US20150231202A1 - High affinity ny-eso t cell receptors - Google Patents

High affinity ny-eso t cell receptors Download PDF

Info

Publication number
US20150231202A1
US20150231202A1 US14/690,193 US201514690193A US2015231202A1 US 20150231202 A1 US20150231202 A1 US 20150231202A1 US 201514690193 A US201514690193 A US 201514690193A US 2015231202 A1 US2015231202 A1 US 2015231202A1
Authority
US
United States
Prior art keywords
tcr
seq
chain
tcrs
high affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/690,193
Inventor
Jonathan Michael Boulter
Bent Karsten Jakobsen
Yi Li
Peter Eamon Molloy
Steven Michael Dunn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adaptimmune Ltd
Medigene Ltd
Original Assignee
Adaptimmune Ltd
Medigene Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0411123A external-priority patent/GB0411123D0/en
Priority claimed from GB0419643A external-priority patent/GB0419643D0/en
Priority to US14/690,193 priority Critical patent/US20150231202A1/en
Application filed by Adaptimmune Ltd, Medigene Ltd filed Critical Adaptimmune Ltd
Publication of US20150231202A1 publication Critical patent/US20150231202A1/en
Priority to US14/967,584 priority patent/US9512197B2/en
Assigned to ADAPTIMMUNE LIMITED reassignment ADAPTIMMUNE LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMMUNOCORE LIMITED
Assigned to IMMUNOCORE LIMITED reassignment IMMUNOCORE LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDIGENE LIMITED
Assigned to MEDIGENE LIMITED reassignment MEDIGENE LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOULTER, JONATHAN MICHAEL, DUNN, STEVEN MARK, JAKOBSEN, BENT KARSTEN, LI, YI, MOLLOY, PETER EAMON
Priority to US15/291,540 priority patent/US9822163B2/en
Priority to US15/698,897 priority patent/US20180072788A1/en
Priority to US16/056,079 priority patent/US20180371049A1/en
Priority to US17/063,056 priority patent/US20210061878A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor

Definitions

  • the present invention relates to T cell receptors (TCRs) having the property of binding to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 and comprising at least one TCR ⁇ chain variable domain and/or at least one TCR ⁇ chain variable domain characterized in that said TCR has a KD for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 ⁇ M and/or has an off-rate (k off l) for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower.
  • TCRs T cell receptors having the property of binding to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 and comprising at least one TCR ⁇ chain variable domain and/or at least one TCR ⁇ chain variable domain characterized in that said TCR has a KD for the said SLLMWITQC (SEQ ID NO
  • the SLLMWITQC (SEQ ID NO:126) peptide is derived from the NY-ESO-1 protein that is expressed by a range of tumours (Chen et al., (1997) PNAS US 94 1914-1918).
  • the Class 1HLA molecules of these cancerous cells present peptides from this protein, including SLLMWITQC (SEQ ID NO:126). Therefore, the SLLMWITQC (SEQ ID NO:126)-HLA-A2 complex provides a cancer marker that TCRs can target, for example for the purpose of delivering cytotoxic or immuno-stimulatory agents to the cancer cells. However, for that purpose it would he desirable if the TCR had a higher affinity and/or a slower off-rate for the peptide-HLA complex than native TCRs specific for that complex.
  • This invention makes available for the first time TCRs having high affinity (K D ) of the interaction less than or equal to 1 ⁇ M, and/or a slower off-rate (k off ) of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower, for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex.
  • TCRs are useful, either alone or associated with a therapeutic agent, for targeting cancer cells presenting that complex.
  • the present invention provides a T-cell receptor (TCR) having the property of binding to SLLMWITQC (SEQ NO:126)-HLA-A*0201 and comprising at least one TCR ⁇ chain variable domain and/or at least one TCR ⁇ chain variable domain characterized in that said TCR has a K D for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 ⁇ M and/or has an off-rate (k off ) for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower.
  • the K D and/or (K off ) measurement can be made by any of the known methods.
  • a preferred method is the Surface Plasmon Resonance (Biacore) method of Example 5.
  • the interaction of a disulfide-linked soluble variant of the native 1G4 TCR (see SEQ ID NO: 9 for TCR ⁇ chain and SEQ ID NO: 10 for TCR ⁇ chain) and the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex has a K D of approximately 10 ⁇ m, an off-rate (k off ) of 1.28 ⁇ 10 ⁇ 1 S ⁇ 1 and a half-life of 0.17 minutes as measured by the Biacore-base method of Example 5.
  • the native 1G4 TCR specific for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201. complex has the following Valpha chain and Vbeta chain gene usage:
  • the native 1G4 TCR can be used as a template into which various mutations that impart high affinity and/or a slow off-rate for the interaction between TCRs of the invention and the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex can be introduced.
  • the invention includes TCRs which are mutated relative to the native 1G4 TCR ⁇ chain variable domain (see FIG. 1 a and SEQ ID No: 1) and/or ⁇ chain variable domain (see FIG. 1 b and SEQ ID NO: 2) in at least one complementarity determining region (CDR) and/or variable domain framework region thereof.
  • CDR complementarity determining region
  • HV4 regions may be mutated so as to produce a high affinity mutant.
  • TCRs exist in heterodimeric ⁇ or ⁇ forms. However, recombinant TCRs consisting of a single TCR ⁇ or TCR ⁇ chain have previously been shown to bind to peptide MHC molecules.
  • the TCR of the invention comprise both an ⁇ chain variable domain and an TCR ⁇ chain variable domain.
  • the mutation(s) in the TCR ⁇ chain sequence and/or TCR ⁇ chain sequence may be one or more of substitution(s), deletion(s) or insertion(s).
  • These mutations can be carried out using any appropriate method including, but not limited to, those based on polymerase chain reaction (PCR), restriction enzyme-based cloning, or ligation independent cloning (LIC) procedures. These methods are detailed in many of the standard molecular biology texts.
  • any ⁇ TCR that comprises similar Valpha and Vbeta gene usage and therefore amino acid sequence to that of the 1G4 TCR could make a convenient template TCR. It would then be possible to introduce into the DNA encoding one or both of the variable domains of the template ⁇ TCR the changes required to produce the mutated high affinity TCRs of the invention. As will be obvious to those skilled in the art, the necessary mutations could be introduced by a number of methods, for example site-directed mutagenesis.
  • the TCRs of the invention include those in which one or more of the TCR alpha chain variable domain amino acids corresponding to those listed below are mutated relative to the amino acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain in FIG. 1 a and SEQ ID No: 1.
  • the TCR amino acid sequences herein are generally provided including an N-terminal methionine (Met or M) residue. As will be known to those skilled in the art this residue may be removed during the production of recombinant proteins. Furthermore, unless stated to the contrary, the soluble TCR and TCR variable domain sequences have been truncated at the N-terminus thereof. (Resulting in the lose of the N-terminal “K” and “NA” in the TCR alpha and beta chain sequences respectively.). As will be obvious to those skilled in the art these “missing” N-terminal TCR residues may be re-introduced into the TCRs of the present invention.
  • variable domain is understood to encompass all amino acids of a given TCR which are not included within the constant domain as encoded by the TRAC gene for TCR ⁇ chains and either the TRBC1 or TRBC2 for TCR ⁇ chains.
  • part of the diversity of the TCR repertoire is due to variations which occur in the amino acid encoded by the codon at the boundary between the variable domain, as defined herein, and the constant domain.
  • the codon that is present at this boundary in the wild-type 1G4 TCR sequence results in the presence of the Tyrosine (Y) residue at the C-terminal of the variable domain sequences herein.
  • This Tyrosine replaces the N-terminal Asparagine (N) residue encoded b the TRAC gene shown in FIG. 8A .
  • Embodiments of the invention include mutated TCRs which comprise mutation of one or more of alpha chain variable domain amino acids corresponding to: 20V, 51Q, 52S, 53S, 94P, 95T, 96S, 97G, 98G, 995, 100Y, 101I and 103T, for example the amino acids:
  • Embodiments of the invention also include TCRs which comprise mutation of one or more of the TCR beta chain variable domain amino acids corresponding to those listed below, are relative to the ammo acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain of the native 1G4 TCR beta chain in FIG. 1 b and SEQ ID No: 2.
  • the amino acids referred to which may be mutated are: 18M, 50G, 51A, 52G, 51I, 55D, 56Q, 70T, 94Y, 95V and 97N, for example:
  • TCRs comprising one of the mutated alpha chain variable domain amino acid sequences shown in FIG. 6 (SEQ ID Nos: 11 to 83). Phenotypically silent variants of such TCRs also form part of this invention.
  • TCRs comprising one of the mutated beta chain variable domain amino acid sequences shown in FIG. 7 or 13 .
  • SEQ ID Nos: 84 to 99 or 117 to 121 Phenotypically silent variants of such TCRs also form part of this invention.
  • TCRs exist in heterodimeric ⁇ or ⁇ forms. However, recombinant TCRs consisting of ⁇ or ⁇ homodimers have previously been shown to bind to peptide MHC molecules: Therefore, one embodiment of the invention is provided by TCR ⁇ or TCR ⁇ homodimers.
  • TCRs of the invention comprising the alpha chain variable domain amino acid sequence and the beta chain variable domain amino acid sequence combinations listed below, phenotypically silent variants of such TCRs also form part of this invention:
  • TCRs of the invention comprising the variable domain combinations detailed above further comprise the alpha chain constant region amino acid sequence shown in FIG. 8 a (SEQ ID NO: 100) and one of the beta chain amino acid constant region sequences shown in FIGS. 8 b and 8 c (SEQ ID NOs: 101 and 102) or phenotypically silent variants thereof.
  • the term “phenotypically silent variants” is understood to refer to those TCRs which have a K D for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 ⁇ M and/or have an off-rate (k off ) of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower.
  • k off off-rate
  • Such trivial variants are included in the scope of this invention. Those TCRs in which one or more conservative substitutions have been made also form part of this invention.
  • the TCRs of the invention are in the form of either single chain TCRs (scTCRs) or dimeric TCRs (dTCRs) as described in WO 04/033685 and WO 03/020763.
  • a suitable scTCR form comprises a first segment constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain, a second segment constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence, and a linker sequence linking the C terminus of the first segment to the N terminus of the second segment.
  • the first segment may be constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain
  • the second segment may be constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence
  • the above scTCRs may further comprise a disulfide bond between the first and second chains, said disulfide bond being one which has no equivalent in native ⁇ T cell receptors, and wherein the length of the linker sequence and the position of the disulfide bond being such that the variable domain sequences of the first and second segments are mutually orientated substantially as in native ⁇ T cell receptors.
  • the first segment may be constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence
  • the second segment may be constituted by an amino acid sequence corresponding to a TCR ⁇ chain variable domain fused to the N terminus of an amino acid sequence corresponding to TCR ⁇ chain constant domain extracellular sequence
  • a disulfide bond may be provided between the first and second chains, said disulfide bond being one which has no equivalent in native ⁇ T cell receptors.
  • the linker sequence may link the C terminus of the first segment to the N terminus of the second segment, and may have the formula -PGGG-(SGGGG) n -P- wherein n is 5 or 6 and P is prolific, G is glycine and S is serine.
  • a suitable dTCR form of the TCRs of the present invention comprises a first polypeptide wherein a sequence corresponding to a TCR ⁇ chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR ⁇ chain variable domain sequence fused to the N terminus a sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond which has no equivalent in native ⁇ T cell receptors.
  • the first polypeptide may comprise a TCR ⁇ chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR ⁇ chain variable domain sequence is fused to the N terminus a sequence corresponding to a TCR ⁇ chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof.
  • TRAC Thr 48 of exon 1 of TRAC*01
  • the dTCR or scTCR form of the TCRs of the invention may have amino acid sequences corresponding to human ⁇ TCR extracellular constant and variable domain sequences, and a disulfide bond may link amino acid residues of the said constant domain sequences, which disulfide bond has no equivalent in native TCRs.
  • the disulfide bond is between cysteine residues corresponding to amino acid residues whose ⁇ carbon atoms are less than 0.6 nm apart in native TCRs, for example between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof.
  • Other sites where cysteines can be introduced to form the disulfide bond are the following residues in exon 1 of TRAC*01 for the TCR ⁇ chain and TRBC1*01 or TRBC2*01 for the TCR ⁇ chain:
  • the dTCR or scTCR form of the TCRs of the invention may include a disulfide bond between residues corresponding to those linked by a disulfide bond in native TCRs.
  • the dTCR, scTCR form of the TCRs of the invention preferably does not contain a sequence corresponding to transmembrane or cytoplasmic sequences of native TCRs.
  • SEQ ID NOs: 122, 123 and 124 have been provided in a form which includes the N-terminal methionine (M) and the N-terminal “K” and “NA” in the TCR alpha and beta chain sequences respectively.
  • a TCR of the invention is associated with at least one polyalkylene chain(s). This association may be cause in a number of ways known to those skilled in the art.
  • the polyalkylene chain(s) is/are covalently linked to the TCR.
  • the polyethylene glycol chains of the present aspect of the invention comprise at least two polyethylene repeating units.
  • One aspect of the invention provides a multivalent TCR complex comprising at least two TCRs of the invention.
  • at least two TCR molecules are linked via linker moieties to form multivalent complexes.
  • the complexes are water soluble, so the linker moiety should be selected accordingly.
  • the linker moiety should be capable of attachment to defined positions on the TCR molecules, so that the structural diversity of the complexes formed is minimised.
  • One embodiment of the present aspect is provided by a TCR complex of the invention wherein the polymer chain or peptidic linker sequence extends between amino acid residues of each TCR which are not located in a variable region sequence of the TCR.
  • the linker moieties should he chosen with due regard to their pharmaceutical suitability, for example their immunogenicity.
  • linker moieties which fulfil the above desirable criteria are known in the art, for example the art of linking antibody fragments.
  • a TCR complex of the invention in which the TCRs are linked by a polyalkylene glycol chain provides one embodiment of the present aspect.
  • hydrophilic polymers such as polyalkylene glycols.
  • the most commonly used of this class are based on polyethylene glycol or PEG, the structure of which is shown below.
  • n is greater than two.
  • suitable, optionally substituted, polyalkylene glycols include polypropylene glycol, and copolymers of ethylene glycol and propylene glycol.
  • Such polymers may be used to treat or conjugate therapeutic agents, particularly polypeptide or protein therapeutics, to achieve beneficial changes to the PK profile of the therapeutic, for example reduced renal clearance, improved plasma half-life, reduced immunogenicity, and improved solubility.
  • therapeutic agents particularly polypeptide or protein therapeutics
  • Such improvements in the PK profile of the PEG-therapeutic conjugate are believe to result from the PEG molecule or molecules forming a ‘shell’ around the therapeutic which sterically hinders the reaction with the immune system and reduces proteolytic degradation.
  • the size of the hydrophilic polymer used my in particular be selected on the basis of the intended therapeutic use of the TCR complex.
  • the polymer used can have a linear or branched conformation.
  • Branched PEG molecules, or derivatives thereof, can be induced by the addition of branching moieties including glycerol and glycerol oligomers, pentaerythritol, sorbitol and lysine.
  • the polymer will have a chemically reactive group or groups in its structure, for example at one or both termini, and/or on branches from the backbone, to enable the polymer to link to target sites in the TCR.
  • This chemically reactive group or groups may be attached directly to the hydrophilic polymer, or there may be a spacer group/moiety between the hydrophilic polymer and the reactive chemistry as shown below:
  • spacer used in the formation of constructs of the type outlined above may be any organic moiety that is a non-reactive, chemically stable, chain.
  • spacers include, by are not limited to the following:
  • a TCR complex of the invention in which a divalent alkylene spacer radical s located between the polyalkylene glycol chain and its point of attachment to a TCR of the complex provides a further embodiment of the present aspect.
  • a TCR complex of the invention in which the polyalkylene glycol chain comprises at least two polyethylene glycol repeating units provides a further embodiment of the present aspect.
  • hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention.
  • Nektar Therapeutics CA, USA
  • NOF Corporation Japan
  • Sunhio South Korea
  • Enzon Pharmaceuticals NJ, USA
  • hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention include, but are not limited to, the following:
  • coupling chemistries can be used to couple polymer molecules to protein and peptide therapeutics.
  • the choice of the most appropriate coupling chemistry is largely dependant on the desired coupling site.
  • the following coupling chemistries have been used attached to one or more of the termini of PEG molecules (Source: Nektar Molecular Engineering Catalogue 2003):
  • non-PEG based polymers also provide suitable linkers for multimerising the TCRs of the present invention.
  • linkers for multimerising the TCRs of the present invention.
  • moieties containing maleimide termini linked by aliphatic chains such as BMH and BMOE (Pierce, products Nos. 22330 and 22323) can be used.
  • Peptidic linkers are the other class of TCR linkers. These linkers are comprised of chains of amino acids, and function to produce simple linkers or multimerisation domains onto which TCR molecules can be attached.
  • the biotin/streptavidin system has previously been used to produce TCR tetramers (see WO/99/60119) for in-vitro binding studies.
  • stepavidin is a microbially-derived polypeptide and as such not ideally suited to use in a therapeutic.
  • a TCR complex of the invention in which the TCRs are linked by a peptidic linker derived from a human multimerisation domain provides a further embodiment of the present aspect.
  • a multivalent TCR complex of the invention comprising at least two TCRs provides a final embodiment of this aspect, wherein at least one of said TCRs is associated with a therapeutic agent.
  • a TCR (or multivalent complex thereof) of the present invention may alternatively or additionally comprise a reactive cysteine at the C-terminal or N-terminal of the alpha or beta chains thereof.
  • the TCR of the invention may be associated with a therapeutic agent or detectable moiety.
  • said therapeutic agent or detectable moiety may be covalently linked to the TCR.
  • said therapeutic agent or detectable moiety is covalently linked to the C-terminus of one or both TCR chains.
  • the scTCR or one or both of the dTCR chains of TCRs of the present invention may be labelled with an detectable moiety, for example a label that is suitable for diagnostic purposes.
  • Such labelled TCRs are useful in a method for detecting a SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex which method comprises contacting the TCR ligand with a TCR (or a multimeric high affinity TCR complex) which is specific for the TCR ligand; and detecting binding to the TCR ligand.
  • SLLMWITQC SEQ NO:126
  • TCR or a multimeric high affinity TCR complex
  • fluorescent streptavidin can be used to provide a detectable label.
  • Such a fluorescently-labelled TCR tetramer is suitable for use in FACS analysis, for example to detect antigen presenting cells carrying the SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex for which these high affinity TCRs are specific.
  • TCR-specific antibodies in particular monoclonal antibodies.
  • anti-TCR antibodies such as ⁇ F1 and ⁇ F1, which recognise the constant domains of the ⁇ and ⁇ chains, respectively.
  • a TCR (or multivalent complex thereof) of the present invention may alternatively or additionally be associated with (e.g. covalently or otherwise linked to) a therapeutic agent which may be, for example, atoxic moiety for use in cell killing, or an immune effector molecule such as an interleukin or a cytokine.
  • a multivalent TCR complex of the invention may have enhanced binding capability for a TCR ligand compared to a non-multimeric wild-type or T cell receptor heterodimer of the invention.
  • the multivalent TCR complexes according to the invention are particularly useful for tracking or targeting cells presenting particular antigens in vitro or in vivo, and are also useful as intermediates for the production of further multivalent TCR complexes having such uses. These TCRs or multivalent TCR complexes may therefore be provided in a pharmaceutically acceptable formulation for use in vivo.
  • the invention also provides a method for delivering a therapeutic agent to a target cell, which method comprises contacting potential target cells with a TCR or multivalent TCR complex in accordance with the invention under conditions to allow attachment of the TCR or multivalent TCR complex to the target cell, said TCR or multivalent TCR complex being specific for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex and having the therapeutic agent associated therewith.
  • the soluble TCR or multivalent TCR complex of the present invention can be used to deliver therapeutic agents to the location of cells presenting a particular antigen. This would be useful in many situations and, in particular, against tumours. A therapeutic agent could be delivered such that it would exercise its effect locally but not only on the cell it binds to.
  • one particular strategy envisages anti-tumour molecules linked to TCRs or multivalent TCR complexes according to the invention specific for tumour antigens.
  • therapeutic agents could be employed for this use, for instance radioactive compounds, enzymes (perform for example) or chemotherapeutic agents (cis-platin for example).
  • radioactive compounds for instance
  • enzymes perform for example
  • chemotherapeutic agents cis-platin for example.
  • the toxin could be inside a liposome linked to streptavidin so that the compound is released slowly. This will prevent damaging effects during the transport in the body and ensure that the toxin has maximum effect after binding of the TCR to the relevant antigen presenting cells.
  • Suitable therapeutic agents include:
  • Antibody fragments and variants/analogues which are suitable for use in the compositions and methods described herein include, but are not limited to, the following.
  • Minibodies consist of antibodies with a truncated Fc portion. As such they retain the complete binding domains of the antibody from which are derived.
  • Fab fragments These comprise a single immunoglobulin light chain covalently-linked to part of an immunoglobulin heavy chain. As such, Fab fragments comprise a single antigen combining site. Fab framents are defined by the portion of an IgG that can be liberated by treatment with papain. Such fragments are commonly produced via recombinant DNA techniques. (Reeves et al., (2000) Lecture Notes on Immunology (4th Edition) Published by Blackwell Science)
  • F(ab′) 2 fragments These comprise both antigen combining sites and the hinge region from a single antibody.
  • F(ab′) 2 fragments are defined by the portion of an IgG that can be liberated by treatment with pepsin. Such fragments are commonly produced via recombinant DNA techniques. (Reeves et al., (2000) Lecture Notes on Immunology (4tth Edition) Published by Blackwell Science)
  • Fv fragments These comprise an immunoglobulin variable heavy domain linked to an immunoglobulin variable light domain.
  • Fv designs have been produced. These include dsFvs, in which the association between the two domains is enhanced by an introduced disulfide bond.
  • scFVs can be formed using a peptide linker to bind the two domains together as a single polypeptide.
  • Fvs constructs containing a variable domain of a heavy or light immunoglobulin chain associated to the variable and constant domain of the corresponding immunoglobulin heavy or light chain have also been produced. FV have also been multimerised to form diabodies and triabodies (Maynard et al., (2000) Annu Rev Biomed Eng 2 339-376)
  • NanobodiesTM These constructs, marketed by Ablynx (Belgium), comprise synthetic single immunoglobulin variable heavy domain derived from a camelid (e.g. camel or llama) antibody.
  • Domantis (Belgium) comprise an affinity matured single immunoglobulin variable heavy domain or immunoglobulin variable light domain.
  • the defining functional characteristic of antibodies in the context of the present invention is their ability to bind specifically to a target ligand. As is known to those skilled in the art it is possible to engineer such binding characteristics into a range of other proteins.
  • Examples of antibody variants and analogues suitable for use in the compositions and methods of the present invention include, but are not limited to, the following.
  • Protein scaffold-based binding polypeptides This family of binding constructs comprise mutated analogues of proteins which contain native binding loops. Examples include Affibodies, marketed by Affibody (Sweden), which are based on a three-helix motif derived from one of the IgG binding domains of Staphylococcus aureus Protein A. Another example is provided by Evibodies, marketed by EvoGenix (Australia) which are based on the extracellular domains of CTLA-4into which domains similar to antibody binding loops are grafted. A final example, Cytokine Traps marketed by Regeneron Pharmaceuticals (US), graft cytokine receptor domains into antibody scaffolds.
  • Affibodies marketed by Affibody (Sweden) which are based on a three-helix motif derived from one of the IgG binding domains of Staphylococcus aureus Protein A.
  • Evibodies marketed by EvoGenix (Australia) which are
  • anti-CD3 antibodies can be raised to any of the polypeptide chains from which this complex is formed (i.e. ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ CD3 chains)
  • Antibodies which bind to the ⁇ CD3 chain are the preferred anti-CD3 antibodies for use in the compositions and methods of the present invention.
  • Soluble TCRs or multivalent TCR complexes of the invention may be linked to an enzyme capable of converting a prodrug to a drug. This allows the prodrug to be converted to the drug only at the site where it is required (i.e. targeted by the sTCR).
  • the localisation in the vicinity of tumours or metastasis would enhance the effect of toxins or immunostimulants.
  • the vaccine antigen could be localised in the vicinity of antigen presenting cells, thus enhancing the efficacy of the antigen.
  • the method can also be applied for imaging purposes.
  • an isolated cell presenting a TCR of the invention.
  • said cell may be a T cell.
  • a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention, together with a pharmaceutically acceptable carrier;
  • the invention also provides a method of treatment of cancer comprising administering to a subject suffering such cancer disease an effective amount of a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention.
  • a TCR or a multivalent TCR complex of the invention optionally associated with a therapeutic agent
  • a plurality of cells presenting at least one TCR of the invention in the preparation of a composition for the treatment of cancer.
  • Therapeutic or imaging TCRs in accordance with the invention will usually be supplied as part of a sterile, pharmaceutical composition which will normally include a pharmaceutically acceptable carrier.
  • This pharmaceutical composition may be in any suitable form, (depending upon the desired method of administering it to a patient). It may be provided in unit dosage form, will generally be provided in a sealed container and may be provided as part of a kit. Such a kit would normally (although not necessarily) include instructions for use. It may include a plurality of said unit dosage forms.
  • the pharmaceutical composition may be adapted for administration by any appropriate route, for example parenteral, transdermal or via inhalation, preferably a parenteral (including subcutaneous, intramuscular, or, most preferably intravenous) route.
  • a parenteral route for example parenteral, transdermal or via inhalation, preferably a parenteral (including subcutaneous, intramuscular, or, most preferably intravenous) route.
  • Such compositions may be prepared by any method known in the art of pharmacy, for example by admixing the active ingredient with the carrier(s) or excipient(s) under sterile conditions.
  • Dosages of the substances of the present invention can vary between wide limits, depending upon the disease or disorder to be treated, the age and condition of the individual to be treated, etc. and a physician will ultimately determine appropriate dosages to be used.
  • a scTCR or dTCR (which preferably is constituted by constant and variable sequences corresponding to human sequences) of the present invention may be provided in substantially pure form, or as a purified or isolated preparation. For example, it may be provided in a form which is substantially free of other proteins.
  • the invention also provides a method of producing a high affinity TCR having the property of binding to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 characterized in that the TCR (i) comprises at least one TCR ⁇ chain variable domain and/or at least one TCR ⁇ chain variable domain and (ii) has a K D for the said SLLMWITQC (SEQ ID NO:126)-HLA-A.*0201 complex of less than or equal to 1 ⁇ M and/or an off-rate (k off ) for the SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower, wherein the method comprises:
  • FIG. 1 a and 1 b details the alpha chain variable domain amino acid and beta chain variable domain amino acid sequences of the native 1G4 TCR respectively.
  • FIGS. 2 a and 2 b show respectively the DNA sequence of soluble versions of the native 1G4 TCR ⁇ and ⁇ chains.
  • FIGS. 3 a and 3 b show respectively the 1G4 TCR ⁇ and ⁇ chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 2 a and 2 b.
  • FIGS. 4 a and 4 b show respectively the DNA sequence of soluble versions of the 1G4 TCR ⁇ and ⁇ chains mutated to include additional cysteine residues to form a non-native disulphide bond.
  • the mutated codon is indicated by shading.
  • FIGS. 5 a and 5 b show respectively the 1G4 TCR ⁇ and ⁇ chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 4 a and 4 b .
  • the introduced cysteine is indicated by shading.
  • FIG. 6 details the alpha chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 7 details the beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 8 a details the amino acid sequence of a soluble form of TRAC.
  • FIG. 8 b details the amino acid sequence of a soluble form of TRBC1.
  • FIG. 8 c details the amino acid sequence of a soluble form of TRBC2.
  • FIG. 9 details the DNA sequence of the pEX954 plasmid.
  • FIG. 10 details the DNA sequence of the pEX821 plasmid.
  • FIG. 11 details the DNA sequence of the pEX202 plasmid.
  • FIG. 12 details the DNA sequence of the pEX205 plasmid.
  • FIG. 13 details further beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 14 a details the alpha chain amino acid sequences of a preferred soluble high affinity 1G4 TCR variant.
  • FIG. 14 b details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC1 constant domain.
  • FIG. 14 c details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC2 constant domain.
  • FIG. 14 d details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.
  • FIG. 15 a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 15 b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC (SEQ ID NO: 126) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC (SEQ ID NO:126) peptide producing ubiquitin minigene( ⁇ proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • SLLMWITQC SEQ ID NO:126
  • FIG. 17 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 104 TCR to inhibit CTL activation against the MEL-624 cancer cell.
  • FIG. 18 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 1G4 TCR to inhibit CTL activation against the SK-MEL-37 cancer cell.
  • FIG. 19 shows inhibition of T cell activation against peptide pulsed T2 cells by the soluble c58c61 high affinity 1G4 TCR as measured by IFN ⁇ production.
  • FIG. 20 shows lack of inhibition of T cell activation against peptide pulsed T2 cells by the soluble wild-type 1G4 TCR as measured by IFN ⁇ production.
  • FIG. 21 shows tumor growth inhibition caused by soluble c58c61 high affinity 1G4 TCR-IL-2 immunoconjugates.
  • FIG. 22 shows the number of SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells as determined by fluorescent microscopy.
  • SLLMWITQC SEQ ID NO:126
  • HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells as determined by fluorescent microscopy.
  • the visualisation of cell-bound biotinylated soluble c58c61 high affinity 1G4 TCRs was facilitated by conjugation with streptavidin-R phycoerythrin (PE).
  • RNA was mixed and incubated for 1 hour at 37° C. cDNA was then stored at ⁇ 80° C.
  • the above cDNA was used as template.
  • a panel of forward primers covering all possible alpha and beta variable chains was used to screen for, and amplify by PCR, alpha and beta chains genes.
  • Primer sequences used for TCR chain gene amplification were designed from the NCBI website using accession numbers obtained from the T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8.
  • Alpha-chain forward primers were designed to contain a ClaI restriction site and the universal alpha chain reverse primer a SalI restriction site.
  • Beta-chain forward primers were designed to contain a AseI restriction site and universal beta reverse primer an AgeI restriction site.
  • Recipient vectors for the TCR gene fragments were based on a pGMT7 parent plasmid, which contains the T7 promoter for high level expression in E. coli strain BL21-DE3(pLysS) (Pan et al., Biotechniques (2000) 29 (5): 1234-8)
  • Alpha chain purified PCR products were digested with ClaI and SalII and ligated into pEX954 (see FIG. 9 ) cut with ClaI and XhoI.
  • Beta chain purified PCR products were digested with AseI and AgeI and ligated into pEX821 (See FIG. 10 ) cut with NdeI/AgeI.
  • the cut PCR product and cut vector were ligated using a rapid DNA ligation kit (Roche) following the manufacturers instructions.
  • Ligated plasmids were transformed into competent E. coli strain XL1-blue cells and plated out on LB/agar plates containing 100 mg/ml ampicillin. Following incubation overnight at 37° C., single colonies were picked and grown in 10 ml LB containing 100 mg/ml ampicillin overnight at 37° C. with shaking. Cloned plasmids were purified using a Miniprep kit (Qiagen) and the insert was sequenced using an automated DNA sequencer (Lark Technologies).
  • FIGS. 4 a and 4 b show respectively the DNA sequence of soluble versions of the 1G4 TCR ⁇ and ⁇ chains mutated to include additional cysteine residues to form a non-native disulphide bond.
  • FIGS. 5 a and 5 b show respectively the NY-ESO TCR ⁇ and ⁇ chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 4 a and 4 b
  • the soluble disulfide-linked native 1G4 TCR produced as described in Example 1 can be used a template from which to produce the TCRs of the invention which have an increased affinity for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex.
  • Mutagenesis was carried out using the following conditions: 50 ng plasmid template, 1 ⁇ l of 10 mM dNTP, 5 ⁇ l of 10 ⁇ Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 ⁇ l pfu DNA polymerase in total volume 50 ⁇ l. After an initial denaturation step of 2 mins at 95 C, the reaction was subjected to 25 cycles of denaturation (95 C, 10 sees), annealing (55 C 10 secs), and elongation (72 C, 8 mins). The resulting product was digested with DpnI restriction enzyme to remove the template plasmid and transformed into E. coli strain XL1-blue. Mutagenesis was verified by sequencing.
  • the construct was made by PCR stitching.
  • the plasmid coding for the high affinity TCR alpha chains and containing the code for the introduced inter-chain di-sulfide bridge was used as template.
  • PCR with the following two primer pairs generated the desired variable domain.
  • the plasmid pEX202 (see FIG. 11 ), coding for a wild type affinity TCR alpha chain fused to human c-jun leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following primer pair generated the desired constant domain.
  • C-alpha fwd (SEQ ID NO: 107) CCAGAACCCTGACCCTGCCG 3′-alpha rev (SEQ ID NO: 108) aagcttcccgggggaactttctgggctggg
  • the two products were mixed and diluted 1000 fold and 1 ⁇ l was used as template in a 50 ⁇ l PCR with 5′-TRAV21 fwd and 3′-alpha rev primers.
  • the resulting PCR product was digested using restriction enzymes AseI and XmaI and ligated into pEX202 cut with NdeI and XmaI.
  • PCRs were carried out using the following conditions: 50 ⁇ g plasmid template, 1 ⁇ l of 10 mM dNTP, 5 ⁇ l of 10 ⁇ Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 ⁇ l Pfu DNA polymerase in total volume 50 ⁇ l. After an initial denaturation step of 2 mins at 95 C, the reaction was subjected to 30 cycles of denaturation (95 C, 10 secs), annealing (55 C 10 secs), and elongation (72 C, 2 mins).
  • the construct was made by PCR stitching.
  • TRBV6-5 fwd (SEQ ID NO: 109) tctatc attaat gaatgctggtgtcactcagacccc C-beta rev (SEQ ID NO: 110) CTTCTGATGGCTCAAACACAGC
  • the plasmid pEX205 (see FIG. 12 ), coding for a wild type affinity TCR beta chain fused to the human c-fos leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following two primers generated the desired constant domain gene fragment.
  • C-beta fwd (SEQ ID NO: 111) GCTGTGTTTGAGCCATCAGAAG TRBC rev (SEQ ID NO: 112) aagctt cccggg gtctgctctaccccaggc
  • the two products were mixed and diluted 1000 fold and 1 ⁇ l was used as template in a 50 ⁇ l PCR with TRBV6-5 fwd and TRBC rev primers. PCRs were carried out as described above.
  • the resulting PCR product was digested using restriction enzymes AscI and XmaI and ligated into pEX205 cut with NdeI and XmaI.
  • the expression plasmids containing the mutated ⁇ -chain and ⁇ -chain respectively as prepared in Examples 1, 2 or 3 were transformed separately into E. coli strain BL21pLysS, and single ampicillin-resistant colonies were grown at 37° C. in TYP (ampicillin 100 ⁇ g/ml) medium to OD 600 of 0.4 before inducing protein expression with 0.5 mM IPTG. Cells were harvested three hours post-induction by centrifugation for 30 minutes at 4000 rpm in a Beckman J-6B.
  • Cell pellets were re-suspended in a buffer containing 50 mM Tris-HCI, 25% (w/v) sucrose, 1 mM NaEDTA, 0.1% (w/v) NaAzide, 10 mM DTT, pH 8.0. After an overnight freeze-thaw step, re-suspended cells were sonicated in 1 minute bursts for a total of around 10 minutes in a Milsonix X12020 sonicator using a standard 12 min diameter probe. Inclusion body pellets were recovered by centrifugation for 30 minutes at 13000 rpm in a Beckman J2-21 centrifuge. Three detergent washes were then carried out to remove cell debris and membrane components.
  • Triton buffer 50 mM Tris-HCI, 0.5% Triton-X100, 200 mM NaCI, 10 mM NaEDTA, 0.1% (w/v) NaAzide, 2 mM DTT, pH 8.0
  • Detergent and salt was then removed by a similar wash in the following buffer: 50 mM Tris-HCl, 1 mM NaEDTA, 0.1% (w/v) NaAzide, 2 mM DTT, pH 8.0.
  • inclusion bodies were divided into 30 mg aliquots and frozen at ⁇ 70° C., Inclusion body protein yield was quantitated by solubilising with 6M guanidine-HCl and measurement with a Bradford dye-binding assay (PerBio).
  • TCR ⁇ chain and 60 mg of TCR ⁇ chain solubilised inclusion bodies were thawed from frozen stocks, samples were then mixed and the mixture diluted into 15 ml of a guanidine solution (6 M Guanidine-hydrochloride, 10 mM Sodium ALetate, 10 mM EDTA), to ensure complete chain de-naturation.
  • a guanidine solution (6 M Guanidine-hydrochloride, 10 mM Sodium ALetate, 10 mM EDTA), to ensure complete chain de-naturation.
  • the guanidine solution containing fully reduced and denatured TCR chains was then injected into 1 litre of the following refolding buffer: 100 mM Tris pH 8.5, 400 mM L-Arginine, 2 mM EDTA, 5 mM reduced Glutathione, 0.5 mM oxidised Glutathione, 5M urea, 0.2 mM PMSF.
  • the redox couple (2-mercaptoethylamine and cystamine (to final concentrations of 6.6 mM and 3.7 mM, respectively) were added approximately 5 minutes before addition of the denatured TCR chains. The solution was left for 5 hrs ⁇ 15minutes.
  • the refolded TCR was dialysed in Spectrapor 1 membrane (Spectrum; Product No. 132670) against 10 L 10 mM Tris pH 8.1 at 5° C. ⁇ 3° C. for 18-20 hours. After this time, the dialysis buffer was changed to fresh 10 mM Tris pH 8.1 (10 L) and dialysis was continued at 5° C. ⁇ 3° C. for another 20-22 hours.
  • sTCR was separated from degradation products and impurities by loading the dialysed refold onto a POROS 50HQ anion exchange column and eluting bound protein with a gradient of 0-500 mM NaCl over 50 column volumes using an Akta purifier (Pharmacia). Peak fractions were stored at 4° C. and analysed by Coomassie-stained SDS-PAGE before being pooled and concentrated. Finally, the sTCR was purified and characterised using a Superdex 200HR gel filtration column pre-equilibrated in HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3.5 mM EDTA, 0.05% nonidet p40). The peak eluting at a relative molecular weight of approximately 50 kDa was pooled and concentrated prior to characterisation by BIAcore surface plasmon resonance analysis.
  • a surface plasmon resonance biosensor (Biacore 3000TM) was used to analyse the binding of a sTCR to its peptide-MHC ligand. This was facilitated by producing single pMHC complexes (described below) which were immobilised to a streptavidin-coated binding surface in a semi-oriented fashion, allowing efficient testing of the binding of a soluble T-cell receptor to up to four different pMHC (immobilised on separate flow cells) simultaneously. Manual injection of HLA complex allows the precise level of immobilised class I molecules to be manipulated easily.
  • HLA-A*0201 molecules were refolded in vitro from bacterially-expressed inclusion bodies containing the constituent subunit proteins and synthetic peptide, followed by purification and in vitro enzymatic biotinylation (O'Callaghan et al. (1999) Anal. Biochem. 266: 9-15), HLA-:A *0201-heavy chain was expressed with a C-terminal biotinylation tag which replaces the transmembrane and cytoplasmic domains of the protein in an appropriate construct. Inclusion body expression levels of ⁇ 75 mg/litre bacterial culture were obtained. The MHC light-chain or ⁇ 2-microglobulin was also expressed as inclusion bodies in E. coli from an appropriate construct, at a level of 500 mg/litre bacterial culture.
  • E. coil cells were lysed and inclusion bodies are purified to approximately 80% purity.
  • Protein from inclusion bodies was denatured in 6 M guanidine-HCl, 50 mM Tris pH 8.1, 100 mM NaCl, 10 mM DTT, 10 mM EDTA, and was refolded at a concentration of 30 mg/litre heavy chain, 30 mg/litre ⁇ 2 m into 0.4 M L-Arginine-HCl, 100 mM Tris pH 8.1, 3.7 mM cystamine, mM cysteamine, 4 mg/ml of the SLLMWITQC peptide required to be loaded by the HLA-A*0201 molecule, by addition of a single pulse of denatured protein into refold buffer at ⁇ 5° C. Refolding was allowed to reach completion at 4° C. for at least 1 hour.
  • Buffer was exchanged by dialysis in 10 volumes of 10 mM Tris pH 8.1. Two changes of buffer were necessary to reduce the ionic strength of the solution sufficiently.
  • the protein solution was then filtered through a 1.5 ⁇ m cellulose acetate filter and loaded onto a POROS 50HQ anion exchange column (8 ml bed volume). Protein was eluted with a linear 0-500 mM NaCl gradient. HLA-A*0201-peptide complex eluted approximately 250 mn NaCl, and peak fractions were collected, a cocktail of protease inhibitors (Calbiochem) was added and the fractions were chilled on ice.
  • Biotinylation tagged pMHC molecules were buffer exchanged into 10 mM Tris pH 8.1, 5 mM NaCl using a Pharmacia fast desalting column equilibrated in the same buffer. Immediately upon elution, the protein-containing fractions were chilled on ice and protease inhibitor cocktail (Calbiochem) was added. Biotinylation reagents were then added: 1 mM biotin, 5 mM ATP (buffered to pH 8), 7.5 mM MgCl2, and 5 ⁇ g/ml BirA enzyme (purified according to O'Callaghan et al. (1999) Anal. Biochem. 266: 9-15). The mixture was then allowed to incubate at room temperature overnight.
  • the biotinylated pHLA-A*0201 molecules were purified using gel filtration chromatography. A Pharmacia Superdex 75 HR 10/30 column was pre-equilibrated with filtered PBS and 1 ml of the biotinylation reaction mixture was loaded and the column was developed with PBS at 0.5 ml/min. Biotinylated pHLA-A*0201 molecules eluted as a single peak at approximately 15 ml. Fractions containing protein were pooled, chilled on ice, and protease inhibitor cocktail was added. Protein concentration was determined using a Coomassie-binding assay (PerBio) and aliquots of biotinylated pHLA-A*0201 molecules were stored frozen at ⁇ 20° C. Streptavidin was immobilised by standard amine coupling methods.
  • PerBio Coomassie-binding assay
  • Such immobilised complexes are capable of binding both T-cell receptors and the coreceptor CD8 ⁇ , both of which may be injected in the soluble phase. Specific binding of TCR is obtained even at low concentrations (a(least 40 ⁇ g/ml), implying the TCR is relatively stable.
  • the pMHC binding properties of sTCR are observed to be qualitatively and quantitatively similar if sTCR is used either in the soluble or immobilised phase. This is an important control for partial activity of soluble species and also suggests that biotinylated pMHC complexes are biologically as active as non-biotinylated complexes.
  • SPR measures changes in refractive index expressed in response units (RU) near a sensor surface within a small flow cell, a principle that can be used to detect receptor ligand interactions and to analyse their affinity and kinetic parameters.
  • the probe flow cells were prepared by immobilising the individual HLA-peptide complexes in separate flow cells via binding between the biotin cross linked onto ⁇ 2m and streptavidin which have been chemically cross linked to the activated surface of the flow cells.
  • the assay was then performed by passing sTCR over the surfaces of the different flow cells at a constant flow rate, measuring the SPR response in doing so.
  • Serial dilutions of WT 1G4 sTCR were prepared and injected at constant flow rate of 5 ⁇ l min-1 over two different flow cells: one coated with ⁇ 1000 RU of specific SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex, the second coated with ⁇ 1000 RU of non-specific HLA-A2 -peptide complex.
  • Response was normalised for each concentration using the measurement from the control cell. Normalised data response was plotted versus concentration of TCR sample and fitted to a hyperbola in order to calculate the equilibrium binding constant, K 1 . (Price & Dwek, Principles and Problems in Physical Chemistry for Biochemists (2 nd Edition) 1979, Clarendon Press, Oxford).
  • K D was determined by experimentally measuring the dissociation rate constant, kd, and the association rate constant, ka.
  • the equilibrium constant K D was calculated as kd/ka.
  • TCR was injected over two different cells one coated with ⁇ 300 RU of specific HLA-A2-nyeso peptide complex, the second coated with ⁇ 300 RU of non-specific HLA-A2-peptide complex.
  • Flow rate was set at 50 ⁇ l/min. Typically 250 ⁇ l of TCR at ⁇ 3 ⁇ M concentration was injected. Buffer was then flowed over until the response had returned to baseline.
  • Kinetic parameters were calculated using Biaevaluation software. The dissociation phase was also fitted to a single exponential decay equation enabling calculation of half-life.
  • the TCRs specified in the following table have a K 0 of less than or equal to 1 ⁇ M and/or a k off of 1 ⁇ 10 ⁇ 3 S ⁇ 1 or slower.
  • T2 lymphoblastoid cells were pulsed with the NY-ESO-derived SLLMWITQC (SEQ ID NO:126), NY-ESO-analogue SLLMWITQV (SEQ NO:127) peptide, or an irrelevant peptide at a range of concentrations (10 ⁇ 5 -10 ⁇ 10 M) for 180 minutes at 37° C.
  • the NY-ESO-analogue SLLMWITQV (SEQ ID NO:127) peptide (V-variant peptide) was used as this peptide is known to have a higher affinity for the binding cleft of the HLA-A*0201 complex than the native NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide.
  • TCR-IL-2 After pulsing, cells were washed in serum-free RPMI and 5 ⁇ 10 5 cells were incubated with high affinity c58c61 NY-ESO TCR-IL-2 fusion protein for 10 min at room temperature, followed by secondary anti-IL-2 mAb conjugated with PE (Serotec) for 15 min at room temperature. After washing, bound TCR-IL-2 was quantified by flow cytometry using a FACSVantage SE (Becton Dickinson). Controls, also using peptide-pulsed T2 cells were included where TCR-IL-2 was omitted.
  • FIG. 14 a details the amino acid sequence of the alpha chain of the c58c61 NY-ESO TCR. (SEQ ID NO: 122).
  • FIG. 14 c (SEQ ID NO: 124) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region.
  • FIG. 14 d (SEQ ID NO: 125) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.
  • the alpha and beta chain variable domain mutations contained within the soluble c58c61 1G4 TCR IL-2 fusion protein correspond to those detailed in SEQ ID NO: 49 and SEQ ID NO: 94 respectively.
  • SEQ ID NOs: 121 -125 have been provided in a form which includes the N-terminal methionine (M) and the “K” and “NA” residues omitted in the majority of the other TCR alpha chain and beta chain amino acid sequences.
  • SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with a NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide expressing ubiquitin minigene construct were used.
  • the cancer cells were transfected using substantially the methods described in (Rimoldi el al., (2000) J. Immunol. 165 7253-7261). Cells were labelled as described above.
  • FIG. 15 a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV (SEQ ID NO:127) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 15 b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC (SEQ NO:126) peptide producing ubiquitin minigene( ⁇ proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • SLLMWITQC SEQ NO:126
  • the following assay was carried out to demonstrate that the soluble high affinity c58c61 NY-ESO TCR was capable of inhibiting activation of an SLLMWITQC (SEQ ID NO:126)-RLA-A*0201 specific CTL clone (1G4). IFN- ⁇ production was used as the read-out for CTL activation.
  • R10 Assay media 10% FCS (heat-inactivated, Gibco, cat#10108-165), 88% RPMI 1640 (Gibco, cat#42401-018), 1% glutamine (Gibco cat#25030-024) and 1% penicillin/streptomycin (Gibco, cat#15070-063).
  • Peptide (obtained from various sources) initially dissolved in DMSO (Sigma, cat# D2650) at 4 mg/ml and frozen.
  • Wash buffer 0.01.M PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with Tween 20, pH7.4 from Sigma, Cat. #P-3563 dissolved in 1 litre distilled water gives final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20). PBS (Gibco, cat#10010-015).
  • the EliSpot kit contains all other reagents required i.e. capture and detection antibodies, skimmed milk powder, BSA, streptavidin-alkaline phosphatase, BCIP/NBT solution (Human IFN-g PVDF Eli-spot 20 ⁇ 96 wells with plates (IDS cat#DC-856.051.020, DC-856.000.000). The following method is based on the instructions supplied with each kit but contains some alterations.
  • MEL-624 and SK-MEL-37 melanoma cell lines were treated with trypsin for 5 minutes at 37° C. The cells are then washed and re-suspended in R10 media.
  • 1 ⁇ 10 ⁇ 7 M high affinity c58c61 TCR, or an irrelevant TCR, is 50 ⁇ l of R10 media.
  • the following assay was carried out to demonstrate that the soluble high affinity c58c61 1G4 TCR was capable of inhibiting activation of an SLLMWITQC-HLA-A*0201 specific CTL clone (1G4). IFN- ⁇ production was used as the read-out for CTL activation.
  • R10 Assay media 10% FCS (heat-inactivated, Gibco, cat#10108-165), 88% RPMI 1640 (Gibco, cat#42401-018), 1% glutamine (Gibco, cat#25030-024) and 1% penicillin/streptomycin (Gibco, cat#15070-063).
  • Peptide (obtained from various sources) initially dissolved in DMSO (Sigma, cat#D2650) at 4 mg/ml and frozen.
  • Wash buffer 0.011 PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with Tween 20, PH7.4 from Sigma, Cat. #P-3563 dissolved in 1 litre distilled water gives final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20). PBS (Gibco, cat#10010-015).
  • the ELISA kit contains all other reagents except BSA (Sigma), required i.e. capture and detection antibodies, skimmed milk powder, streptavidin-HRP. TMB solution (Human IFN-g Eli-pair 20 ⁇ 96 wells with plates. The following method is based substantially on the instructions supplied with each kit.
  • ELISA plates were prepared according to the manufacturers instructions. (Diaclone kit, Immunodiagnostic systems, UK
  • T2 cell line target cells were washed and re-suspended in R10 media with or without varying concentrations (100 nM-10 pM) of SLLMWITQC (SECS ID NO:126) peptide, then incubated for 1 hour at 37° C., 5% CO 2 .
  • the plates were then incubated for 48 hours at 37° C., 5% CO 2 .
  • the ELISA was then processed according to manufacturer's instructions.
  • the soluble high affinity c58c61 1G4 TCR strongly inhibited the activation of 1G4 T cell clones against the peptide-pulsed target cells, as measured by IFN- ⁇ production. Whereas the wild-type 1G4 TCR had no inhibitory effect. (See FIG. 19 for the high affinity c58c61 1G4 TCR and FIG. 20 for the wild-type 1G4 TCR)
  • the rats then received the following i.v. bolus dosage of c58c61 high affinity NY-ESO TCR/IL-2 fusion protein:
  • Doses ranged between 0.02 and 1.0 mg/kg high affinity 1G4 TCR/IL-2 fusion proteins in PBS, administered at 5, 6, 7, 8, 11, 13, 17, 20, 24, 28, and 30 day post-tumor engraftment.
  • a control treatment group was included where PBS alone was substituted for the TCR/IL-2 immunoconjugate.
  • the therapeutic effect of the TCR/IL-2 immunoconjugates in terms of tumor growth inhibition is shown in FIG. 21 .
  • the TCR/IL-2 immunoconjugate exhibited a clear dose-dependent anti-tumor effect as shown by the tumour growth curves depicted in FIG. 21 .
  • the number of SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 antigens on cancer cells was determined (on the assumption that one fluorescence signal relates to a single labelled TCR bound to its cognate pMHC ligand on the surface of the target cell) by single molecule fluorescence microscopy using the high-affinity c58c61 1G4 TCR. This was facilitated by using biotinylated TCR to target the antigen-expressing cancer cells and subsequent labelling of cell-bound TCR by streptavidin-R phycoerythrin (PE) conjugates. Individual PE molecules were then imaged by 3-dimensional fluorescence microscopy.
  • TCR solution was removed, and cells were washed three times with 500 ⁇ l of PBS/Mg.
  • Cells were incubated in 200 ⁇ l of streptavidin-PE solution (5 ⁇ g ml ⁇ 1 streptavidin-PE in PBS/Mg containing 0.5% BSA) at room temperature in the dark for 20 min. Streptavidin-PE solution was removed and cells were washed five times with 500 ⁇ l of PBS/Mg. Wash media was removed, and cells kept in 400 ⁇ l of imaging media before imaging by fluorescence microscopy.
  • Fluorescence microscopy Fluorescent microscopy was carried out using an Axiovert 200M (Zeiss) microscope with a 63 ⁇ Oil objective (Zeiss).
  • a Lambda LS light source containing a 300W Xenon Arc lamp (Sutter) was used for illumination, and light intensity was reduced to optimal levels by placing a 0.3 and a 0.6 neutral density filter into the light path.
  • Excitation and emission spectra were separated using a TRITC/DiI filter set (Chroma).
  • Cells were imaged in three dimensions by z-stack acquisition (21 planes, 1 ⁇ m apart). Image acquisition and analysis was performed using Metamorph software (Universal Imaging) as described (Irvine et al., Nature (419), p 45-9, and Purhhoo et al., Nature Immunology (5), p 524- 30.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides T cell receptors (TCRs) having the property of binding to SLLMWITQC-HLA-A*0201, the SLLMWITQC SEQ NO:126 peptide being derived from the NY-ESO-1 protein which is expressed by a range of tumour cells. The TCRs have a KD for the said peptide-HLA complex of less than or equal to 1 μM and/or have an off-rate (koff) of 1×10−3 S−1 or slower.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 13/429,944, filed Mar. 26, 2012, which is a continuation of U.S. application Ser. No. 11/596,458, filed Oct. 28, 2008, now U.S. Pat. No. 8,143,376, which is a U.S. National Phase of PCT/GB2005/001924, filed May 18, 2005, which published as WO 2005/113595 on Dec. 1, 2005, which claims the benefit of GB Application No. 0411123.3 filed May 19, 2004 and GB Application No. 0419643.2 filed Sep. 3, 2004.
  • The foregoing applications, and all documents cited therein or during their prosecution (“appln cited documents”) and all documents cited or referenced in the appln cited documents, and all documents cited or referenced herein (“herein cited documents”), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.
  • The present invention relates to T cell receptors (TCRs) having the property of binding to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 and comprising at least one TCR α chain variable domain and/or at least one TCR β chain variable domain characterized in that said TCR has a KD for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 μM and/or has an off-rate (koffl) for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of 1×10−3 S−1 or slower.
  • BACKGROUND TO THE INVENTION
  • The SLLMWITQC (SEQ ID NO:126) peptide is derived from the NY-ESO-1 protein that is expressed by a range of tumours (Chen et al., (1997) PNAS US 94 1914-1918). The Class 1HLA molecules of these cancerous cells present peptides from this protein, including SLLMWITQC (SEQ ID NO:126). Therefore, the SLLMWITQC (SEQ ID NO:126)-HLA-A2 complex provides a cancer marker that TCRs can target, for example for the purpose of delivering cytotoxic or immuno-stimulatory agents to the cancer cells. However, for that purpose it would he desirable if the TCR had a higher affinity and/or a slower off-rate for the peptide-HLA complex than native TCRs specific for that complex.
  • BRIEF DESCRIPTION OF THE INVENTION
  • This invention makes available for the first time TCRs having high affinity (KD) of the interaction less than or equal to 1 μM, and/or a slower off-rate (koff) of 1×10−3 S−1 or slower, for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex. Such TCRs are useful, either alone or associated with a therapeutic agent, for targeting cancer cells presenting that complex.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a T-cell receptor (TCR) having the property of binding to SLLMWITQC (SEQ NO:126)-HLA-A*0201 and comprising at least one TCR α chain variable domain and/or at least one TCR β chain variable domain characterized in that said TCR has a KD for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 μM and/or has an off-rate (koff) for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of 1×10−3 S−1 or slower. The KD and/or (Koff) measurement can be made by any of the known methods. A preferred method is the Surface Plasmon Resonance (Biacore) method of Example 5.
  • For comparison, the interaction of a disulfide-linked soluble variant of the native 1G4 TCR (see SEQ ID NO: 9 for TCR α chain and SEQ ID NO: 10 for TCR β chain) and the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex has a KD of approximately 10 μm, an off-rate (koff) of 1.28×10−1 S−1 and a half-life of 0.17 minutes as measured by the Biacore-base method of Example 5.
  • The native 1G4 TCR specific for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201. complex has the following Valpha chain and Vbeta chain gene usage:
      • Alpha chain—TRAV21
      • Beta chain:—TRIP/6.5
  • The native 1G4 TCR can be used as a template into which various mutations that impart high affinity and/or a slow off-rate for the interaction between TCRs of the invention and the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex can be introduced. Thus the invention includes TCRs which are mutated relative to the native 1G4 TCR α chain variable domain (see FIG. 1 a and SEQ ID No: 1) and/or β chain variable domain (see FIG. 1 b and SEQ ID NO: 2) in at least one complementarity determining region (CDR) and/or variable domain framework region thereof. It is also contemplated that other hyper-variable regions in the variable domains of the TCRs of the invention, such as the hypetvariable 4 (HV4) regions, may be mutated so as to produce a high affinity mutant.
  • Native TCRs exist in heterodimeric αβ or γδ forms. However, recombinant TCRs consisting of a single TCR α or TCR β chain have previously been shown to bind to peptide MHC molecules.
  • In one embodiment the TCR of the invention comprise both an α chain variable domain and an TCR β chain variable domain.
  • As will be obvious to those skilled in the art the mutation(s) in the TCR α chain sequence and/or TCR β chain sequence may be one or more of substitution(s), deletion(s) or insertion(s). These mutations can be carried out using any appropriate method including, but not limited to, those based on polymerase chain reaction (PCR), restriction enzyme-based cloning, or ligation independent cloning (LIC) procedures. These methods are detailed in many of the standard molecular biology texts. For further details regarding polymerase chain reaction (PGR) mutagenesis and restriction enzyme-based cloning see (Sambrook & Russell, (2001) Molecular Cloning—A Laboratory Manual (3rd Ed.) CSHL Press) Further information on LIC procedures can be found in (Rashtchian, (1995) Curr Opin Biotechnol 6 (1): 30-6)
  • It should be noted that any αβTCR that comprises similar Valpha and Vbeta gene usage and therefore amino acid sequence to that of the 1G4 TCR could make a convenient template TCR. It would then be possible to introduce into the DNA encoding one or both of the variable domains of the template αβ TCR the changes required to produce the mutated high affinity TCRs of the invention. As will be obvious to those skilled in the art, the necessary mutations could be introduced by a number of methods, for example site-directed mutagenesis.
  • The TCRs of the invention include those in which one or more of the TCR alpha chain variable domain amino acids corresponding to those listed below are mutated relative to the amino acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain in FIG. 1 a and SEQ ID No: 1.
  • Unless stated to the contrary, the TCR amino acid sequences herein are generally provided including an N-terminal methionine (Met or M) residue. As will be known to those skilled in the art this residue may be removed during the production of recombinant proteins. Furthermore, unless stated to the contrary, the soluble TCR and TCR variable domain sequences have been truncated at the N-terminus thereof. (Resulting in the lose of the N-terminal “K” and “NA” in the TCR alpha and beta chain sequences respectively.). As will be obvious to those skilled in the art these “missing” N-terminal TCR residues may be re-introduced into the TCRs of the present invention. As will also be obvious to those skilled in the art, it may be possible to truncate the sequences provided at the C-terminus and/or N-terminus thereof, by 1 2, 3, 4, 5 or more residues, without substantially affecting the pMHC binding characteristics of the TCR, all such trivial variants are encompassed by the present invention.
  • As used herein the term “variable domain” is understood to encompass all amino acids of a given TCR which are not included within the constant domain as encoded by the TRAC gene for TCR α chains and either the TRBC1 or TRBC2 for TCR β chains. (T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8)
  • As is known to those skilled in the art, part of the diversity of the TCR repertoire is due to variations which occur in the amino acid encoded by the codon at the boundary between the variable domain, as defined herein, and the constant domain. For example, the codon that is present at this boundary in the wild-type 1G4 TCR sequence results in the presence of the Tyrosine (Y) residue at the C-terminal of the variable domain sequences herein. This Tyrosine replaces the N-terminal Asparagine (N) residue encoded b the TRAC gene shown in FIG. 8A.
  • Embodiments of the invention include mutated TCRs which comprise mutation of one or more of alpha chain variable domain amino acids corresponding to: 20V, 51Q, 52S, 53S, 94P, 95T, 96S, 97G, 98G, 995, 100Y, 101I and 103T, for example the amino acids:
      • 20A
      • 51P/S/T or M
      • 52P/F or G
      • 53W/H or T
      • 94H or A
      • 95L/M/A/Q/Y/E/I/F/V/G/S/D or R
      • 96L/T/Y/I/Q/V/E/X/A/W/R/G/H/D or K
      • 97D/N/V/S/T or A
      • 98P/H/S/T/W or A
      • 99T/Y/D/H/V/N/E/G/Q/K/A/I or R
      • 100F/M or D
      • 101P/T/ or M
      • 103A
  • The numbering used above is the same as that shown in FIG. 1 a and SEQ ID No: 1
  • Embodiments of the invention also include TCRs which comprise mutation of one or more of the TCR beta chain variable domain amino acids corresponding to those listed below, are relative to the ammo acid occurring at these positions in the sequence provided for the native 1G4 TCR alpha chain variable domain of the native 1G4 TCR beta chain in FIG. 1 b and SEQ ID No: 2. The amino acids referred to which may be mutated are: 18M, 50G, 51A, 52G, 51I, 55D, 56Q, 70T, 94Y, 95V and 97N, for example:
      • 18V
      • 50S or A
      • 51V or I
      • 52Q
      • 53T or M
      • 55R
      • 56R
      • 70I
      • 94N or F
      • 95L
      • 97G or D
  • The numbering used above is the same as that shown in FIG. 1 b and SEQ ID No: 2
  • Further preferred embodiments of the invention are provided by TCRs comprising one of the mutated alpha chain variable domain amino acid sequences shown in FIG. 6 (SEQ ID Nos: 11 to 83). Phenotypically silent variants of such TCRs also form part of this invention.
  • Additional preferred embodiments of the invention are provided by TCRs comprising one of the mutated beta chain variable domain amino acid sequences shown in FIG. 7 or 13. (SEQ ID Nos: 84 to 99 or 117 to 121). Phenotypically silent variants of such TCRs also form part of this invention.
  • Native TCRs exist in heterodimeric αβ or γδ forms. However, recombinant TCRs consisting of αα or ββ homodimers have previously been shown to bind to peptide MHC molecules: Therefore, one embodiment of the invention is provided by TCR αα or TCR ββ homodimers.
  • Further preferred embodiments are provided by TCRs of the invention comprising the alpha chain variable domain amino acid sequence and the beta chain variable domain amino acid sequence combinations listed below, phenotypically silent variants of such TCRs also form part of this invention:
  • Alpha chain variable Beta chain variable
    domain sequence, domain sequence,
    SEQ ID NO: SEQ ID NO:
    1 84
    1 85
    1 86
    1 87
    1 88
    11 84
    12 84
    12 85
    12 90
    11 85
    11 86
    11 92
    11 93
    13 86
    14 84
    14 85
    15 84
    15 85
    16 84
    16 85
    17 86
    18 86
    19 84
    20 86
    21 84
    21 85
    22 84
    23 86
    24 84
    25 84
    26 84
    27 84
    28 84
    29 84
    30 84
    31 84
    32 84
    33 84
    20 86
    34 86
    35 89
    36 89
    37 89
    38 89
    39 89
    16 89
    17 89
    31 89
    40 89
    1 90
    1 91
    41 90
    42 2
    42 85
    42 92
    1 92
    1 93
    43 92
    44 92
    45 92
    46 92
    47 92
    48 84
    49 94
    50 84
    50 94
    51 94
    51 95
    1 94
    1 85
    51 84
    52 84
    52 94
    52 95
    53 84
    49 95
    49 94
    54 92
    55 92
    56 92
    57 92
    58 92
    59 92
    60 92
    61 92
    62 92
    63 92
    64 92
    65 92
    66 92
    67 92
    68 92
    69 92
    70 92
    71 92
    72 92
    73 92
    74 92
    75 92
    76 92
    77 92
    78 92
    79 92
    80 92
    81 92
    82 92
    83 92
    11 96
    11 97
    11 98
    11 99
    1 89
    50 117
    49 117
    50 118
    49 119
    50 119
    58 93
    49 118
    1 119
    1 117
    55 120
    56 120
    50 121
    50 120
    49 121
    49 120
    48 118
    53 95
  • Preferred embodiments provide a TCR of the invention comprising:
  • the alpha chain variable domain shown in the SEQ ID NO: 49 and the beta chain variable domain shown in the SEQ ID NO: 94, or phenotypically silent variants thereof.
  • In another preferred embodiment TCRs of the invention comprising the variable domain combinations detailed above further comprise the alpha chain constant region amino acid sequence shown in FIG. 8 a (SEQ ID NO: 100) and one of the beta chain amino acid constant region sequences shown in FIGS. 8 b and 8 c (SEQ ID NOs: 101 and 102) or phenotypically silent variants thereof.
  • As used herein the term “phenotypically silent variants” is understood to refer to those TCRs which have a KD for the said SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex of less than or equal to 1 μM and/or have an off-rate (koff) of 1×10−3 S−1 or slower. For example, as is known to those skilled in the art, it may he possible to produce TCRs that incopotporate minor changes in the constant and/or variable domains thereof compared to those detailed above without altering the affinity and/or off-rate for the interaction with the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex. Such trivial variants are included in the scope of this invention. Those TCRs in which one or more conservative substitutions have been made also form part of this invention.
  • In one broad aspect, the TCRs of the invention are in the form of either single chain TCRs (scTCRs) or dimeric TCRs (dTCRs) as described in WO 04/033685 and WO 03/020763.
  • A suitable scTCR form comprises a first segment constituted by an amino acid sequence corresponding to a TCR α chain variable domain, a second segment constituted by an amino acid sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR β chain constant domain extracellular sequence, and a linker sequence linking the C terminus of the first segment to the N terminus of the second segment.
  • Alternatively the first segment may be constituted by an amino acid sequence corresponding to a TCR β chain variable domain, the second segment may be constituted by an amino acid sequence corresponding to a TCR α chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR α chain constant domain extracellular sequence
  • The above scTCRs may further comprise a disulfide bond between the first and second chains, said disulfide bond being one which has no equivalent in native αβT cell receptors, and wherein the length of the linker sequence and the position of the disulfide bond being such that the variable domain sequences of the first and second segments are mutually orientated substantially as in native αβ T cell receptors.
  • More specifically the first segment may be constituted by an amino acid sequence corresponding to a TCR α chain variable domain sequence fused to the N terminus of an amino acid sequence corresponding to a TCR α chain constant domain extracellular sequence, the second segment may be constituted by an amino acid sequence corresponding to a TCR β chain variable domain fused to the N terminus of an amino acid sequence corresponding to TCR β chain constant domain extracellular sequence, and a disulfide bond may be provided between the first and second chains, said disulfide bond being one which has no equivalent in native αβ T cell receptors.
  • In the above scTCR forms, the linker sequence may link the C terminus of the first segment to the N terminus of the second segment, and may have the formula -PGGG-(SGGGG)n-P- wherein n is 5 or 6 and P is prolific, G is glycine and S is serine.
  • (SEQ ID NO: 103)
    -PGGG-SGGGGSGGGGSGGGGSGGGGSGGGG-P
    (SEQ ID NO: 104)
    -PGGG-SGGGGSGGGGSGGGGSGGGGSGGGGSGGGG-P
  • A suitable dTCR form of the TCRs of the present invention comprises a first polypeptide wherein a sequence corresponding to a TCR α chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR α chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR β chain variable domain sequence fused to the N terminus a sequence corresponding to a TCR β chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond which has no equivalent in native αβ T cell receptors.
  • The first polypeptide may comprise a TCR α chain variable domain sequence is fused to the N terminus of a sequence corresponding to a TCR α chain constant domain extracellular sequence, and a second polypeptide wherein a sequence corresponding to a TCR β chain variable domain sequence is fused to the N terminus a sequence corresponding to a TCR β chain constant domain extracellular sequence, the first and second polypeptides being linked by a disulfide bond between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof. (“TRAC” etc. nomenclature herein as per T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8)
  • The dTCR or scTCR form of the TCRs of the invention may have amino acid sequences corresponding to human αβ TCR extracellular constant and variable domain sequences, and a disulfide bond may link amino acid residues of the said constant domain sequences, which disulfide bond has no equivalent in native TCRs. The disulfide bond is between cysteine residues corresponding to amino acid residues whose β carbon atoms are less than 0.6 nm apart in native TCRs, for example between cysteine residues substituted for Thr 48 of exon 1 of TRAC*01 and Ser 57 of exon 1 of TRBC1*01 or TRBC2*01 or the non-human equivalent thereof. Other sites where cysteines can be introduced to form the disulfide bond are the following residues in exon 1 of TRAC*01 for the TCR α chain and TRBC1*01 or TRBC2*01 for the TCR β chain:
  • Native β carbon
    TCR α chain TCR β chain separation (nm)
    Thr 45 Ser 77 0.533
    Tyr 10 Ser 17 0.359
    Thr 45 Asp 59 0.560
    Ser 15 Glu 15 0.59
  • In addition to the non-native disulfide bond referred to above, the dTCR or scTCR form of the TCRs of the invention may include a disulfide bond between residues corresponding to those linked by a disulfide bond in native TCRs.
  • The dTCR, scTCR form of the TCRs of the invention preferably does not contain a sequence corresponding to transmembrane or cytoplasmic sequences of native TCRs.
  • Preferred embodiments of the invention provide a soluble TCR consisting of:
  • the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 123:
  • the alpha chain amino acid sequence of SEQ ID NO: 122 and beta chain amino acid sequence SEQ ID NO: 124;
  • SEQ ID NOs: 122, 123 and 124 have been provided in a form which includes the N-terminal methionine (M) and the N-terminal “K” and “NA” in the TCR alpha and beta chain sequences respectively.
  • PEGylated TCR Monomers
  • In one particular embodiment a TCR of the invention is associated with at least one polyalkylene chain(s). This association may be cause in a number of ways known to those skilled in the art. In a preferred embodiment the polyalkylene chain(s) is/are covalently linked to the TCR. In a further embodiment the polyethylene glycol chains of the present aspect of the invention comprise at least two polyethylene repeating units.
  • Multivalent TCR Complexes
  • One aspect of the invention provides a multivalent TCR complex comprising at least two TCRs of the invention. In one embodiment of this aspect, at least two TCR molecules are linked via linker moieties to form multivalent complexes. Preferably the complexes are water soluble, so the linker moiety should be selected accordingly. Furthermore, it is preferable that the linker moiety should be capable of attachment to defined positions on the TCR molecules, so that the structural diversity of the complexes formed is minimised. One embodiment of the present aspect is provided by a TCR complex of the invention wherein the polymer chain or peptidic linker sequence extends between amino acid residues of each TCR which are not located in a variable region sequence of the TCR.
  • Since the complexes of the invention may he for use in medicine, the linker moieties should he chosen with due regard to their pharmaceutical suitability, for example their immunogenicity.
  • Examples of linker moieties which fulfil the above desirable criteria are known in the art, for example the art of linking antibody fragments.
  • There are two classes of linker that are preferred for use in the production of multivalent TCR molecules of the present invention. A TCR complex of the invention in which the TCRs are linked by a polyalkylene glycol chain provides one embodiment of the present aspect.
  • The first are hydrophilic polymers such as polyalkylene glycols. The most commonly used of this class are based on polyethylene glycol or PEG, the structure of which is shown below.

  • HOCH2CH2O (CH2CH2O)n—CH2CH2OH
  • Wherein n is greater than two. However, others are based on other suitable, optionally substituted, polyalkylene glycols include polypropylene glycol, and copolymers of ethylene glycol and propylene glycol.
  • Such polymers may be used to treat or conjugate therapeutic agents, particularly polypeptide or protein therapeutics, to achieve beneficial changes to the PK profile of the therapeutic, for example reduced renal clearance, improved plasma half-life, reduced immunogenicity, and improved solubility. Such improvements in the PK profile of the PEG-therapeutic conjugate are believe to result from the PEG molecule or molecules forming a ‘shell’ around the therapeutic which sterically hinders the reaction with the immune system and reduces proteolytic degradation. (Casey et al, (2000) Tumor Targetting 4 235-244) The size of the hydrophilic polymer used my in particular be selected on the basis of the intended therapeutic use of the TCR complex. Thus for example, where the product is intended to leave the circulation and penetrate tissue, for example for use in the treatment of a tumour, it may be advantageous to use low molecular weight polymers in the order of 5 KDa. There are numerous review papers and books that detail the use of PEG and similar molecules in pharmaceutical formulations. For example, see Harris (1992) Polyethylene Glycol Chemistry—Biotechnical and Biomedical Applications, Plenum, New York, N.Y. or Harris & Zalipsky (1997) Chemistry and Biological Applications of Polyethylene Glycol ACS Books, Washington, D.C.
  • The polymer used can have a linear or branched conformation. Branched PEG molecules, or derivatives thereof, can be induced by the addition of branching moieties including glycerol and glycerol oligomers, pentaerythritol, sorbitol and lysine.
  • Usually, the polymer will have a chemically reactive group or groups in its structure, for example at one or both termini, and/or on branches from the backbone, to enable the polymer to link to target sites in the TCR. This chemically reactive group or groups may be attached directly to the hydrophilic polymer, or there may be a spacer group/moiety between the hydrophilic polymer and the reactive chemistry as shown below:
      • Reactive chemistry-Hydrophilic polymer-Reactive chemistry
      • Reactive chemistry-Spacer-Hydrophilic polymer-Spacer-Reactive chemistry
  • The spacer used in the formation of constructs of the type outlined above may be any organic moiety that is a non-reactive, chemically stable, chain. Such spacers include, by are not limited to the following:

  • —(CH2)n— wherein n=2 to 5

  • —(CH2)3NHCO(CH2)2
  • A TCR complex of the invention in which a divalent alkylene spacer radical s located between the polyalkylene glycol chain and its point of attachment to a TCR of the complex provides a further embodiment of the present aspect.
  • A TCR complex of the invention in which the polyalkylene glycol chain comprises at least two polyethylene glycol repeating units provides a further embodiment of the present aspect.
  • There are a number of commercial suppliers of hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention.
  • These suppliers include Nektar Therapeutics (CA, USA), NOF Corporation (Japan), Sunhio (South Korea) and Enzon Pharmaceuticals (NJ, USA).
  • Commercially available hydrophilic polymers linked, directly or via a spacer, to reactive chemistries that may be of use in the present invention include, but are not limited to, the following:
  • PEG linker Description Source of PEG Catalogue Number
    TCR Monomer attachment
    5K linear (Maleimide) Nektar 2D2MOHO1
    20K linear (Maleimide) Nektar 2D2MOPO1
    20K linear (Maleimide) NOF SUNBRIGHT
    Corporation ME-200MA
    20K branched (Maleimide) NOF SUNBRIGHT GL2-
    Corporation 200MA
    30K linear (Maleimide) NOF SUNBRIGHT ME-
    Corporation 300MA
    40K branched PEG (Maleimide) Nektar 2D3XOTO1
    5K-NP linear NOF SUNBRIGHT
    (for Lys attachment) Corporation MENP-50H
    10K-NP linear NOF SUNBRIGHT
    (for Lys attachment) Corporation MENP-10T
    20K-NP linear NOF SUNBRIGHT
    (for Lys attachment) Corporation MENP-20T
    TCR dinner linkers
    3.4K linear (Maleimide) Nektar 2D2DOFO2
    5K forked (Maleimide) Nektar 2D2DOHOF
    10K linear (with Sunbio
    orthopyridyl ds-
    linkers in place of Maleimide)
    20K forked (Maleimide) Nektar 2D2DOPOF
    20K linear (Maleimide) NOF
    Corporation
    40K forked (Maleimide) Nektar 2D3XOTOF
    Higher order TCR multimers
    15K, 3 arms, Mal3 (for trimer) Nektar OJOONO3
    20K, 4 arms, Mal4 (for tetramer) Nektar OJOOPO4
    40K, 8 arms, Mal8 (for octamer) Nektar OJOOTO8
  • A wide variety of coupling chemistries can be used to couple polymer molecules to protein and peptide therapeutics. The choice of the most appropriate coupling chemistry is largely dependant on the desired coupling site. For example, the following coupling chemistries have been used attached to one or more of the termini of PEG molecules (Source: Nektar Molecular Engineering Catalogue 2003):
      • N-maleimide
      • Vinyl sulfone
      • Benzotriazole carbonate
      • Succinimidyl proprionate
      • Succinimidyl butanoate
      • Thio-ester
      • Acetaldehydes
      • Acrylates
      • Biotin
      • Primary amines
  • As stated above non-PEG based polymers also provide suitable linkers for multimerising the TCRs of the present invention. For example, moieties containing maleimide termini linked by aliphatic chains such as BMH and BMOE (Pierce, products Nos. 22330 and 22323) can be used.
  • Peptidic linkers are the other class of TCR linkers. These linkers are comprised of chains of amino acids, and function to produce simple linkers or multimerisation domains onto which TCR molecules can be attached. The biotin/streptavidin system has previously been used to produce TCR tetramers (see WO/99/60119) for in-vitro binding studies. However, stepavidin is a microbially-derived polypeptide and as such not ideally suited to use in a therapeutic.
  • A TCR complex of the invention in which the TCRs are linked by a peptidic linker derived from a human multimerisation domain provides a further embodiment of the present aspect.
  • There are a number of human proteins that contain a multimerisation domain that could be used in the production of multivalent TCR complexes. For example the tetramerisation domain of p53 which has been utilised to produce tetramers of scFv antibody fragments which exhibited increased serum persistence and significantly reduced off-rate compared to the monomeric scFV fragment (Willuda et al. (2001) J. Biol. Chem. 276 (17) 14385-14392) Haemoglobin also has a tetramerisation domain that could potentially be used for this kind of application.
  • A multivalent TCR complex of the invention comprising at least two TCRs provides a final embodiment of this aspect, wherein at least one of said TCRs is associated with a therapeutic agent.
  • In one aspect a TCR (or multivalent complex thereof) of the present invention may alternatively or additionally comprise a reactive cysteine at the C-terminal or N-terminal of the alpha or beta chains thereof.
  • Diagnostic and Therapeutic Use
  • In one aspect the TCR of the invention may be associated with a therapeutic agent or detectable moiety. For example, said therapeutic agent or detectable moiety may be covalently linked to the TCR.
  • In one embodiment of the invention said therapeutic agent or detectable moiety is covalently linked to the C-terminus of one or both TCR chains.
  • In one aspect the scTCR or one or both of the dTCR chains of TCRs of the present invention may be labelled with an detectable moiety, for example a label that is suitable for diagnostic purposes. Such labelled TCRs are useful in a method for detecting a SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex which method comprises contacting the TCR ligand with a TCR (or a multimeric high affinity TCR complex) which is specific for the TCR ligand; and detecting binding to the TCR ligand. In tetrameric TCR complexes formed for example, using biotinylated heterodimers, fluorescent streptavidin can be used to provide a detectable label. Such a fluorescently-labelled TCR tetramer is suitable for use in FACS analysis, for example to detect antigen presenting cells carrying the SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex for which these high affinity TCRs are specific.
  • Another manner in which the soluble TCRs of the present invention may be detected is by the use of TCR-specific antibodies, in particular monoclonal antibodies. There are many commercially available anti-TCR antibodies, such as αF1 and βF1, which recognise the constant domains of the α and β chains, respectively.
  • In a further aspect a TCR (or multivalent complex thereof) of the present invention may alternatively or additionally be associated with (e.g. covalently or otherwise linked to) a therapeutic agent which may be, for example, atoxic moiety for use in cell killing, or an immune effector molecule such as an interleukin or a cytokine. A multivalent TCR complex of the invention may have enhanced binding capability for a TCR ligand compared to a non-multimeric wild-type or T cell receptor heterodimer of the invention. Thus, the multivalent TCR complexes according to the invention are particularly useful for tracking or targeting cells presenting particular antigens in vitro or in vivo, and are also useful as intermediates for the production of further multivalent TCR complexes having such uses. These TCRs or multivalent TCR complexes may therefore be provided in a pharmaceutically acceptable formulation for use in vivo.
  • The invention also provides a method for delivering a therapeutic agent to a target cell, which method comprises contacting potential target cells with a TCR or multivalent TCR complex in accordance with the invention under conditions to allow attachment of the TCR or multivalent TCR complex to the target cell, said TCR or multivalent TCR complex being specific for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex and having the therapeutic agent associated therewith.
  • In particular, the soluble TCR or multivalent TCR complex of the present invention can be used to deliver therapeutic agents to the location of cells presenting a particular antigen. This would be useful in many situations and, in particular, against tumours. A therapeutic agent could be delivered such that it would exercise its effect locally but not only on the cell it binds to. Thus, one particular strategy envisages anti-tumour molecules linked to TCRs or multivalent TCR complexes according to the invention specific for tumour antigens.
  • Many therapeutic agents could be employed for this use, for instance radioactive compounds, enzymes (perform for example) or chemotherapeutic agents (cis-platin for example). To ensure that toxic effects are exercised in the desired location the toxin could be inside a liposome linked to streptavidin so that the compound is released slowly. This will prevent damaging effects during the transport in the body and ensure that the toxin has maximum effect after binding of the TCR to the relevant antigen presenting cells.
  • Other suitable therapeutic agents include:
      • small molecule cytotoxic agents, i.e. compounds with the ability to kill mammalian cells having a molecular weight of less than 700 daltons. Such compounds could also contain toxic metals capable of having a cytotoxic effect. Furthermore, it is to be understood that these small molecule cytotoxic agents also include pro-drugs, i.e. compounds that decay or are converted under physiological conditions to release cytotoxic agents. Examples of such agents include cis-platin, maytansine derivatives, rachelmycin, calichearnicin, docetaxel, etoposide, gemcitabine, ifosfamide, irinotecan, melphalan, mitoxantrone, sorfimer sodiumphotofrin II, temozolmide, topotecan, trimetreate glucuronate, auristatin E vincristine and doxorubicin;
      • peptide cytotoxins, i.e. proteins or fragments thereof with the ability to kill mammalian cells. Including but not limited to, ricin, diphtheria toxin, pseudomonas bacterial exotoxin A, DNAase and RNAase;
      • radio-nuclides, i.e. unstable isotopes of elements which decay with the concurrent emission of one or more of α or β particles, or γ rays. including but not limited to, iodine 131, rhenium 186, indium 111, yttrium 90, bismuth 210 and 213, actinium 225 and astatine 213; chelating agents may be used to facilitate the association of these radio-nuclides to the high affinity TCRs, or multimers thereof;
      • prodrugs, including but not limited to, antibody directed enzyme pro-drugs;
      • immuno-stimulants, i.e. moieties which stimulate immune response. Including but not limited to, cytokines such as IL-2 and IFN, Superantigens and mutants thereof, TCR-HLA fusions and chemokines such as IL-8, platelet factor 4, melanoma growth stimulatory protein, etc, antibodies or fragments thereof, complement activators, xenogeneic protein domains, allogeneic protein domains, viral/bacterial protein domains, viral/bacterial peptides and anti-T cell determinant antibodies (e.g. anti-CD3 or anti-CD28),
  • Functional Antibody Fragments and Variants
  • Antibody fragments and variants/analogues which are suitable for use in the compositions and methods described herein include, but are not limited to, the following.
  • Antibody Fragments
  • As is known to those skilled in the art, it is possible to produce fragments of a given antibody which retain substantially the same binding characteristics as those of the parent antibody. The following provides details of such fragments:
  • Minibodies—These constructs consist of antibodies with a truncated Fc portion. As such they retain the complete binding domains of the antibody from which are derived.
  • Fab fragments—These comprise a single immunoglobulin light chain covalently-linked to part of an immunoglobulin heavy chain. As such, Fab fragments comprise a single antigen combining site. Fab framents are defined by the portion of an IgG that can be liberated by treatment with papain. Such fragments are commonly produced via recombinant DNA techniques. (Reeves et al., (2000) Lecture Notes on Immunology (4th Edition) Published by Blackwell Science)
  • F(ab′)2 fragments—These comprise both antigen combining sites and the hinge region from a single antibody. F(ab′)2 fragments are defined by the portion of an IgG that can be liberated by treatment with pepsin. Such fragments are commonly produced via recombinant DNA techniques. (Reeves et al., (2000) Lecture Notes on Immunology (4tth Edition) Published by Blackwell Science)
  • Fv fragments—These comprise an immunoglobulin variable heavy domain linked to an immunoglobulin variable light domain. A number of Fv designs have been produced. These include dsFvs, in which the association between the two domains is enhanced by an introduced disulfide bond. Alternatively, scFVs can be formed using a peptide linker to bind the two domains together as a single polypeptide. Fvs constructs containing a variable domain of a heavy or light immunoglobulin chain associated to the variable and constant domain of the corresponding immunoglobulin heavy or light chain have also been produced. FV have also been multimerised to form diabodies and triabodies (Maynard et al., (2000) Annu Rev Biomed Eng 2 339-376)
  • Nanobodies™—These constructs, marketed by Ablynx (Belgium), comprise synthetic single immunoglobulin variable heavy domain derived from a camelid (e.g. camel or llama) antibody.
  • Domain Antibodies—These constructs, marketed by Domantis (Belgium), comprise an affinity matured single immunoglobulin variable heavy domain or immunoglobulin variable light domain.
  • Antibody Variants and Analogues
  • The defining functional characteristic of antibodies in the context of the present invention is their ability to bind specifically to a target ligand. As is known to those skilled in the art it is possible to engineer such binding characteristics into a range of other proteins. Examples of antibody variants and analogues suitable for use in the compositions and methods of the present invention include, but are not limited to, the following.
  • Protein scaffold-based binding polypeptides—This family of binding constructs comprise mutated analogues of proteins which contain native binding loops. Examples include Affibodies, marketed by Affibody (Sweden), which are based on a three-helix motif derived from one of the IgG binding domains of Staphylococcus aureus Protein A. Another example is provided by Evibodies, marketed by EvoGenix (Australia) which are based on the extracellular domains of CTLA-4into which domains similar to antibody binding loops are grafted. A final example, Cytokine Traps marketed by Regeneron Pharmaceuticals (US), graft cytokine receptor domains into antibody scaffolds. (Nygren et al., (2000) Current Opinion in Structural biology 7 463-469) provides a review of the uses of scaffolds for engineering novel binding sites in proteins. This review mentions the following proteins as sources of scaffolds: CP1 zinc finger, Tendamistat, Z domain (a protein A analogue), PST1, Coiled coils, LACI-D1 and cytochrome b562. Other protein scaffold studies have reported the use of Fibronectin, Green fluorescent protein (GFP) and ankyrin repeats.
  • As is known to those skilled in the art antibodies or fragments, variants or analogues thereof can be produced which bind to various parts of a given protein ligand. For example, anti-CD3 antibodies can be raised to any of the polypeptide chains from which this complex is formed (i.e. γ, δ, ε, ξ, and η CD3 chains) Antibodies which bind to the ε CD3 chain are the preferred anti-CD3 antibodies for use in the compositions and methods of the present invention.
  • Soluble TCRs or multivalent TCR complexes of the invention may be linked to an enzyme capable of converting a prodrug to a drug. This allows the prodrug to be converted to the drug only at the site where it is required (i.e. targeted by the sTCR).
  • It is expected that the high affinity SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 specific TCRs disclosed herein may be used in methods for the diagnosis and treatment of cancer.
  • For cancer treatment, the localisation in the vicinity of tumours or metastasis would enhance the effect of toxins or immunostimulants. For vaccine delivery, the vaccine antigen could be localised in the vicinity of antigen presenting cells, thus enhancing the efficacy of the antigen. The method can also be applied for imaging purposes.
  • One embodiment is provided by an isolated cell presenting a TCR of the invention. For example, said cell may be a T cell.
  • Further embodiments of the invention are provided by a pharmaceutical composition comprising:
  • a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention, together with a pharmaceutically acceptable carrier;
  • The invention also provides a method of treatment of cancer comprising administering to a subject suffering such cancer disease an effective amount of a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention. In a related the invention provides for the use of a TCR or a multivalent TCR complex of the invention (optionally associated with a therapeutic agent), or a plurality of cells presenting at least one TCR of the invention, in the preparation of a composition for the treatment of cancer.
  • Therapeutic or imaging TCRs in accordance with the invention will usually be supplied as part of a sterile, pharmaceutical composition which will normally include a pharmaceutically acceptable carrier. This pharmaceutical composition may be in any suitable form, (depending upon the desired method of administering it to a patient). It may be provided in unit dosage form, will generally be provided in a sealed container and may be provided as part of a kit. Such a kit would normally (although not necessarily) include instructions for use. It may include a plurality of said unit dosage forms.
  • The pharmaceutical composition may be adapted for administration by any appropriate route, for example parenteral, transdermal or via inhalation, preferably a parenteral (including subcutaneous, intramuscular, or, most preferably intravenous) route. Such compositions may be prepared by any method known in the art of pharmacy, for example by admixing the active ingredient with the carrier(s) or excipient(s) under sterile conditions.
  • Dosages of the substances of the present invention can vary between wide limits, depending upon the disease or disorder to be treated, the age and condition of the individual to be treated, etc. and a physician will ultimately determine appropriate dosages to be used.
  • Additional Aspects
  • A scTCR or dTCR (which preferably is constituted by constant and variable sequences corresponding to human sequences) of the present invention may be provided in substantially pure form, or as a purified or isolated preparation. For example, it may be provided in a form which is substantially free of other proteins.
  • The invention also provides a method of producing a high affinity TCR having the property of binding to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 characterized in that the TCR (i) comprises at least one TCR α chain variable domain and/or at least one TCR β chain variable domain and (ii) has a KD for the said SLLMWITQC (SEQ ID NO:126)-HLA-A.*0201 complex of less than or equal to 1 μM and/or an off-rate (koff) for the SLLMWITQC (SEQ NO:126)-HLA-A*0201 complex of 1×10−3 S−1 or slower, wherein the method comprises:
      • (a) the production of a TCR comprising the α and β chain variable domains of the 1G4 TCR wherein one or both of the α and β chain variable domains comprise a mutation(s) in one or more of the amino acids identified in claims 7 and 8;
      • (b) contacting said mutated TCR with SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 under conditions suitable to allow the binding of the TCR to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201;
        and measuring the KD and/or koff of the interaction.
  • Preferred features of each aspect of the invention are as for each of the other aspects mutatis mutandis. The prior art documents mentioned herein are incorporated to the fullest extent permitted by law.
  • EXAMPLES
  • The invention is further described in the following examples, which do not limit the scope of the invention in any way.
  • Reference is made in the following to the accompanying drawings in which:
  • FIG. 1 a and 1 b details the alpha chain variable domain amino acid and beta chain variable domain amino acid sequences of the native 1G4 TCR respectively.
  • FIGS. 2 a and 2 b show respectively the DNA sequence of soluble versions of the native 1G4 TCR α and β chains.
  • FIGS. 3 a and 3 b show respectively the 1G4 TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 2 a and 2 b.
  • FIGS. 4 a and 4 b show respectively the DNA sequence of soluble versions of the 1G4 TCR α and β chains mutated to include additional cysteine residues to form a non-native disulphide bond. The mutated codon is indicated by shading.
  • FIGS. 5 a and 5 b show respectively the 1G4 TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 4 a and 4 b. The introduced cysteine is indicated by shading.
  • FIG. 6 details the alpha chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 7 details the beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 8 a details the amino acid sequence of a soluble form of TRAC.
  • FIG. 8 b details the amino acid sequence of a soluble form of TRBC1.
  • FIG. 8 c details the amino acid sequence of a soluble form of TRBC2.
  • FIG. 9 details the DNA sequence of the pEX954 plasmid.
  • FIG. 10 details the DNA sequence of the pEX821 plasmid.
  • FIG. 11 details the DNA sequence of the pEX202 plasmid.
  • FIG. 12 details the DNA sequence of the pEX205 plasmid.
  • FIG. 13 details further beta chain variable domain amino acid sequences of the high affinity 1G4 TCR variants.
  • FIG. 14 a details the alpha chain amino acid sequences of a preferred soluble high affinity 1G4 TCR variant.
  • FIG. 14 b details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC1 constant domain.
  • FIG. 14 c details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR variant utilising the TRBC2 constant domain.
  • FIG. 14 d details the beta chain amino acid sequences of a preferred (c58c61) soluble high affinity 1G4 TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.
  • FIG. 15 a shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 15 b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC (SEQ ID NO: 126) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC (SEQ ID NO:126) peptide producing ubiquitin minigene(±proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 17 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 104 TCR to inhibit CTL activation against the MEL-624 cancer cell.
  • FIG. 18 shows ELISPOT data demonstrating the ability of soluble high affinity c58c61 1G4 TCR to inhibit CTL activation against the SK-MEL-37 cancer cell.
  • FIG. 19 shows inhibition of T cell activation against peptide pulsed T2 cells by the soluble c58c61 high affinity 1G4 TCR as measured by IFNγ production.
  • FIG. 20 shows lack of inhibition of T cell activation against peptide pulsed T2 cells by the soluble wild-type 1G4 TCR as measured by IFNγ production.
  • FIG. 21 shows tumor growth inhibition caused by soluble c58c61 high affinity 1G4 TCR-IL-2 immunoconjugates.
  • FIG. 22 shows the number of SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells as determined by fluorescent microscopy. The visualisation of cell-bound biotinylated soluble c58c61 high affinity 1G4 TCRs was facilitated by conjugation with streptavidin-R phycoerythrin (PE).
  • EXAMPLE 1 Production of a Soluble Disulfide-Linked TCR Comprising the Native 1G4 TCR Variable Domain
  • RNA Isolation
  • Total RNA was isolated from 10000 clonal T cells by re-suspension in 100 μl tri-reagent (Sigma) and processing of the lysate according to the manufacturer's instructions. After the final precipitation the RNA was re-dissolved in 12.5 μl RNAse free water.
  • cDNA Production
  • To the above sample of RNA, 2.5 μl of 10 mM oligo-dT15 (Promega) was added and the sample incubated at 60° C. for 2 minutes then placed on ice. Reverse transcription was carried out using OmniscriptRT kit (Qiagen) by addition of 2 μl RT buffer (10×), 2 μl 5 mM dNTP, 1 μl Omniscript reverse transcriptase. The sample was mixed and incubated for 1 hour at 37° C. cDNA was then stored at −80° C.
  • The above cDNA was used as template. A panel of forward primers covering all possible alpha and beta variable chains was used to screen for, and amplify by PCR, alpha and beta chains genes. Primer sequences used for TCR chain gene amplification were designed from the NCBI website using accession numbers obtained from the T cell receptor Factsbook, (2001) LeFranc and LeFranc, Academic Press, ISBN 0-12-441352-8. Alpha-chain forward primers were designed to contain a ClaI restriction site and the universal alpha chain reverse primer a SalI restriction site. Beta-chain forward primers were designed to contain a AseI restriction site and universal beta reverse primer an AgeI restriction site.
  • Recipient vectors for the TCR gene fragments were based on a pGMT7 parent plasmid, which contains the T7 promoter for high level expression in E. coli strain BL21-DE3(pLysS) (Pan et al., Biotechniques (2000) 29 (5): 1234-8)
  • Alpha chain purified PCR products were digested with ClaI and SalII and ligated into pEX954 (see FIG. 9) cut with ClaI and XhoI.
  • Beta chain purified PCR products were digested with AseI and AgeI and ligated into pEX821 (See FIG. 10) cut with NdeI/AgeI.
  • Ligation
  • The cut PCR product and cut vector were ligated using a rapid DNA ligation kit (Roche) following the manufacturers instructions.
  • Ligated plasmids were transformed into competent E. coli strain XL1-blue cells and plated out on LB/agar plates containing 100 mg/ml ampicillin. Following incubation overnight at 37° C., single colonies were picked and grown in 10 ml LB containing 100 mg/ml ampicillin overnight at 37° C. with shaking. Cloned plasmids were purified using a Miniprep kit (Qiagen) and the insert was sequenced using an automated DNA sequencer (Lark Technologies).
  • FIGS. 4 a and 4 b show respectively the DNA sequence of soluble versions of the 1G4 TCR α and β chains mutated to include additional cysteine residues to form a non-native disulphide bond.
  • FIGS. 5 a and 5 b show respectively the NY-ESO TCR α and β chain extracellular amino acid sequences produced from the DNA sequences of FIGS. 4 a and 4 b
  • EXAMPLE 2 Production of High Affinity Variants of the Soluble Disulfide Linked 1G4 TCR
  • The soluble disulfide-linked native 1G4 TCR produced as described in Example 1 can be used a template from which to produce the TCRs of the invention which have an increased affinity for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex.
  • The amino sequences of the mutated TCR alpha and beta chain variable domains which demonstrate high affinity for the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex are listed in FIGS. 6 and 7 respectively. (SEQ ID Nos: 11-83 and 84-99 respectively) As is known to those skilled in the art the necessary codon changes required to produce these mutated chains can be introduced into the DNA encoding these chains by site-directed mutagenesis. (QuickChange™ Site-Directed Mutagenesis Kit from Stratagene)
  • Briefly, this is achieved by using primers that incorporate the desired codon change(s) and the plasmids containing the relevant 1G4 TCR chain as a template for the mutagenesis:
  • Mutagenesis was carried out using the following conditions: 50 ng plasmid template, 1 μl of 10 mM dNTP, 5 μl of 10× Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 μl pfu DNA polymerase in total volume 50 μl. After an initial denaturation step of 2 mins at 95 C, the reaction was subjected to 25 cycles of denaturation (95 C, 10 sees), annealing (55 C 10 secs), and elongation (72 C, 8 mins). The resulting product was digested with DpnI restriction enzyme to remove the template plasmid and transformed into E. coli strain XL1-blue. Mutagenesis was verified by sequencing.
  • EXAMPLE 3 Production of Soluble “Zippered” High Affinity TCRs
  • Alpha Chain—C-Jun Leucine Zipper
  • The construct was made by PCR stitching.
  • For the 5′-end of the gene the plasmid coding for the high affinity TCR alpha chains and containing the code for the introduced inter-chain di-sulfide bridge was used as template. PCR with the following two primer pairs generated the desired variable domain.
  • 5′-TRAV21 fwd
    (SEQ ID NO: 105)
    tctctcattaatgaaacaggaggtgacgcagattcct
    C-alpha rev
    (SEQ ID NO: 106)
    CGGCAGGGTCAGGGTTCTGG
  • For the 3′-end of the gene the plasmid pEX202 (see FIG. 11), coding for a wild type affinity TCR alpha chain fused to human c-jun leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following primer pair generated the desired constant domain.
  • C-alpha fwd
    (SEQ ID NO: 107)
    CCAGAACCCTGACCCTGCCG
    3′-alpha rev
    (SEQ ID NO: 108)
    aagcttcccgggggaactttctgggctggg
  • The two products were mixed and diluted 1000 fold and 1 μl was used as template in a 50 μl PCR with 5′-TRAV21 fwd and 3′-alpha rev primers.
  • The resulting PCR product was digested using restriction enzymes AseI and XmaI and ligated into pEX202 cut with NdeI and XmaI.
  • PCRs were carried out using the following conditions: 50 μg plasmid template, 1 μl of 10 mM dNTP, 5 μl of 10× Pfu DNA polymerase buffer as supplied by the manufacturer, 25 pmol of fwd primer, 25 pmol of rev primer, 1 μl Pfu DNA polymerase in total volume 50 μl. After an initial denaturation step of 2 mins at 95 C, the reaction was subjected to 30 cycles of denaturation (95 C, 10 secs), annealing (55 C 10 secs), and elongation (72 C, 2 mins).
  • Beta Chain—C-FOS Leucine Zipper
  • The construct was made by PCR stitching.
  • For the 5′-end of the gene plasmids coding for the high affinity TCR beta chains and containing the introduced inter-chain di-sulfide bridge were used as template. PCR with the following two primers generated the desired variable domain gene fragment.
  • TRBV6-5 fwd
    (SEQ ID NO: 109)
    tctatcattaatgaatgctggtgtcactcagacccc
    C-beta rev
    (SEQ ID NO: 110)
    CTTCTGATGGCTCAAACACAGC
  • For the 3′-end of the gene the plasmid pEX205 (see FIG. 12), coding for a wild type affinity TCR beta chain fused to the human c-fos leucine zipper domain and not containing the code for the introduced inter-chain di-sulfide bridge, was used as template. PCR with the following two primers generated the desired constant domain gene fragment.
  • C-beta fwd
    (SEQ ID NO: 111)
    GCTGTGTTTGAGCCATCAGAAG
    TRBC rev
    (SEQ ID NO: 112)
    aagcttcccggggtctgctctaccccaggc
  • The two products were mixed and diluted 1000 fold and 1 μl was used as template in a 50 μl PCR with TRBV6-5 fwd and TRBC rev primers. PCRs were carried out as described above.
  • The resulting PCR product was digested using restriction enzymes AscI and XmaI and ligated into pEX205 cut with NdeI and XmaI.
  • EXAMPLE 4 Expression, Refolding and Purification of Soluble TCR
  • The expression plasmids containing the mutated α-chain and β-chain respectively as prepared in Examples 1, 2 or 3 were transformed separately into E. coli strain BL21pLysS, and single ampicillin-resistant colonies were grown at 37° C. in TYP (ampicillin 100 μg/ml) medium to OD600 of 0.4 before inducing protein expression with 0.5 mM IPTG. Cells were harvested three hours post-induction by centrifugation for 30 minutes at 4000 rpm in a Beckman J-6B. Cell pellets were re-suspended in a buffer containing 50 mM Tris-HCI, 25% (w/v) sucrose, 1 mM NaEDTA, 0.1% (w/v) NaAzide, 10 mM DTT, pH 8.0. After an overnight freeze-thaw step, re-suspended cells were sonicated in 1 minute bursts for a total of around 10 minutes in a Milsonix X12020 sonicator using a standard 12 min diameter probe. Inclusion body pellets were recovered by centrifugation for 30 minutes at 13000 rpm in a Beckman J2-21 centrifuge. Three detergent washes were then carried out to remove cell debris and membrane components. Each time the inclusion body pellet was homogenised in a Triton buffer (50 mM Tris-HCI, 0.5% Triton-X100, 200 mM NaCI, 10 mM NaEDTA, 0.1% (w/v) NaAzide, 2 mM DTT, pH 8.0) before being pelleted by centrifugation for 15 minutes at 13000 min in a Beckman J2-21. Detergent and salt was then removed by a similar wash in the following buffer: 50 mM Tris-HCl, 1 mM NaEDTA, 0.1% (w/v) NaAzide, 2 mM DTT, pH 8.0. Finally, the inclusion bodies were divided into 30 mg aliquots and frozen at −70° C., Inclusion body protein yield was quantitated by solubilising with 6M guanidine-HCl and measurement with a Bradford dye-binding assay (PerBio).
  • Approximately 30 mg of TCR β chain and 60 mg of TCR α chain solubilised inclusion bodies were thawed from frozen stocks, samples were then mixed and the mixture diluted into 15 ml of a guanidine solution (6 M Guanidine-hydrochloride, 10 mM Sodium ALetate, 10 mM EDTA), to ensure complete chain de-naturation. The guanidine solution containing fully reduced and denatured TCR chains was then injected into 1 litre of the following refolding buffer: 100 mM Tris pH 8.5, 400 mM L-Arginine, 2 mM EDTA, 5 mM reduced Glutathione, 0.5 mM oxidised Glutathione, 5M urea, 0.2 mM PMSF. The redox couple (2-mercaptoethylamine and cystamine (to final concentrations of 6.6 mM and 3.7 mM, respectively) were added approximately 5 minutes before addition of the denatured TCR chains. The solution was left for 5 hrs±15minutes. The refolded TCR was dialysed in Spectrapor 1 membrane (Spectrum; Product No. 132670) against 10 L 10 mM Tris pH 8.1 at 5° C.±3° C. for 18-20 hours. After this time, the dialysis buffer was changed to fresh 10 mM Tris pH 8.1 (10 L) and dialysis was continued at 5° C.±3° C. for another 20-22 hours.
  • sTCR was separated from degradation products and impurities by loading the dialysed refold onto a POROS 50HQ anion exchange column and eluting bound protein with a gradient of 0-500 mM NaCl over 50 column volumes using an Akta purifier (Pharmacia). Peak fractions were stored at 4° C. and analysed by Coomassie-stained SDS-PAGE before being pooled and concentrated. Finally, the sTCR was purified and characterised using a Superdex 200HR gel filtration column pre-equilibrated in HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3.5 mM EDTA, 0.05% nonidet p40). The peak eluting at a relative molecular weight of approximately 50 kDa was pooled and concentrated prior to characterisation by BIAcore surface plasmon resonance analysis.
  • EXAMPLE 5 Biacore Surface Plasmon Resonance Characterisation of sTCR Binding to Specific pMHC
  • A surface plasmon resonance biosensor (Biacore 3000™) was used to analyse the binding of a sTCR to its peptide-MHC ligand. This was facilitated by producing single pMHC complexes (described below) which were immobilised to a streptavidin-coated binding surface in a semi-oriented fashion, allowing efficient testing of the binding of a soluble T-cell receptor to up to four different pMHC (immobilised on separate flow cells) simultaneously. Manual injection of HLA complex allows the precise level of immobilised class I molecules to be manipulated easily.
  • Biotinylated class I HLA-A*0201 molecules were refolded in vitro from bacterially-expressed inclusion bodies containing the constituent subunit proteins and synthetic peptide, followed by purification and in vitro enzymatic biotinylation (O'Callaghan et al. (1999) Anal. Biochem. 266: 9-15), HLA-:A *0201-heavy chain was expressed with a C-terminal biotinylation tag which replaces the transmembrane and cytoplasmic domains of the protein in an appropriate construct. Inclusion body expression levels of ˜75 mg/litre bacterial culture were obtained. The MHC light-chain or β2-microglobulin was also expressed as inclusion bodies in E. coli from an appropriate construct, at a level of 500 mg/litre bacterial culture.
  • E. coil cells were lysed and inclusion bodies are purified to approximately 80% purity. Protein from inclusion bodies was denatured in 6 M guanidine-HCl, 50 mM Tris pH 8.1, 100 mM NaCl, 10 mM DTT, 10 mM EDTA, and was refolded at a concentration of 30 mg/litre heavy chain, 30 mg/litre β2 m into 0.4 M L-Arginine-HCl, 100 mM Tris pH 8.1, 3.7 mM cystamine, mM cysteamine, 4 mg/ml of the SLLMWITQC peptide required to be loaded by the HLA-A*0201 molecule, by addition of a single pulse of denatured protein into refold buffer at <5° C. Refolding was allowed to reach completion at 4° C. for at least 1 hour.
  • Buffer was exchanged by dialysis in 10 volumes of 10 mM Tris pH 8.1. Two changes of buffer were necessary to reduce the ionic strength of the solution sufficiently. The protein solution was then filtered through a 1.5 μm cellulose acetate filter and loaded onto a POROS 50HQ anion exchange column (8 ml bed volume). Protein was eluted with a linear 0-500 mM NaCl gradient. HLA-A*0201-peptide complex eluted approximately 250 mn NaCl, and peak fractions were collected, a cocktail of protease inhibitors (Calbiochem) was added and the fractions were chilled on ice.
  • Biotinylation tagged pMHC molecules were buffer exchanged into 10 mM Tris pH 8.1, 5 mM NaCl using a Pharmacia fast desalting column equilibrated in the same buffer. Immediately upon elution, the protein-containing fractions were chilled on ice and protease inhibitor cocktail (Calbiochem) was added. Biotinylation reagents were then added: 1 mM biotin, 5 mM ATP (buffered to pH 8), 7.5 mM MgCl2, and 5 μg/ml BirA enzyme (purified according to O'Callaghan et al. (1999) Anal. Biochem. 266: 9-15). The mixture was then allowed to incubate at room temperature overnight.
  • The biotinylated pHLA-A*0201 molecules were purified using gel filtration chromatography. A Pharmacia Superdex 75 HR 10/30 column was pre-equilibrated with filtered PBS and 1 ml of the biotinylation reaction mixture was loaded and the column was developed with PBS at 0.5 ml/min. Biotinylated pHLA-A*0201 molecules eluted as a single peak at approximately 15 ml. Fractions containing protein were pooled, chilled on ice, and protease inhibitor cocktail was added. Protein concentration was determined using a Coomassie-binding assay (PerBio) and aliquots of biotinylated pHLA-A*0201 molecules were stored frozen at −20° C. Streptavidin was immobilised by standard amine coupling methods.
  • Such immobilised complexes are capable of binding both T-cell receptors and the coreceptor CD8αα, both of which may be injected in the soluble phase. Specific binding of TCR is obtained even at low concentrations (a(least 40 μg/ml), implying the TCR is relatively stable. The pMHC binding properties of sTCR are observed to be qualitatively and quantitatively similar if sTCR is used either in the soluble or immobilised phase. This is an important control for partial activity of soluble species and also suggests that biotinylated pMHC complexes are biologically as active as non-biotinylated complexes.
  • The interactions between 1G4 sTCR containing a novel inter-chain bond and its ligand/MHC complex or an irrelevant HLA-peptide combination, the production of which is described above, were analysed on a Biacore 3000™ surface plasmon resonance (SPR) biosensor. SPR measures changes in refractive index expressed in response units (RU) near a sensor surface within a small flow cell, a principle that can be used to detect receptor ligand interactions and to analyse their affinity and kinetic parameters. The probe flow cells were prepared by immobilising the individual HLA-peptide complexes in separate flow cells via binding between the biotin cross linked onto β2m and streptavidin which have been chemically cross linked to the activated surface of the flow cells. The assay was then performed by passing sTCR over the surfaces of the different flow cells at a constant flow rate, measuring the SPR response in doing so.
  • To measure Equilibrium Binding Constant
  • Serial dilutions of WT 1G4 sTCR were prepared and injected at constant flow rate of 5 μl min-1 over two different flow cells: one coated with ˜1000 RU of specific SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex, the second coated with ˜1000 RU of non-specific HLA-A2 -peptide complex. Response was normalised for each concentration using the measurement from the control cell. Normalised data response was plotted versus concentration of TCR sample and fitted to a hyperbola in order to calculate the equilibrium binding constant, K1. (Price & Dwek, Principles and Problems in Physical Chemistry for Biochemists (2nd Edition) 1979, Clarendon Press, Oxford).
  • To Measure Kinetic Parameters
  • For high affinity TCRs KD was determined by experimentally measuring the dissociation rate constant, kd, and the association rate constant, ka. The equilibrium constant KD was calculated as kd/ka.
  • TCR was injected over two different cells one coated with ˜300 RU of specific HLA-A2-nyeso peptide complex, the second coated with ˜300 RU of non-specific HLA-A2-peptide complex. Flow rate was set at 50 μl/min. Typically 250 μl of TCR at ˜3 μM concentration was injected. Buffer was then flowed over until the response had returned to baseline. Kinetic parameters were calculated using Biaevaluation software. The dissociation phase was also fitted to a single exponential decay equation enabling calculation of half-life.
  • Results
  • The interaction between a soluble disulfide-linked native 1G4 TCR (consisting of the α and β TCR chains detailed in SEQ ID NOs 9 and 10 respectively) and the SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 complex was analysed using the above methods and demonstrated a KD of 15 μM and a koff of 1.28×10−1S−1.
  • The TCRs specified in the following table have a K0 of less than or equal to 1 μM and/or a koff of 1×10−3 S 1 or slower.
  • Alpha chain variable Beta chain variable
    domain sequence, domain sequence,
    SEQ ID NO: SEQ ID NO:
    1 84
    1 85
    1 86
    1 87
    1 88
    11 84
    12 84
    12 85
    12 90
    11 85
    11 86
    11 92
    11 93
    13 86
    14 84
    14 85
    15 84
    15 85
    16 84
    16 85
    17 86
    18 86
    19 84
    20 86
    21 84
    21 85
    22 84
    23 86
    24 84
    25 84
    26 84
    27 84
    28 84
    29 84
    30 84
    31 84
    32 84
    33 84
    20 86
    34 86
    35 89
    36 89
    37 89
    38 89
    39 89
    16 89
    17 89
    31 89
    40 89
    1 90
    1 91
    41 90
    42 2
    42 85
    42 92
    1 92
    1 93
    43 92
    44 92
    45 92
    46 92
    47 92
    48 84
    49 94
    50 84
    50 94
    51 94
    51 95
    1 94
    1 85
    51 84
    52 84
    52 94
    52 95
    53 84
    49 95
    49 94
    54 92
    55 92
    56 92
    57 92
    58 92
    59 92
    60 92
    61 92
    62 92
    63 92
    64 92
    65 92
    66 92
    67 92
    68 92
    69 92
    70 92
    71 92
    72 92
    73 92
    74 92
    75 92
    76 92
    77 92
    78 92
    79 92
    80 92
    81 92
    82 92
    83 92
    11 96
    11 97
    11 98
    11 99
    1 89
    50 117
    49 117
    50 118
    49 119
    50 119
    58 93
    49 118
    1 119
    1 117
    55 120
    56 120
    50 121
    50 120
    49 121
    49 120
    48 118
    53 95
  • EXAMPLE 6 In-Vitro Cell Staining Using a High Affinity c58c61 NY-ESO TCR IL-2 Fusion Protein.
  • T2 lymphoblastoid cells were pulsed with the NY-ESO-derived SLLMWITQC (SEQ ID NO:126), NY-ESO-analogue SLLMWITQV (SEQ NO:127) peptide, or an irrelevant peptide at a range of concentrations (10−5-10−10M) for 180 minutes at 37° C. The NY-ESO-analogue SLLMWITQV (SEQ ID NO:127) peptide (V-variant peptide) was used as this peptide is known to have a higher affinity for the binding cleft of the HLA-A*0201 complex than the native NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide. After pulsing, cells were washed in serum-free RPMI and 5×105 cells were incubated with high affinity c58c61 NY-ESO TCR-IL-2 fusion protein for 10 min at room temperature, followed by secondary anti-IL-2 mAb conjugated with PE (Serotec) for 15 min at room temperature. After washing, bound TCR-IL-2 was quantified by flow cytometry using a FACSVantage SE (Becton Dickinson). Controls, also using peptide-pulsed T2 cells were included where TCR-IL-2 was omitted.
  • FIG. 14 a details the amino acid sequence of the alpha chain of the c58c61 NY-ESO TCR. (SEQ ID NO: 122).
  • FIG. 14 c (SEQ ID NO: 124) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region.
  • FIG. 14 d (SEQ ID NO: 125) details the amino acid sequence of the beta chain of the c58c61 NY-ESO TCR using the TRBC2 encoded constant region fused via a peptide linker to wild-type human IL-2.
  • The alpha and beta chain variable domain mutations contained within the soluble c58c61 1G4 TCR IL-2 fusion protein correspond to those detailed in SEQ ID NO: 49 and SEQ ID NO: 94 respectively. Note that SEQ ID NOs: 121 -125 have been provided in a form which includes the N-terminal methionine (M) and the “K” and “NA” residues omitted in the majority of the other TCR alpha chain and beta chain amino acid sequences.
  • In similar experiments SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with a NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide expressing ubiquitin minigene construct were used. The cancer cells were transfected using substantially the methods described in (Rimoldi el al., (2000) J. Immunol. 165 7253-7261). Cells were labelled as described above.
  • Results
  • FIG. 15 a, shows FACs staining of T2 cell pulsed with a range of NY-ESO-analogue SLLMWITQV (SEQ ID NO:127) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 15 b shows FACs staining of T2 cell pulsed with a range of NY-ESO-derived SLLMWITQC (SEQ ID NO:126) peptide concentrations using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • FIG. 16 shows FACs staining of SK-MEL-37, ScaBER, J82, HcT119 and Colo 205 cancer cells transfected with an SLLMWITQC (SEQ NO:126) peptide producing ubiquitin minigene(±proteosome inhibitors) using the high affinity c58c61 1G4 TCR-IL-2 fusion proteins.
  • EXAMPLE 9 CTL Activation ELLSPOT Assay
  • The following assay was carried out to demonstrate that the soluble high affinity c58c61 NY-ESO TCR was capable of inhibiting activation of an SLLMWITQC (SEQ ID NO:126)-RLA-A*0201 specific CTL clone (1G4). IFN-γ production was used as the read-out for CTL activation.
  • Reagents
  • R10 Assay media: 10% FCS (heat-inactivated, Gibco, cat#10108-165), 88% RPMI 1640 (Gibco, cat#42401-018), 1% glutamine (Gibco cat#25030-024) and 1% penicillin/streptomycin (Gibco, cat#15070-063).
  • Peptide: (obtained from various sources) initially dissolved in DMSO (Sigma, cat# D2650) at 4 mg/ml and frozen.
  • Wash buffer: 0.01.M PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with Tween 20, pH7.4 from Sigma, Cat. #P-3563 dissolved in 1 litre distilled water gives final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20). PBS (Gibco, cat#10010-015).
  • The EliSpot kit contains all other reagents required i.e. capture and detection antibodies, skimmed milk powder, BSA, streptavidin-alkaline phosphatase, BCIP/NBT solution (Human IFN-g PVDF Eli-spot 20×96 wells with plates (IDS cat#DC-856.051.020, DC-856.000.000). The following method is based on the instructions supplied with each kit but contains some alterations.
  • MEL-624 and SK-MEL-37 melanoma cell lines were treated with trypsin for 5 minutes at 37° C. The cells are then washed and re-suspended in R10 media.
  • 50000 target cells were then plated out per well in 50 μl of R10 media in a 96 well ELISPOT plate (Diaclone).
  • The following was then added to the above target cell cultures:
  • 1×10−7 M high affinity c58c61 TCR, or an irrelevant TCR, is 50 μl of R10 media.
  • 600 SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 specific T cells (clone 1G4) in 50 μl of R10 media.
  • These cultures were then incubated for 24 hours at 37° C., 5% CO2. The ELISPOT plates were processed according to the manufacturers instructions.
  • Results
  • The soluble high affinity c58c61 1G4 TCR strongly inhibited the activation of 1G4 T cell clones against the melanoma cells, as measured by IFN-γ production. Whereas the irrelevant high affinity TCR had no inhibitory effect. (See FIG. 17 for MEL-624 cancer cell line results and FIG. 18 for SK-MEL-37 cancer cell line results)
  • EXAMPLE 10 CTL Activation ELISA Assay
  • The following assay was carried out to demonstrate that the soluble high affinity c58c61 1G4 TCR was capable of inhibiting activation of an SLLMWITQC-HLA-A*0201 specific CTL clone (1G4). IFN-γ production was used as the read-out for CTL activation.
  • Reagents
  • R10 Assay media: 10% FCS (heat-inactivated, Gibco, cat#10108-165), 88% RPMI 1640 (Gibco, cat#42401-018), 1% glutamine (Gibco, cat#25030-024) and 1% penicillin/streptomycin (Gibco, cat#15070-063).
  • Peptide: (obtained from various sources) initially dissolved in DMSO (Sigma, cat#D2650) at 4 mg/ml and frozen.
  • Wash buffer: 0.011 PBS/0.05% Tween 20 (1 sachet of Phosphate buffered saline with Tween 20, PH7.4 from Sigma, Cat. #P-3563 dissolved in 1 litre distilled water gives final composition 0.01M PBS, 0.138M NaCl, 0.0027M KCl, 0.05% Tween 20). PBS (Gibco, cat#10010-015).
  • The ELISA kit contains all other reagents except BSA (Sigma), required i.e. capture and detection antibodies, skimmed milk powder, streptavidin-HRP. TMB solution (Human IFN-g Eli-pair 20×96 wells with plates. The following method is based substantially on the instructions supplied with each kit.
  • Method
  • ELISA plates were prepared according to the manufacturers instructions. (Diaclone kit, Immunodiagnostic systems, UK
  • T2 cell line target cells were washed and re-suspended in R10 media with or without varying concentrations (100 nM-10 pM) of SLLMWITQC (SECS ID NO:126) peptide, then incubated for 1 hour at 37° C., 5% CO2.
  • 10,000 target cells per well were then plated out into a 96 well ELISA plate.
  • To these plates the following was added to the relevant well:
  • 1×10−6 M to 3×10−12 M of the high affinity c58c61 1G4 TCR or wild-type 1G4 TCR in 50 μl of R10 media.
  • 5000 1G4 effector cells in 50 μl of R10 media.
  • The plates were then incubated for 48 hours at 37° C., 5% CO2. The ELISA was then processed according to manufacturer's instructions.
  • Results
  • The soluble high affinity c58c61 1G4 TCR strongly inhibited the activation of 1G4 T cell clones against the peptide-pulsed target cells, as measured by IFN-γ production. Whereas the wild-type 1G4 TCR had no inhibitory effect. (See FIG. 19 for the high affinity c58c61 1G4 TCR and FIG. 20 for the wild-type 1G4 TCR)
  • EXAMPLE 11 In-Vivo Tumour Targeting Using a High Affinity c58c61 1G4 TCR-IL-2 Fusion Protein
  • This work was carried out to investigate the ability of a high affinity c58c61 1G4 TCR-IL-2 fusion protein described in Example 6, to inhibit growth of human tumor cells engrafted in nude mice.
  • Fifty female nude mice (HARLAN, France) were used in this trial.
  • All animals were injected subcutaneously with the human melanoma tumour-forming cell line (SK-MEL-37) which had been stably transfected with a NY-ESO peptide/ubiquitin minigene construct in ensure enhanced expression of the appropriate class I-peptide target at the cell surface. Tumors were allowed to grow in the animals for 5 days to allow tumour development prior to commencement of treatment.
  • The rats then received the following i.v. bolus dosage of c58c61 high affinity NY-ESO TCR/IL-2 fusion protein:
  • Doses ranged between 0.02 and 1.0 mg/kg high affinity 1G4 TCR/IL-2 fusion proteins in PBS, administered at 5, 6, 7, 8, 11, 13, 17, 20, 24, 28, and 30 day post-tumor engraftment. In all experiments, a control treatment group was included where PBS alone was substituted for the TCR/IL-2 immunoconjugate.
  • Tumor size was then measured using callipers and tumor volume determined according to the following formula (W2×L)/2, where W=the smallest diameter of the tumor, and L=is the longest diameter.
  • Results
  • The therapeutic effect of the TCR/IL-2 immunoconjugates in terms of tumor growth inhibition is shown in FIG. 21.
  • Conclusions
  • The TCR/IL-2 immunoconjugate exhibited a clear dose-dependent anti-tumor effect as shown by the tumour growth curves depicted in FIG. 21.
  • EXAMPLE 12 Quantification of Cell Surface TCR Ligands by Florescence Microscopy Using High Affinity c58c61 1G4 TCR
  • The number of SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 antigens on cancer cells (Mel 526, Mel 624 and SK-Mel-37 cell lines) was determined (on the assumption that one fluorescence signal relates to a single labelled TCR bound to its cognate pMHC ligand on the surface of the target cell) by single molecule fluorescence microscopy using the high-affinity c58c61 1G4 TCR. This was facilitated by using biotinylated TCR to target the antigen-expressing cancer cells and subsequent labelling of cell-bound TCR by streptavidin-R phycoerythrin (PE) conjugates. Individual PE molecules were then imaged by 3-dimensional fluorescence microscopy.
  • Staining of adherent cells. The cancer cells were plated into chamber well slides and allowed to adhere overnight in incubator. (37° C., 5% CO2)) Media was removed and replaced with fresh R10. Media was removed, and cells washed twice with 500 μl of PBS supplemented with 400 μM MgCl2 (PBS/Mg). Cells were incubated in 200 μl of TCR solution (5 μg ml−1 high affinity c58c61 1G4 TCR, or 5 μg ml−1 of an “irrelevant” HLA-A2-tax peptide-specific high affinity TCR, in PBS/Mg containing 0.5% BSA albumin) for 30 min at 4° C. TCR solution was removed, and cells were washed three times with 500 μl of PBS/Mg. Cells were incubated in 200 μl of streptavidin-PE solution (5 μg ml−1 streptavidin-PE in PBS/Mg containing 0.5% BSA) at room temperature in the dark for 20 min. Streptavidin-PE solution was removed and cells were washed five times with 500 μl of PBS/Mg. Wash media was removed, and cells kept in 400 μl of imaging media before imaging by fluorescence microscopy.
  • Fluorescence microscopy. Fluorescent microscopy was carried out using an Axiovert 200M (Zeiss) microscope with a 63× Oil objective (Zeiss). A Lambda LS light source containing a 300W Xenon Arc lamp (Sutter) was used for illumination, and light intensity was reduced to optimal levels by placing a 0.3 and a 0.6 neutral density filter into the light path. Excitation and emission spectra were separated using a TRITC/DiI filter set (Chroma). Cells were imaged in three dimensions by z-stack acquisition (21 planes, 1 μm apart). Image acquisition and analysis was performed using Metamorph software (Universal Imaging) as described (Irvine et al., Nature (419), p 45-9, and Purhhoo et al., Nature Immunology (5), p 524-30.).
  • Results
  • As demonstrated by FIG. 22 the above method was used successfully to image high affinity 1G4 TCR bound to SLLMWITQC (SEQ ID NO:126)-HLA-A*0201 antigens on the surface of Mel 526, Mel 624 and SK-Mel-37 cancer cells.

Claims (5)

1. A method of treatment of cancer comprising administering to a subject suffering such cancer an effective amount of a recombinant TCR having the α chain extracellular sequence SEQ ID NO: 1 and the β chain extracellular sequence SEQ ID NO: 2 except that amino acids Q51 and S53 of SEQ ID NO: 1 are replaced by 51M and 53H and amino acid G50 of SEQ ID NO: 2 is replaced by 50S.
2. A method of treatment of cancer comprising administering to a subject suffering such cancer an effective amount of a recombinant TCR having the α chain extracellular sequence SEQ ID NO: 1 and the β chain extracellular sequence SEQ ID NO: 2 except that amino acids Q51 and S53 of SEQ ID NO: 1 are replaced by 51M and 53H and amino acid A51 of SEQ ID NO: 2 is replaced by 51V.
3. The method of claim 1 or 2, wherein the TCR is associated with a therapeutic agent.
4. A method of treatment of cancer comprising administering to a subject suffering such cancer a pharmaceutical composition comprising: a plurality of cells having a recombinant TCR having the α chain extracellular sequence SEQ ID NO: 1 and the β chain extracellular sequence SEQ ID NO: 2 except that amino acids Q51 and S53 of SEQ ID NO: 1 are replaced by 51M and 53H and amino acid G50 of SEQ NO: 2 is replaced by 50S; and a pharmaceutically acceptable carrier.
5. A method of treatment of cancer comprising administering to a subject suffering such cancer the pharmaceutical composition comprising: a plurality of cells having a recombinant TCR having the α chain extracellular sequence SEQ ID NO: 1 and the β chain extracellular sequence SEQ ID NO: 2 except that amino acids Q51 and S53 of SEQ ID NO: 1 are replaced by 51M and 53H and amino acid A51 of SEQ ID NO: 2 is replaced by 51V; and a pharmaceutically acceptable carrier.
US14/690,193 2004-05-19 2015-04-17 High affinity ny-eso t cell receptors Abandoned US20150231202A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/690,193 US20150231202A1 (en) 2004-05-19 2015-04-17 High affinity ny-eso t cell receptors
US14/967,584 US9512197B2 (en) 2004-05-19 2015-12-14 High affinity NY-ESO T cell receptors
US15/291,540 US9822163B2 (en) 2004-05-19 2016-10-12 High affinity NY-ESO T cell receptors
US15/698,897 US20180072788A1 (en) 2004-05-19 2017-09-08 High affinity ny-eso t cell receptors
US16/056,079 US20180371049A1 (en) 2004-05-19 2018-08-06 High affinity ny-eso t cell receptors
US17/063,056 US20210061878A1 (en) 2004-05-19 2020-10-05 High affinity ny-eso t cell receptors

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0411123.3 2004-05-19
GB0411123A GB0411123D0 (en) 2004-05-19 2004-05-19 High-affinity NY-ESO T cell receptors
GB0419643A GB0419643D0 (en) 2004-09-03 2004-09-03 High affinity ny-eso t cell receptors
GB0419643.2 2004-09-03
PCT/GB2005/001924 WO2005113595A2 (en) 2004-05-19 2005-05-18 High affinity ny-eso t cell receptor
US11/596,458 US8143376B2 (en) 2004-05-19 2005-05-18 High affinity NY-ESO T cell receptor
US13/429,944 US9156903B2 (en) 2004-05-19 2012-03-26 High affinity NY-ESO T cell receptors
US14/690,193 US20150231202A1 (en) 2004-05-19 2015-04-17 High affinity ny-eso t cell receptors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/429,944 Continuation US9156903B2 (en) 2004-05-19 2012-03-26 High affinity NY-ESO T cell receptors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/967,584 Continuation US9512197B2 (en) 2004-05-19 2015-12-14 High affinity NY-ESO T cell receptors

Publications (1)

Publication Number Publication Date
US20150231202A1 true US20150231202A1 (en) 2015-08-20

Family

ID=35428916

Family Applications (10)

Application Number Title Priority Date Filing Date
US11/596,458 Active 2027-09-23 US8143376B2 (en) 2004-05-19 2005-05-18 High affinity NY-ESO T cell receptor
US12/854,691 Active US8008438B2 (en) 2004-05-19 2010-08-11 High affinity NY-ESO T cell receptors
US13/176,090 Active US8367804B2 (en) 2004-05-19 2011-07-05 High affinity NY-ESO T cell receptors
US13/429,944 Active 2025-10-06 US9156903B2 (en) 2004-05-19 2012-03-26 High affinity NY-ESO T cell receptors
US14/690,193 Abandoned US20150231202A1 (en) 2004-05-19 2015-04-17 High affinity ny-eso t cell receptors
US14/967,584 Active US9512197B2 (en) 2004-05-19 2015-12-14 High affinity NY-ESO T cell receptors
US15/291,540 Active US9822163B2 (en) 2004-05-19 2016-10-12 High affinity NY-ESO T cell receptors
US15/698,897 Abandoned US20180072788A1 (en) 2004-05-19 2017-09-08 High affinity ny-eso t cell receptors
US16/056,079 Abandoned US20180371049A1 (en) 2004-05-19 2018-08-06 High affinity ny-eso t cell receptors
US17/063,056 Abandoned US20210061878A1 (en) 2004-05-19 2020-10-05 High affinity ny-eso t cell receptors

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/596,458 Active 2027-09-23 US8143376B2 (en) 2004-05-19 2005-05-18 High affinity NY-ESO T cell receptor
US12/854,691 Active US8008438B2 (en) 2004-05-19 2010-08-11 High affinity NY-ESO T cell receptors
US13/176,090 Active US8367804B2 (en) 2004-05-19 2011-07-05 High affinity NY-ESO T cell receptors
US13/429,944 Active 2025-10-06 US9156903B2 (en) 2004-05-19 2012-03-26 High affinity NY-ESO T cell receptors

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/967,584 Active US9512197B2 (en) 2004-05-19 2015-12-14 High affinity NY-ESO T cell receptors
US15/291,540 Active US9822163B2 (en) 2004-05-19 2016-10-12 High affinity NY-ESO T cell receptors
US15/698,897 Abandoned US20180072788A1 (en) 2004-05-19 2017-09-08 High affinity ny-eso t cell receptors
US16/056,079 Abandoned US20180371049A1 (en) 2004-05-19 2018-08-06 High affinity ny-eso t cell receptors
US17/063,056 Abandoned US20210061878A1 (en) 2004-05-19 2020-10-05 High affinity ny-eso t cell receptors

Country Status (10)

Country Link
US (10) US8143376B2 (en)
EP (1) EP1765860B1 (en)
JP (1) JP4773434B2 (en)
AT (1) ATE417065T1 (en)
AU (1) AU2005245664B2 (en)
CA (1) CA2566363C (en)
DE (1) DE602005011617D1 (en)
DK (1) DK1765860T3 (en)
NZ (1) NZ550810A (en)
WO (1) WO2005113595A2 (en)

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435776A4 (en) 2001-09-24 2006-01-25 Univ Pittsburgh Anticancer vaccine and diganostic methods and reagents
DK1765860T3 (en) * 2004-05-19 2009-03-09 Immunocore Ltd New-ESO-T. cell receptor with high affinity
US20060084607A1 (en) 2004-07-06 2006-04-20 Lisa Spirio Purified amphiphilic peptide compositions and uses thereof
US7994298B2 (en) 2004-09-24 2011-08-09 Trustees Of Dartmouth College Chimeric NK receptor and methods for treating cancer
WO2007044033A2 (en) 2004-12-07 2007-04-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Therapeutic and diagnostic cloned mhc-unrestricted receptor specific for the muc1 tumor associated antigen
ATE425186T1 (en) 2005-01-05 2009-03-15 F Star Biotech Forsch & Entw SYNTHETIC IMMUNOGLOBULIN DOMAINS WITH BINDING PROPERTIES MODIFIED IN REGIONS OF THE MOLECULE DIFFERENT FROM THE AREAS DETERMINING COMPLEMENTARITY
GB0511124D0 (en) * 2005-06-01 2005-07-06 Avidex Ltd High affinity melan-a t cell receptors
US8883507B2 (en) 2005-10-18 2014-11-11 The Regents Of The University Of Colorado Conditionally immortalized long-term hematopoietic stem cells and methods of making and using such cells
US20090208502A1 (en) * 2005-12-20 2009-08-20 Ralph Alexander Willemsen Apoptosis-inducing protein complexes and therapeutic use thereof
AT503861B1 (en) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw METHOD FOR MANIPULATING T-CELL RECEPTORS
AT503889B1 (en) 2006-07-05 2011-12-15 Star Biotechnologische Forschungs Und Entwicklungsges M B H F MULTIVALENT IMMUNE LOBULINE
WO2008039818A2 (en) 2006-09-26 2008-04-03 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Modified t cell receptors and related materials and methods
WO2008037943A1 (en) * 2006-09-29 2008-04-03 Medigene Limited Cells transformed with nucleic acid encoding ny-eso t cell receptors
EP2087000A2 (en) * 2006-09-29 2009-08-12 Immunocore Ltd. T cell therapies
JP5602625B2 (en) 2007-06-26 2014-10-08 エフ−スター ビオテヒノロギッシェ フォルシュングス− ウント エントヴィッケルングスゲゼルシャフト ミット ベシュレンクテル ハフツング Binding substance display
US20100297093A1 (en) * 2007-09-25 2010-11-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Modified t cell receptors and related materials and methods
EP2113255A1 (en) 2008-05-02 2009-11-04 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Cytotoxic immunoglobulin
IL287311B1 (en) 2008-05-16 2024-02-01 Taiga Biotechnologies Inc Antibodies and processes for preparing the same
US8748170B2 (en) 2008-07-25 2014-06-10 University of Pittsburgh—of the Commonwealth System of Higher Education Polypeptides derived from cyclin B1 and uses thereof
EP2966084B1 (en) 2008-08-28 2018-04-25 Taiga Biotechnologies, Inc. Modulators of myc, methods of using the same and methods of identifying agents that modulate myc
GB0816096D0 (en) * 2008-09-04 2008-10-15 Medigene Ltd Diabetes t cell receptors
GB0908613D0 (en) 2009-05-20 2009-06-24 Immunocore Ltd T Cell Reseptors
US9273283B2 (en) 2009-10-29 2016-03-01 The Trustees Of Dartmouth College Method of producing T cell receptor-deficient T cells expressing a chimeric receptor
US9181527B2 (en) 2009-10-29 2015-11-10 The Trustees Of Dartmouth College T cell receptor-deficient T cell compositions
CA2805320A1 (en) * 2010-07-28 2012-02-02 Immunocore Ltd T cell receptors
US9833476B2 (en) 2011-08-31 2017-12-05 The Trustees Of Dartmouth College NKP30 receptor targeted therapeutics
WO2013041865A1 (en) * 2011-09-22 2013-03-28 Immunocore Limited T cell receptors
JP2014530009A (en) 2011-09-29 2014-11-17 エーピーオー‐ティー ビー.ヴイ. Multispecific binding molecules targeting abnormal cells
US10946104B2 (en) 2012-01-13 2021-03-16 Apo-Tb.V. Aberrant cell-restricted immunoglobulins provided with a toxic moiety
EP3505537A1 (en) 2012-05-07 2019-07-03 Trustees of Dartmouth College Anti-b7-h6 antibody, fusion proteins, and methods of using the same
WO2013177247A1 (en) 2012-05-22 2013-11-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Murine anti-ny-eso-1 t cell receptors
CN114645015A (en) 2012-07-20 2022-06-21 泰加生物工艺学公司 Enhanced reconstitution and autoreconstitution of hematopoietic compartments
MX2015000979A (en) 2012-07-27 2015-11-23 Univ Illinois Engineering t-cell receptors.
US10272115B2 (en) 2013-03-11 2019-04-30 Taiga Biotechnologies, Inc. Production and use of red blood cells
JP6464140B2 (en) 2013-03-13 2019-02-06 ヘルス リサーチ インコーポレイテッドHealth Research, Inc. Compositions and methods for using recombinant T cell receptors to directly recognize tumor antigens
WO2014153470A2 (en) 2013-03-21 2014-09-25 Sangamo Biosciences, Inc. Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases
RU2645256C2 (en) 2013-06-26 2018-02-19 Гуандун Сянсюэ Лайф Сайенсис, Лтд. High-stable t-cell receptor and method for its obtaining and application
AU2014352826B2 (en) 2013-11-22 2019-08-01 The Board Of Trustees Of The University Of Illinois Engineered high-affinity human T cell receptors
US10801070B2 (en) 2013-11-25 2020-10-13 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer
WO2015085147A1 (en) 2013-12-05 2015-06-11 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
WO2015095811A2 (en) 2013-12-20 2015-06-25 The Board Institute Inc. Combination therapy with neoantigen vaccine
EP3116901B1 (en) * 2014-03-14 2019-06-12 Immunocore Limited Tcr libraries
CA2955984A1 (en) 2014-07-22 2016-01-28 The University Of Notre Dame Du Lac Molecular constructs and uses thereof
WO2016054086A1 (en) * 2014-09-30 2016-04-07 The Regents Of The University Of California Codon-optimized lentiviral vector for stem cell reprogramming
JP6879910B2 (en) 2014-10-31 2021-06-02 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Modification of gene expression in CART cells and their use
WO2016100975A1 (en) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Molecular biomarkers for cancer immunotherapy
WO2016100977A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Methods for profiling the t-cel- receptor repertoire
MX2017014700A (en) 2015-05-20 2018-08-15 Broad Inst Inc Shared neoantigens.
NL2014935B1 (en) 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
WO2017023803A1 (en) 2015-07-31 2017-02-09 Regents Of The University Of Minnesota Modified cells and methods of therapy
GB201516272D0 (en) * 2015-09-15 2015-10-28 Adaptimmune Ltd And Immunocore Ltd TCR Libraries
US20190255107A1 (en) 2015-10-09 2019-08-22 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
EP3368689B1 (en) 2015-10-28 2020-06-17 The Broad Institute, Inc. Composition for modulating immune responses by use of immune cell gene signature
WO2017075451A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017075465A1 (en) 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3
CA3005878A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
GB201522592D0 (en) * 2015-12-22 2016-02-03 Immunocore Ltd T cell receptors
US10188749B2 (en) 2016-04-14 2019-01-29 Fred Hutchinson Cancer Research Center Compositions and methods to program therapeutic cells using targeted nucleic acid nanocarriers
WO2017184590A1 (en) 2016-04-18 2017-10-26 The Broad Institute Inc. Improved hla epitope prediction
WO2017208018A1 (en) 2016-06-02 2017-12-07 Immunocore Limited Dosing regimen for gp100-specific tcr - anti-cd3 scfv fusion protein
US11630103B2 (en) 2016-08-17 2023-04-18 The Broad Institute, Inc. Product and methods useful for modulating and evaluating immune responses
WO2018049025A2 (en) 2016-09-07 2018-03-15 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses
JP2020501508A (en) 2016-09-15 2020-01-23 クアドルセプト バイオ リミテッド Multimers, tetramers and octamers
WO2018067991A1 (en) 2016-10-07 2018-04-12 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
GB2573406B (en) 2016-10-18 2021-11-10 Univ Minnesota Tumor infiltrating lymphocytes and methods of therapy
GB201617714D0 (en) 2016-10-19 2016-11-30 Ucl Business Plc T Cell receptor
TWI788307B (en) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
CN108117596B (en) * 2016-11-29 2023-08-29 香雪生命科学技术(广东)有限公司 High affinity TCR against NY-ESO
US10583156B2 (en) 2016-12-02 2020-03-10 Taiga Biotechnologies, Inc. Nanoparticle formulations
WO2018129270A1 (en) 2017-01-05 2018-07-12 Fred Hutchinson Cancer Research Center Systems and methods to improve vaccine efficacy
US20200121719A1 (en) 2017-01-06 2020-04-23 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
US11357841B2 (en) 2017-01-06 2022-06-14 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
KR20190103226A (en) * 2017-01-13 2019-09-04 아게누스 인코포레이티드 T cell receptor that binds to NY-ESO-1 and methods of use thereof
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
KR20230119735A (en) 2017-02-12 2023-08-16 바이오엔테크 유에스 인크. Hla-based methods and compositions and uses thereof
WO2018170288A1 (en) 2017-03-15 2018-09-20 Pandion Therapeutics, Inc. Targeted immunotolerance
CR20190440A (en) 2017-03-27 2019-11-12 Hoffmann La Roche Improved antigen binding receptors
WO2018183908A1 (en) 2017-03-31 2018-10-04 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating ovarian tumors
US11913075B2 (en) 2017-04-01 2024-02-27 The Broad Institute, Inc. Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer
EP3610266A4 (en) 2017-04-12 2021-04-21 Massachusetts Eye and Ear Infirmary Tumor signature for metastasis, compositions of matter methods of use thereof
MX2019012398A (en) 2017-04-18 2020-09-25 Broad Inst Inc Compositions for detecting secretion and methods of use.
BR112019024127A2 (en) 2017-05-24 2020-06-23 Pandion Therapeutics, Inc. TARGETED IMMUNOTOLERANCE
EP3638218A4 (en) 2017-06-14 2021-06-09 The Broad Institute, Inc. Compositions and methods targeting complement component 3 for inhibiting tumor growth
EP3645021A4 (en) 2017-06-30 2021-04-21 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
ES2905757T3 (en) 2017-08-03 2022-04-12 Taiga Biotechnologies Inc Methods and compositions for the treatment of melanoma
US10149898B2 (en) 2017-08-03 2018-12-11 Taiga Biotechnologies, Inc. Methods and compositions for the treatment of melanoma
AU2018338318B2 (en) 2017-09-21 2022-12-22 Massachusetts Institute Of Technology Systems, methods, and compositions for targeted nucleic acid editing
AU2018334886A1 (en) * 2017-09-22 2020-04-09 WuXi Biologics Ireland Limited Novel bispecific polypeptide complexes
US11365254B2 (en) 2017-09-22 2022-06-21 WuXi Biologics Ireland Limited Bispecific CD3/CD19 polypeptide complexes
AU2018346719A1 (en) 2017-10-06 2020-04-23 Oslo Universitetssykehus Hf Chimeric antigen receptors
WO2019084055A1 (en) 2017-10-23 2019-05-02 Massachusetts Institute Of Technology Calling genetic variation from single-cell transcriptomes
WO2019084427A1 (en) * 2017-10-27 2019-05-02 Kite Pharma, Inc. T cell receptor antigen binding molecules and methods of use thereof
EP3710039A4 (en) 2017-11-13 2021-08-04 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
CA3083118A1 (en) 2017-11-22 2019-05-31 Iovance Biotherapeutics, Inc. Expansion of peripheral blood lymphocytes (pbls) from peripheral blood
CN109837245A (en) * 2017-11-25 2019-06-04 深圳宾德生物技术有限公司 A kind of T cell receptor gene modification T cell and its preparation method and application for the targeting NY-ESO-1 that TCR is knocked out
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
US10174091B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
JP2021508104A (en) 2017-12-15 2021-02-25 アイオバンス バイオセラピューティクス,インコーポレイテッド Systems and methods for determining beneficial administration of tumor-infiltrating lymphocytes and their use, as well as beneficial administration of tumor-infiltrating lymphocytes and their use.
CN111819194A (en) 2018-02-26 2020-10-23 基因医疗免疫疗法有限责任公司 NYESO T Cell Receptor (TCR)
US20210038647A1 (en) 2018-03-14 2021-02-11 Medigene Immunotherapies Gmbh Inducible t cell receptors and uses thereof
US11957695B2 (en) 2018-04-26 2024-04-16 The Broad Institute, Inc. Methods and compositions targeting glucocorticoid signaling for modulating immune responses
US20210371932A1 (en) 2018-06-01 2021-12-02 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
US20210388089A1 (en) 2018-08-09 2021-12-16 Compass Therapeutics Llc Antigen binding agents that bind cd277 and uses thereof
WO2020041384A1 (en) 2018-08-20 2020-02-27 The Broad Institute, Inc. 3-phenyl-2-cyano-azetidine derivatives, inhibitors of rna-guided nuclease activity
US20210177832A1 (en) 2018-08-20 2021-06-17 The Broad Institute, Inc. Inhibitors of rna-guided nuclease target binding and uses thereof
US20210324357A1 (en) 2018-08-20 2021-10-21 The Brigham And Women's Hospital, Inc. Degradation domain modifications for spatio-temporal control of rna-guided nucleases
WO2020049496A1 (en) 2018-09-05 2020-03-12 Glaxosmithkline Intellectual Property Development Limited T cell modification
WO2020072700A1 (en) 2018-10-02 2020-04-09 Dana-Farber Cancer Institute, Inc. Hla single allele lines
US20210379057A1 (en) 2018-10-16 2021-12-09 Massachusetts Institute Of Technology Nutlin-3a for use in treating a mycobacterium tuberculosis infection
MA53981A (en) 2018-10-23 2021-09-01 Regeneron Pharma NY-ESO-1 T-LYMPHOCYTE RECEPTORS AND METHODS OF USE THEREOF
WO2020092455A2 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Car t cell transcriptional atlas
WO2020131586A2 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Methods for identifying neoantigens
MX2021007556A (en) 2018-12-21 2021-09-10 Biontech Us Inc Method and systems for prediction of hla class ii-specific epitopes and characterization of cd4+ t cells.
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
KR20210136050A (en) 2019-03-01 2021-11-16 이오반스 바이오테라퓨틱스, 인크. Expansion of tumor-infiltrating lymphocytes from liquid tumors and their therapeutic use
WO2020182681A1 (en) 2019-03-08 2020-09-17 Klinikum Der Universität München Ccr8 expressing lymphocytes for targeted tumor therapy
US20220154282A1 (en) 2019-03-12 2022-05-19 The Broad Institute, Inc. Detection means, compositions and methods for modulating synovial sarcoma cells
US20220142948A1 (en) 2019-03-18 2022-05-12 The Broad Institute, Inc. Compositions and methods for modulating metabolic regulators of t cell pathogenicity
GB201903767D0 (en) 2019-03-19 2019-05-01 Quadrucept Bio Ltd Multimers, tetramers & octamers
KR20220035333A (en) 2019-05-20 2022-03-22 팬디온 오퍼레이션스, 인코포레이티드 MADCAM Targeted Immune Tolerance
WO2020236967A1 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Random crispr-cas deletion mutant
US20220226464A1 (en) 2019-05-28 2022-07-21 Massachusetts Institute Of Technology Methods and compositions for modulating immune responses
EP3990476A1 (en) 2019-06-25 2022-05-04 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
CN114302733A (en) * 2019-07-03 2022-04-08 里珍纳龙药品有限公司 anti-New York esophageal squamous cell carcinoma 1(NY-ESO-1) antigen binding proteins and methods of use thereof
CN112300268B (en) * 2019-08-02 2023-02-28 香雪生命科学技术(广东)有限公司 High affinity T cell receptors recognizing the NY-ESO-1 antigen
WO2021030182A1 (en) 2019-08-09 2021-02-18 A2 Biotherapeutics, Inc. Bifunctional single variable domain t cell receptors and uses thereof
WO2021028690A1 (en) 2019-08-13 2021-02-18 King's College London Immunoresponsive cells armoured with spatiotemporally restricted activity of cytokines of the il-1 superfamily
WO2021030627A1 (en) 2019-08-13 2021-02-18 The General Hospital Corporation Methods for predicting outcomes of checkpoint inhibition and treatment thereof
WO2021041922A1 (en) 2019-08-30 2021-03-04 The Broad Institute, Inc. Crispr-associated mu transposase systems
US11793787B2 (en) 2019-10-07 2023-10-24 The Broad Institute, Inc. Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis
US11844800B2 (en) 2019-10-30 2023-12-19 Massachusetts Institute Of Technology Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia
US11865168B2 (en) 2019-12-30 2024-01-09 Massachusetts Institute Of Technology Compositions and methods for treating bacterial infections
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
WO2021190980A1 (en) 2020-03-22 2021-09-30 Quadrucept Bio Limited Multimers for viral strain evolution
KR20220160598A (en) 2020-03-30 2022-12-06 고쿠리츠다이가쿠호진 미에다이가쿠 bispecific antibody
CN111690051B (en) * 2020-06-28 2021-08-17 英威福赛生物技术有限公司 Specific T cell receptor targeting NY-ESO-1(157-165) epitope and anti-tumor application
TWI815194B (en) 2020-10-22 2023-09-11 美商基利科學股份有限公司 INTERLEUKIN-2-Fc FUSION PROTEINS AND METHODS OF USE
AU2021426928A1 (en) 2021-02-09 2023-09-21 Liyang Tcr Biotherapeutics Co.Ltd Tcr and application thereof
TW202246511A (en) 2021-02-25 2022-12-01 美商萊爾免疫藥物股份有限公司 Enhanced immune cell therapy targeting ny-eso-1
WO2022187280A1 (en) 2021-03-01 2022-09-09 Dana-Farber Cancer Institute, Inc. Personalized redirection and reprogramming of t cells for precise targeting of tumors
WO2022184659A1 (en) 2021-03-01 2022-09-09 Quadrucept Bio Limited Antibody domains & multimers
TW202313094A (en) 2021-05-18 2023-04-01 美商基利科學股份有限公司 Methods of using flt3l-fc fusion proteins
WO2023288267A1 (en) 2021-07-14 2023-01-19 2Seventy Bio, Inc. Engineered t cell receptors fused to binding domains from antibodies
WO2023021113A1 (en) 2021-08-18 2023-02-23 Julius-Maximilians-Universität Würzburg Hybrid tumor/cancer therapy based on targeting the resolution of or inducing transcription-replication conflicts (trcs)
WO2023077028A1 (en) 2021-10-28 2023-05-04 Lyell Immunopharma, Inc. Enhanced t cell therapy targeting ny-eso-1
TW202330504A (en) 2021-10-28 2023-08-01 美商基利科學股份有限公司 Pyridizin-3(2h)-one derivatives
US11919869B2 (en) 2021-10-29 2024-03-05 Gilead Sciences, Inc. CD73 compounds
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
US20240124412A1 (en) 2021-12-22 2024-04-18 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (en) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7 inhibitors
WO2023178181A1 (en) 2022-03-17 2023-09-21 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023196997A2 (en) 2022-04-08 2023-10-12 2Seventy Bio, Inc. Multipartite receptor and signaling complexes
TW202400138A (en) 2022-04-21 2024-01-01 美商基利科學股份有限公司 Kras g12d modulating compounds
WO2023215183A1 (en) * 2022-05-02 2023-11-09 Tscan Therapeutics, Inc. Multiplexed t cell receptor compositions, combination therapies, and uses thereof
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024077256A1 (en) 2022-10-07 2024-04-11 The General Hospital Corporation Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins
CN116239700A (en) * 2022-12-20 2023-06-09 浙江大学 Tumor dual-targeting trispecific T cell adapter and application thereof
CN116284448A (en) * 2023-02-14 2023-06-23 浙江大学 Super antigen-participated three-function T cell adapter and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759243B2 (en) * 1998-01-20 2004-07-06 Board Of Trustees Of The University Of Illinois High affinity TCR proteins and methods
US6811785B2 (en) * 2001-05-07 2004-11-02 Mount Sinai School Of Medicine Of New York University Multivalent MHC class II—peptide chimeras
ATE290020T1 (en) 2001-08-31 2005-03-15 Avidex Ltd SOLUBLE T CELL RECEPTOR
DK1765860T3 (en) 2004-05-19 2009-03-09 Immunocore Ltd New-ESO-T. cell receptor with high affinity

Also Published As

Publication number Publication date
NZ550810A (en) 2009-05-31
US8143376B2 (en) 2012-03-27
US20210061878A1 (en) 2021-03-04
WO2005113595A3 (en) 2006-06-01
AU2005245664B2 (en) 2012-02-02
JP2008509090A (en) 2008-03-27
DE602005011617D1 (en) 2009-01-22
EP1765860B1 (en) 2008-12-10
US9512197B2 (en) 2016-12-06
US20110014169A1 (en) 2011-01-20
US20110262414A1 (en) 2011-10-27
CA2566363C (en) 2014-12-16
US20160159881A1 (en) 2016-06-09
US8008438B2 (en) 2011-08-30
US20110038842A1 (en) 2011-02-17
CA2566363A1 (en) 2005-12-01
US20180072788A1 (en) 2018-03-15
US20130058908A1 (en) 2013-03-07
US8367804B2 (en) 2013-02-05
US9156903B2 (en) 2015-10-13
ATE417065T1 (en) 2008-12-15
US20170088599A1 (en) 2017-03-30
AU2005245664A1 (en) 2005-12-01
EP1765860A2 (en) 2007-03-28
US20180371049A1 (en) 2018-12-27
WO2005113595A2 (en) 2005-12-01
DK1765860T3 (en) 2009-03-09
US9822163B2 (en) 2017-11-21
JP4773434B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US20210061878A1 (en) High affinity ny-eso t cell receptors
EP1885754B1 (en) T cell receptors which specifically bind to vygfvracl-hla-a24
US8217144B2 (en) High affinity Melan-A T cell receptors
US8017730B2 (en) T cell receptors which specifically bind to VYGFVRACL-HLA-A24
EP1809669A2 (en) T-cell receptors containing a non-native disulfide interchain bond linked to therapeutic agents
EP1758935B1 (en) High affinity telomerase t cell receptors
CN1989153A (en) High affinity ny-eso t cell receptor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: IMMUNOCORE LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDIGENE LIMITED;REEL/FRAME:038945/0021

Effective date: 20081001

Owner name: ADAPTIMMUNE LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMMUNOCORE LIMITED;REEL/FRAME:038945/0151

Effective date: 20130718

Owner name: MEDIGENE LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOULTER, JONATHAN MICHAEL;JAKOBSEN, BENT KARSTEN;LI, YI;AND OTHERS;SIGNING DATES FROM 20080826 TO 20081002;REEL/FRAME:038944/0917