 A US201514623449 A US 201514623449A US 2015233147 A1 US2015233147 A1 US 2015233147A1
- Authority
- US
- United States
- Prior art keywords
- actuator
- rack
- gear
- latch
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/0001—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
- E05B47/0012—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with rotary electromotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
- F16H19/04—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B81/00—Power-actuated vehicle locks
- E05B81/24—Power-actuated vehicle locks characterised by constructional features of the actuator or the power transmission
- E05B81/25—Actuators mounted separately from the lock and controlling the lock functions through mechanical connections
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C1/00—Fastening devices with bolts moving rectilinearly
- E05C1/02—Fastening devices with bolts moving rectilinearly without latching action
- E05C1/06—Fastening devices with bolts moving rectilinearly without latching action with operating handle or equivalent member moving otherwise than rigidly with the bolt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D43/00—Automatic clutches
- F16D43/02—Automatic clutches actuated entirely mechanically
- F16D43/26—Automatic clutches actuated entirely mechanically acting at definite angular position or disengaging after consecutive definite number of rotations
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B81/00—Power-actuated vehicle locks
- E05B81/02—Power-actuated vehicle locks characterised by the type of actuators used
- E05B81/04—Electrical
- E05B81/06—Electrical using rotary motors
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B81/00—Power-actuated vehicle locks
- E05B81/12—Power-actuated vehicle locks characterised by the function or purpose of the powered actuators
- E05B81/16—Power-actuated vehicle locks characterised by the function or purpose of the powered actuators operating on locking elements for locking or unlocking action
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B81/00—Power-actuated vehicle locks
- E05B81/24—Power-actuated vehicle locks characterised by constructional features of the actuator or the power transmission
- E05B81/32—Details of the actuator transmission
- E05B81/34—Details of the actuator transmission of geared transmissions
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B81/00—Power-actuated vehicle locks
- E05B81/54—Electrical circuits
- E05B81/64—Monitoring or sensing, e.g. by using switches or sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/16—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/12—Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
- F16H37/124—Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types for interconverting rotary motion and reciprocating motion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T292/00—Closure fasteners
- Y10T292/08—Bolts
- Y10T292/096—Sliding
- Y10T292/1014—Operating means
- Y10T292/1018—Gear
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18568—Reciprocating or oscillating to or from alternating rotary
- Y10T74/18792—Reciprocating or oscillating to or from alternating rotary including worm
Definitions
- Various embodiments of the present invention relate to a latch and more particularly, an actuator for a vehicle latch.
- latches are required to perform numerous operations within limited confines of an application area of the item they are installed in.
- An actuator for a latch having: a motor operatively coupled to a gear train; and a rack moveably mounted to the actuator for linear movement with respect to a housing of the actuator, wherein the gear train comprises: a worm; a worm gear and a pinion gear, wherein the pinion gear is rotatably mounted to the worm gear and the pinion gear has a plurality of teeth configured to engage a portion of the rack, wherein the axis of rotation of the worm is perpendicular to the axis of rotation of the worm gear and the pinion gear and wherein the rack is configured to operatively couple the gear train to a locking lever of the latch and the rack also has a cam surface configured to actuate a switch as the rack is moved by the gear train.
- FIG. 1 is an exploded view of an actuator according to an embodiment of the present invention
- FIG. 2 is line drawing of the view of FIG. 1 ;
- FIG. 3 is a view of the actuator in a locked state
- FIG. 4 is line drawing of the view of FIG. 3 ;
- FIG. 5 is a view of the actuator in a unlocked state
- FIG. 6 is line drawing of the view of FIG. 5 .
- the latch is a vehicle door latch or any other type of vehicle latch.
- Latch has an actuator 10 operatively coupled to components of the latch that are located within a latch housing.
- a rack 12 is movably mounted to the actuator 10 . Movement of the rack 12 actuates other component(s) of the latch, for example a lock/unlock lever operatively coupled to a detent lever or pawl that operatively engages a claw or fork bolt of the latch and thus movement of the rack can place the latch that is operatively coupled to the actuator in a locked or unlocked state.
- the rack may also be configured to operatively engage other components of the latch such as a lock lever.
- the lock lever may also be configured to operatively engage other components of the latch and the interaction of the lock lever to the detent lever is one of many applications and/or operations that may be used alone or in combination with other features/operations of the latch. For example, movement of the lock lever via movement of the rack may couple or uncouple a detent lever or pawl of the latch from a release lever or release handle such that movement of the same may either open the latch or have no effect on the latch.
- the rack may comprise or be a portion of the lock lever such that movement of the rack causes the desired latch function.
- the rack 12 may be directly coupled to the detent lever of the latch.
- the rack 12 is driven by a motor 14 of the actuator 10 via a gear train 16 operatively coupled to the motor 14 and the rack 12 .
- the actuator 10 only utilizes three gears that are also three separate components to reduce the velocity and allow the last component (e.g., rack 12 ) in the mechanism to exert the required force.
- the first component of the gear train 16 which is connected to the motor shaft is a helical gear normally called a worm 18 .
- the second component is a helical gear normally called a worm gear 20 which is mounted at a ninety degree angle with respect to the first gear or worm's axis of rotation 22 .
- the worm gear's axis of rotation is illustrated as axis 24 .
- This second gear 20 is in turn connected via a positive and unique surface contact with a component or pinion gear 26 that has a spur gear, which in turn moves the rack 12 , which is the last component and output of the actuator 10 .
- the described crossed axis gear train mechanism has several advantages with respect to other actuators in that the number of required gears is reduced to only three and the number of gear meshes or gear pairs is reduced to two.
- the engagement between the second and third gear is not via a gear mesh, which eliminates the accumulation and subsequent amplification of backlash in the system.
- the fact that the helical gears have crossed axes required the uses of helical gears which create less noise as the transmission of power is carried out through a sliding motion as opposed to the harsh tooth to tooth contact inherent to the spur gears.
- the worm/worm gear configuration creates a more cost efficient and a quieter actuator 10 .
- the actuator 10 has a housing 28 and an associated cover 30 as well as an unlock switch 32 and a door ajar switch 34 .
- the unlock switch is mounted to an unlock switch carrier 36 while the door ajar switch 34 is mounted to a door ajar switch carrier 38 .
- worm gear 20 is operatively coupled to a worm 18 which is rotatably driven by motor 14 .
- Gear 26 is rotatably mounted to worm gear 20 about axis 24 such that gear 26 can rotate with respect to worm gear 20 about axis 24 .
- Gear 26 also has a protrusion 40 that is located between a pair of features 42 and 44 of worm gear 20 such that as worm gear 20 rotates in one direction (e.g., clockwise) from a home or central position and the actuator 10 is in the locked position illustrated in FIGS.
- feature 42 will contact protrusion 40 and thus rotate gear 26 clockwise and accordingly move rack 12 linearly in the direction of arrow 46 between a first position and a second position with respect to the actuator 10 so that the actuator is now in the locked position illustrated in FIGS. 5 and 6 .
- the worm gear 20 After this movement, the worm gear 20 returns to the home or central position illustrated in FIGS. 3 and 4 via counter clockwise movement while gear 26 stays in the position illustrated in FIGS. 5 and 6 .
- clockwise movement of the worm gear 20 from the central or home position of FIGS. 3 and 4 will move gear 26 clockwise and rack in the direction of arrow 46 .
- worm gear 20 is spring biased to rotate counter clockwise back to the home or central position illustrated in FIGS. 3 and 4 as well as FIGS. 5 and 6 via a return spring 48 however, gear 26 and rack 12 stay in the position illustrated in FIGS. 5 and 6 .
- the distance between features 42 and 44 is larger than protrusion 40 so that the aforementioned movement of worm gear 20 with respect to gear 26 is possible.
- the return spring 48 is configured to be located between the housing 28 and worm gear 20 in order to provide a biasing force to return the worm gear 20 back to the home or central position after the motor 14 is denergized such that either feature 42 or 44 is positioned to make contact with protrusion 40 depending on the state of the latch or actuator 10 (e.g., locked or unlocked). Accordingly and through the rotational movement of the worm gear 20 in opposite directions linear movement of the rack 12 in the direction of arrows 50 is possible.
- a switch 32 is positioned to be actuated by a surface or cam surface 52 of the rack 12 as is moves in the directions of arrows 50 between the locked and unlocked positions. As such movement of the rack or its current location or state is determined by the state switch 32 is in (e.g., closed or open depending on the location of surface or cam surface 52 of rack 12 ).
- the motor 14 When activated, the motor 14 will drive the gear system or gear train 16 and move the rack 12 linearly.
- the rack 12 and/or the actuator 10 and accordingly the associated latch will stay in the locked or unlocked position until the motor 14 is once again activated and the state of the actuator changes (e.g., from locked to unlocked or unlocked to locked).
- Spring 48 returns the worm gear to a central position or home position so that either one of features 42 or 44 is ready to contact protrusion 40 depending on the state of the actuator (e.g., locked or unlocked). The will occur when the motor 14 is operated in one of two directions and reversing the flow of current to the motor 14 will reverse the direction of the motor 14 and move the rack 12 in an opposite direction thus, changing the state of the actuator 10 from lock to unlock or vice versa. Once the state has been changed the spring 48 will again return the gear train 16 and/or worm gear 20 to a central position so that either feature 42 or 44 is ready to contact protrusion 40 .
- the state of the actuator e.g., locked or unlocked
- the cam surface 52 of the rack 12 is integrally formed therewith and the cam surface is configured to actuate switch 32 as the rack 12 is moved linearly. This allows the actuator 10 to have a more cost efficient design as the number of separately required components are reduced as the rack 12 is used as a multi-functional component.
- the rack 12 is a link between a gear of the gear train and an arm or a lever of the latch in order to transmit the force and travel given by the actuator.
- the system also accommodates for loss of travel in order to avoid to back driving the gearing system when the mechanism is subjected to a manual operation.
- the cam feature 52 allows the position of the actuator to be detected by activation of a switch, which negates the need for a separate component to sense the position of the actuator. Since the lock/unlock switch 32 is integrated into the actuator 10 the necessity for an exclusive connector for a switch outside of the actuator was eliminated and electrical traces are optimized as there is now a common terminal for several switches.
- a feature 70 is located at an end portion of the rack 12 .
- the configuration of the feature 70 allows for a bumper to be eliminated from the interface between the rack 12 and a lock/unlock lever 72 (illustrated schematically in FIGS. 3-6 ).
- the configuration of feature 70 allows for it to be received in a complimentary opening or feature of the locking lever 72 operatively coupled to the rack 12 and the cooperation of feature 70 and its associated opening or feature of the locking lever 72 reduces the need for a bumper to reduce the noise between these components. Accordingly, a multifunctional rack 12 is provided.
- Switches 32 and 34 are operatively coupled to a controller or microcontroller 54 that is provided with the states of switches 32 and 34 and can thus operate the motor 14 in the aforementioned opposite directions based upon the states or information received from the switches 32 and 34 or at least switch 32 .
- This arrangement or design disclosed herein also allows for a compact design.
- this design or arrangement also allows for less movable components required to be located between the motor 14 and the rack 12 thus reducing cost, noise, size requirements, possible wear issues etc.
- Reduction in the number of components and/or gears reduces the sensitivity of the transmission between the components and/or gear as the backlash between each pair of gears is minimized due to the reduced amount of pairs of gears. Also, the time required to lock and unlock the latch by the motor is reduced as the motor does not have to overcome lost motion created by accumulated backlash. Moreover, reduced backlash between each gear reduces the amount of noise created by the actuator. Still further, the gear train system provides desired gear train ratios without numerous gears and gear pairs nor does it require a parallel shaft gear train.
- the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
- the terms “bottom” and “top” are used herein, unless otherwise noted, merely for convenience of description, and are not limited to any one position or spatial orientation.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lock And Its Accessories (AREA)
- Transmission Devices (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/940,423 filed on Feb. 15, 2014, the entire contents of which are incorporated herein by reference thereto.
- This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/942,833 filed Feb. 21, 2014, the entire contents of which are incorporated herein by reference thereto.
- Various embodiments of the present invention relate to a latch and more particularly, an actuator for a vehicle latch.
- In some applications, latches are required to perform numerous operations within limited confines of an application area of the item they are installed in.
- Accordingly, it is desirable to provide a latch with an actuator that is able to perform the required functions while being subject to certain space requirements.
- An actuator for a latch is provided. The actuator having: a motor operatively coupled to a gear train; and a rack moveably mounted to the actuator for linear movement with respect to a housing of the actuator, wherein the gear train comprises: a worm; a worm gear and a pinion gear, wherein the pinion gear is rotatably mounted to the worm gear and the pinion gear has a plurality of teeth configured to engage a portion of the rack, wherein the axis of rotation of the worm is perpendicular to the axis of rotation of the worm gear and the pinion gear and wherein the rack is configured to operatively couple the gear train to a locking lever of the latch and the rack also has a cam surface configured to actuate a switch as the rack is moved by the gear train.
- These and/or other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 is an exploded view of an actuator according to an embodiment of the present invention; -
FIG. 2 is line drawing of the view ofFIG. 1 ; -
FIG. 3 is a view of the actuator in a locked state; -
FIG. 4 is line drawing of the view ofFIG. 3 ; -
FIG. 5 is a view of the actuator in a unlocked state; -
FIG. 6 is line drawing of the view ofFIG. 5 . - Although the drawings represent varied embodiments and features of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to illustrate and explain exemplary embodiments the present invention. The exemplification set forth herein illustrates several aspects of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
- Reference is made to the following U.S. Pat. Nos. 3,969,789; 6,568,741; 6,679,531; 8,348,310 and U.S. Patent Publication Nos. US 2010/0127512; US 2011/0204659; US 2012/0292927 and provisional Patent Application Ser. No. 61/806,530 filed Mar. 29, 2013, the entire contents each of which are incorporated herein by reference thereto.
- Referring now to the FIGS. and in particular,
FIGS. 1-6 , anactuator 10 for a latch is illustrated. In one embodiment, the latch is a vehicle door latch or any other type of vehicle latch. Latch has anactuator 10 operatively coupled to components of the latch that are located within a latch housing. In one embodiment, arack 12 is movably mounted to theactuator 10. Movement of therack 12 actuates other component(s) of the latch, for example a lock/unlock lever operatively coupled to a detent lever or pawl that operatively engages a claw or fork bolt of the latch and thus movement of the rack can place the latch that is operatively coupled to the actuator in a locked or unlocked state. It is, of course, understood that the rack may also be configured to operatively engage other components of the latch such as a lock lever. It is, of course, understood that the lock lever may also be configured to operatively engage other components of the latch and the interaction of the lock lever to the detent lever is one of many applications and/or operations that may be used alone or in combination with other features/operations of the latch. For example, movement of the lock lever via movement of the rack may couple or uncouple a detent lever or pawl of the latch from a release lever or release handle such that movement of the same may either open the latch or have no effect on the latch. In other words movement of the lock lever via movement of the rack locks or unlocks the latch by coupling or uncoupling components of the latch through movement of the lock lever operably coupled to an end of the rack. Still further and in an alternative embodiment, the rack may comprise or be a portion of the lock lever such that movement of the rack causes the desired latch function. In one alternative embodiment, therack 12 may be directly coupled to the detent lever of the latch. - In one embodiment, the
rack 12 is driven by amotor 14 of theactuator 10 via agear train 16 operatively coupled to themotor 14 and therack 12. As illustrated, theactuator 10 only utilizes three gears that are also three separate components to reduce the velocity and allow the last component (e.g., rack 12) in the mechanism to exert the required force. The first component of thegear train 16 which is connected to the motor shaft is a helical gear normally called aworm 18. The second component is a helical gear normally called aworm gear 20 which is mounted at a ninety degree angle with respect to the first gear or worm's axis ofrotation 22. The worm gear's axis of rotation is illustrated asaxis 24. Thissecond gear 20 is in turn connected via a positive and unique surface contact with a component orpinion gear 26 that has a spur gear, which in turn moves therack 12, which is the last component and output of theactuator 10. - The described crossed axis gear train mechanism has several advantages with respect to other actuators in that the number of required gears is reduced to only three and the number of gear meshes or gear pairs is reduced to two. In addition, the engagement between the second and third gear is not via a gear mesh, which eliminates the accumulation and subsequent amplification of backlash in the system. Also, the fact that the helical gears have crossed axes required the uses of helical gears which create less noise as the transmission of power is carried out through a sliding motion as opposed to the harsh tooth to tooth contact inherent to the spur gears.
- Accordingly, the worm/worm gear configuration creates a more cost efficient and a
quieter actuator 10. - The
actuator 10 has ahousing 28 and an associatedcover 30 as well as anunlock switch 32 and adoor ajar switch 34. The unlock switch is mounted to anunlock switch carrier 36 while thedoor ajar switch 34 is mounted to a doorajar switch carrier 38. - As mentioned above,
worm gear 20 is operatively coupled to aworm 18 which is rotatably driven bymotor 14. Gear 26 is rotatably mounted toworm gear 20 aboutaxis 24 such thatgear 26 can rotate with respect toworm gear 20 aboutaxis 24.Gear 26 also has aprotrusion 40 that is located between a pair offeatures worm gear 20 such that asworm gear 20 rotates in one direction (e.g., clockwise) from a home or central position and theactuator 10 is in the locked position illustrated inFIGS. 3 and 4 ,feature 42 will contactprotrusion 40 and thus rotategear 26 clockwise and accordingly move rack 12 linearly in the direction ofarrow 46 between a first position and a second position with respect to theactuator 10 so that the actuator is now in the locked position illustrated inFIGS. 5 and 6 . - After this movement, the
worm gear 20 returns to the home or central position illustrated inFIGS. 3 and 4 via counter clockwise movement whilegear 26 stays in the position illustrated inFIGS. 5 and 6 . In other words and when viewingFIGS. 3-6 , clockwise movement of theworm gear 20 from the central or home position ofFIGS. 3 and 4 will movegear 26 clockwise and rack in the direction ofarrow 46. Afterwards,worm gear 20 is spring biased to rotate counter clockwise back to the home or central position illustrated inFIGS. 3 and 4 as well asFIGS. 5 and 6 via areturn spring 48 however,gear 26 andrack 12 stay in the position illustrated inFIGS. 5 and 6 . - When the actuator is in the position illustrated in
FIGS. 5 and 6 ,feature 44 of the worm gear is adjacent toprotrusion 40 and thus counter clockwise movement ofworm gear 20 will then rotategear 26 in a counter clockwise manner and accordingly moverack 12 in a direction opposite toarrow 46 and thus move the rack from the unlocked position (FIGS. 4 and 5 ) to the locked position of (FIGS. 3 and 4 ). Once in this position, thereturn spring 48 rotates theworm gear 20 in a clockwise direction back to the home or central position illustrated inFIGS. 3 and 4 such thatfeature 42 is now positioned to contactprotrusion 40 whenworm gear 20 is rotated clockwise. - It being understood that in one embodiment, the distance between
features protrusion 40 so that the aforementioned movement ofworm gear 20 with respect togear 26 is possible. - The
return spring 48 is configured to be located between thehousing 28 andworm gear 20 in order to provide a biasing force to return theworm gear 20 back to the home or central position after themotor 14 is denergized such that either feature 42 or 44 is positioned to make contact withprotrusion 40 depending on the state of the latch or actuator 10 (e.g., locked or unlocked). Accordingly and through the rotational movement of theworm gear 20 in opposite directions linear movement of therack 12 in the direction ofarrows 50 is possible. - A
switch 32 is positioned to be actuated by a surface orcam surface 52 of therack 12 as is moves in the directions ofarrows 50 between the locked and unlocked positions. As such movement of the rack or its current location or state is determined by thestate switch 32 is in (e.g., closed or open depending on the location of surface orcam surface 52 of rack 12). When activated, themotor 14 will drive the gear system orgear train 16 and move therack 12 linearly. Therack 12 and/or theactuator 10 and accordingly the associated latch will stay in the locked or unlocked position until themotor 14 is once again activated and the state of the actuator changes (e.g., from locked to unlocked or unlocked to locked).Spring 48 returns the worm gear to a central position or home position so that either one offeatures protrusion 40 depending on the state of the actuator (e.g., locked or unlocked). The will occur when themotor 14 is operated in one of two directions and reversing the flow of current to themotor 14 will reverse the direction of themotor 14 and move therack 12 in an opposite direction thus, changing the state of the actuator 10 from lock to unlock or vice versa. Once the state has been changed thespring 48 will again return thegear train 16 and/orworm gear 20 to a central position so that either feature 42 or 44 is ready to contactprotrusion 40. - As illustrated and as mentioned above, the
cam surface 52 of therack 12 is integrally formed therewith and the cam surface is configured to actuateswitch 32 as therack 12 is moved linearly. This allows theactuator 10 to have a more cost efficient design as the number of separately required components are reduced as therack 12 is used as a multi-functional component. - For example and as discussed above, the
rack 12 is a link between a gear of the gear train and an arm or a lever of the latch in order to transmit the force and travel given by the actuator. The system also accommodates for loss of travel in order to avoid to back driving the gearing system when the mechanism is subjected to a manual operation. Thecam feature 52 allows the position of the actuator to be detected by activation of a switch, which negates the need for a separate component to sense the position of the actuator. Since the lock/unlock switch 32 is integrated into theactuator 10 the necessity for an exclusive connector for a switch outside of the actuator was eliminated and electrical traces are optimized as there is now a common terminal for several switches. - Also, a
feature 70 is located at an end portion of therack 12. The configuration of thefeature 70 allows for a bumper to be eliminated from the interface between therack 12 and a lock/unlock lever 72 (illustrated schematically inFIGS. 3-6 ). The configuration offeature 70 allows for it to be received in a complimentary opening or feature of the lockinglever 72 operatively coupled to therack 12 and the cooperation offeature 70 and its associated opening or feature of the lockinglever 72 reduces the need for a bumper to reduce the noise between these components. Accordingly, amultifunctional rack 12 is provided. -
Switches microcontroller 54 that is provided with the states ofswitches motor 14 in the aforementioned opposite directions based upon the states or information received from theswitches least switch 32. - This arrangement or design disclosed herein also allows for a compact design. In addition, this design or arrangement also allows for less movable components required to be located between the
motor 14 and therack 12 thus reducing cost, noise, size requirements, possible wear issues etc. - Reduction in the number of components and/or gears reduces the sensitivity of the transmission between the components and/or gear as the backlash between each pair of gears is minimized due to the reduced amount of pairs of gears. Also, the time required to lock and unlock the latch by the motor is reduced as the motor does not have to overcome lost motion created by accumulated backlash. Moreover, reduced backlash between each gear reduces the amount of noise created by the actuator. Still further, the gear train system provides desired gear train ratios without numerous gears and gear pairs nor does it require a parallel shaft gear train.
- As used herein, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. In addition, it is noted that the terms “bottom” and “top” are used herein, unless otherwise noted, merely for convenience of description, and are not limited to any one position or spatial orientation.
- The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity).
- While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/623,449 US20150233147A1 (en) | 2014-02-15 | 2015-02-16 | Actuator for vehicle latch and multi-function rack for use with the actuator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461940423P | 2014-02-15 | 2014-02-15 | |
US201461942833P | 2014-02-21 | 2014-02-21 | |
US14/623,449 US20150233147A1 (en) | 2014-02-15 | 2015-02-16 | Actuator for vehicle latch and multi-function rack for use with the actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150233147A1 true US20150233147A1 (en) | 2015-08-20 |
Family
ID=53797639
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/623,451 Expired - Fee Related US10598263B2 (en) | 2014-02-15 | 2015-02-16 | Actuator for vehicle latch and vehicle latch with actuator |
US14/623,449 Abandoned US20150233147A1 (en) | 2014-02-15 | 2015-02-16 | Actuator for vehicle latch and multi-function rack for use with the actuator |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/623,451 Expired - Fee Related US10598263B2 (en) | 2014-02-15 | 2015-02-16 | Actuator for vehicle latch and vehicle latch with actuator |
Country Status (3)
Country | Link |
---|---|
US (2) | US10598263B2 (en) |
CN (4) | CN104847190B (en) |
WO (1) | WO2015123640A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019504229A (en) * | 2015-12-28 | 2019-02-14 | ウーボ テク カンパニー リミテッド | Vehicle door latch system |
US20190092273A1 (en) * | 2017-09-22 | 2019-03-28 | GM Global Technology Operations LLC | Multi-pull latch and lock systems for compartment closure assemblies of motor vehicles |
US10598263B2 (en) | 2014-02-15 | 2020-03-24 | Inteva Products, Llc | Actuator for vehicle latch and vehicle latch with actuator |
WO2020071651A1 (en) * | 2018-10-02 | 2020-04-09 | Woobo Tech Co., Ltd. | Vehicle door latch with safety device |
WO2021072048A1 (en) * | 2019-10-09 | 2021-04-15 | Southco, Inc. | Electronically actuated and locking glove box system |
US11261646B2 (en) * | 2018-09-24 | 2022-03-01 | Magna Closures Inc. | Clutch assembly for powered door system |
US11268314B2 (en) * | 2019-03-15 | 2022-03-08 | Magna Closures Inc. | Clutch assembly for powered door system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10344506B2 (en) * | 2013-08-12 | 2019-07-09 | Inteva Products, Llc | Latch housing and method for isolating components in a latch housing |
FR3053376A1 (en) | 2016-06-29 | 2018-01-05 | Inteva Products, Llc | VERIFICATION SYSTEM FOR A VEHICLE LOCK AND METHOD |
CN108223730A (en) * | 2016-12-10 | 2018-06-29 | 枣庄福德通用机械有限公司 | The worm gear locking device of big yield electrolytic descaling tank |
JP6811083B2 (en) * | 2016-12-12 | 2021-01-13 | 株式会社小糸製作所 | Cleaners and vehicles with cleaners |
KR102010339B1 (en) * | 2018-03-14 | 2019-08-13 | (주)세고스 | Actuator |
JP7184634B2 (en) * | 2018-12-25 | 2022-12-06 | 株式会社ユーシン | door latch device |
CN109930922B (en) * | 2019-03-26 | 2021-06-11 | 上海工程技术大学 | Novel electric door lock opening mechanism with variable-degree-of-freedom flexible composite pair structure |
US11725433B2 (en) | 2020-03-16 | 2023-08-15 | Extang Corporation | Electronic actuated tonneau cover striker assembly |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3566703A (en) * | 1968-03-28 | 1971-03-02 | Kent Eng | Latch release operating mechanism |
US4135377A (en) * | 1975-12-01 | 1979-01-23 | Arn. Kiekert Sohne | Central locking equipment for vehicle doors |
US4269440A (en) * | 1975-11-08 | 1981-05-26 | Fichtel & Sachs Ag | Electrically energized operating mechanism for the door of a vehicle and the like, and drive arrangement for the mechanism |
US4921288A (en) * | 1987-11-12 | 1990-05-01 | Robert Bosch Gmbh | Driving device for shifting a mechanical element, particularly for use in a locking system of a motor vehicle |
US5236234A (en) * | 1991-04-19 | 1993-08-17 | Rockwell Automotive Body Systems (U.K.) Limited | Vehicle door latches |
US5503441A (en) * | 1993-09-30 | 1996-04-02 | Stoneridge, Inc. | Double locking lock actuator |
US5746076A (en) * | 1994-11-21 | 1998-05-05 | Mitsui Kinzoku Kogyo Kabushiki Kaisha | Door lock actuator unit |
US20010015305A1 (en) * | 2000-02-18 | 2001-08-23 | Meritor Light Vehicle Systems (Uk) Limited | Actuator assemblies |
US6494505B2 (en) * | 2000-10-30 | 2002-12-17 | Ohi Seisakusho Co., Ltd. | Automotive door lock assembly |
US6655179B2 (en) * | 2000-10-26 | 2003-12-02 | Ohi Seisakusho Co., Ltd. | Automotive door lock assembly |
US7448237B2 (en) * | 2004-09-02 | 2008-11-11 | Ohi Seisakusho Co., Ltd. | Rotational element position detector for door latch assembly |
US8677690B2 (en) * | 2010-08-31 | 2014-03-25 | Hyundai Motor Company | Fuel door opening/closing apparatus for vehicle |
US20150115618A1 (en) * | 2013-10-31 | 2015-04-30 | Aisin Seiki Kabushiki Kaisha | Lid lock device |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969789A (en) | 1975-05-27 | 1976-07-20 | General Motors Corporation | Door hold-open mechanism |
US5649726A (en) * | 1996-05-21 | 1997-07-22 | General Motors Corporation | Vehicle closure latch |
CN2288243Y (en) | 1996-07-05 | 1998-08-19 | 凌英泰 | Keyboard-type permutation anti-theft alarm door lock with key |
CN2331739Y (en) | 1998-05-20 | 1999-08-04 | 张志钢 | Lock engine for electric door lock of vehicle |
US6679531B2 (en) | 2001-05-03 | 2004-01-20 | Delphi Technologies, Inc. | Vehicle compartment latch |
US6568741B1 (en) | 2002-06-26 | 2003-05-27 | General Motors Corporation | Door hinge for vehicle |
CN2635835Y (en) | 2003-07-05 | 2004-08-25 | 张钊 | Electric controlled door lock |
JP4624912B2 (en) * | 2005-11-30 | 2011-02-02 | 株式会社アルファ | Electric steering lock device |
US7270029B1 (en) * | 2006-07-27 | 2007-09-18 | Ford Global Technologies, Llc | Passive entry side door latch release system |
GB2464999A (en) * | 2008-09-16 | 2010-05-12 | John Phillip Chevalier | An actuator including a motor connected to rotate a flywheel carrying the input of a centrifugal clutch |
US20100127512A1 (en) | 2008-11-26 | 2010-05-27 | Inteva Products Llp | Vehicle door latch |
FR2940505B1 (en) * | 2008-12-18 | 2011-02-25 | Valeo Securite Habitacle | CONTROL DEVICE HAVING SWITCH, CONTROL DEVICE HOUSING, AND SWITCH FOR CONTROL DEVICE |
WO2011017529A2 (en) | 2009-08-06 | 2011-02-10 | Inteva Products Llc | Hold open lever integrated to latch housing |
JP4963720B2 (en) * | 2009-12-21 | 2012-06-27 | 三井金属アクト株式会社 | Actuator in vehicle door latch device |
US8967679B2 (en) | 2010-02-18 | 2015-03-03 | Inteva Products, Llc | Vehicle door latch |
US20120175896A1 (en) * | 2010-05-05 | 2012-07-12 | Alfredo Martinez | Vehicle door latch |
US8894106B2 (en) | 2011-05-19 | 2014-11-25 | Inteva Products, Llc | Vehicle latch |
JP5955516B2 (en) | 2011-07-12 | 2016-07-20 | 株式会社ユーシン | Door lock device |
US9194162B2 (en) * | 2011-07-14 | 2015-11-24 | Inteva Products, Llc | Vehicle door latch |
DE102012025009A1 (en) * | 2011-12-23 | 2013-06-27 | Magna Closures S.P.A. | System for determining the operating state of a lock for a door of a motor vehicle and method for assembling this system |
US9739077B2 (en) * | 2012-02-16 | 2017-08-22 | Inteva Products, Llc | Linear rotating link switch actuation |
EP2806091B1 (en) * | 2012-04-17 | 2017-10-04 | Magna Closures SpA | An electrical vehicle latch |
JP5972657B2 (en) * | 2012-05-11 | 2016-08-17 | 株式会社ニフコ | Glove box |
US10000949B2 (en) | 2013-03-29 | 2018-06-19 | Inteva Products, Llc | Apparatus and method for preventing undesired engagement of hold open lever in a latch |
US10598263B2 (en) | 2014-02-15 | 2020-03-24 | Inteva Products, Llc | Actuator for vehicle latch and vehicle latch with actuator |
-
2015
- 2015-02-16 US US14/623,451 patent/US10598263B2/en not_active Expired - Fee Related
- 2015-02-16 US US14/623,449 patent/US20150233147A1/en not_active Abandoned
- 2015-02-16 WO PCT/US2015/016054 patent/WO2015123640A2/en active Application Filing
- 2015-02-16 CN CN201510084971.3A patent/CN104847190B/en active Active
- 2015-02-16 CN CN201520113425.3U patent/CN204754508U/en not_active Expired - Fee Related
- 2015-02-16 CN CN201520113656.4U patent/CN204738635U/en not_active Withdrawn - After Issue
- 2015-02-16 CN CN201510085142.7A patent/CN104847191B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3566703A (en) * | 1968-03-28 | 1971-03-02 | Kent Eng | Latch release operating mechanism |
US4269440A (en) * | 1975-11-08 | 1981-05-26 | Fichtel & Sachs Ag | Electrically energized operating mechanism for the door of a vehicle and the like, and drive arrangement for the mechanism |
US4135377A (en) * | 1975-12-01 | 1979-01-23 | Arn. Kiekert Sohne | Central locking equipment for vehicle doors |
US4921288A (en) * | 1987-11-12 | 1990-05-01 | Robert Bosch Gmbh | Driving device for shifting a mechanical element, particularly for use in a locking system of a motor vehicle |
US5236234A (en) * | 1991-04-19 | 1993-08-17 | Rockwell Automotive Body Systems (U.K.) Limited | Vehicle door latches |
US5503441A (en) * | 1993-09-30 | 1996-04-02 | Stoneridge, Inc. | Double locking lock actuator |
US5746076A (en) * | 1994-11-21 | 1998-05-05 | Mitsui Kinzoku Kogyo Kabushiki Kaisha | Door lock actuator unit |
US20010015305A1 (en) * | 2000-02-18 | 2001-08-23 | Meritor Light Vehicle Systems (Uk) Limited | Actuator assemblies |
US6655179B2 (en) * | 2000-10-26 | 2003-12-02 | Ohi Seisakusho Co., Ltd. | Automotive door lock assembly |
US6494505B2 (en) * | 2000-10-30 | 2002-12-17 | Ohi Seisakusho Co., Ltd. | Automotive door lock assembly |
US7448237B2 (en) * | 2004-09-02 | 2008-11-11 | Ohi Seisakusho Co., Ltd. | Rotational element position detector for door latch assembly |
US8677690B2 (en) * | 2010-08-31 | 2014-03-25 | Hyundai Motor Company | Fuel door opening/closing apparatus for vehicle |
US20150115618A1 (en) * | 2013-10-31 | 2015-04-30 | Aisin Seiki Kabushiki Kaisha | Lid lock device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10598263B2 (en) | 2014-02-15 | 2020-03-24 | Inteva Products, Llc | Actuator for vehicle latch and vehicle latch with actuator |
JP2019504229A (en) * | 2015-12-28 | 2019-02-14 | ウーボ テク カンパニー リミテッド | Vehicle door latch system |
US20190092273A1 (en) * | 2017-09-22 | 2019-03-28 | GM Global Technology Operations LLC | Multi-pull latch and lock systems for compartment closure assemblies of motor vehicles |
US11007972B2 (en) * | 2017-09-22 | 2021-05-18 | GM Global Technology Operations LLC | Multi-pull latch and lock systems for compartment closure assemblies of motor vehicles |
US11261646B2 (en) * | 2018-09-24 | 2022-03-01 | Magna Closures Inc. | Clutch assembly for powered door system |
WO2020071651A1 (en) * | 2018-10-02 | 2020-04-09 | Woobo Tech Co., Ltd. | Vehicle door latch with safety device |
KR20200038007A (en) * | 2018-10-02 | 2020-04-10 | 주식회사 우보테크 | E-Latch for Vehicle Door with Safety Device |
CN111263841A (en) * | 2018-10-02 | 2020-06-09 | 牛步科技有限公司 | Vehicle door latch with safety device |
KR102363862B1 (en) * | 2018-10-02 | 2022-02-17 | 주식회사 우보테크 | E-Latch for Vehicle Door with Safety Device |
US11692376B2 (en) | 2018-10-02 | 2023-07-04 | Woobo Tech Co., Ltd. | Vehicle door latch with safety device |
US11268314B2 (en) * | 2019-03-15 | 2022-03-08 | Magna Closures Inc. | Clutch assembly for powered door system |
WO2021072048A1 (en) * | 2019-10-09 | 2021-04-15 | Southco, Inc. | Electronically actuated and locking glove box system |
Also Published As
Publication number | Publication date |
---|---|
CN204754508U (en) | 2015-11-11 |
CN104847190B (en) | 2018-05-22 |
CN104847191B (en) | 2017-11-17 |
CN104847191A (en) | 2015-08-19 |
CN104847190A (en) | 2015-08-19 |
WO2015123640A2 (en) | 2015-08-20 |
US10598263B2 (en) | 2020-03-24 |
US20150233452A1 (en) | 2015-08-20 |
CN204738635U (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10598263B2 (en) | Actuator for vehicle latch and vehicle latch with actuator | |
US10822844B2 (en) | Latch with linearly operated lock lever | |
JP5612484B2 (en) | Car door lock | |
KR101335111B1 (en) | Motor vehicle lock | |
EP3400351B1 (en) | Electromechanical door lock actuation device | |
US5149156A (en) | Power door-lock actuator with pivoting rocker and connecting gears | |
WO2015083350A1 (en) | Lid device | |
JP5124588B2 (en) | Electromechanical drive used in automotive tailgates | |
US6067826A (en) | Door lock actuator | |
US10435923B2 (en) | Swing type power door lock actuator | |
US9874047B2 (en) | Carrier for electrical traces of an actuator of a latch | |
US11401739B2 (en) | Actuation device for a motor vehicle lock | |
CN109209070B (en) | Tail door lock transmission mechanism | |
GB2458567A (en) | Door latch in a motor vehicle | |
CN113585891B (en) | Novel automobile door lock with flexible space and double branched chain structure | |
CN201053248Y (en) | Door cabinet type electronic lock | |
CN106761011B (en) | Transmission mechanism with motor drive | |
US20180066737A1 (en) | Drive arrangement for motorized adjustment of an actuating element rotatably mounted in a motor vehicle door latch housing | |
CN210798621U (en) | Flexible transmission mechanism of lead screw | |
JP3939083B2 (en) | Actuator | |
JP4755503B2 (en) | Door latch actuator | |
US20150135867A1 (en) | Swing type power door lock motor | |
CN220117921U (en) | Door lock with reversing device | |
CN203947891U (en) | Remote control mechanical lock | |
CN212054158U (en) | Door internal unlocking mechanism and glass door lock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEVA PRODUCTS, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTINEZ, ALFREDO;ESTRADA, EDUARDO;VAZQUEZ, FRANCISCO;REEL/FRAME:035099/0783 Effective date: 20150227 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:INTEVA PRODUCTS, LLC;REEL/FRAME:039973/0305 Effective date: 20160908 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: SECURITY AGREEMENT;ASSIGNOR:INTEVA PRODUCTS, LLC;REEL/FRAME:039973/0305 Effective date: 20160908 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:INTEVA PRODUCTS, LLC;REEL/FRAME:042857/0001 Effective date: 20160908 |
|
AS | Assignment |
Owner name: INTEVA PRODUCTS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:043038/0246 Effective date: 20170627 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |